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Abstract
This work combines multilevel Monte Carlo with importance sampling to estimate rare-event quantities that can be expressed
as the expectation of a Lipschitz observable of the solution to a broad class of McKean–Vlasov stochastic differential
equations. We extend the double loop Monte Carlo (DLMC) estimator introduced in this context in Ben Rached et al.
(Stat Comput, 2024. https://doi.org/10.1007/s11222-024-10497-3) to the multilevel setting. We formulate a novel multilevel
DLMC estimator and perform a comprehensive cost-error analysis yielding new and improved complexity results. Crucially,
we devise an antithetic sampler to estimate level differences guaranteeing reduced computational complexity for themultilevel
DLMC estimator compared with the single-level DLMC estimator. To address rare events, we apply the importance sampling
scheme, obtained via stochastic optimal control in Ben Rached et al. (2024), over all levels of the multilevel DLMC estimator.
Combining importance sampling and multilevel DLMC reduces computational complexity by one order and drastically
reduces the associated constant compared to the single-level DLMC estimator without importance sampling. We illustrate
the effectiveness of the proposed multilevel DLMC estimator on the Kuramoto model from statistical physics with Lipschitz
observables, confirming the reduced complexity from O(TOL−4

r ) for the single-level DLMC estimator to O(TOL−3
r ) while

providing a feasible estimate of rare-event quantities up to prescribed relative error tolerance TOLr.
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1 Introduction

Weconsider the estimation of rare-event quantities expressed
as an expectation of some observable of the solution to
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a broad class of McKean–Vlasov stochastic differential
equations (MV-SDEs). In particular, we develop a computa-
tionally efficient multilevel Monte Carlo (MLMC) estimator
for E [G(X(T ))], where G : Rd → R is a Lipschitz func-
tion and X : [0, T ] × Ω → R

d is the MV-SDE process
up to a finite terminal time T . We consider G to be a
rare-event observable, meaning that the support of G lies
deep in the tails of the distribution of X(T ). MV-SDEs are
a special class of SDEs whose drift and diffusion coeffi-
cients are a function of the law of the solution (McKean Jr
1966). Such equations arise from the mean-field behavior
of stochastic interacting particle systems used in diverse
applications (Haji Ali 2012; Erban and Haskovec 2011; Ace-
brón et al. 2005; Forrester 2015; Dobramysl et al. 2016;
Bush et al. 2011). Significant recent literature has addressed
the analysis (Mishura and Veretennikov 2020; Buckdahn
et al. 2017; Crisan and McMurray 2018) and numerical
treatment (Haji-Ali and Tempone 2018; dos Reis et al.
2022; Szpruch et al. 2019; Crisan and McMurray 2019) of
MV-SDEs. MV-SDEs are often approximated using stochas-
tic P-particle systems, sets of P coupled d-dimensional
SDEs that approach a mean-field limit as the number of
particles tends to infinity (Sznitman 1991). The associ-
ated Kolmogorov backward equation is Pd-dimensional;
hence, Monte Carlo (MC) methods are used to approximate
expectations associated with particle systems. MC methods
using Euler–Maruyama time-discretized particle systems for
bounded, Lipschitz drift/diffusion coefficients have been pro-
posed for smooth, nonrare observables with a complexity
of O(TOL−4) for a prescribed error tolerance TOL (Ogawa
1992; Haji-Ali and Tempone 2018; Li et al. 2023).

MLMC was introduced as an improvement to MC for
SDEs in Giles (2008). MLMC is based on generalized con-
trol variates and improves efficiency when an approximation
of the solution is computed based on a discretization param-
eter (Giles 2015). Most MLMC simulations are performed
at cheaper, coarse levels, with relatively few simulations
applied at the costlier, fine levels.MLMC for particle systems
has been widely investigated (Haji-Ali and Tempone 2018;
Rosin et al. 2014; Szpruch and Tse 2019; Bujok et al. 2015).
In particular, an MLMC estimator with a partitioning sam-
pler achieved a computational complexity ofO(TOL−3) for
smooth observables and bounded, Lipschitz drift/diffusion
coefficients (Haji-Ali and Tempone 2018). However, MC
and MLMC methods become extremely expensive in the
context of rare events due to the ‘blowing up’ of the con-
stant associated with the estimator complexity as the event
becomesrarer (Kroese et al. 2013). This motivates using

importance sampling as a variance reduction technique to
overcome the failure of standard MC andMLMC in the rare-
event regime (Kroese et al. 2013).

Importance sampling for MV-SDEs has been studied
in dosReis et al. (2023), BenRached et al. (2024). The decou-
pling approach developed by dos Reis et al. (2023) defines
a modified, decoupled MV-SDE with coefficients computed
using a realization of theMV-SDE law estimated beforehand
using a stochastic particle system. A change of measure is
applied to the decoupled MV-SDE, decoupling importance
sampling from the law estimation. The theory of large devia-
tions and Pontryagin principle were employed in dos Reis et
al. (2023) to obtain a deterministic, time-dependent control
minimizing a proxy for the estimator variance. BenRached et
al. (2024) employed the same decoupling approach to define
a double loop MC (DLMC) estimator and employ stochastic
optimal control to derive a time- and state-dependent con-
trol minimizing the variance of the importance sampling
estimator. In Ben Rached et al. (2024), an adaptive DLMC
algorithm with a complexity of O(TOL−4) was developed,
the same as that for theMC estimator for nonrare observables
inHaji-Ali andTempone (2018),while enabling feasible esti-
mates for rare-event probabilities. The development of such
an importance sampling scheme using stochastic optimal
control theory has been proposed before in other contexts,
including standard SDEs (Hartmann et al. 2017, 2018; Zhang
et al. 2014), stochastic reaction networks (Ben Hammouda
et al. 2023), and discrete-time continuous-space Markov
chains (Ben Amar et al. 2023; Dupuis and Wang 2004).

We combine importance sampling with MLMC to reduce
the relative estimator variance in the rare-event regime by
extending the results in Ben Rached et al. (2024) to the
multilevel setting. Combining importance sampling with
MLMC has been previously explored in other contexts,
including standard SDEs (Ben Alaya et al. 2023; Kebaier
and Lelong 2018; Fang and Giles 2019) and stochastic reac-
tion networks (Ben Hammouda et al. 2020). We extend
the DLMC estimator from Ben Rached et al. (2024) to the
multilevel setting by introducing a multilevel DLMC esti-
mator along with a detailed error and complexity analysis.
We boost the efficiency of the multilevel DLMC estima-
tor by developing a highly correlated, antithetic sampler for
level differences (Haji-Ali and Tempone 2018; Giles and
Szpruch 2014). We show reduced computational complex-
ity using the multilevel DLMC estimator compared with
the DLMC estimator for MV-SDEs. Then, we propose an
importance sampling scheme for this estimator based on
variance minimization using stochastic optimal control the-
ory (Ben Rached et al. 2024) to address rare events and apply
the obtained control on all levels. Contributions of this paper
are summarized as follows.
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• We extend the DLMC estimator introduced by Ben
Rached et al. (2024) to the multilevel setting and pro-
pose a multilevel DLMC estimator for the decoupling
approach (dosReis et al. 2023) forMV-SDEs.We include
a detailed discussion on the bias and variance of the
proposed estimator and devise a complexity theorem, dis-
playing improved complexity compared with the naïve
DLMC estimator. We also formulate a robust multilevel
DLMC algorithm to determine optimal parameters adap-
tively.

• We develop naïve and antithetic correlated samplers
for level differences in the multilevel DLMC estimator.
Numerical simulations confirm increased variance con-
vergence rates for level-difference estimators using the
antithetic sampler compared with the naïve one, leading
to improved multilevel DLMC estimator complexity.

• We propose combining importance sampling with the
multilevel DLMC estimator to address rare events. We
employ the time- and state-dependent control developed
by Ben Rached et al. (2024) for all levels in the multi-
level DLMC estimator. Numerical simulations confirm a
significant variance reduction in the multilevel DLMC
estimator due to this importance sampling scheme,
improving estimator complexity fromO(TOL−4

r ) in Ben
Rached et al. (2024) for the Kuramoto model with Lips-
chitz observables to O(TOL−3

r ) in the multilevel setting
while allowing feasible rare-event quantity estimation up
to the prescribed relative error tolerance TOLr.

The remainder of this paper is structured as follows. In
Sect. 2, we introduce the MV-SDE and associated notation,
motivate MC methods to estimate expectations associated
with its solution and set forth the problem to be solved.
In Sect. 3, we introduce the decoupling approach for MV-
SDEs (dosReis et al. 2023) and formulate aDLMCestimator.
Next, we state the optimal importance sampling control for
the decoupled MV-SDE derived using stochastic optimal
control and introduce the DLMC estimator with importance
sampling from Ben Rached et al. (2024) in Sect. 4. Then, we
introduce the novel multilevel DLMC estimator in Sect. 5,
develop an antithetic sampler for it, and derive new com-
plexity results for the estimator. We combine the multilevel
DLMC estimator with the proposed importance sampling

scheme and develop an adaptive multilevel DLMC algo-
rithm that feasibly estimates rare-event quantities associated
with MV-SDEs. Finally, we apply the proposed methods
to the Kuramoto model from statistical physics in Sect. 6
and numerically verify all assumptions in this work and the
derived complexity rates for the multilevel DLMC estimator
for two observables.

2 McKean–Vlasov stochastic differential
equation

In this work, we consider a broad class of McKean–Vlasov
equations that arise from the mean-field limit of stochastic
interacting particle systems with pairwise interaction ker-
nels (Sznitman 1991). We consider the probability space
{Ω,F , {Ft }t≥0, P}, where Ft is the filtration of a stan-
dard Wiener process. For functions b : R

d × R −→ R
d ,

σ : R
d × R −→ R

d×d , κ1 : R
d × R

d −→ R, and κ2 :
R

d × R
d −→ R, we consider the following Itô SDE for the

McKean–Vlasov stochastic process X : [0, T ] × Ω → R
d :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) = b

(

X(t),
∫

Rd
κ1(X(t), x)μt (dx)

)

dt

+ σ

(

X(t),
∫

Rd
κ2(X(t), x)μt (dx)

)

dW (t), t > 0

X(0) = x0 ∼ μ0 ∈ P(Rd ),

(1)

where W : [0, T ] × Ω → R
d is a standard d-dimensional

Wiener process with mutually independent components.
μt ∈ P(Rd) is the probability distribution of X(t), where
P(Rd) is the space of probability measures on R

d . x0 ∈ R
d

is a random initial state with distribution μ0 ∈ P(Rd).
The functions b and σ are called drift and diffusion func-
tions/coefficients, respectively. The existence anduniqueness
of solutions to (1) follows from the results in Mishura and
Veretennikov (2020), Crisan and Xiong (2010), Sznitman
(1991), Hammersley et al. (2021), under the assumptions
therein. These involve certain differentiability and bounded-
ness conditions on b, σ , κ1, and κ2. The time evolution of
μt is given by the multidimensional Fokker–Planck partial
differential equation (PDE):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂μ(s, x; t, y)

∂s
−

d∑

i=1

∂

∂xi

(

bi

(

x,

∫

Rd
κ1(x, z)μ(s, z; t, y)dz

)

μ(s, x; t, y)

)

+
d∑

i=1

d∑

j=1

1

2

∂2

∂xi∂x j

( d∑

k=1
σikσ jk

(

x,

∫

Rd
κ2(x, z)μ(s, z; t, y)dz

)

μ(s, x; t, y)

)

= 0, (s, x) ∈ (t,∞) × R
dμ(t, x; t, y) = δy(x), (2)

where μ(s, x; t, y) denotes the conditional distribution of
X(s) given that X(t) = y, and δy(·) denotes the Dirac mea-
sure at y. Equation (2) is a nonlinear integral PDE with
nonlocal terms. Solving such an equation using classical
numericalmethods up to relative error tolerances can be com-
putationally prohibitive, particularly in higher dimensions
(d � 1).

A strong approximation of the solution to the above
class of MV-SDEs can be obtained by solving a system
of P exchangeable Itô SDEs, also known as a stochastic
interacting particle system, with pairwise interaction kernels
comprising P particles (Sznitman 1991). For p = 1, . . . , P ,
we have the following SDE for the process X P

p : [0, T ] ×
Ω → R

d :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX P
p (t) = b

⎛

⎝X P
p (t),

1

P

P∑

j=1

κ1(X P
p (t), X P

j (t))

⎞

⎠ dt

+ σ

⎛

⎝X P
p (t),

1

P

P∑

j=1

κ2(X P
p (t), X P

j (t))

⎞

⎠ dWp(t), t >0

X P
p (0) = (x0)p ∼ μ0 ∈ P(Rd ), (3)

where {(x0)p}P
p=1 are independent and identically dis-

tributed (i.i.d.) random variables sampled from the ini-
tial distribution μ0, and {Wp}P

p=1 are mutually indepen-
dent d-dimensional Wiener processes also independent of
{(x0)p}P

p=1. Equation (3) approximates the mean-field dis-
tribution μt from (1) using an empirical distribution based
on particles {X P

p }P
p=1:

μt (dx) ≈ μP
t (dx) = 1

P

P∑

j=1

δX P
j (t)(dx), (4)

where particles {X P
p }P

p=1 are identically distributed but not
mutually independent due to pairwise interaction kernels in
the drift and diffusion coefficients. The strong convergence of
particle systems follows from the results given in Bossy and

Talay (1997, 1996), Méléard (1996), under further assump-
tions on the drift and diffusion coefficients therein. The high
dimensionality of the Fokker–Planck equation, satisfied by
the joint probability density of the particle system, motivates
the use of MC methods, which do not suffer from the curse
of dimensionality.

2.1 Example: fully connected Kuramotomodel for
synchronized oscillators

Wefocus on aone-dimensional (1D) example of theMV-SDE
in (1), called the Kuramoto model, which describes synchro-
nization in statistical physics to help model the behavior of
large sets of coupled oscillators. This model has widespread
applications in chemical and biological systems (Acebrón
et al. 2005), neuroscience (Cumin and Unsworth 2007), and
oscillating flame dynamics (Forrester 2015). In particular,
the Kuramoto model is a system of P fully connected, syn-
chronized oscillators. We consider the following Itô SDE for
the process X P

p : [0, T ] × Ω → R:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX P
p (t)=

⎛

⎝ξp + 1

P

P∑

q=1

sin
(

X P
p (t) − X P

q (t)
)
⎞

⎠ dt +σdWp(t), t >0

X P
p (0)=(x0)p ∼ μ0 ∈ P(R),

(5)

where {ξp}P
p=1 denotes i.i.d. random variables sampled from

a prescribed distribution. The diffusion σ ∈ R is constant,
and {(x0)p}P

p=1 represents i.i.d. random variables sampled

from a prescribed distribution μ0. In addition, {Wp}P
p=1

represents mutually independent 1D Wiener processes, and
{ξp}P

p=1, {(x0)p}P
p=1, and {Wp}P

p=1 are mutually indepen-
dent. This coupled particle system reaches the mean-field
limit as the number of oscillators tends to infinity. In this
limit, each particle satisfies the following MV-SDE:

⎧
⎪⎪⎨

⎪⎪⎩

dX(t) =
(

ξ +
∫

R

sin(X(t) − x)μt (dx)

)

dt + σdW (t), t > 0

X(0) = x0 ∼ μ0 ∈ P(R),

(6)

where X(t) denotes the state of each particle at time t , ξ

represents a random variable sampled from some prescribed
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distribution, and μt is the probability distribution of X(t).
This example is used throughout this work as a test case for
the proposed MC algorithms.

2.2 Problem setting

We let T > 0 be some finite terminal time and X : [0, T ] ×
Ω → R

d denote the McKean-Vlasov process (1). We let
G : Rd −→ R be a given Lipschitz rare-event observable.
The objective is to build a computationally efficient MLMC
estimatorAMLMC for E [G(X(T ))] with a given relative tol-
erance TOLr > 0 that satisfies

P

[ |AMLMC − E [G(X(T ))]|
|E [G(X(T ))]| ≥ TOLr

]

≤ ν, (7)

for a given confidence level determined by 0 < ν 
 1.
The high dimensionality of the Kolmogorov backward equa-
tion corresponding to the stochastic particle system (3)
makes numerical solutions ofE [G(X(T ))] up to some TOLr

computationally infeasible. This motivates employing MC
methods to overcome the curse of dimensionality.Combining
MC with variance reduction techniques, such as importance
sampling, is required to produce feasible rare-event esti-
mates.

InBenRached et al. (2024),we introduced theDLMCesti-
mator, based on a decoupling approach (dos Reis et al. 2023)
to provide a simple importance sampling scheme imple-
mentation minimizing the estimator variance. The current
paper extends the DLMC estimator to the multilevel setting,
achieving better complexity thanO(TOL−4

r ) from the single-
level DLMC estimator. Section3 introduces the decoupling
approach forMV-SDEs and associated notation before intro-
ducing the DLMC estimator.

3 Double loopMonte Carlo estimator using a
decoupling approach

Thedecoupling approachwas developed for importance sam-
pling in MV-SDEs (dos Reis et al. 2023; Ben Rached et al.
2024), where the idea is to approximate the MV-SDE law
empirically as in (4), use the approximation as input to define
a decoupled MV-SDE and apply a change of measure to it.
We decouple the computation of the MV-SDE law and the
change in probability measure required for importance sam-
pling. First, we introduce the general decoupling approach.

3.1 Decoupling approach for McKean–Vlasov
stochastic differential equation

The decoupling approach in Ben Rached et al. (2024), dos
Reis et al. (2023) comprises the following steps.

1. We approximate the MV-SDE law {μt : t ∈ [0, T ]} using
the empirical measure {μP

t : t ∈ [0, T ]} in (4) using
particles {X P

p (t) : t ∈ [0, T ]}P
p=1 satisfying (3).

2. Given {μP
t : t ∈ [0, T ]}, we define the decoupled MV-

SDE for the process X̄ P : [0, T ] × Ω → R
d as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d X̄ P (t) = b

⎛

⎝X̄ P (t),
1

P

P∑

j=1

κ1(X̄ P (t), X P
j (t))

⎞

⎠ dt

+ σ

⎛

⎝X̄ P (t),
1

P

P∑

j=1

κ2(X̄ P (t), X P
j (t))

⎞

⎠ dW̄ (t), t ∈ [0, T ]

X̄ P (0) = x̄0 ∼ μ0, x̄0 ∈ R
d ,

(8)

where superscript P indicates that the drift and diffusion
functions in (8) are computed using {μP

t : t ∈ [0, T ]}
derived from the stochastic P-particle system. Drift and
diffusion coefficients b and σ are the same as defined in
Sect. 2. In addition, W̄ : [0, T ] ×R

d → R
d is a standard

d-dimensionalWiener process independent of theWiener
processes {Wp}P

p=1 used in (3), and x̄0 ∈ R
d is a random

initial state sampled fromμ0 as defined in (1) and is inde-
pendent from {(x0)p}P

p=1 in (3). Thus, (8) is a standard
SDE with random coefficients.

3. We introduce a copy space (see dos Reis et al. (2023)) to
distinguish the decoupled MV-SDE (8) from the stochas-
tic P-particle system. We suppose (3) is defined on the
probability space (Ω,F ,P). We define a copy space
(Ω̄, F̄ , P̄); hence, we define (8) on the product space
(Ω,F ,P) × (Ω̄, F̄ , P̄). Thus, P is a probability mea-
sure generated by the randomness of {μP

t : t ∈ [0, T ]},
and P̄ denotes the measure generated by the random-
ness of the Wiener process driving (8) conditioned on
{μP

t : t ∈ [0, T ]}.
4. We approximate the quantity of interest as

E [G(X(T ))] ≈ E
P⊗P̄

[
G(X̄ P (T ))

]

=EP

[
E
P̄

[
G(X̄ P (T )) | {μP

t : t∈[0, T ]}
]]

·
(9)

Henceforth, we omit the probability measure above to
simplify the notation such that E

[
G(X̄ P (T ))

]
means

the expectation is taken with respect to all random-
ness in the decoupled MV-SDE (8). We estimate the
inner expectation E

[
G(X̄ P (T )) | {μP

t : t ∈ [0, T ]}] for
a given {μP

t : t ∈ [0, T ]} and then estimate the outer
expectation usingMCsampling over different realizations
of {μP

t : t ∈ [0, T ]}.

The inner expectation E
[
G(X̄ P (T )) | {μP

t : t ∈ [0, T ]}]
can be obtained using theKolmogorov backward equation for
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the decoupled MV-SDE (8). Obtaining an analytical solu-
tion to the Kolmogorov backward equation is not always
possible, and conventional numerical methods do not handle
relative error tolerances, which are relevant in the rare-event
regime. This motivates MC methods coupled with impor-
tance sampling, even for the 1D case, to estimate the nested
expectation (9) in the rare-event regime. We approximate the
nested expectation (9) using a DLMC estimator, as in Ben
Rached et al. (2024). The general outline of the DLMC esti-
mator is given in Algorithm 1. In the following, we use the

notation ω
(i)
p:P

def=
(
ω

(i)
q

)P

q=p
, where for each q, ω(i)

q denotes

the i th sample of the set of underlying random variables
that are used in calculating the empirical law μP

t . Hence,

μP
t (ω

(i)
1:P ) denotes the i th realization of the empirical law

(4). We let ω̄(i) denote the i th realization of random variables
driving the decoupledMV-SDE dynamics (8) conditioned on
a realization of the empirical law.

Algorithm 1: Outline of the double loop Monte Carlo
algorithm for decoupledMcKean–Vlasov stochastic dif-
ferential equation
Inputs: P, M1, M2;
for i = 1, . . . , M1 do

Generate
{
μP

t (ω
(i)
1:P ) : t ∈ [0, T ]

}
using (3),(4);

for j = 1, . . . , M2 do

Given
{
μP

t (ω
(i)
1:P ) : t ∈ [0, T ]

}
, generate sample path of

(8) using ω̄( j);

Compute G
(
X̄ P (T )

) (
ω

(i)
1:P , ω̄( j)

)
;

end
end
Approximate E [G (X(T ))] by
1

M1

∑M1
i=1

1
M2

∑M2
j=1 G
(
X̄ P (T )

) (
ω

(i)
1:P , ω̄( j)

)
;

The decoupled MV-SDE (8) for the given empirical law{
μP

t : t ∈ [0, T ]} is a standard SDE, making it possible to
use stochastic optimal control to derive an optimal change of
measureminimizing the variance of the estimator of the inner
expectation E

[
G
(
X̄ P (T )

) | {μP
t : t ∈ [0, T ]}], as formu-

lated in previous studies (Hartmann et al. 2017, 2018; Zhang
et al. 2014). Such an importance sampling scheme for the
decoupled MV-SDEwas derived in Ben Rached et al. (2024)
and is summarized in Sect. 4.

4 Importance sampling for the decoupled
McKean–Vlasov stochastic differential
equation

This section applies stochastic optimal control theory to
obtain the optimal change of measure for the decoupled

MV-SDE (8). Then, we incorporate the above importance
sampling scheme to the DLMC Algorithm 1, and formulate
the DLMC estimator with importance sampling.

4.1 Optimal importance sampling control for
decoupledMcKean–Vlasov stochastic
differential equation

Ben Rached et al. (2024) derived an optimal change of
measure for the decoupled MV-SDE, minimizing the MC
estimator variance based on stochastic optimal control. This
was based on the well-known Girsanov theorem for change
ofmeasure (Oksendal 2013) for standard SDEs.We recall the
main results here. First, we formulate the Hamilton–Jacobi–
Bellman control PDE that provides optimal control for the
decoupled MV-SDE. We introduce the following notation:
〈·, ·〉 is the Euclidean dot product between two functions in
R

d , ∇· denotes the gradient vector of a scalar function, ∇2·
represents the Hessian matrix of a scalar function, · : · indi-
cates the Frobenius inner product between twomatrix-valued
functions, ‖·‖ is the Euclidean norm of a function in Rd and
Ck(A, B) denotes the set of real-valued bounded continu-
ous functions from domain A to set B with k ≥ 1 bounded
continuous derivatives on B.

Proposition 1 (Hamilton–Jacobi–Bellman PDE for decou-
pled MV-SDE (Ben Rached et al. 2024)) Let the process
X̄ P follow the dynamics (8). We consider the following Itô
SDE for the controlled process X̄ P

ζ : [0, T ]×Ω → R
d with

control ζ : [0, T ] × R
d → R

d :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d X̄ P
ζ (t) =

(

b

⎛

⎝X̄ P
ζ (t),

1

P

P∑

j=1

κ1(X̄ P
ζ (t), X P

j (t))

⎞

⎠

+ σ

⎛

⎝X̄ P
ζ (t),

1

P

P∑

j=1

κ2(X̄ P
ζ (t), X P

j (t))

⎞

⎠ ζ(t, X̄ P
ζ (t))

)

dt

+ σ

⎛

⎝X̄ P
ζ (t),

1

P

P∑

j=1

κ2(X̄ P
ζ (t), X P

j (t))

⎞

⎠ dW (t), 0 < t < T

X̄ P
ζ (0) = X̄ P (0) = x̄0 ∼ μ0.

· (10)

where (3) is used to compute {μP
t : t ∈ [0, T ]} in (8) and

(10). The value function u : [0, T ] × R
d → R

d minimizing
the second moment (for the derivation, see Ben Rached et al.
(2024)) of the DLMC estimator with importance sampling is
written as

123



Statistics and Computing             (2025) 35:1 Page 7 of 21     1 

u(t, x) = min
ζ∈Z

E

[

G2(X̄ P
ζ (T )) exp

{

−
∫ T

t
‖ζ(s, X̄ P

ζ (s))‖2ds

−2
∫ T

t
〈ζ(s, X̄ P

ζ (s)), dW (s)〉
}

∣
∣
∣ X̄ P

ζ (t) = x, {μP
t : t ∈ [0, T ]}

]

·
(11)

Here Z = { f : f ∈ C1
([0, T ] × R

d ,Rd
)}

is the set of
admissible deterministic d-dimensional Markov controls.
Assume b and σ are sufficiently regular such that u has
bounded and continuous derivatives up to first order in time
and second order in space and u(t, x) �= 0 ∀(t, x) ∈
[0, T ] × R

d . We define γ : [0, T ] × R
d → R

d , such that
u(t, x) = exp−2γ (t, x). Then, γ satisfies the nonlinear
Hamilton–Jacobi–Bellman equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂γ

∂t
+ 〈b
⎛

⎝x,
1

P

P∑

j=1

κ1(x, X P
j (t))

⎞

⎠ ,∇γ 〉

+ 1

2
∇2γ :

(
σσ T
)
⎛

⎝x,
1

P

P∑

j=1

κ2(x, X P
j (t))

⎞

⎠

− 1

4
‖σ T ∇γ

⎛

⎝x,
1

P

P∑

j=1

κ2(x, X P
j (t))

⎞

⎠‖2 = 0, (t, x) ∈ [0, T ) × R
d

γ (T , x) = − log |G(x)|, x ∈ R
d ,

(12)

with optimal control

ζ ∗(t, x) = −σ T

⎛

⎝x,
1

P

P∑

j=1

κ2(x, X P
j (t))

⎞

⎠∇γ (t, x) ,

(13)

minimizing the second moment.

Proof See Appendix B in Ben Rached et al. (2024). ��
Previous studies (Ben Rached et al. 2024; Awad et al.

2013) have demonstrated that (12) leads to a zero-variance
estimator of the inner expectation E

[
G
(
X̄ P (T )

)]

| {μP
t : t ∈ [0, T ]}, provided G(·) does not change sign.

Using the transformation u(t, x) = v2(t, x), we can recover
the linear Kolmogorov backward equation for the dynamics
(8) for a given

{
μP

t : t ∈ [0, T ]}.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
+ 〈b
⎛

⎝x,
1

P

P∑

j=1

κ1(x, X P
j (t))

⎞

⎠ , ∇v〉

+ 1

2
∇2v :

(
σσ T
)
⎛

⎝x,
1

P

P∑

j=1

κ2(x, X P
j (t))

⎞

⎠ = 0, (t, x) ∈ [0, T ) × R
d

v(T , x) = |G(x)|, x ∈ R
d ,

(14)

with optimal control

ζ ∗(t, x) = σ T

⎛

⎝x,
1

P

P∑

j=1

κ2(x, X P
j (t))

⎞

⎠∇ log v(t, x)·

(15)

Remark 1 InProposition1,wecontrol the decoupledMcKean–
Vlasov process X̄ P (whose dynamics are given in 8) instead
of the particles X P

p from the interacting particle system (3)
because the optimal control problemwould be d-dimensional
instead of Pd-dimensional.

We require a realization of the empirical law from the
stochastic P-particle system (3) to obtain the control using
(14) and (15). In practice, we obtain a time-discretized ver-
sion of the empirical law using the Euler–Maruyama scheme.
To avoid computing the optimal control for each {μP

t : t ∈
[0, T ]} realization in the DLMC estimator, we independently
obtain a sufficiently accurate empirical law realization off-
line using a sufficiently large number of particles and time
steps (see (Ben Rached et al. 2024), Algorithm 2). This
approach is motivated by the convergence of the empirical
law to the MV-SDE law {μt : t ∈ [0, T ]} as the number of
particles and time steps tend to infinity. This approach has
two main advantages: we do not need to solve the original
KBE (14) for the value function u to satisfy relative tolerance
TOLr, and we don’t require high accuracy for the solution
to ζ ∗ for the purpose of importance sampling. Section6 con-
firms that the deterministic control thus obtained is sufficient
to ensure variance reduction in the proposed estimator.

Remark 2 Asaproof of concept,we numerically solve the 1D
(d = 1) control PDE arising from the Kuramoto model (5)
using finite differences and extend the solution to the entire
domain using linear interpolation. Using such a method to
solve (14) in higher dimensions (d � 1) is computationally
expensive due to the curse of dimensionality. In such cases,
model reduction techniques (Hartmann et al. 2016, 2015)
or solving the minimization problem (11) using stochastic
gradient methods (Hartmann et al. 2017) may help. We do
not focus on building efficient methods to solve the control
PDE in this work.

4.2 Double loopMonte Carlo estimator with
importance sampling

We briefly outline the single-level DLMC estimator for a
given importance sampling control ζ obtained off-line by
solving (15) (for more details, see (Ben Rached et al. 2024)).

1. We consider the discretization 0 = t0 < t1 < t2 < · · · <

tN = T of the time domain [0, T ] with N equal time
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steps of the particle system (3) (i.e., tn = nΔt, n =
0, 1, . . . , N and Δt = T /N ). The discretized version
of particle X P

p corresponding to (3) with P particles is

denoted by X P|N
p . Let ω1:P denote the P underlying sets

of randomvariables used to generate a realization of X P|N
p

from (3).
2. We define the discrete law obtained from the time-

discretized particle system by μP|N as

μP|N (tn) = 1

P

P∑

p=1

δ
X P|N

p (tn)
, ∀n = 0, . . . , N · (16)

Then,we define a time-continuous extension of the empir-
ical law by extending the time-discrete stochastic particle
system to all t ∈ [0, T ] using the continuous-time forward
Euler-Maruyama extension.

3. Given the approximate lawμP|N from (16) and control ζ :
[0, T ]×R

d → R
d , we generate sample paths {X̄ P|N

ζ (t) :
t ∈ [0, T ]} of the controlled decoupled MV-SDE (10).
Let ω̄ denote the set of random variables to generate one
of the above sample paths.

4. We consider the same discretization of the time domain
[0, T ] as the particle system (3) for the controlled decou-
pled MV-SDE (10) with N equal time steps. We define
{X̄ P|N

ζ (tn)}N
n=1 as the Euler–Maruyama time-discretized

version of X̄ P|N
ζ , the decoupled MV-SDE process (10)

defined using empirical law μP|N (16).
5. Thus, we can express the quantity of interest with impor-

tance sampling as follows:

E

[
G(X̄ P|N (T ))

]
= E

[
G(X̄ P|N

ζ (T ))LP|N] . (17)

This expectation is approximated using the DLMC esti-
mator AMC from Ben Rached et al. (2024).

AMC = 1

M1

M1∑

i=1

1

M2

M2∑

j=1

G
(

X̄ P|N
ζ (T )

)
L

P|N (ω(i)
1:P , ω̄( j)

)
·

(18)

where the likelihood factor (for detailed derivation,
see Ben Rached et al. (2024)) is

L
P|N (ω(i)

1:P , ω̄( j)
)

=
N−1∏

n=0

exp

{

− 1

2
Δt‖ζ(tn , X̄ P|N

ζ (tn))‖2

− 〈ΔW (tn), ζ(tn , X̄ P|N
ζ (tn))〉

}(
ω

(i)
1:P , ω̄( j)

)
,

(19)

Here, M1 is the number of realizations of μP|N in
the DLMC estimator, and ω

(i)
1:P denotes the i th real-

ization of ω1:P . For each realization of μP|N , M2 is

the number of sample paths for the decoupled MV-
SDE, and ω̄( j) denotes the j th realization of ω̄. Further
ΔW (tn) ∼ N (0,

√
ΔtId) are the Wiener increments

driving the dynamics of the time-discretized decoupled
MV-SDE (10).

Remark 3 The MC estimator for smooth, nonrare observ-
ables based on the particle system approximation introduced
by Haji-Ali and Tempone (2018) has a computational com-
plexity of O(TOL−4) for a given absolute error tolerance
TOL. However, the constant associated with this complex-
ity substantially increases in the rare-event regime (Kroese
et al. 2013). This problem can be overcome using the above
importance sampling scheme. Ben Rached et al. (2024)
demonstrates that the DLMC estimator (18) with impor-
tance samplinghas a complexity ofO(TOL−4

r ) for estimating
rare-event probabilities up to the prescribed relative error tol-
eranceTOLr.Additionally, importance sampling ensures that
the constant associated with the complexity of this DLMC
estimator (18) is significantly reduced, enabling a feasible
computation of rare-event probabilities.

Section5 extends this estimator to the multilevel setting
to obtain better complexity.

5 Multilevel double loopMonte Carlo
estimator with importance sampling

5.1 Multilevel double loopMonte Carlo estimator
for decoupledMcKean–Vlasov stochastic
differential equation

Two discretization parameters (P and N ) approximate the
solution to the decoupled MV-SDE. For MLMC purposes,
we introduce the parameter (level)  that couples both dis-
cretization parameters. The geometric sequence of levels is
defined given the parameter τ . For  = 0, 1, . . . , L , let:

P = P0τ
,

N = N0τ
· (20)

We set G = G(X(T )), and its corresponding discretiza-
tion at level  is G = G(X̄ P|N (T )), where X : [0, T ] ×
Ω → R

d is theMV-SDE process (1) and X̄ P|N satisfies (8).
The MLMC concept (Giles 2015) uses a telescoping sum for
level L ∈ N:

E[GL ] =
L∑

=0

E[G − G−1] , G−1 = 0· (21)
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The current work approximates each expectation in (21)
independently using the DLMC method, creating the multi-
level DLMC estimator:

AMLMC =∑L
=0

1
M1,

∑M1,
i=1

1
M2,

∑M2,
j=1 (G − G−1)

(
ω

(,i)
1:P

, ω̄(, j)
)
·

(22)

where G−1 is a random variable correlated to G such that
G−1 = 0 and E

[G−1
] = E

[
G−1
]
, ensuring E [AMLMC] =

E [GL ]. In addition,ω
(,i)
1:P

refers to the i th realization of the P

underlying sets of 8random variables used to estimateμP|N

at level , and ω̄(, j) denotes the j th realization of the random
variables in (8) for the given μP|N realization at level .
Samples of G(ω

(,i)
1:P

, ω̄(, j)) and G−1(ω
(,i)
1:P

, ω̄(, j)) must
be sufficiently correlated to ensure that the multilevel DLMC
estimator has better complexity than the single-level DLMC
estimator. We explore two correlated samplers motivated by
the MLMC estimators in Haji-Ali and Tempone (2018).

1. Naïve Sampler. We use the first P−1 random variables
out of each set of P random variables to obtain empirical
lawμ−1 = μP−1|N−1 to generate a sample ofG−1 using
(3). Givenμ−1, we solve (8) at level −1 using the same
ω̄ as for level  and compute the quantity of interest:

G−1

(
ω

(,i)
1:P

, ω̄(, j)
)

= Ḡ−1

(
ω

(,i)
1:P

, ω̄(, j)
)

def= G−1

(
ω

(,i)
1:P−1

, ω̄(, j)
)

· (23)

2. Antithetic Sampler. We split the P sets of random vari-
ables into τ i.i.d. groups of size P−1 each. Then, to
generate a sample of G−1, we use each group to inde-
pendently simulate (3) and obtain empirical law μ

(a)
−1 for

a = 1, . . . , τ . Given μ
(a)
−1, we solve (8) at level  − 1

independently for each a using the same ω̄ as for level .
The quantity of interest is computed for each group and
averaged over the τ groups:

G−1(ω
(,i)
1:P

, ω̄(, j)) = Ĝ−1

(
ω

(,i)
1:P

, ω̄(, j)
)

def= 1

τ

τ∑

a=1

G−1

(
ω

(,i)
(a−1)P−1+1:a P−1

, ω̄(, j)
)

·

(24)

Section 6 numerically investigates the effects of these two
correlation schemes on the variance convergence for level
differences.

5.1.1 Error analysis

We aim to build an efficient multilevel DLMC estimator that
satisfies (7).We can bound the global relative error ofAMLMC

as follows:

|E [G] − AMLMC|
|E [G]| ≤ |E [G] − E [GL ]|

|E [G]|
︸ ︷︷ ︸

=εb , Relative bias

+ |E [GL ] − AMLMC|
|E [G]|

︸ ︷︷ ︸
=εs

, (25)

We impose more restrictive error constraints than (7),

εb ≤ θTOLr|E [G]|, (26)

P [εs ≥ (1 − θ)TOLr|E [G]|] ≤ ν, (27)

for a given tolerance splitting parameter θ ∈ (0, 1). Wemake
the following assumption for the bias.

Assumption 1 (Multilevel DLMC Bias) There exists a con-
stant α̃ > 0 such that

εb = |E [G] − E [G]|
|E [G]| � τ−α̃,

where � indicates that a constant C exists independent of ,
such that εb ≤ Cτ−α̃, and constant α̃ denotes the bias con-
vergence rate with respect to level . Section6 verifies this
assumption and determines α̃ numerically for the Kuramoto
model. Assumption 1 is motivated by the weak conver-
gence with respect to the number of particles (Kolokoltsov
and Troeva 2019) and with respect to the number of time
steps (Kloeden and Platen 1992). In order to use these
bounds in this work, we assume the drift/diffusion coeffi-
cients satisfy further regularity and boundedness conditions
entailed in Kolokoltsov and Troeva (2019), Kloeden and
Platen (1992).We set the level L to satisfy the bias constraint
(26). The statistical error constraint (27) can be rewritten as
follows:

P [εs ≥ (1 − θ)TOLr|E [G]|]
= P

[
εs√

Var [AMLMC]
≥ (1 − θ)TOLr|E [G]|√

Var [AMLMC]

]

≤ ν· (28)

By assuming the normality (at least asymptotically) of the
estimatorAMLMC, we obtain the following condition for the
estimator variance:

Var [AMLMC] ≤
(

(1 − θ)TOLr|E [G]|
Cν

)2

, (29)

where Cν is the
(
1 − ν

2

)
-quantile for the standard normal

distribution. The asymptotic normality of MLMC estimators
can be demonstrated using the Lindeberg–Feller central limit

123



    1 Page 10 of 21 Statistics and Computing             (2025) 35:1 

theorem (Ash and Doléans-Dade 2000). The proposed esti-
mator variance can be expressed as

Var [AMLMC] =
L∑

=0

1

M1,
Var

⎡

⎣
1

M2,

M2,∑

j=1

(ΔG)
(1, j)

⎤

⎦ ,

(30)

where (ΔG)
(i, j) = (G −G−1)

(
ω

(,i)
1:P

, ω̄(, j)
)
. Using the

law of total variance,

Var[AMLMC] =
L∑

=0

1

M1,

⎛

⎜
⎝Var[E[ΔG | {μ,μ−1}]]
︸ ︷︷ ︸

=V1,

+ 1

M2,
E[Var[ΔG | {μ,μ−1}]]
︸ ︷︷ ︸

V2,

⎞

⎟
⎠

=
L∑

=0

(
V1,

M1,
+ V2,

M1,M2,

)

, (31)

where laws {μ,μ−1} are coupled by the same sets of
random variables ω

(,·)
1:P

as described in the naïve (23) and
antithetic (24) samplers.Wemake the following assumptions
on V1, and V2,.

Assumption 2 (Multilevel DLMC variance) There exist con-
stants w̃ > 0 and s̃ > 0 such that,

V1, = Var[E[ΔG | {μ,μ−1}]] � τ−w̃, (32)

V2, = E[Var[ΔG | {μ,μ−1}]] � τ−s̃· (33)

where constants w̃ and s̃ are the convergence rates for V1,

and V2,, respectively, with respect to . Section6 numeri-
cally determines these constants for the Kuramoto model.

5.1.2 Complexity analysis

We can express the total computational cost of the proposed
multilevel DLMC estimator using the cost of the DLMC esti-
mator (18),

W[AMLMC] �
L∑

=0

(
M1, P

1+γp
 N γn

 + M1,M2, P
γp
 N γn



)
·

(34)

γp > 0 and γn > 0 are the computational complexity rates of
the empirical measure computation in the drift and diffusion
coefficients and the time discretization scheme, respectively
(see Appendix A). Let some level L satisfy the bias con-
straint (26). We aim to compute the optimal parameters

{M1,,M2,}L
=0 satisfying (29), which can be posed as the

following optimization problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arg min
{M1,,M2,}L

=0

L∑

=0

(
M1, P

1+γp
 N γn

 + M1, M2, P
γp
 N γn



)

s.t. C2
ν

(
L∑

=0

(
V1,

M1,
+ V2,

M1, M2,

))

≈ (1 − θ)2TOL2
r |E [G]|2

· (35)

The arguments in (35) in R
+ that minimize the objective

is found using the Lagrangian multiplier method ∀ =
0, . . . , L .

M1, = C2
ν

(1 − θ)2TOL2
r |E [G]|2×

√
V1,

√

P
1+γp
 N γn



⎛

⎝
L∑

j=0

√

P
γp
j N γn

j (
√

V1, j Pj +√V2, j )

⎞

⎠ ,

M̃ = M1,M2, = C2
ν

(1 − θ)2TOL2
r |E [G]|2

√
V2,

√

P
γp
 N γn



×
⎛

⎝
L∑

j=0

√

P
γp
j N γn

j (
√

V1, j Pj +√V2, j )

⎞

⎠ ·

(36)

In practice, we only use natural numbers for {M1,,

M2,}L
=0. Hence, we use the following quasi-optimal solu-

tion to (35):

M1, = �M1,�, M2, =
⌈ M̃

�M1,�
⌉
· (37)

Note that M1, required to satisfy TOLr scales with the
factor 1

|E[G]|2 , implying that DLMCwithout importance sam-
pling can quickly become computationally expensive for rare
events.We obtain the optimal computational cost for the pro-
posed multilevel DLMC estimator using (37).

Theorem 1 (Optimal multilevel DLMC complexity) Let G

be an approximation for the random variable G, for every
 ∈ N, and G(i, j)

 ≡ G(ω
(,i)
1:P

, ω̄(, j)) be a sample of G.

Consider the multilevel DLMC estimator (22) with G(i, j)
−1 =

0. Let Assumptions 1 and 2 hold. Let the constants τ , α̃, w̃,
s̃, γp, and γn > 0 from Assumptions 1 and 2 be such that
α̃ ≥ 1

2 min(w̃, 1 + s̃, 1 + γp + γn).
Then, for any TOLr < 1/e, there exists an optimal L and

sequences {M1,}L
=0 and {M2,}L

=0 such that

P

[ |AMLMC(L) − E [G]|
|E [G]| ≥ TOLr

]

≤ ν, (38)
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and

W[AMLMC] � TOL
−2−max

(

0,
1+γn+γp−w̃

α̃
,
γn+γp−s̃

α̃

)

r
(
log TOL−1

r
)2J

,

(39)

where

J =
{
1, if min(w̃, 1 + s̃) = 1 + γp + γn,

0, else.

Proof See Appendix B. ��
Remark 4 The complexity rate in (39) is independent of θ and
τ or the dimension, d, of the MV-SDE. These only affect the
associated constant in (39). The optimization of the param-
eters θ and τ in the context of general MLMC methods has
been investigated (Haji-Ali et al. 2016b; Collier et al. 2015).

Remark 5 In many applications, the variance and second
moments of the level differences in the multilevel DLMC
estimator are of the same order. In this case, we can
demonstrate that V1, ≤ E

[
E
[
ΔG2

 | {μ,μ−1}
]] ≈ V2,,

implying w̃ ≥ s̃.

Remark 6 In the non-rare event context, TOLr in (38) and
(39) is easily replaced by TOL

|E[G]| , where TOL is the required
absolute error tolerance.

Remark 7 (Kuramoto model) γp = 1 corresponds to a naïve
empirical mean estimation method and γn = 1 corresponds
to the Euler–Maruyama scheme with a uniform time grid
with time step T

N
. Then, α̃ = 1 due to the standard rates

of weak convergence with respect to P (Kolokoltsov and
Troeva 2019; Ben Rached et al. 2024) and N using the
Euler–Maruyama scheme (Kloeden and Platen 1992). We
obtain better complexity thanO(TOL−4

r ) for the single-level
DLMC estimator when s̃ +1 ≥ w̃ and w̃ > 1. For this exam-
ple with G(x) = cos(x), using the antithetic sampler ensures
{w̃, s̃} = {2, 2}, leading to O(TOL−3

r ) complexity. In con-
trast, the naïve sampler results in {w̃, s̃} = {1, 1}, leading
to a complexity of O(TOL−4

r ) (i.e., the same as the single-
level DLMC estimator). Section6 presents these outcomes
numerically.

Section 5.2 devises an importance sampling scheme for
the proposed multilevel DLMC estimator to address rare
events associated with MV-SDEs.

5.2 Importance sampling scheme for themultilevel
DLMC estimator for the decoupledMV-SDE

We propose the followingmethod to couple importance sam-
pling with the proposed multilevel DLMC estimator. We
obtain one importance sampling control ζ off-line by solving

the control PDE (14) derived in Sect. 4 using one realization
of the stochastic particle system with a large number of par-
ticles P̄ and time steps N̄ . We apply the same control across
all levels  = 0, . . . , L in the proposed multilevel DLMC
estimator (22). Thus, we can rewrite the quantity of interest
as

E [GL ] =
L∑

=0

E
[
G − G−1

]

=
L∑

=0

E

[
Gζ

L − Gζ
−1L−1

]
, (40)

where

Gζ
 = G(X̄ P|N

ζ (T )), (41)

L =
N−1∏

n=0

exp

{

−1

2
Δt‖ζ
(

tn,, X̄ P|N

ζ (tn,)
)
‖2

−〈ΔW (tn,), ζ
(

tn,, X̄ P|N

ζ (tn,)
)
〉
}

; (42)

{
X̄ P|N

ζ (tn,)
}N

n=0
is the time-discretized controlled, decou-

pled MV-SDE sample path at level  (see Sect. 4.2). L is the
likelihood factor at level , and Δt = T

N
is the uniform

time step of the Euler–Maruyama scheme for the decoupled
MV-SDE at level . {ΔW (tn,)}N

n=0 ∼ N (0,
√

ΔtId) are
Wiener increments driving the dynamics of coarse and fine
time-discretized paths of the decoupled MV-SDE at level
. We define the proposed multilevel DLMC estimator with
importance sampling as follows:

E [GL ]≈AIS
MLMC

=
L∑

=0

1

M1,

M1,∑

i=1

1

M2,

M2,∑

j=1

(
GIS

 −GIS
−1

) (
ω

(,i)
1:P

, ω̄(, j)
)

,

(43)

where GIS


(
ω

(,i)
1:P

, ω̄(, j)
)

= Gζ
L

(
ω

(,i)
1:P

, ω̄(, j)
)
.

Remark 8 The complexity of the multilevel DLMC estima-
tor with the above importance sampling scheme remains the
same as in (39) because the optimal control problem (14) is
solved once and we do not include its cost in the complexity.

Remark 9 This is a natural extension to the importance
sampling scheme previously developed for the single-level
estimator (Ben Rached et al. 2024). The optimal control ζ

minimizes the single-level estimator variance of the condi-
tional expectation E [G | μ]; thus, we expect a variance
reduction for the level differences estimator. However, the
optimal control ζ derived in Sect. 4.1minimizesVar [G] and
not the variance of the MC estimator of E [ΔG]. Optimally,
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we must determine a control that minimizes Var [ΔG] at
each level  of the multilevel DLMC estimator, which we
leave for future work.

Algorithm 4 in Appendix C implements the proposed
importance sampling scheme in the level-difference esti-
mator for the proposed multilevel DLMC method and can
be easily modified for any other correlated sampler, such
as the naïve sampler. Next, we build an adaptive multi-
level DLMC algorithm that sequentially chooses parameters
L, {M1,, M2,}L

=0 satisfying constraints (26) and (27). The
bias and variances V1, and V2, corresponding to level 

must be estimated cheaply and robustly to develop such an
algorithm.

5.3 Adaptive multilevel double loopMonte Carlo
algorithmwith importance sampling

5.3.1 Estimating Bias at level �

The bias for level  can be approximated using Richardson
extrapolation (Lemaire and Pagès 2017):

|E [G] − E [G]| ≈
(
1 − τ−α̃

)−1 |E [G+1 − G

]|· (44)

Then, we use Algorithm 4 with at least M1 and M2 sam-
ples to obtain a DLMC estimation of the bias. To ensure
robust bias estimates at all levels, we actually use M̂1 and
M̂2 samples in Algorithm 4 defined as follows:

M̂1 = max(M1,, M1),

M̂2 = max(M2,, M2)· (45)

To ensure reliable bias estimates at higher levels ( > 3),
we compare the DLMC bias estimator with the extrapolated
bias from two previous levels using Assumption 1:

|E [G] − E
[
G

]| ≈max

(
|E [ΔG+1

]|
1 − τ−α̃

,
|E [G] − E

[
G−1
]|

τ α̃
,

|E [G] − E
[
G−2
]|

τ2α̃

)

,  > 2· (46)

5.3.2 Estimating V1,�, V2,� at Level �

To compute the optimal number of samples required to
satisfy the statistical error constraint (29) using (37), we
require cheap and robust empirical estimates of the vari-
ance terms V1, and V2, for each level . For this, we apply
the DLMC algorithm (Algorithm 5 in Appendix D) with
appropriately chosen values of M̃1 and M̃2. Algorithm 5
could become computationally expensive at higher levels.

We exploit Assumption 2 to avoid this overload and extrap-
olate variances for higher levels. For levels  > 3,

V1, = max

(
V1,−1

τ w̃
,

V1,−2

τ 2w̃

)

,

V2, = max

(
V2,−1

τ s̃
,

V2,−2

τ 2s̃

)

· (47)

5.3.3 Relative error control

To control the relative bias and statistical errors, we require a
heuristic estimate of the quantity of interestE [G] itself. This
estimate is continuously updated at each level L . At level L =
0, we use the DLMC algorithm (Algorithm 4) with M̄1 and
M̄2 samples to obtain an initial robust but cheap estimate of
E [G]. For subsequent levels, we apply the multilevel DLMC
estimator (22) with optimal values for {M1,, M2,}L

=0 to
update the estimate. Putting all this together, we propose the
adaptive multilevel DLMC algorithm (Algorithm 2) for rare-
event observables in theMV-SDEcontext. The IS control ζ in
Algorithm2 is obtained off-line by generating one realization
of the empirical law μP̄|N̄ with large P̄ and N̄ and then
numerically solving control equation (14) given μP̄|N̄ .

Algorithm 2: Adaptive multilevel DLMC algorithm
with importance sampling

Input: P0, N0,TOLr, ζ(·, ·),{M̄1, M̄2},{M̃1, M̃2},{M1, M2};
Estimate Ḡ = E [G0] with P0, N0, M̄1, M̄2, ζ(·, ·) using
Algorithm 4;
Estimate and store V1,0,V2,0 with P0, N0, M̄1, M̄2, ζ(·, ·) using
Algorithm 5;
Set L = 1;
while Bias > θTOLrḠ do

PL = P02L , NL = N02L ;
Estimate and store V1,L , V2,L with PL , NL , M̃1, M̃2, ζ(·, ·)
using Algorithm 5;
Compute optimal {M1,, M2,}L

=0 using (37);

Estimate bias using (44) with PL+1, NL+1, M̂1, M̂2, ζ(·, ·)
using (45) and Algorithm 4;
Reevaluate Ḡ = E[G0] +∑L

=1 E[ΔG] with
{M1,, M2,}L

=0, ζ(·, ·) using Algorithm 4 for each ;
L ←− L + 1;

end
AMLMC = Ḡ.

6 Numerical results

This sectionprovides numerical evidence for the assumptions
and rates of computational complexity derived in Sect. 5. The
results outlined below focus on the Kuramoto model (see
Sect. 2.1) with the following settings: σ = 0.4, T = 1,
(x0)p ∼ N (0, 0.2), and ξp ∼ U(−0.2, 0.2) for all p =
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1, . . . , P . We set the parameters as follows: τ = 2, θ = 0.5,
and ν = 0.05. The complexity rates (γp = 1 and γn = 1)
are explained in Remark 7. Moreover, we set the hierarchies
for the multilevel DLMC estimator as

P = 5 × 2, N = 4 × 2· (48)

We implement the proposedmultilevel DLMCmethod for
nonrare and rare-event observables and investigate the com-
putational complexity comparedwith the single-levelDLMC
estimator.

6.1 Objective function G(x) = cos(x)

First, we numerically verify Assumptions 1 and 2 for
the smooth, nonrare observable G(x) = cos(x) without
importance sampling to determine constants α̃, w̃, s̃ for the
Kuramoto model. Figure1 presents the estimated bias (44)
using Algorithm 4, and V1, and V2, with respect to  using
Algorithm 5. Thus, Assumptions 1 and 2 are verified with
α̃ = 1 and {w̃, s̃} = {1, 1} for the naïve sampler (23) and
with {w̃, s̃} = {2, 2} for the antithetic sampler (24). Improved
variance convergence rates for the antithetic sampler imply a
complexity ofO(TOL−3) for the proposedmultilevelDLMC
estimator, compared with O(TOL−4) for the naïve sam-
pler (see Theorem 1) to achieve a prescribed absolute error
tolerance TOL. Thus, we use the antithetic sampler in the
proposed adaptive algorithm (Algorithm 2).

Next, we implement the proposedmultilevel DLMC algo-
rithm (Algorithm 2) with inputs {M̄1, M̄2} = {1000, 100},
{M̃1, M̃2} = {25, 1000}, and {M1, M2} = {100, 50} for
this observable with tuned parameters. In this case, impor-
tance sampling is not required because this is not a rare-event
observable, i.e. we set ζ(t, x) = 0,∀(t, x) ∈ [0, T ] × R

d .
Figure2 depicts the results of Algorithm 2 in this set-
ting to numerically verify the complexity rates obtained
from Theorem 1. Figure2a illustrates the exact multilevel
DLMC estimator error, estimated using a reference multi-
level DLMC approximation with TOL = 10−4, for separate
runs of Algorithm 2 for different prescribed absolute error
tolerances TOL. The adaptive multilevel DLMC algorithm
successfully satisfies the error constraint (38) at the 95%
confidence level (corresponding to ν = 0.05). Figure2b
presents the number of levels L required to satisfy the bias
constraint in (26) for each of the separate runs of Algorithm 2
for different prescribed error tolerances TOL. According
to Theorem 1, the number of levels should increase by
O(log(TOL−1)). Figure2c displays the average computa-
tional runtime for Algorithm 2 for various error tolerances.
The runtimes in Fig. 2c include the cost of estimating the bias,
V1, and V2,, in Algorithm 2. The runtimes for sufficiently
small tolerances follow the predicted O(TOL−3) rate from
Theorem 1. Figure2d indicates the average estimated com-

putational cost of the multilevel DLMC estimator for various
TOL values. This estimated computational cost is computed
using (34):

Computational cost[AMLMC]

≈
L∑

=0

(
M1, P

1+γp
 N γn

 + M1,M2, P
γp
 N γn



)
· (49)

Figure 2c and d verify that the proposed multilevel DLMC
estimator with the antithetic sampler outperforms the single-
level DLMC estimator, achieving one order of complexity
reduction from O(TOL−4) to O(TOL−3).

6.2 Rare-event objective function

To test the importance sampling scheme, we consider the
Kuramoto model with the following Lipschitz rare-event
observable G(x) = Ψ (x − K ) for a sufficiently large thresh-
old K ∈ R, where

Ψ (x) =

⎧
⎪⎨

⎪⎩

0 , x < −0.5

0.5 + x , −0.5 < x < 0.5

1 , x > 0.5

· (50)

We use the importance sampling scheme introduced in
Sect. 5.2 with importance sampling control ζ obtained by
solving (14) numerically using finite differences and linear
interpolation throughout the domain. First, we verify the vari-
ance reduction in the level-difference estimators using this ζ

in two numerical experiments, whose results are depicted in
Fig. 3.

Note that ζ is the optimal importance sampling control for
the decoupled MV-SDE (8) and not the particle system (3).
With this scheme, we reduce the variance of the inner expec-
tation in (9). Consequently, we assess the variance reduction
in theMC estimator of the inner expectation in the first exper-
iment. Experiment 1 investigates variance reduction on the

DLMC estimator of E
[
ΔG | μP̄|N̄

]
. We run DLMC Algo-

rithm 4 with M1 = 1 and  = 3 for different values of
M2. To generate Fig. 3a, we obtained the importance sam-
pling control ζ using one realization of the empirical law
μP̄|N̄ with P̄ = 200 particles and N̄ = 100 time steps.
Figure3a compares squared coefficients of variation for the
DLMC estimator with and without importance sampling ver-
sus the number of sample paths M . The results verify that
the importance sampling scheme reduces the squared coef-
ficient of variation approximately 100-fold. In Experiment
2, we verify the variance reduction for the DLMC estimator
of E [ΔG] with importance sampling using DLMC Algo-
rithm 4 with  = 3, M1 = 103 for different values of
M2. To generate Fig. 3b, we obtained importance sampling
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Fig. 1 Convergence rates of level differences using antithetic (Ĝ) and naïve (Ḡ) samplers for the Kuramoto model with G(x) = cos x

Fig. 2 Algorithm 2 applied to the Kuramoto model for G(x) = cos x . (MLDLMC: multilevel double loop Monte Carlo)
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Fig. 3 Numerical experiments verifying variance reduction in the double loop Monte Carlo estimator for level differences using importance
sampling on the Kuramoto model for G(x) = Ψ (x − K ) with K = 2.5

control ζ by solving control Equation (14) off-line using
an independent realization of the empirical law μP̄|N̄ with
P̄ = 1000 particles and N̄ = 100 time steps. The results
verify a significantly reduced squared coefficient of varia-
tion (approximately one order ofmagnitude)with importance
sampling. The estimator variance of E [ΔG] is given by
V1,
M1,

+ V2,
M1, M2,

(30). We notice convergence of the squared
coefficient of variation as the second term vanishes with a
large M2 value.

We numerically verify Assumptions 1 and 2 for this rare-
event observable to determine constants α̃, w̃, and s̃ for the
Kuramotomodel with importance sampling. Figure4 verifies
Assumptions 1 and 2 with α̃ = 1 and {w̃, s̃} = {2, 1} for
the antithetic sampler (24). These rates imply a complexity
of O(TOL−3

r ) for the proposed multilevel DLMC estimator
with importance sampling according to Theorem 1.

We implement the proposed adaptive multilevel DLMC
algorithm (Algorithm2)with inputs {M̄1, M̄2} = {1000, 100},
{M̃1, M̃2} = {25, 100}, and {M1, M2} = {100, 50} using
importance sampling for the 1D Kuramoto model. We use
P̄ = 1000 particles and N̄ = 100 time steps to indepen-
dently obtain one empirical realization of μP̄|N̄ to compute
importance sampling control ζ . Figure5 presents the results
of Algorithm 2 in this setting and numerically verifies the
complexity rates obtained in Theorem 1. We observe that
K = 2.5 corresponds to an expected value ≈ 3.2 × 10−3,
K = 2 corresponds to an expected value of ≈ 2.3 × 10−2,
and K = 3 corresponds to an expected value of≈ 3.1×10−4,
all sufficiently rare events.

Figure 5a, b, and c correspond to K = 2.5. Figure5a
presents exact relative error for the proposed multilevel
DLMC estimator, estimated using a reference multilevel
DLMCapproximationwith TOLr = 1%, formultiple runs of
Algorithm 2with various prescribed relative error tolerances.
Figure5b verifies that the multilevel DLMC estimator with
importance sampling satisfies error constraints with 95%
confidence (corresponding to ν = 0.05). The runtimes in
Fig. 5b include the estimation time of the bias, V1, and V2,,
in adaptive Algorithm 2. Figure5b confirms that the average
computational runtime closely follows the predicted theoret-
ical rateO(TOL−3

r ) for the entire range of relative tolerances.
Figure5c depicts the average computational cost estimate for
the multilevel DLMC estimator over the prescribed TOLr

values. The cost estimate is computed using (49). Figure5b
and c both display a complexity of O(TOL−3

r ) for the mul-
tilevel DLMC estimator with importance sampling and the
antithetic sampler, achieving one order complexity reduc-
tion compared with the single-level DLMC estimator with
the same importance sampling scheme. Figure5d plots the
average work estimate for various threshold values K over a
range of relative error tolerances. This verifies that the com-
plexity rates are independent of parameter K .

7 Conclusion

Under certain assumptions that can be numerically veri-
fied, we have theoretically and numerically demonstrated
the improvement of multilevel DLMC compared with the
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Fig. 4 Convergence rates of level differences using the antithetic estimator (Ĝ) for the Kuramoto model with G(x) = Ψ (x − K )

single-level DLMC estimator used to approximate rare-
event quantities of interest expressed as an expectation of
a Lipschitz observable of the solution to stochastic parti-
cle systems in the mean-field limit. We used the importance
sampling scheme introduced in Ben Rached et al. (2024)
for all level-difference estimators in the proposed multilevel
DLMC estimator and verified substantial variance reduction
numerically. The proposed novelmultilevelDLMCestimator
achieved a complexity of O(TOL−3

r ) for the treated exam-
ple, one order less than the single-level DLMC estimator
for the prescribed relative error tolerance TOLr. Integrating
the importance sampling scheme into the MLMC estimator
ensured that the constant associated with its complexity also
reduced significantly compared with the MLMC estimator
for smooth, nonrare observables introduced in Haji-Ali and
Tempone (2018).

Future studies could include extending the importance
sampling scheme to higher-dimensional problems, using
model reduction techniques or stochastic gradient-based
learning methods to solve the associated higher-dimensional
stochastic optimal control problem (see Remark 2). The
importance sampling scheme could be further improved by
solving an optimal control problem minimizing the level-
difference estimator variance rather than the single-level
DLMC estimator (see Remark 9). The multilevel DLMC
algorithm could be optimized for determining the optimal
parameters τ and θ (Haji-Ali et al. 2016b) or integrating
a continuation MLMC algorithm (Collier et al. 2015) (see
Remark 4). The present analysis could be extended to numer-
ically address non-Lipschitz rare-event observables, such
as the indicator function, to compute rare-event probabil-
ities. Multiple discretization parameters for the decoupled

MV-SDE (P, N ) suggest extending the current work to a
multi-indexMonte Carlo (Haji-Ali et al. 2016a; Haji-Ali and
Tempone 2018) setting to further reduce computational com-
plexity.

A Computational cost of themultilevel
double loopMonte Carlo estimator (22)

For a given level , we estimate E [ΔG] = E
[
G − G−1

]
.

First, we derive the computational cost of estimating E [G]
using DLMC Algorithm 3. We consider the discretization
0 = t0 < t1 < t2 < . . . < tN

= T of the time domain [0, T ]
with N equal time steps (i.e., tn = nΔt, n = 0, 1, . . . , N

and Δt = T /N). First, we simulate the particle system at
level . For each particle p ∈ 1, . . . , P and each time step
n ∈ 1, . . . , N, the Euler–Maruyama time-stepping scheme
is written as

X P|N
p (tn+1) = X P|N

p (tn)

+ b

⎛

⎝X P|N
p (tn),

1

P

P∑

j=1

κ1

(
X P|N

p (tn), X P|N

j (tn)
)
⎞

⎠Δt

+ σ

⎛

⎝X P|N
p (tn),

1

P

P∑

j=1

κ2

(
X P|N

p (tn), X P|N

j (tn)
)
⎞

⎠

ΔW (tn), n = 1, . . . , N,

X P|N
p (t0) ∼ μ0· (51)

The computational cost per time step per particle is
O(P

γp
 ) because the cost of computing the empirical average
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Fig. 5 Algorithm 2 applied to the Kuramoto model for G(x) = Ψ (x − K )

Algorithm 3: General double loop Monte Carlo algo-
rithm for decoupled McKean–Vlasov Stochastic Differ-
ential Equation
Inputs: P, N , M1, M2;
for m1 = 1, . . . , M1 do

Generate μP|N
(
ω

(m1)
1:P
)
with P-particle system and N time

steps using (51);
for m2 = 1, . . . , M2 do

Given μP|N
(
ω

(m1)
1:P
)
, generate sample path of decoupled

MV-SDE with N time steps with ω̄(m2) using (52);

Compute G
(
X̄ P|N (T )

) (
ω

(m1)
1:P , ω̄(m2)

)
;

end
end
Approximate E

[
G
(
X̄ P|N (T )

)]
by

1
M1

∑M1
m1=1

1
M2

∑M2
m2=1 G

(
X̄ P|N (T )

) (
ω

(m1)
1:P , ω̄(m2)

)
;

1
P

∑P

j=1 κ
(

X P|N
p (tn), X P|N

j (tn)
)
in the drift and diffu-

sion coefficients is assumed to be O(P
γp
 ) for γp > 0.

This cost is O(P) for a naïve method. Hence, the compu-
tational cost of simulating a P particle system once using

N time steps with scheme (51) isO(N P
1+γp
 ). For a given

realization of the particle system, we simulate the decou-
pled MV-SDE (8) using the Euler–Maruyama scheme with
the same time discretization as above. For each time step
n ∈ 1, . . . , N, the time-stepping scheme is written as

X̄ P|N

ζ (tn+1) = X̄ P|N

ζ (tn)

+ b

⎛

⎝X̄ P|N

ζ (tn),
1

P

P∑

j=1

κ1

(
X̄ P|N

ζ (tn), X P|N

j (tn)
)
⎞

⎠Δt

+ σ

⎛

⎝X̄ P|N

ζ (tn),
1

P

P∑

j=1

κ2

(
X̄ P|N

ζ (tn), X P|N

j (tn)
)
⎞

⎠
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ΔW̄ (tn), n = 1, . . . , N,

X̄ P|N

ζ (t0) ∼ μ0· (52)

The computational cost per time step is againO(P
γp
 ) due

to the cost of computing the empirical average in the drift
and diffusion coefficients. Hence, the computational cost
of simulating the decoupled MV-SDE (8) using the above
scheme (52) is O(N P

γp
 ). Thus, the computational com-

plexity of DLMC in Algorithm 3 per level can be written as
follows:

W = O(M1,

(
N P

1+γp
 + M2,

(
N P

γp


))
)

= O(M1,N P
1+γp
 + M1,M2,N P

γp
 )· (53)

We obtain the expression in (34) by generalizing this cost
estimate for any time-stepping scheme (with a computational
complexity ofO(N γn

 ) instead ofO(N)) and then summing
over all levels.

B Proof of Theorem 1

For given level L ∈ N, (37) provides the optimal number of
samples to satisfy the variance constraint in (29) for the pro-
posed multilevel DLMC estimator. We bound the multilevel
DLMC estimator (22) cost as follows:

W[AMLMC] �
L∑

=0

(
M1, P

1+γp
 N γn

 + M1,M2, P
γp
 N γn



)

�
L∑

=0

(
(M1, + 1)P

1+γp
 N γn



+(M1, + 1)

(
M̃

�M1,� + 1

)

P
γp
 N γn



)

≤
L∑

=0

(
M1, P

1+γp
 N γn

 + M̃ P
γp
 N γn



)

︸ ︷︷ ︸
=W1,objective function of (35)

+
L∑

=0

(
P
1+γp
 N γn

 + P
γp
 N γn



)

︸ ︷︷ ︸
W2,cost of one realization per level

+
L∑

=0

M1, P
γp
 N γn



︸ ︷︷ ︸
=W3

+
L∑

=0

M̃

�M1,� P
γp
 N γn



︸ ︷︷ ︸
=W4

· (54)

Because P > 1 and γp > 0, W3 is always dominated by

the first term in W1 (i.e.,
∑L

=0 M1, P
1+γp
 N γn

 ).We analyze

each term individually. By substituting (36) in W1,

W1 = C2
ν

(1 − θ)2TOL2
r |E [G]|2

×
(

L∑

=0

√

P
γp
 N γn

 (
√

V1, P +√V2,)

)2

· (55)

By selecting level L that satisfies (26) and using Assump-
tion 1,

|E[G − GL ]| ≤ Cbτ
−α̃L ≈ θTOLr|E [G]|, (56)

and hence,

L =
⌈ 1

α̃
log

(
Cb

θ |E [G]|TOL
−1
r

)⌉
· (57)

Using the hierarchies (20) and Assumption 2 in (55),

W1 � TOL−2
r

(
L∑

=0

τ
1+γp+γn−w̃

2  + τ
γp+γn−s̃

2 

)2

· (58)

The summation in (58) has two terms; thus, we have the
following two cases:

• Case 1: s̃ + 1 ≥ w̃, i.e., the first term dominates, and
W1 can be expressed as

W1 � TOL−2
r

(
L∑

=0

τ
1+γp+γn−w̃

2 

)2

, (59)

and simplified using (57) and the sum of a geometric
series,

W1 �

⎧
⎪⎪⎨

⎪⎪⎩

TOL−2
r , w̃ > 1 + γp + γn

TOL−2
r (log TOL−1

r )2 , w̃ = 1 + γp + γn

TOL
−2−
(
1+γp+γn−w̃

α̃

)

r , w̃ < 1 + γp + γn

,

(60)

which can be expressed more compactly:

W1 � TOL
−2−max

(
0,

1+γp+γn−w̃

α̃

)

r (log TOL−1
r )2J1, (61)

where

J1 =
{
1, if w̃ = 1 + γp + γn,

0, else.
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• Case 2: s̃ + 1 < w̃, i.e., the second term dominates, and
express W1 as

W1 � TOL−2
r

(
L∑

=0

β
γp+γn−s̃

2 

)2

, (62)

and simplify using the sum of a geometric series,

W1 �

⎧
⎪⎪⎨

⎪⎪⎩

TOL−2
r , s̃ > γp + γn

TOL−2
r (log TOL−1

r )2 , s̃ = γp + γn

TOL
−2−
(

γp+γn−s̃
α̃

)

r , s̃ < γp + γn

, (63)

which can be expressed more compactly:

W1 � TOL
−2−max

(
0,

γp+γn−s̃
α̃

)

r (log TOL−1
r )2J2 , (64)

where

J2 =
{
1, if s̃ = γp + γn,

0, else.

In this case, W3 is of a lower order than the first term in
W1; therefore, W1 dominates as TOLr → 0.

Using (20), for W2,

W2 � TOL
−
(
1+γp+γn

α̃

)

r · (65)

Next, we examine W4:

W4 =
L∑

=0

M̃

�M1,� P
γp
 N γn



≤
L∑

=0

M̃

max{1,M1,} P
γp
 N γn



=
L∑

=0

min{M̃ P
γp
 N γn

 ,
M̃

M1,
P

γp
 N γn

 }

≤
L∑

=0

M̃ P
γp
 N γn

 · (66)

W4 has the same or lower order than that of W1. Next, we
must ensure that W1 dominates W2 as TOLr → 0 for the pro-
posed multilevel DLMC method to be feasible. Comparing
(65) to W1 for the cases, the following condition ensures W1

is the dominant term:

α̃ ≥ 1

2
min(w̃, 1 + s̃, 1 + γp + γn)· (67)

Thus, (67), (61), and (64) complete the proof.

C Estimating level differences for the
multilevel double loopMonte Carlo
estimator

Algorithm 4: Importance sampling scheme to estimate
E [ΔG] using antithetic sampler
Inputs: , M1, M2, ζ(·, ·);
for m1 = 1, . . . , M1 do

Generate μ(ω
(,m1)
1:P

) using (16);

for a = 1, . . . , τ do
Generate μ

(a)
−1(ω

(,m1)
(a−1)P−1+1:a P−1

) using (16);

end
for m2 = 1, . . . , M2 do

Given μ(ω
(,m1)
1:P

) and ζ(·, ·), generate sample path of

(10) at level  with ω̄(,m2);
Compute GIS

 (ω
(,m1)
1:P

, ω̄(,m2));

for a = 1, . . . , τ do
Given μ

(a)
−1(ω

(,m1)
(a−1)P−1+1:a P−1

) and ζ(·, ·), generate
sample path of (10) at level  − 1 with ω̄(,m2);
Compute GIS

−1(ω
(,m1)
(a−1)P−1+1:a P−1

, ω̄(,m2));

end

ĜIS
−1(ω

(,m1)
1:P

, ω̄(,m2)) =
1
τ

∑τ
a=1 GIS

−1(ω
(,m1)
(a−1)P−1+1:a P−1

, ω̄(,m2));

end

ΔG(m1,m2)
 = (GIS

 − ĜIS
−1)(ω

(,m1)
1:P

, ω̄(,m2));

end
Approximate E

[
G − G−1

]
by

1
M1

∑M1
m1=1

1
M2

∑M2
m2=1 ΔG(m1,m2)

 ;
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D Estimating variances for the adaptive
multilevel double loopMonte Carlo
algorithm

Algorithm 5:Estimating V1, and V2, for adaptive mul-
tilevel DLMC
Inputs: , M1, M2, ζ(·, ·);
for m1 = 1, . . . , M1 do

Generate μ(ω
(,m1)
1:P

) using (16);

for a = 1, . . . , τ do
Generate μ

(a)
−1(ω

(,m1)
(a−1)P−1+1:a P−1

) using (16);

end
for m2 = 1, . . . , M2 do

Given μ(ω
(,m1)
1:P

) and ζ(·, ·), generate sample path of (8)

at level  with ω̄(,m2);
Compute GIS

 (ω
(,m1)
1:P

, ω̄(,m2));

for a = 1, . . . , τ do
Given μ

(a)
−1(ω

(,m1)
(a−1)P−1+1:a P−1

) and ζ(·, ·), generate
sample path of (8) at level  − 1 with ω̄(,m2);
Compute GIS

−1(ω
(,m1)
(a−1)P−1+1:a P−1

, ω̄(,m2));

end

ĜIS
−1(ω

(,m1)
1:P

, ω̄(,m2)) =
1
τ

∑τ
a=1 GIS

−1(ω
(,m1)
(a−1)P−1+1:a P−1

, ω̄(,m2));

end

ΔG(m1,m2)
 = (GIS

 − ĜIS
−1)(ω

(,m1)
1:P

, ω̄(,m2));

Approximate E
[
ΔG | {μ,μ−1}(ω(,m1)

1:P
)
]
by

1
M2

∑M2
m2=1 ΔG(m1,m2)

 ;

Approximate Var
[
ΔG | {μ,μ−1}(ω(,m1)

1:P
)
]
by sample

variance of
{
ΔG(m1,m2)



}M2

m2=1
;

end
Approximate V1, by sample variance of
{
E

[
ΔG | {μ,μ−1}(ω(,m1)

1:P
)
]}M1

m1=1
;

Approximate V2, by
1

M1

∑M1
m1=1 Var

[
ΔG | {μ,μ−1}(ω(,m1)

1:P
)
]
.
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