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ABSTRACT

Segmentation and tracking are essential preliminary steps in the analysis of almost all live cell imaging applications. Although 

the number of open- source software systems that facilitate automated segmentation and tracking continue to evolve, many 

researchers continue to opt for manual alternatives for samples that are not easily auto- segmented, tracing cell boundaries by 

hand and reidentifying cells on consecutive frames by eye. Such methods are subject to inter- user variability, introducing idi-

osyncrasies into the results of downstream analysis that are a result of subjectivity and individual expertise. The methods are 

also susceptible to intra- user variability, meaning findings are challenging to reproduce. In this pilot study, we demonstrate and 

quantify the degree of intra-  and inter- user variability in manual cell segmentation and tracking by comparing the phenotypic 

metrics extracted from cells segmented and tracked by different members of our research team. Furthermore, we compare the 

segmentation results for a ptychographic cell image obtained using different automated software and demonstrate the high de-

pendence of performance on the imaging modality they were developed to handle. Our results show that choice of segmentation 

and tracking methods should be considered carefully in order to enhance the quality and reproducibility of results.

1   |   Introduction

With microscopic imaging becoming an essential step in almost 

all areas of biological research, there is an increased demand 

for image analysis tools that provide reliable phenotype quan-

tification (Chen et al. 2017). A particular challenge in the face 

of image analysis is segmentation, a means of distinguishing 

objects from background. Objects of interest vary depending 

on application, with examples including single- cells within 2D 

microscopy images (Al- Kofahi et al. 2018), tumors within mag-

netic resonance images (Zhang et al. 2021) or tissue from histo-

pathological whole- slide images (Bándi et al. 2017). At present, 

many studies make use of manual segmentation to identify re-

gions of interest (ROIs), though recent research has highlighted 

the issue of both inter-  and intra- operator variability in manual 

segmentation and the impact this has upon reproducibility and 

biological conclusions (Dionisio et al. 2021; Covert et al. 2022; 

Joskowicz et al. 2019; Bø et al. 2017). The subjectivity of manual 

segmentation and the time required to identify ROIs by hand 

has motivated a shift to automated approaches that are stan-

dardized, delineated and high throughput (Sharma, Aggarwal, 

et al. 2010). This has had a particular impact in clinical settings 

where automated approaches are now used to make diagno-

ses through computer- aided diagnosis (CAD) systems (Chan, 

Hadjiiski, and Samala 2020).

Although providing benefits in terms of reproducibility, auto-

mated segmentation approaches still involve some degree of 
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user interactivity, with manual segmentation often considered 

the gold standard against which to benchmark the results of 

automated segmentation (Morey et  al.  2009; Verma, Kumar, 

and Paydarfar  2022). Furthermore, model- based segmenta-

tion approaches, such as U- Nets, make use of manually seg-

mented ROIs for ground truth training sets (Walsh et al. 2022). 

Automated approaches are also often specific to certain imaging 

modalities, with models learning characteristics of such images 

and using this knowledge to accurately identify ROIs whilst ex-

cluding background and image artifacts. Enhancing the accu-

racy of these methods can require additional steps, including 

feature engineering, data augmentation, and model refinement. 

Consequently, automated approaches themselves can be variable 

in performance, requiring careful consideration and optimiza-

tion to achieve reliable results across different datasets and im-

aging conditions. For all of these reasons, choice of segmentation 

approach prior to quantification from microscopy images is a 

hugely important step that should not be overlooked and should 

instead be carefully considered.

There exist several established, open- source software packages 

for the task of segmenting cells from 2D microscopy images, 

each with their own strengths and limitations (Wiesmann 

et al. 2015). Studies have been carried out to benchmark such 

software against one another based on accuracy of segmenta-

tion and ease of usability, though notably fluorescence images 

have been used to trial the majority of these software. With 

the emergence of label- free imaging modalities, like phase 

contrast, bright- field and quantitative phase imaging (QPI), 

efforts are now being made to form ground truth data sets 

for training of segmentation models specific to those label- 

free imaging techniques (Edlund et  al.  2021). More recent 

cell segmentation software such as CellPose (Stringer and 

Pachitariu  2022) emphasize their focus on developing mod-

els that are adaptable to new imaging techniques. Here, we 

demonstrate the direct impact that manual segmentation can 

have on downstream analysis by quantifying the inter-  and 

intra- user variability of phenotypic metrics extracted from 

manually obtained ROIs. Moreover, we show that manual cell 

tracking also results in large variability in the extraction of 

motility metrics due to subjectivity in the choice of cell cen-

troid position as well as reidentification of cells on consecutive 

frames. By comparing the results of automated and manual 

cell segmentation and tracking, we demonstrate greater re-

producibility for a panel of automated packages, but large 

inter- software variability arising from differences between 

imaging techniques used for development.

2   |   Methods

2.1   |   Cell Lines

The MDA- MB- 231 breast cancer cell line used within this study 

was a gift from M. Djamgoz, Imperial College, London. The 

molecular identity of this cell line was verified by short tandem 

repeat analysis (Masters et al. 2001). Thawed cells were subcul-

tured one to two times prior to discarding and thawing a new 

stock to ensure that the molecular identity of cells was retained 

throughout. Cells were cultured in Dulbecco's modified eagle 

medium supplemented with 5% fetal bovine serum (FBS) and 

4 mM L- glutamine (Yang et al. 2012). FBS was filtered using a 

0.22 μm syringe filter prior to use to reduce artifacts when imag-

ing. Cells were incubated at 37°C in plastic filter- cap T- 25 flasks 

and were split at a 1:6 ratio when passaged. No antibiotics were 

added to cell culture medium.

2.2   |   Image Acquisition

All microscopy images within this work are label- free ptycho-

graphic images acquired using the Phasefocus Livecyte 2 mi-

croscope (Phasefocus Limited, Sheffield, UK). Cells were placed 

onto the microscope to incubate for 30 min prior to image acqui-

sition to allow for temperature equilibration. For each frame, 

one 500 μm × 500 μm field of view per well was imaged to cap-

ture as many cells, and therefore data observations, as possible. 

Note that cells were imaged at 20× magnification, and the time 

interval between images within time- lapses was 6 min.

2.3   |   Statistical Analyses

All tests of statistical significance within this study were 

performed using GraphPad Prism 9.1.0 (GraphPad Software, 

San Diego, CA). Data were tested for normality using the 

D'Agostino and Pearson test. Parametric tests (t- tests and F- 

tests) were used where suitable with nonparametric Mann–

Whitney U- tests in place of t- tests where data did not follow 

a normal distribution. For comparison of three or more pop-

ulations, ANOVA was used when data followed a normal dis-

tribution or Kruskal–Wallis tests if not. Tukey's post hoc test 

and Dunn's multiple comparisons were performed following 

ANOVA and Kruskal–Wallis respectively. Results were con-

sidered significant if p < 0.05. Levels of significance used: 

* < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Full details of 

statistical tests used for each analysis are provided in the fig-

ure legend for the corresponding figure. Sørensen–Dice coef-

ficients to quantify the similarity of segmented regions were 

computed using MATLAB's dice() function.

2.4   |   Automated Segmentation and Tracking

All automated segmentation and tracking was performed 

by one of the authors of the current study, having extensive 

Summary

• Manual segmentation and tracking of cells in micros-
copy time- lapses are subject to both inter-  and intra- 
researcher variability, with results heavily dependent 
on researcher subjectivity and expertise.

• Variability in manual cell segmentation and tracking 
can lead to visible idiosyncrasies within extracted 
phenotypic metrics.

• Open- source software for automated cell segmen-
tation and tracking produce more consistent re-
sults, although they too are subject to inter- software 
variability.
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experience in the analysis of time- course images from pty-

chography and the MDA- MB- 231 cell line. For comparison 

with manual results, the Phasefocus CATbox system was used 

for image segmentation with each cell image independently 

processed five times. Replicated automated tracking results 

were obtained with the Phasefocus CATbox by tracking the 

cells after three independent image processing pipelines were 

performed.

2.5   |   ImageJ Segmentation

ImageJ (Schneider, Rasband, and Eliceiri  2012) is an open- 

source software for processing of biological microscopy images. 

It offers accessible implementation of a range of traditional 

image processing algorithms, with the user setting subjective 

thresholds throughout the course of a segmentation workflow. 

Initially a rolling ball algorithm with radius size 30px was ap-

plied to the image for the removal of background noise and im-

aging artifacts. The image was then smoothed using Gaussian 

blurring with a standard deviation of 3 to further denoise the 

image. The image was then converted to a binary mask where 

each pixel was classified as either background (black within the 

binary mask) or cell (white within the binary mask) and the wa-

tershed method used to separate connected cells ahead of final 

segmentation by using the “create selection” feature in ImageJ 

for cell boundary detection. A number of alternative workflows 

were assessed in ImageJ such as the use of “find edges” and 

thresholding prior to binary mask conversion but these meth-

ods proved unsuccessful, the details included here describe the 

workflow identified as being most successful for the segmenta-

tion of our images.

2.6   |   Livecyte Segmentation

Phase Focus' CATbox software facilitates automated cell seg-

mentation by allowing the user to create a unique image pro-

cessing recipe for each experiment. This recipe is produced 

through user- imposed thresholds on a range of image pro-

cessing techniques allowing for live inspection of segmenta-

tion results. A rolling ball algorithm was applied to the image 

with radius 29.24 μm and a height of 2, to remove background 

noise and imaging artifacts. The image was then smoothed 

with a parameter of 19.11 μm ahead of seedpoint detection. 

Local pixel intensity maxima identified from the smoothed 

image were used as seedpoints with an intensity threshold of 

0.8. Nearby seedpoints were then consolidated by combining 

two seedpoints if there was a path between them that did not 

change in phase by more than a threshold of 1.09. Thresholds 

were then applied to distinguish between the pixel intensities 

of cell and background. A background threshold of 0.05 was 

used, any pixel with intensity below this threshold was classi-

fied as background. A feature threshold (for detection of cells) 

of 0.6 was used, any pixel above this threshold was classified as 

belonging to a cell. Pixels that did not meet these requirements 

were then scaled to a range of 0–1 and formed a “gray area” 

where pixel classification was uncertain. A biased fuzzy dis-

tance transform (Saha, Wehrli, and Gomberg 2002) was then 

used to classify “gray area” pixels with a fuzzy distance thresh-

old of 0.2 μm and a phase weighting of 6. Final segmentation 

results were then exported as .roi files. All thresholds were se-

lected subjectively by assessing live segmentation and revising 

thresholds to yield optimum results.

2.7   |   Icy Segmentation

Icy (De Chaumont et  al.  2012) is a free, open- source image 

processing software. A key component of Icy is its public re-

pository for the sharing of analysis plug- ins and workflows. 

The “HK- means” plug- in was utilized with default settings 

for initial segmentation of the cells. This plug- in performs 

K- means clustering of the image pixel intensity histogram to 

distinguish between background and cells, and then uses size 

filtering to split undersegmented cells. A Gaussian prefilter 

was applied with standard deviation set equal to 5 for image 

smoothing prior to cell edge detection. K was set to 2 to estab-

lish two classes of pixel intensity: background and cell. Area 

size filters were then imposed with a minimum threshold of 

100px and a maximum of 5000px, detected objects with areas 

outside of this range were discarded. The “active contours” 

plug- in was then used with default parameter settings for 

closer sculpting of ROIs to cell edges. Finally, the “split ROI” 

plug- in was used to separate cells that were originally under-

segmented. This plug- in is semi- automatic and relies on the 

user to enter how many cells are incorrectly clustered within 

a group before selecting the group that needs separating. This 

method was applied to all instances of undersegmentation but 

some cells were unable to be corrected and were therefore left 

as is in the final segmentation.

2.8   |   CellProfiler Segmentation

CellProfiler (McQuin et al. 2018) is an open- source software 

for the analysis and measurement of cell images in which pipe-

lines can be constructed by the user for tailored cell segmen-

tation and tracking. Cells were detected using the “identify 

primary objects” module with a minimum expected object di-

ameter of 10px and a maximum of 50px. Objects detected out-

side of this range and objects that were touching the borders 

were discarded. The default image processing settings associ-

ated with this module were used, hence the image was globally 

thresholded prior to segmentation. A minimum cross- entropy 

thresholding method (Li and Lee 1993) was used to minimize 

the average error in pixel classification and Gaussian smooth-

ing with a standard deviation of 1 was performed prior to final 

segmentation. CellProfiler allows the user to select which 

method should be used to distinguish and separate clumped 

objects, in this case, intensity was selected as opposed to the 

use of shape. After running the completed pipeline, segmen-

tation masks exported as .tiff files. To convert image masks 

into ImageJ ROIs, the masks were read into ImageJ and an 

ROI of the full mask created using Edit > Selection > Create 

Selection. This selection was then added to the ROI manager 

where the “Split” function was used to create individual ROIs 

from the full mask selection.
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2.9   |   CellPose Segmentation

CellPose (Stringer et al. 2021) is an open- source, deep learning- 

based segmentation tool together with pretrained models for 

the segmentation of cells, nuclei, and tissue sections without 

the need for parameter fine- tuning. CellPose was utilized for 

cell segmentation using ImageJ's CellPose- TrackMate plugin. 

The pre- trained cytoplasm model was used for detection of cell 

boundaries with expected cell diameter of 10 μm.

2.10   |   Manual Segmentation and Tracking

We consider manual segmentation to involve users having to 

manually trace the outline of a cell as oppose to simply setting 

certain parameters to automate segmentation. Here manual 

segmentation was performed using ImageJ's freehand selec-

tion tool to trace around individual cells and selections were 

added to ImageJ's ROI manager using Edit > Selection > “Add 

to Manager.” Morphological features were then extracted from 

each ROI using ImageJ's Measure function, where all features 

were selected from the available list provided in Analyze > Set 

Measurements. A full list of extracted features together with 

definitions is provided within the ImageJ documentation.

ImageJ's MTrackJ plugin was used for manual tracking of cells. 

Each cell was tracked for 50 frames by clicking the center of 

the cell on consecutive frames, with X and Y coordinates from 

all final trajectories exported for feature extraction. R's trajr 

(McLean and Skowron Volponi 2018) package was used for the 

extraction of several features to characterize cell trajectories. 

The list of extracted metrics comprises: mean and standard 

deviation of cell speed, sinuosity, trajectory straightness index, 

mean, and standard deviation of track length, trajectory dis-

tance and mean trajectory turning angle.

To investigate inter- user variability, members of our research 

group with different research expertise performed the same 

segmentation and tracking tasks. Researchers 1, 2, and 5 are re-

searchers who have received in- depth microscopy training, in-

cluding the acquisition and interpretation of microscopy images 

but have no experience with the imaged cell- line. In comparison, 

Researchers 3 and 4 are not experienced microscopists but have 

extensive experience working with the MDA- MB- 231 cell- line 

imaged in the study. Throughout the paper, we refer to the results 

obtained by these different research team members by a num-

ber so that the effect of differences in research experience can be 

considered. Researchers used a Windows Desktop computer and 

mouse for image annotation but, as no calibration of computer 

monitors was performed and the appearance of the image could 

differ with the researchers' computer monitor and display prefer-

ences, we provided a contrast- enhanced cell image in which cell 

protrusions not clearly visible within the original image could be 

observed (Figure 1a). The extent of protrusions that could be ob-

served by researchers would likely be impacted by their monitor 

and display preferences. No training was provided as part of the 

study and there was no wash- out period as, with no feedback, 

researchers had no opportunity to learn and improve.

Researchers were set the task of manually segmenting three 

specified cells from a single microscopy image of MDA- MB- 231 

cells, the three cells are highlighted in Figure 1a. The segmen-

tation of the three cells was repeated five times in order to 

calculate intra- user variability. As well as segmenting each of 

the three cells 5 times, the researchers tracked the three cells 

by selecting the cell's center on 50 consecutive frames. This 

was repeated three times for each cell to assess inter- user vari-

ability in cell tracking. Note that the researcher previously re-

ferred to as Researcher 3 did not take part in this cell tracking 

study and was replaced with a different researcher referred to 

as Researcher 6, with similar expertise to Researcher 3.

In order to compare the results from automated analyses with 

manual segmentation, a cell image was manually segmented 

by the author with extensive experience in the analysis of time- 

course images from ptychography and the MDA- MB- 231 cell 

line. Although variability between users means that this manu-

ally segmented cell image cannot be considered “ground truth,” 

it does provide a standard against which the accuracy of differ-

ent automated software can be judged.

3   |   Results

3.1   |   Inter- User Variability in Manual Cell 
Segmentation

Inter- user variability in manual segmentation was observed 

from each researcher's identified ROIs (Figure 1b). Researchers 

1, 2, and 5 (in- depth microscopy training) tended to closely 

sculpt the brightest intensity pixels, treating the cell boundary 

as the region around the cell in which bright intensity pixels are 

neighbored with dark intensity background pixels. Researchers 

3 and 4 (MDA- MB- 231 cell- line experience), on the other hand, 

tended to include a large number of dark intensity pixels within 

the areas they determined to be the cell interior, despite the 

resulting ROIs differing in morphology to that expected of an 

MDA- MB- 231 cell. It is possible that Researchers 3 and 5 were 

considering the brightest intensity pixels as cell nuclei, and 

darker intensity pixels surrounding these areas as cytoplasm. 

This could be due to their experience with nucleic stains such 

as DAPI rather than label- free imaging in which whole cells can 

be visualized.

Sørensen–Dice coefficients confirmed the presence of inter- user 

variability in segmentation across all three cells, with higher 

coefficients indicative of significant overlap in segmentation re-

sults and lower coefficients representing manual segmentation 

that differs (Figure 1c). The Dice coefficients show the impact 

of research expertise on manual cell segmentation results, with 

researchers with similar expertise (Researchers 1, 2, and 5 or 

Researchers 3 and 4) obtaining high pair- wise coefficients in 

comparison to the coefficients obtained for researchers with dif-

fering expertise.

For each cell, bar charts showing the distribution of Dice co-

efficients for each researcher's segmentation data are plotted 

in Figure 1d to aid visualization. Two- way ANOVA revealed a 

statistically significant relationship between Dice coefficients 

and cell number, indicating greater inter- user variability in 

manual segmentation for certain cells. In comparison, no rela-

tionship was found between Dice coefficients and researcher 
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number, suggesting that inter- user variability affected all re-

searchers as opposed to one particular researcher. No statisti-

cal significance was found between Dice coefficients and the 

interaction between cell number and researcher, suggesting 

that inter- user variability is not related to particular cells.

3.2   |   Intra- User Variability in Cell Segmentation

The segmentation of the three cells was repeated five times 

and the intra- user variability of each researcher's five attempts 

is shown in Figure  2a. Visual inspection of each researchers' 

FIGURE 1    |    Inter- user variability in manual cell segmentation. (a [i]). Ptychographic image of MDA- MB- 231 cells with the three cells to be 

manually segmented highlighted and labeled. (a [ii]). The cell image with contrast enhanced to display cell protrusions that are not clearly visible 

within the original cell image. The three cells to segment are highlighted and labeled. Scale bar = 200 μm. (b) Manual segmentation of each cell 

performed by each researcher. Inter- user variability can be observed from differences in outlined ROIs for each cell. Scale bar = 25 μm. (c) Sørensen–

Dice coefficients to quantify the degree of similarity of pair- wise manual segmentation. Images show segmentation maps where black represents 

background, white represents segmentation overlap, and green and pink represent differences in pair- wise segmentation. Areas in green appear in 

the segmentation map from the researcher listed in the row position, but not the researcher listed in the column position and vice- versa for areas in 

pink. (d) Sørensen–Dice coefficients, grouped by researcher and colored by cell number. Bars are representative of group means and error bars are 

representative of standard deviations to display the spread of coefficients. A two- way ANOVA was performed, obtaining p values of 0.0498, 0.3558, 

and 0.9944 for cell number, researcher, and their interaction, respectively.

FIGURE 2    |    Intra- user variability in manual cell segmentation. (a) Ptychographic images overlaid with manual segmentations of each cell 

performed by each researcher, each color represents one of the five segmentation attempts performed. Intra- user variability can be observed from 

differences in outlined ROIs. Scale bar = 25 μm. (b) Sørensen–Dice coefficients, grouped by researcher and colored by cell number. Bars show 

group means with error bars representing standard deviations. Two- way ANOVA showed that cell number, researcher and their interaction all 

have a statistically significant relationship with intra- user Dice coefficients, contributing to 3%, 25%, and 28% of the variance prevalent within 

the dataset, respectively. (c [i]) Automated segmentation of each cell performed using Phasefocus CATbox. Each color represents one of the five 

segmentation results obtained from the same cell image processed independently. Scale bar = 25 μm. (c [ii]). Sørensen–Dice coefficients, colored 

by cell number. ANOVA showed no statistically significant relationship between Dice coefficients and cell number, indicating consistency in 

segmentation results obtained from Phasefocus CATbox irrespective of cell number.
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segmentation attempts showed that some were more consis-

tent in their segmentation approach, repeatedly outlining sim-

ilar ROIs. This was the case for Researchers 1, 2, and 5 who all 

aimed to closely sculpt the bright intensity pixels that neighbor 

dark intensity background pixels. In comparison, Researchers 

3 and 4 tended to show greater variance in their segmentation 

attempts where ROI selection, and therefore expected cell shape, 

was not guided as much by the bright intensity pixels.

Intra- user Dice coefficients were calculated and the results 

for each researcher and each cell are displayed in Figure 2b. 

Two- way ANOVA showed a highly significant relationship 

between intra- user Dice coefficients and researcher number, 

confirming greater consistency in manual segmentation for 

some researchers. Differences between researchers accounted 

for 25% of the total variance present within the data set. A 

statistically significant relationship was identified between 

intra- user Dice coefficients and cell number, indicating that 

intra- user variability was more prevalent for certain cells in 

comparison to others, though cell number only accounted 

for 3% of the total variance within the data set. High statis-

tical significance was also found between intra- user Dice 

coefficients and the interaction between cell number and re-

searchers, showing that maintaining consistency in segmen-

tation proved more challenging with some cells than others 

for certain researchers. The interaction between cell number 

and researcher accounted for 28% of the total variance present 

within the data set.

Visual inspection of the ROIs from replicate segmentations 

of the same three cells using the Phasefocus CATbox showed 

greater consistency in comparison to the intra- user results of the 

researchers, across all three cells (Figure 2c[i]), with differing 

image processing pipelines resulting in subtle differences in 

segmentation. Dice coefficients were calculated to assess the 

similarity of ROIs obtained from the five processed images, the 

results are displayed in Figure  2(c[ii]). One- way ANOVA re-

vealed no statistically significant difference in Dice coefficients 

as a result of cell number (p value = 0.2407), indicating greater 

consistency in segmentation results irrespective of cell number 

for Phasefocus segmentation.

3.3   |   The Impact of Cell Segmentation on 
Extracted Metrics

As the morphological metrics that can be extracted from cell 

images rely on initial segmentation of individual cells, ac-

curacy and consistency in identification of ROIs is vital for 

meaningful downstream analyses. We hypothesized that the 

inter-  and intra- user variability present in manual segmen-

tation would also be prevalent in the morphological metrics 

extracted from the ROIs. We therefore extracted several mor-

phological metrics describing cell shape, size, and texture 

from the ROIs in Figure 2a, as well as the Phasefocus CATbox 

segmentation results (described from now on as Livecyte) in 

Figure 2c, and assessed their variability, both inter-  and intra- 

user. Cell area, circularity, and mean gray value were chosen 

as representative descriptors of cell size, shape, and texture, 

respectively and their varying values can be seen in Figure 3a. 

ANOVA of all three metrics identified statistically significant 

differences in size, shape, and texture of cells as a result of 

inter- user manual segmentation with p values < 0.0001 for all 

three metrics. Post hoc analysis was performed using Tukey's 

multiple comparisons test and the full results for cell area, cir-

cularity, and mean gray value are provided in Tables  S1 and 

S2, respectively. Notably, Researchers 1, 2, and 5 frequently 

displayed no significant differences in extracted metrics when 

compared with one another (with the exception of Researchers 

2 and 5 scoring a p value of 0.0356 for circularity), but did con-

sistently differ significantly from Researchers 3 and 4 across 

all metrics. Furthermore, Researchers 3 and 4 frequently 

displayed no significant differences between one another. 

Differences in research expertise between Researchers 1, 2, 

and 5, and Researchers 3 and 4 highlights the influence of 

research background on the results of downstream analyses. 

Researchers 1, 2, and 5 showed no statistical significance from 

Livecyte segmented cells in terms of cell area, but were statis-

tically significant for both circularity and mean gray value. In 

contrast, Researchers 3 and 4 showed no statistical significance 

from Livecyte segmented cells in terms of circularity, but were 

statistically significant for both area and mean gray value. 

The impact of inter-  and intra- user variability in extracted 

metrics was further investigated using PCA. Scores plots for 

Cells 1, 2, and 3 are provided in Figure 3b(i–iii), respectively. 

Researcher- specific clusters can be identified within the scores 

plots demonstrating idiosyncrasies in cell segmentation and 

their impact on the resulting extracted metrics. Clusters from 

Researchers 1, 2, and 5 tended to overlap with one another as 

did the clusters from Researchers 3 and 4, again suggesting a 

relationship between research experience and the results ob-

tained. Intra- user variability is visible within all three scores 

plots, with larger ellipses representative of greater variability. 

Tighter clusters were frequently obtained with Livecyte, even 

in cases where all researchers displayed extensive variability. 

This is the case for Cell 3, where greater consistency in results 

is obtained with Livecyte across all three cells.

Additionally, intra- user variability in extracted metrics was 

quantified through the calculation of Euclidean distances to 

measure the pair- wise similarity of data vectors obtained by 

each researcher, the results are shown in Figure  3c. ANOVA 

identified statistically significant differences as a result of cell 

number (p value = 0.0273), indicating that certain cells invoked 

greater variability in extracted metrics in comparison to others. 

A statistically significant difference was also identified between 

researchers, demonstrating that some were more consistent in 

their segmentation approach and this was reflected in the con-

sistency of the extracted metrics. The interaction between cell 

number and researcher was also highly statistically significant, 

indicating that consistency posed a greater challenge for some 

cells for certain researchers, resulting in greater variability in 

extracted metrics for some cells. Notably, the distances calcu-

lated for Livecyte segmentation remained consistent across 

all three cells, with the distances themselves minimized in 

comparison to those obtained by other researchers indicating 

greater consistency in extracted metrics as a result of Livecyte 

segmentation.
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3.4   |   Inter- User Variability in Cell Tracking

The inter- user variability in cell trajectories can be observed 

in Figure  4a, where, for each cell, the researchers' first track-

ing attempt is shown. By eye, the general shape of trajectories 

obtained for Cells 1 and 2 appear fairly consistent, with subtle 

differences along the trajectories induced by variability in click 

position of each researcher. The trajectory shape for Cell 3, 

shows a noticeable difference for Researchers 4 and 6 (relevant 

cell- line experience) in comparison to Researchers 1, 2, and 5 

(in- depth microscopy training) although the trajectories pro-

duced by Researchers 4 and 6 are similar.

Further investigation showed that the difference is due to dis-

agreement in cell identification from one frame to the next, 

as visualized in Figure 4b. All researchers correctly identify 

Cell 3 in Frame 11, as demonstrated by all 5 points within 

the cell interior. The cell then undergoes a notable change 

in morphology on Frame 12, making it correct identification 

of Cell 3 challenging on this frame. Note that the correct cell 

can be identified by considering the timelapse in full rather 

than frame- by- frame as the researchers did. Cell 3 is correctly 

identified by Researchers 4 and 6 (green and purple points) 

in Frame 12, whereas Researchers 2 and 5 (red and yellow 

points) misidentify a different cell as Cell 3. Researcher 1 

FIGURE 3    |    The impact of cell segmentation on extracted metrics. (a) Distributions for cell area (top), circularity (middle) and mean gray value 

(bottom) extracted from different manual segmentation results and Livecyte automated segmentation. Plots are grouped by researcher and colored 

by cell number. Bars show group means with error bars representing SEM. ANOVA results show high statistical significance across all three metrics, 

demonstrating the impact of researcher- specific segmentation on extracted morphological metrics. (b) PCA scores plots for (i). Cell 1, (ii) Cell 2, 

and (iii) Cell 3 obtained from morphological metrics extracted from each manual segmentation and Livecyte automated segmentation. Points are 

colored according to researcher and 95% concentration ellipses are displayed. Small and large ellipses are representative of low and high intra- user 

variability in extracted metrics, respectively. (c) Pair- wise Euclidean distances between extracted data vectors, grouped by researcher and colored by 

cell number. ANOVA revealed statistical significance differences in Euclidean distances as a result of cell number, researcher, and the interaction 

between the two. Bars show group means and error bars represent standard deviations to display the spread of coefficients.

FIGURE 4    |    Inter- user variability in cell tracking. (a) Trajectories from each researcher's first cell tracking of Cells 1, 2, and 3 from a ptychographic 

time- lapse. For Cells 1 and 2, subtle differences between trajectories can be observed, induced by variability in click position between researchers. 

More notable inter- user variability can be observed for Cell 3, where differences in cell identification between researchers resulted in the tracking of 

different cells that were misidentified as Cell 3. (b) Visualization of the misidentification of Cell 3 throughout the time- lapse. All researchers correctly 

identify Cell 3 in Frame 11, where points represent click position colored by the researcher. Cell 3 undergoes a change in morphology on Frame 12 

which causes disagreement on which cell is actually Cell 3. Researchers 4 and 6 correctly identify Cell 3 on Frame 12, Researchers 2 and 5 misidentify 

a different cell as Cell 3 and Researcher 1 identifies background as Cell 3. Each researcher then continues to track their chosen cells for the remainder 

of the time- lapse, with Researcher 1 misidentifying a cell as Cell 3 in Frame 13. Scale bar = 25 μm.
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(blue point) selects a position that is actually background as 

opposed to a cell interior on Frame 12. This could be due to an 

unexpected change in morphology, and therefore position, of 

Cell 3 between Frames 11 and 12. Researcher 1 does select a 

cell interior on Frame 13 but again this is a misidentification 

rather than Cell 3. All researchers then continue to track their 

selected cells for the remainder of the time- lapse, resulting in 

different trajectories with only Researchers 4 and 6 correctly 

tracking the original Cell 3.

3.5   |   Intra- User Variability in Cell Tracking

As the main source of variation in cell tracking arises from 

inconsistencies in researcher click positions, we sought to ex-

plore the intra- user variability present across three indepen-

dent cell tracking attempts for each cell. We quantified each 

researcher's click spread for each of the three cells and scat-

ter plots displaying these values are provided in Figure  5a. 

Here, the origins are representative of the average click po-

sition from three tracking attempts, with the click spread of 

each point then calculated as its deviation from the average. 

Researchers who remain consistent in their click positions 

will have all points closely clustered and centered around the 

origin. Researchers with inconsistencies in click position will 

have deviated scatter plots with points positioned at vary-

ing distances from the origin. All researchers experienced 

intra- user variability in click position across all cells, with 

Researcher 6 providing the largest inconsistencies for Cells 

1 and 2 as evidenced by greater deviation in personal click 

spread for these cells.

Click spread for Cell 3 was considered separately to Cells 1 

and 2 due to the impact of frequent misidentification of Cell 

3. Researchers 4 and 6, the two researchers who success-

fully identified Cell 3 in Figure  4b successfully identified 

Cell 3 in all three of their tracking attempts, resulting lower 

click spread for Cell 3 in comparison to all other research-

ers. All other researchers identified different cells as Cell 3 

within their three tracking attempts, resulting in large click 

spreads for Researchers 1, 2, and 5 for Cell 3. Interestingly, 

these results suggest a relationship between cell tracking re-

sults and research expertise, with cell biologists 4 and 6 dis-

playing greater accuracy in cell tracking in comparison to 

Microscopists 1, 2 and 5.

In the cases of Cells 1 and 2, the click spread deviation for each 

researcher is likely a result of differences in determination of 

the cell centroid. Researchers with low click spread potentially 

aim for the same subcellular region on each attempt, whereas 

high click spread indicates inconsistency in selection of sub-

cellular region. The click spreads for Cell 3 are dominated 

by the challenge of identifying Cell 3 when it experiences a 

change in morphology on Frame 12 with the additional de-

viation as a result of variability in selection of a subcellular 

region.

For comparison with manual tracking results, we consid-

ered the replicates obtained from automated tracking with 

the Phasefocus CATbox. Different processing methods were 

found to affect the determination of cell centroids. The 

obtained cell trajectories, together with centroid deviation, for 

each cell are provided in Figure 5b. The plots show that de-

spite different image processing pipelines used, the tracking 

results are consistent for Cell 1 with negligible variation in the 

cell trajectories and very little deviation in centroid position 

with points in the scatter plot forming a tight cluster centered 

at the origin. The same can be seen for Cell 3 although each 

track ends at Frame 11, just before the cell changes morphol-

ogy on Frame 12 where each tracking repeat generated a new 

identifier for the cell that was used for the remainder of the 

time- lapse. There was notable misidentification of Cell 2 in 

one tracking repeat as evidenced by a change in the cell tra-

jectory and centroid deviation, shown for a subset of points 

within the centroid scatter plot.

Standard distance deviation (SDD) was used to quantify the 

overall deviation of points for each cell and each researcher 

(Figure 5c). This confirmed observations from the click spread 

plots with Researcher 6 displaying greater inconsistencies in 

click positions for Cells 1 and 2 in comparison to all other re-

searchers. Variability in SDD was greatest for Cell 3 due to re-

peated misidentification of Cell 3 by multiple researchers. SDD 

was minimal for Livecyte tracking of Cells 1 and 3, but higher 

than all other researchers for Cell 2. These results highlight 

greater consistency and reproducibility of automated tracking in 

comparison to manual tracking but also highlight problems in 

automated cell tracking.

3.6   |   The Impact of Cell Tracking on Extracted 
Metrics

As inter-  and intra- user variability in manual segmentation was 

found to have a major impact on morphological metrics, we hy-

pothesized that the same would be the case for extracted charac-

teristic metrics of cell trajectories. Variability in cell trajectories, 

both between researchers and within each researcher's own re-

peats, occurs due to variability in click positions on consecutive 

frames. Certain dynamical features, such as speed of cells, are 

extremely sensitive to such deviations resulting in large variabil-

ity in the time series obtained for these features (Figure 6a[i,ii]). 

The variability across the whole cell trajectory has a cumula-

tive effect on summary statistics that are calculated to charac-

terize cell behavior throughout the whole time- lapse (such as 

mean speed), with each researcher obtaining different values 

dependent on their own tracking approach. The mean speeds 

calculated from each researchers' Cell 1 trajectories are shown 

in Figure  6a(iii). ANOVA revealed statistically significant dif-

ferences in mean speed between researchers performing the 

tracking (p value = 0.0017), highlighting the impact of subjectiv-

ity on quantification. Notably, the minimal standard error of the 

mean was achieved by automated Livecyte tracking (SE = 0.034) 

in comparison to manual tracking (SE = 0.057, 0.054, 0.088, 0.12 

for Researchers 1, 2, 4, and 6, respectively). PCA was used to 

assess the cumulative effect of such variability on a combina-

tion of motility metrics. As for PCA of morphological metrics 

shown in Figure 3b, researcher- specific clusters can be identi-

fied within the scores plots demonstrating idiosyncrasies in cell 

tracking and the impact these have on the resulting extracted 

metrics. Intra- user variability is visible within all three scores 

plots, with larger ellipses representative of greater variability. 
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FIGURE 5    |    Intra- user variability in cell tracking. (a) Click spread plots for each researcher, colored by cell number. Origins represent the average 

click position across three tracking attempts, with the click spread of each point calculated as deviation from this average. Click spread plots for 

Cell 3 show greater deviance due to repeated misidentification of Cell 3 throughout the time- lapse resulting in variable cell trajectories. (b [i]) Cell 

trajectories for Cells 1, 2, and 3 obtained from automated tracking using Phasefocus CATbox. Each color represents one of three trajectories obtained 

from the same cell time- lapse independently processed to replicate inter- user variability. Misidentification of Cell 2 in one time- lapse results in an 

inaccurate trajectory (shown in blue). Trajectories for Cell 3 are shorter than those obtained by manual tracking due to the premature ending of 

tracking on Frame 11 when Cell 3 undergoes a morphology change, after which the true Cell 3 is given a new cell identifier for the remainder of the 

time- lapse. (ii) Centroid spread plots for each researcher, colored by cell number. Origins are represent the average centroid position across each of 

three tracking repeats, with the spread of each centroid calculated as deviation from this average. Deviation is minimal for Cells 1 and 3, but the 

misidentification of Cell 2 in one trajectory causes deviation in centroids. (c) Standard distance deviation (SDD) values to quantify the manual click 

spread from (a) and automated centroid spread from (b).
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Largest ellipses within scores plots for Cells 1 and 2 are observed 

for Researcher 6, found to have the largest click spread devia-

tion for these cells. Automated Livecyte tracking resulted in the 

smallest ellipse, and therefore the least variability in motility 

metrics, for Cell 1 but the impact of misidentification of Cell 2 

can be observed in the Cell 2 scores plot where a much larger 

Livecyte ellipse and more dispersed points can be observed. 

Note that Livecyte points are not included in the scores plot for 

Cell 3 due to the premature ending of all three Livecyte trajecto-

ries for this cell meaning metrics such as track length could not 

be compared with full- length manual trajectories.

3.7   |   Variability in Extracted Metrics From 
Segmentation Software

Cell segmentation software were benchmarked on their ability to 

obtain accurate cell ROIs that reliably capture the true morphology 

of the cells within the images. Figure 7a shows the cell image man-

ually segmented to provide a standard against which the accuracy 

of automated software could be assessed. From the automated seg-

mentation results presented within Figure S1, it can be observed 

that morphology of ROIs from ImageJ and Icy, in particular, differ 

from those of the other three software. Notably, ImageJ and Icy 

tend to segment the cell body, excluding the lower intensity cell 

protrusions that are identified by Livecyte, CellProfiler, CellPose, 

and manual segmentation. PCA of all morphological metrics ex-

tracted from each software's obtained ROIs confirmed this to be 

true, with ImageJ and Icy ellipses providing smallest overlap with 

the manual segmentation ellipse and greatest. distance between 

group means in the PCA scores plot (Figure 7b).

Further investigation into the morphological metrics impacted 

by this difference in segmentation showed that ImageJ and Icy 

segmentation result in cells that are significantly smaller in size, 

have increased circularity and have higher mean gray value com-

pared with manually segmented cells (Figure 7c). In comparison, 

Livecyte, CellProfiler, and CellPose segmentation resulted in the 

extraction of morphological metrics that were not significantly dif-

ferent to those obtained by manual segmentation, the exception 

being circularity of CellPose ROIs (p value = 0.046).

4   |   Discussion

Whilst our limited pilot study cannot provide meaningful statis-

tics, the results demonstrate the importance of choosing a segmen-

tation and tracking approach that is optimized for the application 

in question. Most segmentation and tracking software rely on the 

contrast in intensity between cells and background to accurately 

detect cell boundaries. These software are often optimized for flu-

orescence images where fluorescent labels enhance the intensity 

of pixels within cell interiors. With pytchography being a relatively 

new imaging modality, pre- existing algorithms do not perform as 

well on these images due to differences in the distribution of cell 

pixel intensities within label- free images. The newer segmentation 

and tracking software, Livecyte, and CellPose- TrackMate, were 

found to be optimal for our images in comparison to the other, 

well- established software tested: ImageJ, Icy, and CellProfiler. 

Livecyte algorithms are optimized for ptychographic imaging and 

this shows in its superiority for both segmentation and tracking. 

CellPose is the most recent software within the field and already 

offers several pre- built models that are optimized for imaging mo-

dalities, namely phase- contrast and brightfield, that often pose the 

greatest challenge for segmentation (Stringer and Pachitariu 2022). 

As label- free imaging becomes more established, it is likely that 

pre- existing segmentation and tracking software will further de-

velop their current algorithms to handle such images in order to 

compete with newer approaches.

Our findings suggest that the results of manual segmentation 

and tracking should be used as a gold standard with caution. 

Deep learning algorithms frequently make use of manual results 

for training and testing performance, yet manual results vary 

significantly with experience and subjectivity. It is important 

that manual segmentation and tracking for such ground truth 

data sets is performed by an expert in the particular field in 

question, and that their own results provide minimal intra- user 

variability. The subjectivity of manual segmentation is of par-

ticular concern for medical applications in which segmentation 

results are used for diagnosis of diseases, such as the detection 

of breast tumors in mammograms. Furthermore, the morpho-

logical metrics extracted from segmented regions are used to as-

sess response to treatment and disease progression (such as size 

of tumor following chemotherapy). This motivates the need for 

standardized, automated approaches to segmentation that erad-

icate the potential for variability within results.

The variability in segmentation and tracking results, both in-

ter-  and intra- user as well as inter- software support the on-

going replicability and reproducibility crisis within scientific 

studies. The results of this study showed that idiosyncrasies 

present within initial segmentation and tracking are further 

exacerbated by the extraction of metrics to quantify cell mor-

phology and motility. This led to results from identical cell 

populations and even same cells being found statistically sig-

nificantly different based on their initial segmentation and 

tracking. Automated software takes on an algorithmic ap-

proach to cell segmentation and tracking, following the same 

formulaic pipeline both within and between images. On the 

other hand, researchers performing manual segmentation 

and tracking often do not have a set of rules to follow in order 

to detect cell boundaries or centroids, as evidenced by intra- 

user variability in identified ROIs and researcher click spread, 

therefore adding cumulative inaccuracies to their results. 

Intra- software variability was minimal which motivates the 

FIGURE 6    |    The impact of cell tracking on extracted metrics. (a [i]) Time series for mean speed obtained from three tracking attempts for Cell 1, 

colored by researcher. (ii) The same plot as in (i) but with the region between SEM error bars shaded to display intra- user inconsistencies. (iii) Separate 

scatter plots showing mean speeds calculated for each researcher and each tracking repeat of Cell 1. ANOVA revealed a statistically significant 

relationship between mean speed and the researcher performing tracking (p value = 0.0017). (b) The resulting PCA scores plots for (i) Cell 1, (ii) Cell 

2, and (iii) Cell 3, performed with motility metrics extracted from the trajectories. Points are colored according to researcher and 95% confidence 

ellipses are displayed. Small and large ellipses are representative of low and high intra- user variability in extracted metrics, respectively. Note that 

Livecyte points are not included in the scores plot for Cell 3 due to the premature ending of all three Livecyte trajectories.
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use of automated approaches to improve the repeatability of 

results. However, though results may be more reproducible 

this does not ensure that they are accurate. It is therefore vital 

that background research is done on the choice of automated 

segmentation and tracking software prior to downstream 

analysis.

FIGURE 7    |    Variability in extracted metrics from segmentation software (a) Results of manual segmentation on the 0 h ptychographic image, 

performed by an expert with extensive experience working with ptychographic images and the MDA- MB- 231 cell line used in this study. Scale 

bar = 200 μm. (b) PCA of morphological metrics extracted from cell ROIs, colored by segmentation approach. ImageJ and Icy display greatest 

variability to manual segmentation with their ellipses sharing the minimum overlap with the manual segmentation ellipse. Larger points are 

representative of group means. (c) Distributions for cell area, circularity and mean gray value extracted by manual segmentation and five different 

automated software packages. Bars show group means and error bars represent SEM. Results of Dunn's multiple comparisons test are displayed on 

plots, with greatest significance across all metrics obtained by ImageJ and Icy segmented cells when compared with manual segmentation.
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The similarity of results from manual segmentation and track-

ing tend to be associated with the similarity of research back-

ground. Notably, the trained microscopists (Researchers 1, 2, 

and 5) produced manual segmentation results with greater 

similarity to each other than to cell biologists (Researchers 3 

and 4). This was supported by the calculation of Dice coef-

ficients for quantification of segmentation overlap. This sug-

gests that research background is a latent variable in terms 

of quantification from cell segmentation and tracking, though 

this impact is often not assessed or accounted for in scientific 

research.

The challenge caused by Cell 3, even for trained microscopists 

and automated software, emphasizes the importance of min-

imizing interval times between frames during image acqui-

sition. Cells that undergo a drastic morphology change from 

one frame to another are difficult to identify in consecutive 

frames, and misidentification results in erroneous changes 

to trajectories and consequently the time series of extracted 

metrics. These results demonstrate that both misidentification 

and erroneous cell segmentation are visible within extracted 

morphology and motility metrics and suggest the possibility 

of automating detection of such instances to clean up datasets 

prior to downstream analyses. Shorter cell tracks would not 

cause a problem in terms of biological conclusions, as the re-

maining cell track is still represented within the data set but 

linked to a different cell identifier. To handle the longer, in-

accurate cell tracks, machine learning models could be used 

to identify interruptions in cell time series induced by mis-

identification and exclude these cells from further analysis, a 

step that is included in the CellPhe toolkit for automated cell 

phenotyping (Wiggins et al. 2023).

Additional experimental approaches to enhance cell segmen-

tation accuracy include optimizing cell seeding density to 

minimize cell occlusion and accounting for the proliferation 

rate throughout the time- lapse sequence. Furthermore, ad-

dressing microscopy- related factors, such as minimizing focal 

drift and ensuring a high signal- to- noise ratio, can signifi-

cantly improve segmentation accuracy and mitigate potential 

issues for downstream analysis. It is possible that 3D imaging 

could prove superior to 2D imaging in terms of minimizing 

segmentation errors, as the ability to capture the full spatial 

context of cells may reduce the overlap or intersections that are 

common causes of mis- segmentation in 2D cultures. Software 

such as 3DeeCellTracker (Wen et al. 2021) and Imaris lever-

age 3D- specific spatial features to enhance their segmentation 

and have proved useful for applications in dynamic cell time- 

lapses (Liu et al. 2024).

5   |   Conclusion

The manual segmentation and tracking study within this pilot 

study demonstrated inter- user variability in segmentation and 

tracking as a result of researcher subjectivity and experience. 

The study also demonstrated intra- user variability in manual 

segmentation and tracking, a potential source of irreproduc-

ible findings. Both inter-  and intra- user variability in seg-

mentation and tracking caused imprecision in the phenotypic 

metrics extracted from obtained ROIs and trajectories, with 

metrics from the same cells being statistically significantly 

different based on initial segmentation and tracking. This 

motivated the benchmarking of a panel of automated segmen-

tation and tracking software, whose performance proved vari-

able on the representative ptychographic time- lapse images. 

The choice of segmentation approach is a hugely important 

step that should not be overlooked and should be carefully 

considered. We would recommend testing various options and 

optimizing the parameters at the start of a project. It was de-

termined that Livecyte, CellProfiler and CellPose performed 

best for our application in terms of accuracy, when compared 

with manual segmentation performed by an expert in the 

field. Although this person had both ptychography expertise 

and experience with the cell line used in this study, we would 

suggest combining the results of several experts to provide 

ground truth data for a larger study.
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