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A B S T R A C T

Cereal products contribute significantly to dietary intake of essential minerals. In wheat, iron and zinc are stored 
in specific grain structures including the aleurone, scutellum and embryo. Wheat cell walls are resistant to 
digestion in the human gastrointestinal tract and therefore this study investigated the hypothesis that physical 
disruption of the cell walls would increase the bioaccessibility and bioavailability of iron and zinc from wheat- 
based foods. Flour was micronized using a combination of roller milling and a micro-mill and this reduced 
median particle size by two-thirds. Hydrothermally processed wheat flour doughs were subjected to in vitro 
digestion to determine mineral bioaccessibility. Mineral bioavailability from food digests was measured using 
human intestinal Caco-2 cells. Iron (but not zinc) bioavailability from wheat foods made using the micronized 
flour (2.5 ± 0.5 nmol/mg cell protein) was increased significantly compared with foods produced from standard 
milled flour (1.3 ± 0.1 nmol/mg cell protein; P = 0.031). Micronization of wheat flour has the potential to 
increase the absorption of the endogenous iron present in cereal foods and this might have health benefits for 
population groups with poor iron status.

1. Introduction

Cereals are important sources of energy in global diets and 
contribute significantly to mineral intakes. For example, up to 50 % of 
iron and 30 % of zinc in the UK diet is provided by cereal products, with 
the majority coming from wheat-based foods (e.g. bread, pasta) (Aslam, 
Ellis, Berry, Latunde-Dada, & Sharp, 2018). In wheat, iron is primarily 
localised to the aleurone layer and scutellum, while zinc is abundant in 
aleurone and the embryo of the mature wheat grain. However, only 
limited amounts of these minerals are present in the starchy endosperm 
(Balk et al., 2019).

Mineral bioaccessibility and bioavailability from wholegrain wheat 
flour are limited due to the presence of intact plant cell walls. In 
particular, the cell walls of the mineral-rich aleurone layer of wheat are 
relatively thick and robust and remain largely intact during milling and 
food processing (Brouns, Hemery, Price, & Anson, 2012). Several studies 
have shown that wheat cell walls, including those in the aleurone layer, 

are also resistant to digestion in the small intestine and therefore nu-
trients, including iron and zinc, that are physically encapsulated within 
wheat cells have low bioaccessibility (i.e. are not readily liberated 
during digestion) (Latunde-Dada et al., 2014; Edwards et al., 
2015a,2021).

A series of elegant imaging studies have shown that iron and zinc in 
the aleurone, scutellum and embryo are strongly associated with phos-
phorus, most likely in the form of phytate (Moore et al., 2012; Neal et al., 
2013; De Brier et al., 2016; Wan et al., 2022). Phytate (an anionic form 
of inositol hexakisphosphate) has been shown to be a potent inhibitor of 
iron and zinc bioavailability in both in vitro assays (Sreenivasulu, Raghu, 
Ravinder, & Nair, 2008; Christides & Sharp, 2013) and in human feeding 
studies (Hallberg, Brune, & Rossander, 1989; Brnić, Wegmüller, Zeder, 
Senti, & Hurrell, 2014). Thus, in wholegrain wheat products, the 
physical encapsulation of iron and zinc by cell walls together with the 
presence of high levels of phytate limits both bioaccessibility and 
bioavailability of minerals.
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Several strategies have been proposed to increase mineral content 
and bioavailability from cereal products including fortification, bio-
fortification and genetic manipulation (Arafsha, Aslam, Ellis, Latunde- 
Dada, & Sharp, 2023). The purpose of this current study was to test 
the hypothesis that physical disruption of wheat cell walls through 
micro-milling of wheat grain would increase the bioavailability of the 
endogenous iron and zinc from hydrothermally processed wholewheat 
foods. Here we have used a well-characterised in vitro digestion/cell 
absorption model to investigate the effects of hydrothermal processing 
of wheat flour doughs on mineral bioaccessibility and bioavailability. 
Bioaccessibility of iron and zinc was measured as the amount of mineral 
liberated from the food matrix following in vitro digestion. Digestates 
were then added to human intestinal Caco-2 cells to measure iron and 
zinc uptake (bioavailability). Our studies showed that iron bioavail-
ability from cooked foods was increased in products made using the 
micronized flour.

2. Methods & materials

2.1. Proximate analysis of wheat flour and preparation of food samples

All flours were prepared and supplied by Bühler AG (Switzerland). 
Swiss wholegrain wheat (Vollkornmehl Typ 1900) was used to produce 
wholewheat flours using either a standard roller milling process (STD) 
or using a Bühler Micromill (a modified roller mill containing 3 pairs of 
smooth rollers with one in each pair rotating faster than the other to 
increase the shearing forces) to yield micro-milled (MM) flour. Particle 
size analysis of the standard and micro-milled flours was carried out at 
Campden BRI (UK) using Dynamic Image Analysis (UKAS, based on ISO 
13322-2:2006).

Proximate analysis of flours (technical duplicates) was performed by 
Campden BRI and included moisture (%, near-infrared spectroscopy; 
NIR, non UKAS, TES-CM-114 based on CCAT method 14), protein (%, 
NIR, non UKAS, TES-CM-114 based on CCAT method 14), dry gluten (%, 
gluten washing test, non UKAS, TES-CM-113 based on CCAT method 
13), ash (total minerals, % dry matter basis, UKAS, TES-CM-112 based 
on CCAT method 12), damaged starch (Farrand (FU), UKAS, TES-CM- 
105 based on CCAT method 05), α–amylase (ceralpha (CU/g), UKAS, 
TES-CM-118 based on CCAT method 05) and Hagberg falling number 
(an indirect measurement of α-amylase activity, UKAS, TES-CM-106 
based on CCAT method 06). The flours were kept refrigerated and 
removed from the fridge one hour before use to reach room temperature.

To make wheat doughs, 20 g of each flour was mixed with water 
(11.7 mL for standard flour; 12.2 mL for micro-milled flour) and doughs 
were kneaded by hand for 10 min and left to rest at 37 ◦C for 1 h. 
Samples of dough (approximately 5 g) were taken, rolled, and flattened 
into small discs (approximately 5 cm diameter, 0.5 cm thickness) and 
simmered in boiling tap water for 10 min, turning after 5 min. Samples 
were cooled and were then placed in aluminium dishes in an oven at 
60 ◦C to remove moisture and achieve constant weights. Each cooked 
sample was ground in a coffee blender before use in experiments.

2.2. Iron and phytic acid content

Samples of dehydrated food powder (0.5 g) were weighed, topped up 
to 10 mL with a 1:1 mixture of nitric acid and de-ionised water and 
heated in a MARS 6 Microwave Reaction system (CEM Microwave 
Technology Ltd. UK) for 60 min. After cooling, 140 µL of the internal 
yttrium standard (100 ppm) was added and the solution was adjusted to 
a volume of 14 mL with distilled water. The iron and zinc contents (mg/ 
100 g dry weight) of the samples were determined from a standard curve 
established using a multi-element standard solution (1 mg/mL; Thermo- 
Fisher) and inductively coupled plasma-optical emission spectrometer 
(ICP-OES, iCAP 6000, Thermo-Fisher).

Measurements of phytic acid and total phosphorus were performed 
using a commercially available test kit (K-PHYT) purchased from 

Megazyme (Ireland), and followed the method described by McKie and 
McCleary (2016). Briefly, 0.5 g of dehydrated food samples were solu-
bilised overnight with HCl (0.66 M). Solubilised extracts were treated 
with phytase and alkaline phosphate to release available phosphate from 
phytic acid. Total phosphate was determined spectrophotometrically 
(absorbance, 655 nm) using ammonium molybdate and a calibration 
curve generated using standards of known phosphorus concentration. 
Values were corrected for free phosphorus levels in the sample and the 
calculation of phytic acid content (g/100 g dry weight) of the sample 
assumed that the remaining phosphorus was released exclusively from 
phytic acid and that phosphorus comprises 28.2 % of phytic acid.

2.3. In vitro digestion

Dehydrated food samples were subjected to simulated gastric and 
intestinal digestion as described previously (Latunde-Dada et al., 2014). 
For peptic digestion, 0.5 g of each sample was each added to 10 mL 
saline solution (140 mM NaCl and 5 mM KCl, pH 2.0), vortexed and left 
at room temperature for 15 min. The mixtures were then re-adjusted to 
pH 2.0 with HCl (1 M) and 0.5 mL pepsin (16 mg/mL in pH 2.0 saline) 
was added to initiate digestion. The samples were incubated in the dark 
at 37 ◦C for 90 min on a rocking platform. Subsequently, the pH was 
adjusted to 7.0 with NaHCO3 (1 M) to inactivate the pepsin and 2.5 mL 
pancreatin-bile extract (1.4 mg/mL pancreatin and 8.5 mg/mL bile) was 
added. Each mixture was adjusted to 15 mL final volume using saline 
solution and incubated at 37 ◦C for a further 90 min.

2.4. Mineral bioaccessibility

Following in vitro digestion, samples were centrifuged at 1000 rpm 
for 10 min to remove undigested food and supernatant of each digestate 
was collected for further analysis. Total mineral release (i.e., bio-
accessibility) was measured in digestates; 0.5 mL of each digestate was 
diluted in 1 mL HNO3 (69 %). Sample volume was adjusted to 6 mL with 
HPLC ultrapure grade water (Sigma-Aldrich, UK), and the iron content 
of each sample was measured using the ICP-OES as described above.

2.5. Cell culture

Caco-2 cells (HTB-37) were acquired from the American Type Cul-
ture Collection (ATCC, Rockville, MD, USA) and were used for experi-
ments between passages 25 and 40. Cells were maintained in Minimal 
Essential Medium (MEM) containing 10 % (v/v) heat-inactivated foetal 
bovine serum (FBS), 1 % (v/v) penicillin/streptomycin, 1 % (v/v) non- 
essential amino acids and 1 % (v/v) fungizone (all reagents were from 
Invitrogen, Paisley, UK). For experiments, cells were grown in 6-well 
plates and were used 14 days post-seeding.

2.6. Mineral bioavailability

Working solutions of each food digestate were prepared by diluting 
1:1 with MEM and 2 mL of each working solution was added to indi-
vidual wells on 6-well cell culture plates. Caco-2 cells were incubated 
with digests at 37 ◦C for 4 h. Following treatment, the Caco-2 cells were 
washed twice with PBS-EDTA to remove residual medium, and minerals 
adherent to the plates and the outside of the cells. The cells were lysed by 
adding 0.5 mL NaOH (50 mM) to each well and left to incubate at room 
temperature for 90 min. Afterwards, the cells were physically disrupted 
by drawing each sample through a pipette four times. A small sample of 
the treated cell lysate (25 µL) was collected for protein quantification. 
The remaining cell samples were transferred to screw-top tubes and 
were heated at 60 ◦C for 3 h in a sample concentrator; 200 µL HNO3 (69 
%) was added to each sample, vortexed for 3 s and digested on a heat 
block at 80 ◦C for 2 h. Afterwards, the samples were allowed to reach 
room temperature and were then mixed with 50 μL gallium (5 ppm; 
internal standard) and 4.75 mL Milli-Q water. The mineral contents in 
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the diluted cell samples were determined using ICP-MS by staff at the 
London Metallomics Facility (King’s College London).

2.7. Fluorescence microscopy

Standard and micro-milled flours and prepared doughs were sus-
pended in PBS containing 10 µg/mL calcofluor-white, fluorescein iso-
thiocyanate (FITC), nile red and fast green FCF (Sigma-Aldrich Co, 
Poole, UK) to stain cell walls, starch, lipid and protein, respectively. 
Following incubation for 60 min at room temperature on a rotating 
mixer, samples were centrifuged and washed twice in PBS, mounted on 
slides and viewed using a Leica SP2 confocal microscope (Leica Micro-
systems, Mannheim, Germany). Samples were imaged using, λex of 405 
nm and λem of 410–480 nm for calcofluor, λex of 488 nm and λem of 
500–550 nm for FITC, λex of 543 nm and λem of 550–630 nm for nile red, 
and λex of 633 nm and λem of 640–750 nm for fast green. Image stacks of 
flour samples at 63× magnification and dough samples at 20x magni-
fication were collected, and average z-projections were generated using 
Fiji image analysis software (https://fiji.sc/).

2.8. Statistics

Data were analysed with SigmaPlot (version 14.5). Comparison of 
means was conducted using Student’s unpaired t-test or Two-way 
Analysis of Variance and Tukey’s post-hoc test where appropriate. Dif-
ferences were considered statistically significant at P < 0.05.

3. Results

3.1. Proximate analysis, mineral content, and physical characterisation 
of flours

Flour characterisation was carried out by Campden BRI (data are 
means of technical duplicates). There were no differences in the factors 
measured (protein, moisture, dry gluten, or ash, respectively) between 
the standard and micro-milled wholewheat flours. (Table 1). There was 
a small increase in damaged starch, and while Hagberg falling number 
was lower in the micro-milled flour, the values for both standard and 
micro-milled flours were above the acceptability threshold (250 s) for 
breadmaking. Water absorption capacity of the micro-milled flours was 
approximately 5 % higher than the standard milled flour due to the 
presence of smaller sized particles and greater exposure of water 
absorbing gluten proteins. Consequently a 5 % greater volume of water 
was used to produce the doughs from the micro-milled flour to ensure 
optimum mixing.

There were no statistical differences in the levels of iron in the 
standard and micro-milled flour samples, or following cooking, indi-
cating that iron content was not affected by the milling or hydrothermal 
processes. In contrast, there was a small but significant decrease in zinc 
content following micro-milling in both the uncooked flour and 

hydrothermally processed doughs (Table 2).
Samples of standard milled (median particle size: 378 µm) and 

micro-milled flour (median particle size: 126 µm) were used to produce 
wheat doughs (Fig. 1). The structure of the flours and doughs was 
visualised using fluorescence microscopy. Large amounts of intact 
cellular structure were observed in the standard milled flour and cor-
responding dough (Fig. 2A, C). In contrast, in the micro-milled flour and 
dough, cell structure was more fragmented (Fig. 2B, D).

3.2. Mineral bioaccessibility and bioavailability

Next, we assessed the effect of hydrothermal treatment (boiling) on 
iron and zinc bioaccessibility and bioavailability. In boiled samples, 
there was no significant difference in iron (Fig. 3A) or zinc (Fig. 3C) 
bioaccessibility following in vitro digestion. Iron bioavailability was 
significantly increased in samples made using micro-milled flour 
compared with standard milled flour (Fig. 3B). However, while zinc 
bioavailability was marginally higher in micro-milled samples, this did 
not reach statistical significance (Fig. 3D).

3.3. Phytic acid content of wheat flour and hydrothermally processed 
doughs

We hypothesised that micro-milling would influence phytic acid 
levels in the wholewheat flour and in the hydrothermally processed 
doughs. While total phytic acid levels were significantly reduced by 
hydrothermal processing, there was no significant differences between 
flour types in either the flour or the hydrothermally processed doughs 
(Table 2).

4. Discussion

The bioaccessibility and bioavailability of minerals from cereal 
products are limited by the presence of non-digestible cell walls 
encapsulating the intracellular minerals (Latunde-Dada et al., 2014) and 
the high levels of phytic acid in cereal-based foods, which forms insol-
uble complexes with minerals (reviewed in Balk et al., 2019). Wheat 
forms the basis for many foods and, according to the National Diet and 
Nutrition Survey in the UK (National Diet and Nutrition Survey, 2016), 
it is mostly consumed as bread and pasta and provides approximately 40 
% of iron and 25 % of zinc in the diets of adults in the UK. Here we used 
standard and micronized flours to produce wheat doughs, which were 
then cooked in boiling water, to determine whether physical disruption 
of cereal plant cell walls could increase the bioaccessibility and 
bioavailability of iron and zinc from wheat-based foods.

Food structure and food processing, notably thermal and mechanical 

Table 1 
Characterisation of standard and micro-milled wholewheat flours.

Standard 
wholewheat

Micro-milled 
wholewheat

Protein (%; rapid NIR analysis) 12.6 12.0
Moisture (%; rapid NIR analysis) 11.9 11.6
Damaged starch (Farrand units) 23 27
Dry gluten (%) 11.0 9.9
Ash (%; total mineral content) 1.52 1.58
Water absorption (%; 

Farinograph)
64.2 68.2

α-amylase (Ceralpha; CU/g) 0.17 0.15
Hagberg falling number 

(seconds)
390 362

Data are mean values of technical duplicates.

Table 2 
Iron, zinc and phytic acid content in wheat flour and hydrothermally processed 
doughs.

Hydrothermal 
treatment

Wheat 
flour 
type

Iron Zinc Phytic acid

mg/100 g g/100 g

Mean SD Mean SD Mean SD

Uncooked STD 3.57 0.11 3.36 0.22 2.61 0.16
MM 3.44 0.18 3.08a 0.08 2.52 0.03

Boiled STD 3.87 0.34 2.95 0.19 1.31* 0.45
MM 3.49 0.11 2.63a 0.05 1.18* 0.46

Data are means ± SD (n = 3–6) and were analysed using 2-way ANOVA and 
Tukey’s post-hoc test. Micro-milling significantly decreased zinc, but not iron, 
content in both the uncooked flour and the hydrothermally processed doughs 
(aP < 0.02). Zinc levels were also lower in the hydrothermally processed doughs 
than the uncooked flours (P < 0.01). Hydrothermal processing decreased phytic 
acid content compared with levels in the corresponding raw flour (*P < 0.01). 
There was no significant effect of flour type on phytic acid levels.
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Fig. 1. Particle size distribution of standard milled and micro-milled flour. Samples of each flour were analysed by dynamic image analysis. Standard milled 
flour (circles and solid line) had a median particle size of 378 µm. Micro-milled flour (squares and dashed line) had a median particle size of 126 µm.

Fig. 2. Fluorescence imaging of wheat flour and doughs. Standard (A,C) and micro-milled (B,D) flour (A,B, ×63 magnification) and dough (C,D, ×20 magni-
fication) samples stained with calcofluor white for cell walls (blue); fluorescein isothiocyanate (FITC) for starch (green); nile red for lipid (white); and fast green FCF 
for protein (red).
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treatments, are known to be important determinants of nutrient bio-
accessibility (Edwards et al., 2015a,2021; Grundy et al., 2016). In this 
study, micronization of flour reduced median particle size by two-thirds 
compared with standard roller-milled flour. Fluorescence imaging 
showed that the cellular structure of wholewheat flour and the corre-
sponding wheat flour dough was disrupted by micro-milling and this 
corresponds with our previous work showing almost complete disrup-
tion of the aleurone cell walls in micronized flour (Latunde-Dada et al., 
2014). We show here that micronization of flour and hydrothermal 
processing did not alter the iron content of flour or dough. However, 
there was a small but significant decrease in zinc content in the micro- 
milled flour and dough. This difference in mineral loss may reflect the 
relative localization of iron (predominantly in aleurone) and zinc (wider 
distribution including aleurone and embryo) in the wheat grain (Wan 
et al., 2022).

Hydrothermal processing of starchy foods such as wheat causes 
changes to food structure through swelling and gelatinisation of starch, 
and this in turn can impact nutrient digestion and/or absorption kinetics 
(Edwards et al., 2015b). To build on our previous work with uncooked 
wholewheat flour (Latunde-Dada et al., 2014), in the current study we 
prepared wheat flour doughs, subsequently cooked in boiling water, as 
simple model foods for analysis of mineral bioaccessibility and 
bioavailability. These doughs mimic real food systems, for example 
pasta and noodles, where the doughs are cooked in water. The cooked 
wheat products were subjected to in vitro gastrointestinal digestion to 
determine whether either hydrothermal processing or flour micron-
ization (or a combination of the two) influenced mineral bio-
accessibility. In our previous studies using uncooked wholewheat flour, 
iron bioaccessibility was significantly higher from the micronized flour 
(Latunde-Dada et al., 2014). In contrast, our current data found no 

Fig. 3. Effect of flour type on mineral bioaccessibility and bioavailability from hydrothermally processed wheat doughs. Wheat doughs were produced using 
standard milled (STD) or micro-milled (MM) wholewheat flour and were boiled for 10 min. Iron (A), and zinc (C) bioaccessibility, measured as % of the initial iron 
content released from food following in vitro digestion, was not statistically different between flour types. Iron bioavailability (B), measured as the amount of iron 
from the in vitro digestate absorbed by Caco-2 cells, was significantly higher from MM flour doughs relative to STD flour doughs (P = 031, Student’s unpaired t-test). 
There was no significant difference in zinc bioavailability (D) from wheat flour doughs between flour types. Data are means ± SEM, n = 5–6 (bioaccessibility) or 
12–15 (bioavailability) independent measurements.
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differences in the amount of iron or zinc liberated from the standard or 
micronized wheat flour products following in vitro digestion. This in-
dicates that changes to food structure during cooking might impact 
mineral bioaccessibility.

Subsequently, digestion products from the hydrothermally processed 
wheat flour foods were added to human intestinal Caco-2 cells to assess 
iron and zinc bioavailability. Caco-2 cells are a well-established model 
for in vitro bioavailability studies and express the nutrient transporters 
required for the absorption of iron (reviewed in Sharp, 2005; Sandberg, 
2010). For the boiled doughs, iron bioavailability was significantly 
higher from the micronized flour samples than from those produced 
using the standard milled flour. These findings agree with our previous 
work showing that physical disruption of wheat cell walls by micro- 
milling increases iron absorption from uncooked wheat flour 
(Latunde-Dada et al., 2014). Moreover, these studies demonstrate that 
bioaccessibility following in vitro digestion is a poor predictor of iron 
bioavailability. Multiple iron complexes with a wide range of particle 
sizes are likely to be released during digestion but not all will be 
available for intestinal absorption. While there is good evidence to 
support ionized ferrous iron absorption via DMT1 (Tandy et al., 2000; 
Sharp et al., 2002) and endocytic uptake of nanoparticulate iron in Caco- 
2 cells (Pereira et al., 2013; Perfecto et al., 2017), there is no evidence 
for uptake of larger iron complexes which might be liberated during in 
vitro digestion of wheat flour doughs. Our preliminary analysis using 
specific molecular weight filters showed that only 35.9 ± 6.4 % of iron 
released following in vitro digestion of the wheat flour doughs is in a low 
molecular weight form that can pass through a 3 kDa cut-off filter. This 
suggests that only a relatively small fraction of the bioaccessible iron is 
available for absorption.

It is estimated that up to 75 % of iron in wheat is contained within the 
aleurone layer where it localises with phosphorus, largely in multimeric 
complexes with the mineral absorption inhibitor phytic acid (Moore 
et al., 2012; Neal et al., 2013; De Brier et al., 2016; Wan et al., 2022). 
Several studies have shown that decreasing phytic acid content of wheat 
flour increases iron bioaccessibility and/or bioavailability (Brune, 
Rossander-Hultén, Hallberg, Gleerup, & Sandberg, 1992; Chaoui, Faid, 
& Belahsen, 2006; Sanz-Penella, Laparra, Sanz, & Haros, 2012; 
Rodriguez-Ramiro et al., 2017). It has been reported that phytic acid 
levels in flour can be modified by different milling methods (Antoine 
et al., 2003); however, in these studies we did not observe changes in 
phytate levels between the standard and micro-milled flours. Studies 
have reported that hydrothermal processing decreases the phytate 
content of legumes (Rehman & Shah, 2005). In the cooked doughs we 
also observed a decrease in phytate content (by approximately 50 %) 
compared with the raw flour, but this was not influenced by flour type. 
The phytate assay used in these studies only measures total phytate 
content and not the individual inositol phosphate metabolites (McKie & 
McCleary, 2016). Further analysis is warranted to determine whether 
the milling method might result in a shift from the strongly inhibitory 
IP6 and IP5 to the less inhibitory IP4 and IP3 metabolites.

In contrast to iron, zinc bioavailability was not altered significantly 
by flour micronization. While zinc is abundant in the phytate-rich al-
eurone it is also present at high levels in the wheat embryo (Wan et al., 
2022). The effects of micronization and hydrothermal processing on the 
structure of the wheat germ was not investigated in this study, so it is not 
clear whether the embryo cell walls were disrupted to the same extent as 
the aleurone. Within the embryo, zinc is incorporated into several en-
zymes and proteins, which may in turn may allow association with 
endogenous wheat mineral chelators such as nicotianamine (Eagling 
et al., 2014; Beasley et al., 2019). The differences in tissue localisation 
and chemical speciation might protect zinc from the inhibitory effects of 
phytate and could explain, in part, the observations that zinc has higher 
bioavailability than iron in wheat products (Bouis & Welch, 2010), and 
why the mechanical and hydrothermal treatments reported here had 
only a limited impact on zinc bioavailability.

Taken together, our data demonstrate that physical disruption of 

wheat cell walls increases iron bioavailability from cooked wheat-based 
foods. Interestingly, we have shown previously that chemical degrada-
tion of cell walls using driselase (an enzyme mixture containing lami-
narinase, xylanase, and cellulase activity) also increases iron 
bioaccessibility from wheat flour (Latunde-Dada et al., 2014). This 
opens the possibility of using food-grade enzymes to improve iron 
bioavailability. For example, xylanases could be used to specifically 
target the arabinoxylan-rich aleurone cell walls to increase iron release 
from its major storage site in cereals. This approach has been shown to 
increase iron bioaccessibility from injera flours (Baye, Guyot, Icard- 
Vernière, Rochette, & Mouquet-Rivier, 2015) and could be applied to 
potentially increase iron bioaccessibility and bioavailability from other 
cereal foods.

5. Conclusions

Cereals and cereal products provide 50 % of the iron in the diet of UK 
adolescents, a group which is particularly prone to micronutrient de-
ficiencies. The experimental strategies used in this study have the po-
tential to increase the release and absorption of the endogenous iron 
present in cereal-based foods. This would not only enhance the nutri-
tional quality of cereal products but would also have potential health 
benefits for population groups with poor iron status.
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