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1. Introduction

The abrasive waterjet is a diverse non-conventional

machining process. It can cut a broad range of materials without 

altering their physical properties. Despite its many advantages, 

there is a need for effective process monitoring of the nozzle 

tool, which suffers from wear.

The nozzle, the tool and critical component of the waterjet 

system, comprises three key components: the orifice, mixing 

chamber, and mixing tube. First the orifice focusses the high-

pressured jet of water, then abrasive particles are introduced in 

the mixing chamber, finally abrasives are accelerated and 

mixed with water in the mixing tube. Continuous abrasive 

impact with the tube walls wears its inner profile, resulting in a 

reduction in cutting performance [1], [2].

Real-time monitoring of mixing tube wear promises to be an 

effective approach to maximise the life of the waterjet tools and 

reduce waste attributed to machining with a worn tool. 

Moreover, it paves the way for automating the machining 

process and designing a sustainable mixing tube replacement 

strategy.

Creating a mixing tube monitoring system presents several 

significant challenges. Firstly, the proposed system must be 

non-intrusive, capable of functioning online without process 

interruption. The monitoring system needs to function in a 

harsh environment with high humidity. Secondly, the system 

must navigate the large input parameter space which includes 
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abrasive, jet, and workpiece properties. Finally, considering a 

mixing tube life of approximately 50-100 hours, when 

machining with the standard garnet material, the data collection 

process can become expensive and time consuming [3].

As a result of these challenges, research has prioritized 

exploring whether different sensors can differentiate between 

an unworn and worn tool. However, the emphasis needs to shift 

to effectively predicting the extent of tool wear. In this context, 

machine learning emerges as a potential candidate for tool wear 

prediction. The performance of machine learning solutions 

should be compared to simple approaches of recording the time 

the tool has been used – to justify the use of different sensors 

and the data collection process.

The paper aims to present novel preliminary research aimed 

at developing a mixing tube process monitoring system. The 

first objective is to develop a framework for data collection for 

this system, overcoming the outlined challenges. The second 

objective is to evaluate the performance of machine learning 

models in both tool wear prediction and tool state classification 

using airflow sensor data.

The structure of this paper is as follows:

• Literature around abrasive waterjet process monitoring and 

mixing tube wear is reviewed.

• The design of a framework for a data collection system is 

presented together with the experimental methodology and 

the data analysis steps used.

• The results of the study are discussed before conclusions are 

drawn.

2. Literature review

2.1. Process monitoring of the abrasive waterjet.

The first challenge in developing a process monitoring 

system for the abrasive waterjet is that the system must be 

feasible. The process must be non-intrusive, affordable, and 

able to function in the harsh waterjet environment.

When monitoring wear, detection can be performed via a 

direct or indirect approach. Direct methods include measuring 

the exit diameter of the nozzle through pin gages, measuring 

the weight loss of the nozzle or studying the bore profile 

through radiometric techniques or destructive longitudinal 

sectioning of the tube [1], [4]–[6]. The exit diameter 

measurement is non-destructive, simple to perform and does 

not require removing the mixing tube from the nozzle head. 

However, like other direct methods is still an intrusive process 

that disrupts the production process. An indirect online 

approach would not disrupt the process.

Indirect methods work by recording specific responses 

linked to wear of the abrasive waterjet nozzle, for example, 

noise levels, vibration or change in jet diameter [5]. For 

waterjet machining, it is possible to split the indirect methods 

into three groups: monitoring the workpiece's response, 

focusing on the jet of water, or focusing on the nozzle itself.

Several authors have focused on measuring the response of 

the workpiece. Kovacevic et al. found a relationship between 

workpiece normal force measured by a dynamometer and 

mixing tube wear, with force increasing with wear [5]. Hreha 

et al. used acoustic emission sensors mounted directly onto a 

steel workpiece [7]. While the signals captured by monitoring 

the workpiece material has the potential to detect wear, the 

process lacks robustness as the responses are workpiece 

dependent. 

Several researchers monitored the jet of water itself. The 

state of wear of the nozzle and water pressure both influence 

the jet diameter [8]. Optical vision systems monitoring jet 

diameter were found to be viable in wear detection [9]. 

However, as noted by Prijatelj et al., jet spray and abrasive 

sticking to the lens limit the process [9]. For a harsh 

environment where the jet of water may not always be visible 

the method of monitoring the jet directly is impractical. 

Frequent cleaning of the camera lens may be required leading 

to process intervention.

Finally, indirect methods can focus on the nozzle itself. 

Kumar et al. found that accelerometers mounted to the nozzle 

can detect differences in mixing tube diameter [10]. Kim et al.

and Prabu et al. found that the root mean square of the acoustic 

emission signal can be used for wear detection [11], [12]. 

Infrared thermography was studied by Kovacevic et al., with 

progressive mixing tube wear leading to changing nozzle 

temperatures due to changes in friction between the jet and 

mixing tube [13]. Louis et al. measured the pressure loss in the 

abrasive hose and correlated the data with airflow 

measurements, observing a difference with changing mixing 

tube exit diameter [14]. Putz et al. found that airflow data can 

be used for orifice condition monitoring [15]. However, Putz et 

al. attached the sensor within the abrasive hose without feeding 

abrasives, an online process monitoring system would require 

a different setup. 

Airflow sensors can also be used for detection of abrasive 

blockage, tube and orifice misalignment and leakage in the 

abrasive hose [16]. Airflow sensors are promising for waterjet 

monitoring application if the setup can be improved as they 

offer a low-cost solution and have the capacity to detect 

multiple failures. 

This group of research demonstrates that multiple 

approaches can be used to monitor the waterjet process online 

in a non-intrusive manner. However, the research has not 

evaluated the performance of indirect methods in predicting 

wear, instead concentrating on illustrating their potential in 

monitoring applications. Although one study by Mohan et al.

did explore prediction capability using an indirect approach, its 

validation was limited [17]. The authors in this paper used the 

same mixing tubes for training and testing model performance 

with no clear validation performed on independently sourced 

data. In addition, performance of predictive models using 

indirect methods needs to be benchmarked against a more 

straightforward approach, such as measuring wear time, which 

would justify using more complicated setups.

2.2. Mixing tube wear

The mixing tube has a long life, capturing the full extent of 

wear is taxing in terms of time and cost [18]. One potential 

solution is to accelerate the wear process for data collection. 

Accelerated wear can be carried out using either a hard abrasive 

or a soft nozzle material [4]. Although economical, accelerated 

wear may result in a different wear pattern being observed.
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Hashish observed two wear patterns in the mixing tube, as 

seen in figure 1 [19]. If using a soft mixing tube material such 

as steel, a divergent wear pattern is observed, with a convergent 

pattern observed with harder mixing tube materials such as 

tungsten carbide [19]. The two dominant wear modes are 

erosion by particle impact at the upstream and abrasion at the 

downstream sections of the tube [19]. In convergent wear, the 

wear pattern has wave zones due to jet turbulence inside the 

mixing tube [3], [11].

In industry, tungsten carbide mixing tubes, such as the 

ROCTEC 100, are used as they have a more extended tool 

life [3], [20]. Nanduri et al. successfully performed accelerated 

wear tests of tungsten carbide tubes using aluminium oxide [1], 

[3]. Hashish found that using aluminium oxide leads to greater 

abrasion but similar erosion inside the tubes compared to 

industry-standard garnet abrasive because the two materials are 

similar in density and particle shape, but aluminium oxide is 

harder [19].

Although the wear profile might show greater abrasion 

when using aluminium oxide, the wear pattern will remain 

convergent [19]. Meanwhile, the tool life will be reduced from 

100 hours to close to an hour [3]. Accelerated wear trials can 

be a potential solution for feasibly building a process 

monitoring system.

To measure the wear of the nozzle, the nozzle weight, inner 

profile and exit diameter can be measured. Although the exit 

diameter cannot capture the wear propagating from the top of 

the tube, it is the simplest and most practical direct method. 

Exit diameter wear also directly impacts multiple machining 

characteristics, including critically, the width of the cut [19]. 

What constitutes a worn tube will vary by application, for 

example, cutting or precision drilling. It can vary between 10-

25% of exit diameter growth [19].

3. Methodology

3.1. Designing a framework for data collection

From the literature review, an indirect approach is selected 

as an appropriate method for online process monitoring of the 

waterjet system. Airflow sensors offer great potential and will 

be investigated in this study as they can detect wear and are 

affordable. However, previous research found issues with the 

setup. Instead of adding the sensor to the abrasive supply hose, 

it can be placed at the air inlet near the abrasive tank, as shown 

in figure 2. This allows the sensor to work online with abrasive 

flowing through the system without damaging it. This proposed 

solution overcomes the initial challenge of designing a non-

intrusive and practical monitoring system.

In previous research, data was collected with abrasives 

flowing through the system [5], [7], [10]–[13], [17]. However, 

data can be collected in a novel manner during the dwell cycle. 

The dwell cycle is a stage of waterjet machining when the jet 

is started, but the abrasive supply is not turned on. This stage is 

performed before waterjet machining operations to generate a 

vacuum in the nozzle, which will draw abrasives to the nozzle 

head. This approach allows for a simplified setup without 

abrasive flowing through during data collection. Recording 

data during the dwell cycles also allows for tool state prediction 

before the machining process begins, making the approach 

highly practical for real-time process monitoring. Additionally, 

this approach offers potential in building a foundation for tool 

path compensation in waterjet machining. The tool can be 

offset for better performance if the exit diameter is predicted 

before machining. 

Finally, accelerated wear was investigated for economic 

data collection to address the challenge of extended tool life. 

Aluminium oxide abrasives were used instead of garnet to 

accelerate the wear process. The mixing tubes used were 

ROCTEC 100. Using these tungsten carbide tools with harder 

abrasive was expected to keep the wear pattern consistent with 

regular wear.

For this trial, two tubes were investigated. Data collected for 

the first tube would be used to train machine learning models, 

with the second tube data used to evaluate the models’

performance.

To build the dataset for process monitoring, dwell response 

data was collected from 0 minutes of wear every 10 minutes 

until the tube was worn for 60 minutes. This time range was 

selected based on accelerated wear trials completed by Nanduri 

et al. [3]. By collecting data throughout the tubes’ lifecycles, a 

more extensive dataset could be built up using each tube.

The tubes were worn at 4000 bar pressure with an abrasive 

supply rate of 7.6 g/s and an abrasive mesh size of 80. During 

the dwell cycles, data was collected for three repeats using 

pressures between 3000 – 5000 bar in 500 bar increments. The 

data under additional pressure was collected to increase the 

dataset size to help the machine learning models learn patterns 

within the data. When evaluating model performance, only

4000 bar pressure data was used.

3.2. Experimental setup

The data collection was carried out on an Aquarese 6-axis 

abrasive waterjet with a Staubli TX200 robotic arm. 

Professional technicians carried out the data collection under 

the supervision of the authors.

An airflow sensor was attached to a tee piece connected to 

the abrasive tank, as shown schematically in figure 2. The 

Fig.  1. Possible wear patterns of abrasive waterjet mixing tubes – adapted 

from [19].

Fig. 2.  Drawing of the airflow sensor setup.

CONVERGENT WEAR PATTERN

DIVERGENT WEAR PATTERN
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sensor used was an SFM3000 by Sensirion. It was connected 

to the tee piece via a custom 3D-printed pipe reducer. An 

acrylic pipe of the same internal diameter was attached to the 

sensor inlet to provide laminar airflow to the sensor. The pipe 

was 300 mm long, as recommended by the sensor supplier. 

Data was recorded at a 100 Hz sampling rate for at least 5 

seconds during each repeat. 

The exit diameter was recorded before each dwell cycle to 

measure the extent of wear. Steel pin gages were used in 

increments of 0.01 mm.

The selected tubes were of standard commercially available 

sizes of 101.6 mm length and 1.0 mm internal diameter.

The ruby orifice used was 0.406 mm in diameter, consistent 

with the recommended orifice-to-mixing tube ratio found in 

literature [21], [22].

3.3. Data processing and analysis

To build machine learning models, the raw airflow data was 

tabulated using time- and frequency-domain features. The raw 

data for each tabulated row included four-second recordings 

from jet start. The final training set had 105 rows of data, while 

the test set had 21 (as it only included 4000 bar pressure data).

The tabulated data was standardized, based on the training 

dataset by removing the mean and scaling to unit variance. This 

is a common requirement for multiple algorithms tested.

Machine learning models were built for two tasks: 

regression and classification. The regression task focused on 

predicting the exact exit diameter of the mixing tube. The 

classification task focused on predicting whether the tube was 

considered worn. 1.1 mm exit diameter was selected as the 

threshold for wear – a 10% increase from the initial starting 

diameter of 1.0 mm.

A basic model using wear time, as a sole feature, was built 

for regression and classification as a baseline for machine

learning models, which relied solely on airflow data. The aim 

was to assess the machine learning models' ability to predict 

wear when mixing tube usage is not being tracked, as can be 

found in practice.

For exit diameter prediction and tool state classification the 

following algorithms were tested: support vector machines 

(SV) [23], [24], random forests (RF) [24], [25], gradient 

boosting machines (GB) [24], [26], XGBoost (XGB) [27], 

LightGBM (LGBM) [28], CatBoost (CB) [29], extremely 

randomised trees (ET) [24], [30], and k-nearest neighbors 

(KNN) [24], [31]. For tool state classification, two additional 

models were used: logistic regression (LR) [24], and TabPFN 

[32].

For exit diameter prediction, the basic wear time only model 

(TM) was trained using linear regression. For tool state 

classification, LR was used instead.

Feature selection was carried out by studying the 

multicollinearity of features as well as feature importance.

All experiments, including model selection, were conducted

using cross-validation solely on the training set. The test set was 

excluded from these stages to serve as a separate data pool for 

model performance validation.

4. Results and discussion 

4.1. Data collection framework 

Figure 3 presents the wear progression of two tungsten 

carbide mixing tubes. The observed exit diameter wear 

progression on the tubes suggests the accelerated approach 

successfully reduced the tool life. The wear pattern was 

convergent, as shown in figure 4 and exhibited an abrasion 

wave pattern consistent with literature.

However, figure 3 suggests that the exit diameter wear 

progression is linear, which is inconsistent with a previous 

study which found a non-linear trend for a convergent wear 

pattern [1]. This discrepancy may be due to the authors wearing 

a shorter mixing tube of 50 mm in length. As figure 4 indicates, 

the wave pattern tends to be more pronounced for shorter tubes, 

with larger waves appearing around halfway down the tube (at 

approximately 50 mm mark).

The results align with previous research findings, indicating 

that using aluminium oxide abrasives yields a similar wear 

pattern produced when using garnet [19]. Confirming that 

accelerated trials are a potential solution for the long tool life 

challenge when developing a mixing tube process monitoring 

system. 

As for the airflow sensor, changes in its signal were 

observed during the dwell cycles, as seen in figure 5. The 

signal’s magnitude increased with the growing exit diameter,

as shown in figure 6. This suggests that increases in exit 

diameter allow a wider jet of water to leave the mixing tubes, 

increasing vacuum in the nozzle head and suction in the 

abrasive hose, pulling more air to the nozzle. Based on these 

results, the airflow sensor seems suitable for use in an indirect, 

online waterjet process monitoring system.

Fig.  4. Worn mixing tubes 1 (top) and 2 (bottom) after longitudinal 

sectioning using electrical discharge machining (EDM). The EDM wire was 

offset to get one perfect half that is displayed above.

Fig. 3. Comparison of exit diameter growth of ROCTEC 100 mixing tubes 

during an accelerated wear trial using aluminium oxide abrasive. The wear 

threshold, beyond which the tool is considered worn, is crossed after 

approximately 45 minutes of wear.
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The airflow data seen in figure 6 varies more between 

repeats for tube 1 compared to tube 2. This may be due to data 

collection imperfections. During data collection, it was 

observed on the data dashboard that the pressure pump was not 

always achieving the required pressure before the operator ran 

the dwell cycle. This could have resulted in lower airflow for 

the start of the signal.

In addition, for the first repeat, there may have been 

abrasive still in the hose after the wear cycle. This abrasive 

blockage may have reduced airflow until it cleared through the 

system with the generated vacuum.

In future work, the data collection process should allow 

enough time for the pump to reach the desired pressure value 

and stabilise before running the jet. In addition, after each wear 

cycle with abrasives, all abrasives must be allowed to clear 

through the hose before the water jet is turned off to avoid 

blockages.

The framework for data collection is promising, but further 

investigation is required. The dataset so far is limited to only 

two testing tubes. In addition, this process does not account for 

mixing chamber or orifice wear. The effect of wear on both 

parts on the airflow response should be studied.

4.2. Tool condition monitoring

Figure 7 presents the results of different regression models. 

The linear time-based model outperformed sensor-based 

machine learning models. The time model had a MAE of 0.01. 

The metric suggests on average, errors are 0.01 mm. The best 

performing machine learning model had a MAE of 0.02. 0.02 

mm wear would equate to approximately 6 hours of machining 

time during regular wear at 3000 bar pressure and an abrashive 

feed rate of 6g/s [33]. The input parameters are not an exact 

comparison, but this figure indicates the rough tool life error 

from this prediction – if using the exit diameter as a threshold 

for deciding the condition of the tool.

For tool state classification, a wear time-based model 

performed better than models trained on airflow data, as seen 

in figure 8. TabPFN and LR models proved to be the best on 

this dataset with an accuracy score of 90%. TabPFN, a pre-

trained transformer model had the highest overall performance, 

suggesting pre-trained deep learning networks can be leveraged 

for small tabular datasets.

The findings indicate that a simple approach of tracking the 

mixing tubes' operational duration may prove sufficient and 

potentially more effective for wear detection than more 

complex methodologies. However, it’s crucial to acknowledge 

the limitations imposed by the small dataset, which included 

two worn tubes. A larger dataset may reveal greater variation 

Fig.  8. Comparison of model performance when classifying whether the tool 

has worn past the predefined threshold of 1.1 mm exit diameter. The models 

were evaluated using accuracy and F1 score, with a higher score indicating 

better performance. The model using time as a sole parameter outperformed 

machine learning models using airflow data to classify the state of the tool. 

TabPFN, a pre-trained deep-learning model was the best performing machine 

learning approach with an accuracy of 0.9 and an F1 score of 0.86.

Fig. 7. Comparison of model performance when predicting exit diameter wear 

of unseen data in the test set. The models were evaluated using RMSE and 

MAE metrics, with lower scores indicating better performance. Both metrics 

use the same scale as the data being measured. Machine learning models 

using airflow data were outperformed on this dataset by a linear regression 

model (TM above) based on wear time. XGBoost was the best performing 

machine learning model with an RMSE of 0.024 and MAE of 0.021.

Fig.  6. A comparison of average airflow for each of three repeats during 

dwell cycle recordings at different wear times at 4000 bar pressure for two

worn tubes. An anomaly observed at 40 minutes in tube 1's first repeat wasn't 

used for model training and was likely caused by abrasive blockage.

Fig.  5. Raw airflow signal during three dwell cycles of an unwon mixing 

tube at 4000 bar pressure.
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in the exit diameter over time than observed in this study, 

potentially reducing the performance of the wear time models.

In addition, it was noted that the airflow data for the training 

set mixing tube was unstable. As the data collection process is 

refined, the data quality will likely improve, reducing noise and 

allowing the machine learning models to learn the patterns 

within the data better.

Furthermore, models solely based on wear time may not 

adequately adapt to changes in the process. For instance, issues 

such as blockages, poor abrasive flow or process parameter 

adaptations could worsen the time-based models’ performance.

5. Conclusions

The study presented a novel approach for building a waterjet 

process monitoring system. Using aluminium oxide abrasives 

enabled accelerated wear and fast data collection while keeping 

the mixing tube wear pattern consistent with regular wear. A 

unique method for data recording during the dwell stage of 

waterjet machining was introduced. This simplified the 

process, eliminated flowing abrasives, and allowed for 

predictions to be made prior to machining, which could serve 

as a foundation for tool path compensation. Finally, the data 

collection process revealed that airflow sensors can detect

changes in exit diameter.

Furthermore, the performance of machine learning models 

using airflow data was compared to simpler wear time-based 

models for exit diameter prediction and mixing tube state 

classification. While simpler models performed better in this 

study, their adaptability to process changes, like poor abrasive 

flow, may be limited. More complex methodologies using 

sensor data and machine learning may be necessary to improve 

wear detection in the future.

This paper presents a promising framework for developing 

a mixing tube process monitoring system. However, further 

research is required to understand the impacts of various 

factors, such as orifice and mixing chamber wear, on prediction 

capabilities. The limitations of a small dataset also need 

consideration. Broader testing with more tubes is 

recommended. Finally, future work should assess how models 

trained on accelerated wear data perform with regular wear trial 

data.
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