

# Measuring the <sup>34</sup>S and <sup>33</sup>S Isotopic Ratios of Volatile Sulfur during Planet Formation

Alice S. Booth<sup>1,12</sup>, Maria N. Drozdovskaya<sup>2</sup>, Milou Temmink<sup>3</sup>, Hideko Nomura<sup>4</sup>, Ewine F. van Dishoeck<sup>3,5</sup>,

Luke Keyte<sup>6</sup>, Charles J. Law<sup>7,13</sup>, Margot Leemker<sup>3</sup>, Nienke van der Marel<sup>3</sup>, Shota Notsu<sup>8,9,10</sup>, Karin Öberg<sup>1</sup>, and

Catherine Walsh<sup>11</sup>

<sup>1</sup>Center for Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA; alice.booth@cfa.harvard.edu

<sup>2</sup> Physikalisch-Meteorologisches Observatorium Davos und Weltstrahlungszentrum (PMOD/WRC), Dorfstrasse 33, CH-7260, Davos Dorf, Switzerland Leiden Observatory, Leiden University, 2300 RA Leiden, The Netherlands

<sup>4</sup> Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Max-Planck-Institut fúr Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany

<sup>6</sup> Department\_of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA

<sup>8</sup> Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Star and Planet Formation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan <sup>11</sup> School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

Received 2024 March 18; revised 2024 August 29; accepted 2024 August 29; published 2024 October 25

### Abstract

Stable isotopic ratios constitute powerful tools for unraveling the thermal and irradiation history of volatiles. In particular, we can use our knowledge of the isotopic fractionation processes active during the various stages of star, disk, and planet formation to infer the origins of different volatiles with measured isotopic patterns in our own solar system. Observations of planet-forming disks with the Atacama Large Millimeter/submillimeter Array (ALMA) now readily detect the heavier isotopologues of C, O, and N, while the isotopologue abundances and isotopic fractionation mechanisms of sulfur species are less well understood. Using ALMA observations of the SO and SO<sub>2</sub> isotopologues in the nearby, molecule-rich disk around the young star Oph-IRS 48 we present the first constraints on the combined  ${}^{32}S/{}^{34}S$  and  ${}^{32}S/{}^{33}S$  isotope ratios in a planet-forming disk. Given that these isotopologues likely originate in relatively warm gas (>50 K), like most other Oph-IRS 48 volatiles, SO is depleted in heavy sulfur, while SO<sub>2</sub> is enriched compared to solar system values. However, we cannot completely rule out a cooler gas reservoir, which would put the SO sulfur ratios more in line with comets and other solar system bodies. We also constrain the  $S^{18}O/SO$  ratio and find the limit to be consistent with solar system values given a temperature of 60 K. Together these observations show that we should not assume solar isotopic values for disk sulfur reservoirs, but additional observations are needed to determine the chemical origin of the abundant SO in this disk, inform on what isotopic fractionation mechanism(s) are at play, and aid in unraveling the history of the sulfur budget during the different stages of planet formation.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Astrochemistry (75); Isotopic abundances (867); Small Solar System bodies (1469); Submillimeter astronomy (1647)

## 1. Introduction

The volatile building blocks of planets, moons, and comets exist as gas and ice in protoplanetary disks, which in turn have an origin as ices in cold, dark, molecular clouds (e.g., K. I. Oberg & E. A. Bergin 2021). On million-year timescales, the material in the disk is subject to a variety of physical and chemical processes that can alter this initially inherited volatile reservoir (e.g., Y. Aikawa et al. 2022). The isotopic ratios of volatile elements can be used as tools to unravel the history of this material throughout the different stages of the star, disk, and planet formation. The main drivers of isotopic fractionation are low-temperature chemical reactions, due to the differences in the zero-point vibrational energies of different isotopologues, and

<sup>12</sup> Clay Postdoctoral Fellow.

Original content from this work may be used under the terms (cc) of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

isotope-selective photodissociation (see H. Nomura et al. 2023 for a recent review).

From submillimeter observations of planet-forming disks we now have detections of simple molecules containing the heavier isotopes D, <sup>13</sup>C, <sup>18</sup>O, <sup>17</sup>O, <sup>15</sup>N, and <sup>34</sup>S (summarized in K. I. Öberg et al. 2023). One of the most readily detected isotopes in disks is deuterium, and the measured enhancement of D/H in simple molecules (e.g., HCN, HCO<sup>+</sup>, and  $N_2H^+$ ) can be explained via in situ isotope exchange reactions that are active in the cold outer disk (e.g., C. Favre et al. 2015; Y. Aikawa et al. 2018; G. Cataldi et al. 2021; C. E. Muñoz-Romero et al. 2023). The  ${}^{14}N/{}^{15}N$  ratio has also been measured in disks for both HCN and CN, where fractionation can likely be attributed to the isotope-selective photodissociation of N<sub>2</sub> in the disk atmosphere (A. N. Heays et al. 2014; P. Hily-Blant et al. 2017, 2019; V. V. Guzmán et al. 2017; R. Visser et al. 2018). Although  $C^{18}O$  is readily detectable in nearby disks, the optical depth of the line typically prevents a measurement of the oxygen isotope ratio from CO observations alone. Recent work from K. Furuya et al. (2022) shows that optically thin  $HCO^+$  isotopologue lines can give access to the  ${}^{16}O/{}^{18}O$  ratio in disks, which can be used to test mechanisms for recovering

<sup>&</sup>lt;sup>13</sup> NASA Hubble Fellowship Program Sagan Fellow.

 Table 1

 Molecular Line and Image Properties Where Molecular Transition Data Are Taken from CDMS (H. S. P. Müller et al. 2005; C. P. Endres et al. 2016)

| Mol.                          | Transition              | Frequency<br>(GHz) | $E_{\rm up}$ (K) | $\frac{\log_{10}(A_{\rm ul})}{({\rm s}^{-1})}$ | Beam (Position Angle)<br>(arcsec × arcsec (deg)) | Peak Integrated Intensity<br>(mJy beam <sup>-1</sup> km s <sup>-1</sup> ) | Uncertainty<br>(mJy beam <sup><math>-1</math></sup> km s <sup><math>-1</math></sup> ) |
|-------------------------------|-------------------------|--------------------|------------------|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| SO                            | $J = 3_3 - 3_2$         | 339.3414590        | 25.5             | -4.8372                                        | 0.34 × 0.28 (88)                                 | 56.2                                                                      | 4.7                                                                                   |
| <sup>34</sup> SO              | $J = 8_8 - 7_7$         | 339.8572694        | 77.3             | -3.2944                                        | $0.34 \times 0.27$ (88)                          | 58.7                                                                      | 4.7                                                                                   |
| <sup>34</sup> SO              | $J = 9_8 - 8_7$         | 337.5801467        | 86.1             | -3.3109                                        | $0.34 \times 0.28$ (-89)                         | 52.1                                                                      | 5.2                                                                                   |
| <sup>33</sup> SO <sup>a</sup> | $J = 7_8 - 6_7$         | 337.1986199        | 80.5             | -3.3158                                        | $0.34 \times 0.28$ (-90)                         | 22.9                                                                      | 5.3                                                                                   |
| <sup>33</sup> SO <sup>a</sup> | $J = 9_8 - 8_7$         | 343.0882949        | 78.0             | -3.2819                                        | $0.34 \times 0.27$ (-85)                         | 29.5                                                                      | 4.7                                                                                   |
| S <sup>18</sup> O             | $J = 8_9 - 7_8$         | 355.5735893        | 93.1             | -3.2414                                        | $0.33 \times 0.26$ (-85)                         | 3.6                                                                       | 0.9                                                                                   |
| SO <sub>2</sub>               | $J = 6_{4,2} - 6_{3,3}$ | 357.9258478        | 58.6             | -3.5845                                        | $0.33 \times 0.26$ (-85)                         | 50.1                                                                      | 5.9                                                                                   |
| $^{34}SO_2$                   | $J = 6_{3,3} - 5_{2,4}$ | 362.1582327        | 40.7             | -3.4839                                        | $0.53 \times 0.42$ (80)                          | 46.5                                                                      | 5.0                                                                                   |

Note.

<sup>a</sup> The <sup>33</sup>SO lines are blends of multiple hyperfine components. Here, we show the properties of the strongest transition, and the flux is the total of the blended lines. The  $J = 7_8 - 6_7$  line includes the F = 17/2 - 15/2, F = 15/2 - 13/2, F = 11/2 - 9/2, and F = 11/2 - 9/2 hyperfine components, and the  $J = 9_8 - 8_7$  line includes the F = 21/2 - 19/2, F = 19/2 - 17/2, F = 17/2 - 15/2, and F = 15/2 - 13/2 hyperfine components.

the oxygen isotope fractionation observed in the solar system (B. Marty 2012). In the specific case of the TW Hya disk, the relative abundance of <sup>18</sup>O is found to be consistent with the local interstellar medium (ISM) value, i.e., it is not enhanced or depleted in the disk gas (K. Furuya et al. 2022).

Overall, the results for Class II disks so far do not require the inheritance of fractionated material from the cold cloud stage. The least understood of the detected volatile elements in disks is sulfur, where both its primary volatile form on the ice and the expected isotopic ratios due to thermal and photoprocessing are unclear. The rarer isotopologues of CS, C<sup>34</sup>S, and <sup>13</sup>CS, have been detected in a handful of disks, but we lack concrete information on potential in situ or inherited isotope fractionation processes that may have occurred (R. Le Gal et al. 2019, 2021; R. A. Loomis et al. 2020; N. T. Phuong et al. 2021; A. S. Booth et al. 2023). However, when considering comets, the remnant icy material from the protoplanetary disk that formed our solar system, we have significantly more information. The isotopic ratios in sulfur-bearing molecules have been well measured in comet 67P/Churyumov-Gerasimenko (67P/C-G), and there are indicators that isotopic fractionation processes have occurred (J. A. Paquette et al. 2017; U. Calmonte et al. 2017; K. Altwegg et al. 2020). In particular, both the  ${}^{32}S/{}^{34}S$  and  ${}^{32}S/{}^{33}S$  ratios have been derived for a collection of simple molecules, and these measurements trace a bulk depletion of heavier isotopes relative to solar system standards that cannot be explained by photodissociation (U. Calmonte et al. 2017). Additionally, the simple S-bearing molecules SO, SO<sub>2</sub>, and OCS are all enhanced in <sup>18</sup>O by approximately a factor of 2 relative to solar (K. Altwegg et al. 2020), and HDS/H<sub>2</sub>S is well above the interstellar elemental ratio (K. Altwegg et al. 2017). The cometary dust particles on the other hand have a  ${}^{32}S/{}^{34}S$  ratio consistent with the expected terrestrial value (J. A. Paquette et al. 2017).

The disk with the most observed volatile sulfur, and therefore the source with the most promise for measuring isotopic ratios of sulfur, is the Oph-IRS 48 disk. Oph-IRS 48 is a nearby (135 pc), young Herbig Ae star (J. M. Brown et al. 2012; Gaia Collaboration et al. 2018) host to a molecule-rich transition disk with an asymmetric dust trap where both, SO and SO<sub>2</sub> have been robustly detected (A. S. Booth et al. 2021; A. Booth et al. 2024). The observable chemistry in this disk appears to be dominated by the sublimation of ices indicated by the presence of CH<sub>3</sub>OH and other complex organic molecules in the gas phase (N. van der Marel et al. 2021; N. G. C. Brunken et al. 2022; A. Booth et al. 2024). This makes the Oph-IRS 48 disk a powerful observational laboratory to investigate the isotopic makeup of the typically hidden icy reservoir in disks. Here, we provide the first measurements of the combined  ${}^{32}S/{}^{34}S$  and  ${}^{32}S/{}^{33}S$  ratios in a planet-forming disk. We also report a stringent upper limit on the S<sup>18</sup>O abundance and use this to estimate the corresponding lower limit of the  ${}^{16}O/{}^{18}O$  isotopic ratio.

## 2. Methods

We use molecular line observations of the Oph-IRS 48 planetforming disk taken with the Atacama Large Millimeter/submillimeter Array (ALMA) from the programs 2017.1.00834.S (PI: Adriana Pohl) and 2021.1.00738.S (PI: Alice S. Booth). The former were first presented in N. van der Marel et al. (2021) and A. S. Booth et al. (2021) and the latter in A. Booth et al. (2024). The 2017.1.00834.S data were pipeline calibrated by S. Ohashi et al. (2020), and A. S. Booth et al. (2021) imaged these data with CASA task tCLEAN (J. P. McMullin et al. 2007) at a velocity resolution of  $1.7 \text{ km s}^{-1}$  and a Briggs robust weighting of 0.5 resulting in a  $\approx 0."45$  beam. The 2021.1.00738.S data were self-calibrated (both phase and amplitude) and imaged with CASA task tCLEAN at a velocity resolution of  $0.9 \text{ km s}^{-1}$  with a Briggs robust weighting of 0.5 resulting in a  $\approx 0.13$  beam (N. van der Marel et al. 2021). All integrated intensity maps were generated using Keplerian masks (R. Teague 2020). In the above referenced works, the data calibration, line identification, and imaging steps are described in full detail.

The focus of this paper is on the sulfur-bearing molecules covered in the data. A. S. Booth et al. (2021) and A. Booth et al. (2024) report the detections of SO, <sup>34</sup>SO, <sup>33</sup>SO, SO<sub>2</sub>, and <sup>34</sup>SO<sub>2</sub>, and we use the integrated intensity maps from these works. One transition of S<sup>18</sup>O with a  $A_{ul} \approx 10^{-3.2}$  s<sup>-1</sup> is covered in the data from A. Booth et al. (2024), and we tentatively detect this line in one velocity channel (0.9 km s<sup>-1</sup>) at a signal-to-noise ratio of 4. Although only detected in one channel, this is the same velocity channel where the main SO isotope lines are the brightest, and the local line width per pixel is only  $\approx 2-3$  km s<sup>-1</sup>. A robust detection would require  $3\sigma$  emission over >3 channels to confirm. We therefore consider this as an upper limit on the S<sup>18</sup>O abundance in this disk. The channel maps of the S<sup>18</sup>O line are shown in Figure A1. This S<sup>18</sup>O line was imaged in the same manner as the other lines from A. Booth et al. (2024) and is part of the same ALMA data set. Table 1 lists the properties of the transitions and images presented in this paper.

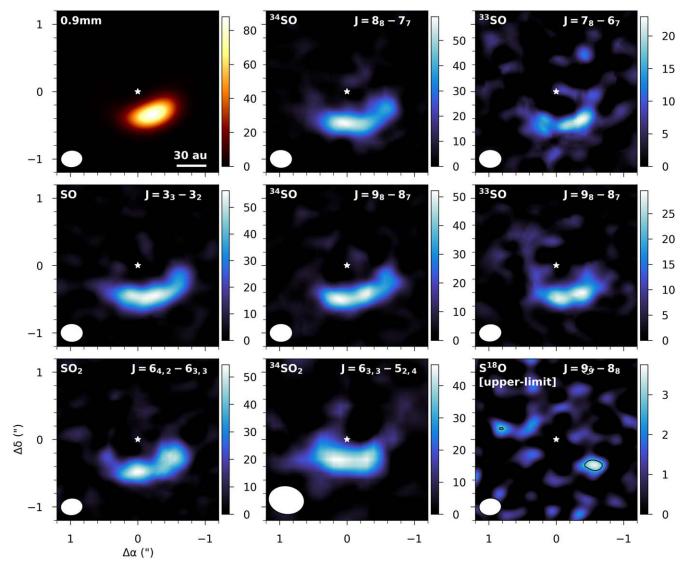



Figure 1. Integrated intensity maps of the 0.9 mm dust continuum emission and the sulfur isotopologues in the Oph-IRS 48 disk. The units of the color bar are mJy beam<sup>-1</sup> km s<sup>-1</sup> for the molecular lines and mJy beam<sup>-1</sup> for the continuum. The black contours on the S<sup>18</sup>O map highlight  $3 \times$  the rms noise level.

Under the typical assumptions of optically thin line emission and local thermodynamic equilibrium (as done by R. A. Loomis et al. 2018), we estimate the peak column density traced by the SO and SO<sub>2</sub> isotopologues detected in the Oph-IRS 48 disk. The various line properties and partition functions of each isotopologue are taken from the Cologne Database for Molecular Spectroscopy (H. S. P. Müller et al. 2001, 2005; C. P. Endres et al. 2016) with data from F. J. Lovas (1985), F. J. Lovas et al. (1992), and T. Klaus et al. (1996). The errors in the peak column densities are propagated from the errors in the integrated intensity maps (as listed in Table 1) where these errors are a measure of the rms noise of the line-free regions of the images without Keplerian masking. The rms in the S<sup>18</sup>O is lower than the other lines since this integrated map is only calculated for one channel.

We calculate these column densities at a range of excitation temperatures (30–150 K in steps of 10 K) that cover the range of expected excitation conditions in this disk. The lower limit of this range is informed by the brightness temperature of the midplane millimeter dust, which is at a minimum of 30 K, and the upper limit is from the  $\gtrsim 100$  K brightness temperature of

the optically thick CO isotopologues, which trace the disk surface layers (N. van der Marel et al. 2021; M. Leemker et al. 2023) and the rotational temperatures of H<sub>2</sub>CO, CH<sub>3</sub>OH, and SO<sub>2</sub> (N. van der Marel et al. 2021 and M. Temmink et al. 2024, in preparation). In particular, using the line survey data of the Oph-IRS 48 disk presented in A. Booth et al. (2024), where >10 SO<sub>2</sub> lines are detected with an upper energy level range of 35-200 K, M. Temmink et al. (2024, in preparation) find the rotational temperature for SO<sub>2</sub> to be very well constrained to  $\approx$ 60 K at the emission peak. As the SO and SO<sub>2</sub> emission is cospatial in the observations (as shown in Figure 1) and chemically linked in disk models through their origins in the warm molecular layer and not the disk midplane (e.g., L. Keyte et al. 2024), we expect them to trace the same gas temperature. Additionally, to support this assumption of warm gas in disk models, SO and SO<sub>2</sub> freeze out at dust temperatures less than  $\approx$ 40 and  $\approx$ 60 K, respectively (e.g., D. Semenov et al. 2018). We note that this will depend on the assumed binding energies; for example, J. Perrero et al. (2021) used quantum chemical calculations to show that SO has a range of binding energies on a water ice cluster (60 molecules), spanning a temperature

 Table 2

 Derived Peak Column Densities and Isotope Ratios with Associated  $1\sigma$  Errors

| Molecule                           | $N_{\rm peak}~({\rm cm}^{-2})$ |                             |                               |       |  |  |  |  |
|------------------------------------|--------------------------------|-----------------------------|-------------------------------|-------|--|--|--|--|
|                                    | <i>T</i> <sub>ex</sub> : 30 K  | 60 K                        | 100 K                         |       |  |  |  |  |
| <sup>32</sup> SO                   | $2.7 \pm 0.2 	imes 10^{15}$    | ${3.6}\pm0.3\times10^{15}$  | $5.1 \pm 0.41 	imes 10^{15}$  |       |  |  |  |  |
| <sup>34</sup> SO                   | $2.0\pm0.2\times10^{14}$       | ${1.0}\pm0.1\times10^{14}$  | $1.0 \pm 0.09 \times 10^{14}$ |       |  |  |  |  |
| <sup>33</sup> SO                   | $2.2\pm0.4\times10^{13}$       | $1.2\pm0.2	imes10^{13}$     | $1.3 \pm 0.25 	imes 10^{13}$  |       |  |  |  |  |
| S <sup>18</sup> O                  | $1.5 \pm 0.4 	imes 10^{13}$    | $0.7\pm0.2\times10^{13}$    | $0.7 \pm 0.17 	imes 10^{13}$  |       |  |  |  |  |
| SO <sub>2</sub>                    | $6.9 \pm 0.4 	imes 10^{14}$    | $6.7 \pm 0.5 	imes 10^{14}$ | $9.6 \pm 0.69 \times 10^{14}$ |       |  |  |  |  |
| <sup>34</sup> SO <sub>2</sub>      | $0.9 \pm 0.1 	imes 10^{14}$    | $1.3 \pm 0.1 	imes 10^{14}$ | $2.1 \pm 0.21 \times 10^{14}$ |       |  |  |  |  |
| Ratio                              | <i>T</i> <sub>ex</sub> : 30 K  | 60 K                        | 100 K                         | V-CDT |  |  |  |  |
| <sup>32</sup> SO/ <sup>34</sup> SO | $13 \pm 1$                     | $34 \pm 4.0$                | $50\pm 6.0$                   | 22.64 |  |  |  |  |
| $^{32}SO_2/^{34}SO_2$              | $7.5\pm0.9$                    | $5.2\pm0.6$                 | $4.6\pm0.6$                   | 22.64 |  |  |  |  |
| <sup>32</sup> SO/ <sup>33</sup> SO | $120\pm25$                     | $290\pm60$                  | $410 \pm 90$                  | 126.9 |  |  |  |  |
| $^{32}SO/S^{18}O$                  | >180                           | >500                        | >760                          | 498.7 |  |  |  |  |
| Deviation from V-CDT               | <i>T</i> <sub>ex</sub> : 30 K  | 60 K                        | 100 K                         |       |  |  |  |  |
| $\delta^{34}$ SO                   | $690^{+160}_{-200}$            | $-340^{+90}_{-70}$          | $-550\substack{+60\\-50}$     |       |  |  |  |  |
| $\delta^{34}SO_2$                  | $2016^{+410}_{-320}$           | $3350^{+250}_{-170}$        | $3920_{-570}^{+740}$          |       |  |  |  |  |
| $\delta^{33}$ SO                   | $23^{+250}_{-170}$             | $-559^{+120}_{-80}$         | $-690^{+80}_{-60}$            |       |  |  |  |  |
| δS <sup>18</sup> O                 | <1820                          | <5                          | <-340                         |       |  |  |  |  |

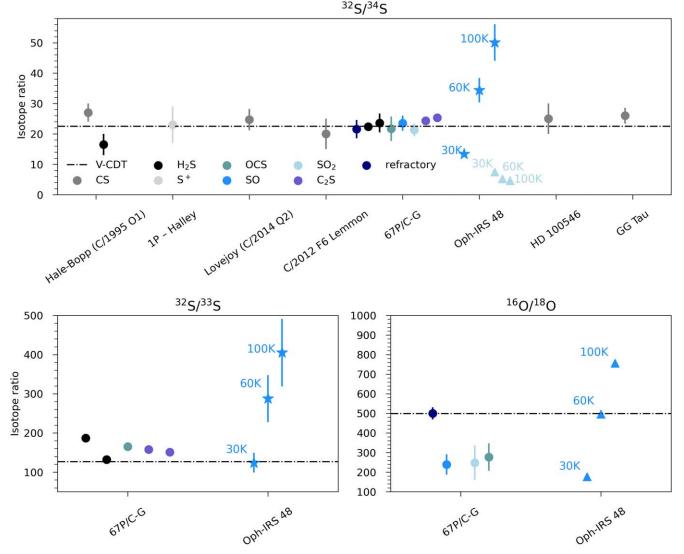
Note. Note that in bold text we highlight our fiducial temperature. The V-CDT standard values are from T. Ding et al. (2001) and R. A. Werner & W. A. Brand (2001).

range of 933-3483 K with an average value of 2128 K, which is lower than the values listed in UDfA and KIDA (2800 and 2600 K, respectively). Ideally, we would have an independent measure of the SO rotational temperature, but in total, A. Booth et al. (2024) detect only three SO lines in the Oph-IRS 48 disk, and the high line opacities of the  $J = 7_8 - 6_7$  and  $J = 8_8 - 7_7$ transitions do not allow for a rotation diagram analysis. In this work, we only use the optically thinnest transition detected  $(J = 3_3 - 3_2)$  as a measure of the SO column density. For <sup>34</sup>SO and <sup>33</sup>SO two lines of each are detected, and we take the average column density traced by these lines at each temperature. Therefore, although we expect the SO to trace warm 60 K gas, we cannot make an independent temperature measurement to confirm this; therefore, we explore a range of higher and lower gas temperatures to see how sensitive the inferred isotopic ratios is to this assumption. Due to the different intrinsic properties of the transitions of each isotopologue these ratios will vary with the assumed gas temperature.

To compare our isotope ratios with measurements of isotopic variations in solar system bodies, we also calculate the deviation of our ratios relative to the Vienna Canyon Diablo Troilite (V-CDT). This is the most common isotopic standard used in comet and meteorite studies. The standard ratios used are 22.64 for  ${}^{32}\text{S}/{}^{34}\text{S}$ , 126.9 for  ${}^{32}\text{S}/{}^{33}\text{S}$ , and 498.7 for  ${}^{16}\text{O}/{}^{18}\text{O}$  (R. A. Werner & W. A. Brand 2001; T. Ding et al. 2001). These differ slightly from the local ISM ratios, where in particular,  ${}^{16}\text{O}/{}^{18}\text{O}$  is 550 (T. L. Wilson & R. Rood 1994). The deviations ( $\delta$ ) are reported in units of per mille (%) and are calculated as follows:

$$\delta^{34}\mathbf{S} = [({}^{34}\mathbf{S}/{}^{32}\mathbf{S})_{\text{disk}}/({}^{34}\mathbf{S}/{}^{32}\mathbf{S})_{\text{standard}} - 1] \times 1000,$$

where the above is an example for the  ${}^{34}S/{}^{32}S$  ratio.


## 3. Results

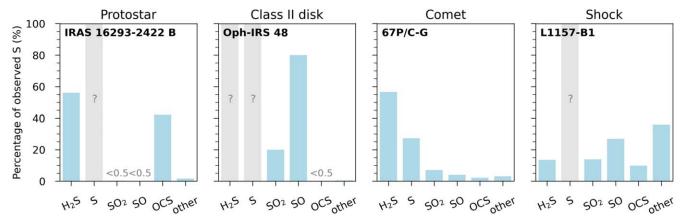
In Figure 1, we present the integrated intensity maps of sulfur isotopologues in the Oph IRS 48 disk and the 0.9 mm

continuum emission. The molecular species all appear cospatial and are only present in the southern region of the disk, where the millimeter dust grains are most prominent. From these integrated intensity maps, we take the peak integrated flux and use this to calculate the molecular column density traced by each of the isotopologues. The resulting peak column densities, corresponding isotopic ratios, and deviations from V-CDT at 30, 60, and 100 K are listed in Table 2 and across the full temperature range in Figure 2. We also compared these peak column densities to the averaged column densities derived from the whole SO- and SO<sub>2</sub>-emitting region and find that the resulting isotope ratios, the key result of this paper, are within the quoted  $1\sigma$  errors.

In Figure B1, we show the inferred ratios as a function of the assumed temperature. The isotope ratios derived from <sup>32</sup>SO all increase with increasing gas temperature, and both <sup>34</sup>S and <sup>33</sup>S are consistent with the V-CDT values at temperatures lower than  $\approx$ 50 K. When adopting our fiducial temperature of 60 K, we find that traced in SO line emission, the Oph-IRS 48 disk is depleted in both <sup>34</sup>S and <sup>33</sup>S with <sup>32</sup>S/<sup>34</sup>S = 34 ± 4 and <sup>32</sup>S/<sup>33</sup>S = 290 ± 60. The <sup>16</sup>O/<sup>18</sup>O lower limit from SO of >500 is consistent with the V-CDT value. The SO  $J = 3_3 - 3_2$  transition is optically thin with  $\tau \approx 0.1$ , and since the rare isotopes of SO are depleted relative to this, optical depth cannot explain the anomalous isotope ratios we recover when assuming our fiducial temperature of 60 K or a temperature above this. Additionally, the <sup>34</sup>SO/<sup>33</sup>SO ratio is approximately constant with temperature and is always 40%–50% above the V-CDT value.

The SO<sub>2</sub> isotope ratios vary less with temperature, since the upper energy levels of the SO<sub>2</sub> and <sup>34</sup>SO<sub>2</sub> lines are similar. In contrast to our findings for SO, the <sup>34</sup>S column density appears to be enhanced at all temperatures when measured from the SO<sub>2</sub> and at 60 K the <sup>32</sup>S/<sup>34</sup>S = 5. From a rotation diagram analysis, M. Temmink et al. (2024, in preparation) show that <sup>32</sup>SO<sub>2</sub> emission is optically thin, but because the observations are spatially and kinematically unresolved, the optical depth is




**Figure 2.** Inferred isotopic ratios of S and O in different volatile sulfur species detected toward comets and protoplanetary disks. The results for Oph-IRS 48 are highlighted by the star or arrow markers at temperatures of 30, 60, and 100 K. Note the <sup>34</sup>S ratio from SO<sub>2</sub> and the <sup>18</sup>O ratio from SO are lower limits. The dashed lines denote the V-CDT standard isotopic ratios for <sup>32</sup>S/<sup>34</sup>S, <sup>32</sup>S/<sup>33</sup>S, and <sup>16</sup>O/<sup>18</sup>O (R. A. Werner & W. A. Brand 2001; T. Ding et al. 2001). The vertical bars mark the  $\pm 1\sigma$  errors. The other disk values are taken from R. Le Gal et al. (2019), N. T. Phuong et al. (2021), and A. Booth et al. (2024). Cometary values are taken from D. C. Jewitt et al. (1997), J. A. Paquette et al. (2018), and K. Altwegg et al. (2020), as well as J. Crovisier et al. (2004), N. Biver et al. (2016), J. A. Paquette et al. (2017), and U. Calmonte et al. (2017). We exclude the S<sub>2</sub> isotope ratio reported in U. M. Calmonte (2015) and subsequently in J. A. Paquette et al. (2017) for 67P/C-G form our comparison due to the low signal to noise of the S<sub>2</sub> peak in the mass spectra and the significant contamination from other overlapping species (M. Rubin 2024, private communication).

likely underestimated. Therefore, the inferred  ${}^{32}S/{}^{34}S$  ratio from SO<sub>2</sub> may only be a lower limit.

## 4. Discussion

The currently observed volatile sulfur reservoir in the Oph-IRS 48 disk is primarily in the form of SO. This is different to most Class II disks, where generally CS is the most common S-species detected (e.g., R. Le Gal et al. 2019, 2021). CS is detected in the Oph-IRS 48 disk, but its column density is  $\approx 1000 \times$  lower than for SO; therefore, CS makes a negligible contribution to the total S abundance (A. Booth et al. 2024). In Figure 3, we show the contributions from H<sub>2</sub>S, S, OCS, SO, and SO<sub>2</sub> to the currently total observed volatile sulfur reservoirs in the low-mass embedded Class 0 protostar IRAS 16293-2442 B, the more evolved Class II disk Oph-IRS 48, the comet 67P/C-G, and the shocked region L1157-B1 (with values from U. Calmonte et al. 2016; M. N. Drozdovskaya et al. 2018; J. Holdship et al. 2019; T. Kushwahaa et al. 2023; A. Booth et al. 2024).

The differences in sulfur reservoirs between IRAS 16293-2442 B and 67P/C-G are discussed in detail in M. N. Drozdovskaya et al. (2018), who suggest that UV irradiation during the star formation process converted H<sub>2</sub>S to OCS. OCS is not detected in Oph-IRS 48 down to <1% of the SO column density, and this is unexpected, as discussed in A. Booth et al. (2024), due to the other signatures of ice sublimation in this disk. Interestingly, the SO<sub>2</sub>/OCS ratio we see in Oph-IRS 48 is also significantly higher than that measured for the outbursting source V883 Ori, where ice sublimation is also occurring (Y. Yamato et al. 2024). Oph-IRS 48 is a young Herbig Ae star, and therefore the volatiles in the gas and ice phases will be subjected to UV irradiation, which could chemically transform the primary S-reservoir in the disk. It is also possible that in the



**Figure 3.** Bar plots showing the percentage of observed gas-phase sulfur in different atoms/molecules for the protostar IRAS 16293-2442 B, Class II disk Oph-IRS 48, comet 67P/C-G, and shocked region L1157-B1. Values are taken from U. Calmonte et al. (2016), M. N. Drozdovskaya et al. (2018), J. Holdship et al. (2019), T. Kushwahaa et al. (2023), and A. Booth et al. (2024). Where the percentage is less than 0.5%, a note is added. We note that this comparison naively assumes that 100% of the volatile S can be accounted for in the currently detected molecules in these systems.

Oph-IRS 48 disk there are shocks liberating a more refractory form of sulfur, e.g.,  $S_2$ , that when released from the grains goes on to form SO (and SO<sub>2</sub>) efficiently in the gas phase (as discussed in L. Keyte et al. 2024). Indeed, the bulk of the S in disks is expected to be in refractory form (M. Kama et al. 2019). The high SO/SO<sub>2</sub> ratio in Oph-IRS 48 is also most closely a match with that in the shocked region L1157-B1, but the CS/SO ratio is orders of magnitude higher in the shocked region when compared to the Oph-IRS 48 disk (J. Holdship et al. 2019). Observations of the shock tracer SiO (and SiS; C. J. Law et al. 2023) and key sulfur species H<sub>2</sub>S will help unravel the distinctions between the volatile reservoir in the Oph-IRS 48 disk and that in other environments.

Given the differences in molecular reservoirs of S we may expect differences in the isotopic ratios on volatile sulfur in the Oph-IRS48 disk. To place our isotopic ratios in context, in Figure 2, we show a comparison of the isotope ratios measured in comets to Class II disks for a variety of simple species. The ratios we measure do vary as a function of the assumed gas temperature (as shown in Figures 2 and B1). If the gas is cool (<50 K), the <sup>34</sup>S and <sup>33</sup>S ratios for SO are within the 1–2 $\sigma$  range of the V-CDT values. This would mean there are no significant isotopic differences between the Oph-IRS 48 disk and the solar system and that volatile S is not severely fractionated during the planet formation timescale. Similarly, at 30 K we would tentatively recover the <sup>18</sup>O enhancement, as seen in 67P/C-G, but further data are needed to verify this.

The rotational temperature of SO<sub>2</sub> in this disk has been well constrained to be 60 K (M. Temmink et al. 2024, in preparation); therefore, we discuss the case where the SO gas is also warm, as also supported by astrochemical models (D. Semenov et al. 2018; L. Keyte et al. 2024). At temperatures of 60 K and above the isotope ratios for sulfur are anomalous when compared to the V-CDT and cometary values. This possible observed depletion of <sup>34</sup>S and <sup>33</sup>S traced in SO is currently not traced in any cometary volatiles and, in particular, not in the <sup>34</sup>SO measured in 67P/C-G (K. Altwegg et al. 2020). This depletion is also not traced in the refractory dust of 67P/C-G nor the dust collected in the STARDUST mission (P. R. Heck et al. 2012; J. A. Paquette et al. 2017). For the other few disks with robust measurements of  $^{32}S/^{34}S$  from CS, these values are consistent with the expected isotope ratio of 22

(N. T. Phuong et al. 2021; A. Booth et al. 2024). In the broader context of meteorite samples, our  $\delta^{34}S$  and  $\delta^{33}S$  values, calculated at 60 K, lie at the most depleted end of the distribution of isotopic ratios measured in SiC grains from the meteorites Murchison and Indarch (this literature is summarized in U. Calmonte et al. 2017). The apparent factor  $\approx 4$  enhancement of <sup>34</sup>S in SO<sub>2</sub> is an extreme outlier in all cases, but this may be due to beam-diluted and optically thick <sup>32</sup>SO<sub>2</sub> emission. This low <sup>34</sup>S ratio in SO<sub>2</sub> is similar to that measured in SO for Class 0/I sources in Perseus (E. Artur de la Villarmois et al. 2023), where this can be attributed to optically thick emission from the main isotopologue.

Finally, when considering the lower limit of the <sup>18</sup>O isotope ratio in SO at  $\gtrsim 60$  K, we find a difference to the volatiles in 67P/C-G. The enhanced <sup>18</sup>O in SO, SO<sub>2</sub>, and OCS in 67P/C-G and the high HDS/H<sub>2</sub>S (of  $\approx 10^{-3}$ ) indicate the possible presolar formation of these molecules in the cold dark cloud stage (K. Altwegg et al. 2017). In comparison, for warm gas, in the Oph-IRS 48 disk our upper limit does not indicate any oxygen isotope fractionation, similar to the findings from K. Furuya et al. (2022) for H<sup>13</sup>CO<sup>+</sup>/HC<sup>18</sup>O<sup>+</sup> in TW Hya. The nominal ratio of  $\approx$ 500 is also the same as that measured for the 67P/C-G cometary dust particles (J. A. Paquette et al. 2018).

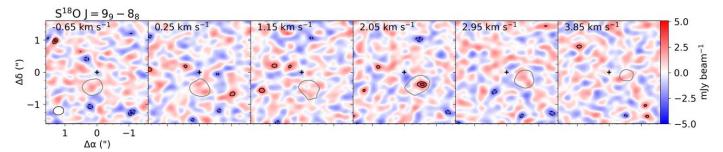
The observations of Oph-IRS 48 show the possibility of isotopically distinct sulfur reservoirs in planet-forming disks with an isotopic fractionation distinct to that of 67P/C-G. The depletion of heavier isotopes and lack of <sup>18</sup>O enhancement would also suggest that low-temperature isotope exchange reactions are not responsible as these would have the opposite effect. If the optically thin nature of  $SO_2$  holds, the different isotopic signatures in SO and SO<sub>2</sub> mean that they may not share a common formation path via H<sub>2</sub>S and H<sub>2</sub>O ice sublimation (D. Semenov et al. 2018; A. S. Booth et al. 2021). If SO and SO<sub>2</sub> both form from photodissociated  $H_2S$ , they would be expected to have the same isotopic ratios. The isotope-selective photodissociation of H<sub>2</sub>S has been proposed as a mechanism for the enrichment of heavy isotopes in some chondritic meteorites, but if this were the case in Oph-IRS 48, we would expect both the SO and SO<sub>2</sub> to be enriched in the heavier isotopes, if they indeed formed from H<sub>2</sub>S (S. Chakraborty et al. 2013; J. Labidi et al. 2017; L. G. Vacher et al. 2021). If there are shocks in the Oph-IRS 48 disk, the injection of refractory S into the gas phase could pollute the isotopic

ratios set by photoprocesses. Future observations of Oph-IRS 48 to detect  $H_2S$  and measure its isotopic ratios will be necessary to determine if SO and/or SO<sub>2</sub> are daughter molecules forming from  $H_2S$ . Additionally, observations of multiple optically thin lines of SO and its isotopologues will enable an independent temperature measurement for the SO rather than assuming the same temperature as SO<sub>2</sub>.

## 5. Conclusion

We have presented the first measurements of the combined  ${}^{34}S$  and  ${}^{33}S$  isotope ratios relative to  ${}^{32}S$  in a planet-forming disk. Additionally, we share the upper limit on the  $S^{18}O$ column density and the inferred lower limit on the <sup>16</sup>O/<sup>18</sup>O ratio. The observed isotopic fractionation of the S reservoir in the Oph-IRS 48 disk is potentially distinct from that measured in comets for both the elements sulfur and oxygen, but this relies heavily on the adopted gas temperature. Assuming a kinetic temperature of 60 K (as measured for SO<sub>2</sub>) or above, both <sup>34</sup>S and <sup>33</sup>S are depleted relative to their solar system standard values when traced in SO. At cooler temperatures, the isotope ratios are consistent with the cometary values, indicating the need for additional data to better and independently constrain the SO gas temperature. Interestingly, at all temperatures the  ${}^{34}S/{}^{33}S$  ratio traced in SO is enhanced. We also identify a tentative enhancement in the heavier  ${}^{34}SO_2$ isotopologue, which requires observations of optically thinner  $^{32}$ SO<sub>2</sub> transitions to confirm.

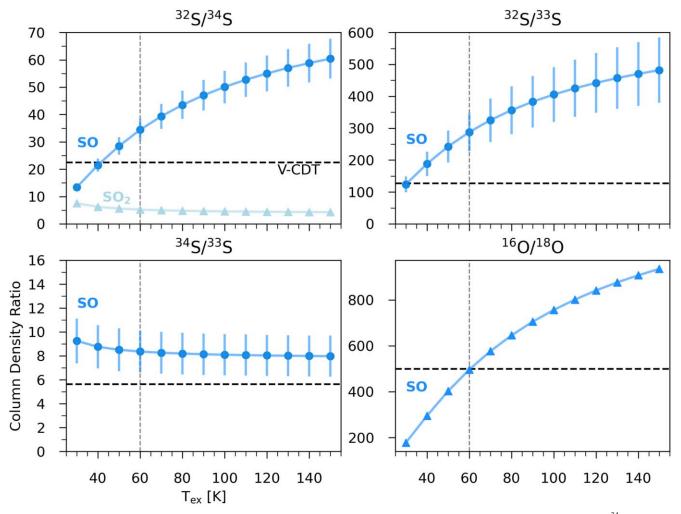
There are also possible limitations in the current data due to dust optical depth that will require longer wavelength observations to assess. It may be that the isotopologues are tracing gas deeper in the disk, below the optically thick dust surface, resulting in an underestimated column density measurement, as seen toward protostars (M. De Simone et al. 2020). Furthermore, follow-up observations with ALMA to detect H<sub>2</sub>S (and its isotopologues) will help to complete the observable volatile inventory of S in this disk. Knowing if H<sub>2</sub>S is depleted or enhanced in the heavier isotopes will aid significantly in understanding the isotopic fractionation mechanisms at play. More generally, future high-sensitivity line surveys of populations of protoplanetary disks will be able to target multiple isotopologues of S and other volatile elements, which can be used to connect the dots between the initial and final stages of planetary system formation.


### Acknowledgments

This paper makes use of the following ALMA data: 2017.1.00834.S and 2021.1.00738.S. We acknowledge

assistance from Allegro, the European ALMA Regional Centre node in the Netherlands. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work has used the following additional software packages that have not been referred to in the main text: Astropy, IPython, Jupyter, Matplotlib, and NumPy (F. Pérez & B. E. Granger 2007; J. D. Hunter 2007; T. Kluyver et al. 2016; C. R. Harris et al. 2020; Astropy Collaboration et al. 2022). Astrochemistry in Leiden is supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 101019751 MOLDISK). A.S.B. is supported by a Clay Postdoctoral Fellowship from the Smithsonian Astrophysical Observatory. M.N.D. acknowledges the Holcim Foundation Stipend. M.T. acknowledges support from the ERC grant 101019751 MOLDISK. Support for C.J.L. was provided by NASA through the NASA Hubble Fellowship grant No. HST-HF2-51535.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. M.L. is funded by the European Union (ERC, UNVEIL, 101076613). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. S.N. is grateful for support from RIKEN Special Postdoctoral Researcher Program (Fellowships), Grants-in-Aid for JSPS (Japan Society for the Promotion of Science) Fellows grant No. JP23KJ0329, and MEXT/JSPS Grants-in-Aid for Scientific Research (KAKENHI) grant Nos. JP 18H05441, JP20K22376, JP20H05845, JP20H05847, JP23K13155, and JP24K00674. C.W. acknowledges financial support from the University of Leeds, the Science and Technology Facilities Council, and UK Research and Innovation (grant Nos. ST/ X001016/1 and MR/T040726/1).

## Appendix A S<sup>18</sup>O Channel Maps


The channel maps generated over the frequency range of the S<sup>18</sup>O  $J = 9_9 - 8_8$  transition are shown in Figure A1.



**Figure A1.** Channel maps of the S<sup>18</sup>O  $J = 9_9 - 8_8$  transition where the black solid contours mark the [3, 4] ×  $\sigma$  level and black dashed contours mark [-4, -3] ×  $\sigma$  level. The gray solid contour marks the 5 $\sigma$  level of the <sup>34</sup>SO  $J = 9_8 - 8_7$  transition to show the expected position–velocity pattern of the disk emission.

# Appendix B Isotope Ratios as a Function of Temperature

The isotope ratios of  ${}^{32}S/{}^{34}S$ ,  ${}^{32}S/{}^{33}S$ ,  ${}^{34}S/{}^{33}S$ , and  ${}^{16}O/{}^{18}O$  measured from SO and SO<sub>2</sub> as a function of the assumed excitation temperature are shown in Figure B1.



**Figure B1.** Inferred isotopic ratios of S and O in SO and SO<sub>2</sub> for the Oph-IRS 48 disk calculated for a range of excitation temperatures. Note the <sup>34</sup>S ratio from SO<sub>2</sub> and the <sup>18</sup>O ratio from SO are lower limits. The vertical dashed lines highlight our fiducial temperature of 60 K, which is the rotational temperature of SO<sub>2</sub> (Temmink et al. 2024, in preparation). The horizontal dashed lines denote the V-CDT standard isotopic ratios for <sup>32</sup>S/<sup>34</sup>S, <sup>32</sup>S/<sup>33</sup>S, <sup>34</sup>S/<sup>33</sup>S, and <sup>16</sup>O/<sup>18</sup>O (R. A. Werner & W. A. Brand 2001; T. Ding et al. 2001).

#### **ORCID** iDs

Alice S. Booth **b** https://orcid.org/0000-0003-2014-2121 Maria N. Drozdovskaya **b** https://orcid.org/0000-0001-7479-4948

Milou Temmink https://orcid.org/0000-0002-7935-7445 Hideko Nomura https://orcid.org/0000-0002-7058-7682 Ewine F. van Dishoeck https://orcid.org/0000-0001-7591-1907

Luke Keyte https://orcid.org/0000-0001-5849-577X Charles J. Law https://orcid.org/0000-0003-1413-1776 Margot Leemker https://orcid.org/0000-0003-3674-7512 Nienke van der Marel https://orcid.org/0000-0003-2458-9756 Shota Notsu https://orcid.org/0000-0003-2493-912X Karin Öberg https://orcid.org/0000-0001-8798-1347 Catherine Walsh https://orcid.org/0000-0001-6078-786X

### References

- Aikawa, Y., Furuya, K., Hincelin, U., & Herbst, E. 2018, ApJ, 855, 119
- Aikawa, Y., Okuzumi, S., & Pontoppidan, K. 2022, arXiv:2212.14529
- Altwegg, K., Balsiger, H., Berthelier, J. J., et al. 2017, RSPTA, 375, 20160253
- Altwegg, K., Balsiger, H., Combi, M., et al. 2020, MNRAS, 498, 5855
- Artur de la Villarmois, E., Guzmán, V. V., Yang, Y. L., Zhang, Y., & Sakai, N. 2023, A&A, 678, A124
- Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ, 935, 167
- Biver, N., Moreno, R., Bockelée-Morvan, D., et al. 2016, A&A, 589, A78
- Booth, A., Leemker, M., van Dishoeck, E. F., et al. 2024, AJ, 167, 164
- Booth, A., Temmink, M., van Dishoeck, E. F., et al. 2024, AJ, 167, 165
- Booth, A. S., Law, C. J., Temmink, M., Leemker, M., & Macías, E. 2023, A&A, 678, A146
- Booth, A. S., van der Marel, N., Leemker, M., van Dishoeck, E. F., & Ohashi, S. 2021, A&A, 651, L6
- Brown, J. M., Herczeg, G. J., Pontoppidan, K. M., & van Dishoeck, E. F. 2012, ApJ, 744, 116
- Brunken, N. G. C., Booth, A. S., Leemker, M., et al. 2022, A&A, 659, A29
- Calmonte, U., Altwegg, K., Balsiger, H., et al. 2016, MNRAS, 462, S253
- Calmonte, U., Altwegg, K., Balsiger, H., et al. 2017, MNRAS, 469, S787
- Calmonte, U. M. 2015, PhD thesis, Univ. of Bern Switzerland
- Cataldi, G., Yamato, Y., Aikawa, Y., et al. 2021, ApJS, 257, 10
- Chakraborty, S., Jackson, T. L., Ahmed, M., & Thiemens, M. H. 2013, PNAS, 110, 17650
- Crovisier, J., Bockelée-Morvan, D., Colom, P., et al. 2004, A&A, 418, 1141
- De Simone, M., Ceccarelli, C., Codella, C., et al. 2020, ApJL, 896, L3
- Ding, T., Valkiers, S., Kipphardt, H., et al. 2001, GeCoA, 65, 2433
- Drozdovskaya, M. N., van Dishoeck, E. F., Jørgensen, J. K., et al. 2018, MNRAS, 476, 4949
- Endres, C. P., Schlemmer, S., Schilke, P., Stutzki, J., & Müller, H. S. P. 2016, JMoSp, 327, 95
- Favre, C., Bergin, E. A., Cleeves, L. I., et al. 2015, ApJL, 802, L23
- Furuya, K., Tsukagoshi, T., Qi, C., et al. 2022, ApJ, 926, 148
- Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
- Guzmán, V. V., Öberg, K. I., Huang, J., Loomis, R., & Qi, C. 2017, ApJ, 836, 30

- Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
- Heays, A. N., Visser, R., Gredel, R., et al. 2014, A&A, 562, A61
- Heck, P. R., Hoppe, P., & Huth, J. 2012, M&PS, 47, 649
- Hily-Blant, P., Magalhaes de Souza, V., Kastner, J., & Forveille, T. 2019, A&A, 632, L12
- Hily-Blant, P., Magalhaes, V., Kastner, J., et al. 2017, A&A, 603, L6
- Holdship, J., Jimenez-Serra, I., Viti, S., et al. 2019, ApJ, 878, 64
- Hunter, J. D. 2007, CSE, 9, 90
- Jewitt, D. C., Matthews, H. E., Owen, T., & Meier, R. 1997, Sci, 278, 90
- Kama, M., Shorttle, O., Jermyn, A. S., et al. 2019, ApJ, 885, 114
- Keyte, L., Kama, M., Chuang, K.-J., et al. 2024, MNRAS, 528, 388
- Klaus, T., Saleck, A. H., Belov, S. P., et al. 1996, JMoSp, 180, 197
- Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in Positioning and Power in Academic Publishing: Players, Agents and Agendas, ed. F. Loizides & B. Schmidt (Amsterdam: IOS Press), 87
- Kushwahaa, T., Drozdovskaya, M. N., Tychoniec, Ł., & Tabone, B. 2023, A&A, 672, A122
- Labidi, J., Farquhar, J., Alexander, C. M. O. D., Eldridge, D. L., & Oduro, H. 2017, GeCoA, 196, 326
- Law, C. J., Booth, A. S., & Öberg, K. I. 2023, ApJL, 952, L19
- Le Gal, R., Öberg, K. I., Loomis, R. A., Pegues, J., & Bergner, J. B. 2019, ApJ, 876, 72
- Le Gal, R., Öberg, K. I., Teague, R., et al. 2021, ApJS, 257, 12
- Leemker, M., Booth, A. S., van Dishoeck, E. F., et al. 2023, A&A, 673, A7
- Loomis, R. A., Cleeves, L. I., Öberg, K. I., et al. 2018, ApJ, 859, 131
- Loomis, R. A., Öberg, K. I., Andrews, S. M., et al. 2020, ApJ, 893, 101
- Lovas, F. J. 1985, JPCRD, 14, 395

Lovas, F. J., Suenram, R. D., Ogata, T., & Yamamoto, S. 1992, ApJ, 399, 325 Marty, B. 2012, E&PSL, 313, 56

- McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in ASP Conf. Ser., 376, Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell (San Francisco, CA: ASP), 127
- Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, JMoSt, 742, 215
- Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
- Muñoz-Romero, C. E., Öberg, K. I., Law, C. J., et al. 2023, ApJ, 943, 35
- Nomura, H., Furuya, K., Cordiner, M. A., et al. 2023, in ASP Conf. Ser., 534,
- ed. S. Inutsuka et al. (San Francisco, CA: ASP), 1075
- Öberg, K. I., & Bergin, E. A. 2021, PhR, 893, 1
- Öberg, K. I., Facchini, S., & Anderson, D. E. 2023, ARA&A, 61, 287
- Ohashi, S., Kataoka, A., van der Marel, N., et al. 2020, ApJ, 900, 81
- Paquette, J. A., Engrand, C., Hilchenbach, M., et al. 2018, MNRAS, 477, 3836
- Paquette, J. A., Hornung, K., Stenzel, O. J., et al. 2017, MNRAS, 469, S230
- Pérez, F., & Granger, B. E. 2007, CSE, 9, 21
- Perrero, J., Rimola, A., Corno, M., & Ugliengo, P. 2021, arXiv:2110.06010
- Phuong, N. T., Dutrey, A., Chapillon, E., et al. 2021, A&A, 653, L5
- Semenov, D., Favre, C., Fedele, D., et al. 2018, A&A, 617, A28
- Teague, R. 2020, richteague/keplerian\_mask: Initial Release, v1.0, Zenodo, doi:10.5281/zenodo.4321137
- Vacher, L. G., Ogliore, R. C., Jones, C., Liu, N., & Fike, D. A. 2021, GeCoA, 309, 135
- van der Marel, N., Booth, A. S., Leemker, M., van Dishoeck, E. F., & Ohashi, S. 2021, A&A, 651, L5
- Visser, R., Bruderer, S., Cazzoletti, P., et al. 2018, A&A, 615, A75
- Werner, R. A., & Brand, W. A. 2001, RCMS, 15, 501
- Wilson, T. L., & Rood, R. 1994, ARA&A, 32, 191
- Yamato, Y., Notsu, S., Aikawa, Y., et al. 2024, AJ, 167, 66