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Abstract

Over the past decade, sequencing data generated by large microbiome projects showed that taxa exhibit patchy geographical 

distribution, raising questions about the geospatial dynamics that shape natural microbiomes and the spread of antimicrobial 

resistance genes. Answering these questions requires distinguishing between local and nonlocal microorganisms and iden-

tifying the source sites for the latter. Predicting the source sites and migration routes of microbiota has been envisioned for 

decades but was hampered by the lack of data, tools, and understanding of the processes governing biodiversity. State-of- 

the-art biogeographical tools suffer from low resolution and cannot predict biogeographical patterns at a scale relevant to 

ecological, medical, or epidemiological applications. Analyzing urban, soil, and marine microorganisms, we found that some 

taxa exhibit regional-specific composition and abundance, suggesting they can be used as biogeographical biomarkers. We 

developed the microbiome geographic population structure, a machine learning–based tool that utilizes microbial relative 

sequence abundances to yield a fine-scale source site for microorganisms. Microbiome geographic population structure pre-

dicted the source city for 92% of the samples and the within-city source for 82% of the samples, though they were often only 

a few hundred meters apart. Microbiome geographic population structure also predicted soil and marine sampling sites for 

86% and 74% of the samples, respectively. We demonstrated that microbiome geographic population structure differen-

tiated local from nonlocal microorganisms and used it to trace the global spread of antimicrobial resistance genes. 

Microbiome geographic population structure’s ability to localize samples to their water body, country, city, and transit sta-

tions opens new possibilities in tracing microbiomes and has applications in forensics, medicine, and epidemiology.

Key words: microbiome, biogeographical predictions, microbiome geographic population structure (mGPS), antimicrobial 

resistance (AMR), forensics, machine learning.

Significance

Predicting the geographical origins of microbial communities is critical for studying their biogeography and the trans-

mission of antimicrobial resistance (AMR) genes, but suitable methods are lacking. We developed the microbiome geo-

graphic population structure (mGPS), which utilizes microbial relative sequence abundances to predict the source sites of 

microbiome samples and trace the spread of AMR. The ability of mGPS to accurately localize samples independently of 

the sequencing method and environment opens new avenues of microbiome research with applications in forensics, 

medicine, and epidemiology.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 

distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction

Trace evidence analysis is a specialized discipline within 

forensic science that focuses on the examination and 

interpretation of minute transfers of materials between ob-

jects, individuals, and environments. This field encom-

passes the detection, collection, and analysis of a wide 

range of small pieces of evidence (traces) that can link a 

person to a particular location, object, or event. These evi-

dences can include hair, fibers, soil, pollen, glass, paint, or 

gunshot residue. Tracing the most recent geographic 

whereabouts of individual organisms has always been 

a major challenge in fields like ecology (Ricklefs and 

Jenkins 2011), microbiology (Peay et al. 2016), and foren-

sics (Elhaik et al. 2021) due to the physical difficulties in 

identifying biological material that can uniquely associate 

individuals with the sites they visited or the objects they 

touch. Recent advances in biogeography showed that hu-

man DNA can be used to make accurate predictions of their 

country and, in some cases, village of origins (Elhaik et al. 

2014). However, biotracing human DNA has limited foren-

sic value because it remains constant and does not provide 

information about an individual’s most recent movements 

(Mason-Buck et al. 2020). Only dynamic spatiotemporal 

types of information shared and exchanged between 

organisms and the environment can be used by tracing 

applications. The complex communities of bacteria, fungi, 

viruses, and microeukaryotes (microbiomes)—integral 

parts of natural ecosystems—represent the kind of infor-

mation that may be informative to identify changes in 

one’s environment.

The importance of predicting microbial communities 

cannot be overstated. Beyond forensic capabilities (Elhaik 

et al. 2021), developing a biogeographical model for meta-

genomes has multiple ramifications. It can be used to study 

the fundamental processes that determine biodiversity and 

compare them quantitatively among microbial groups, 

which can shed light on the relationships between commu-

nity dissimilarity and environmental parameters (De Gruyter 

et al. 2020). Understanding the geographic distributions of 

microorganisms promotes a better understanding of our 

surroundings, as there is a growing appreciation for the en-

vironment–microbiome–health axis (Ahrens et al. 2024). 

When humans engage in international travel, migration, 

and forced displacement, their mobility is assumed to be 

connected to the colonization and transmission of 

multidrug-resistant organisms, which is linked to the inter-

national spread of antimicrobial resistance (AMR) genes 

(MacPherson et al. 2009), one of the biggest challenges fa-

cing modern medicine (Afshinnekoo et al. 2021). For ex-

ample, assume that AMR bacteria are transferred from 

the Levant into Mexico via illegally traded species through 

an airport. While the specific animal may have already 

been sold and cannot be identified, the microbiome 

signature of the merchants can be traced to Southern 

Indonesia, providing clues on the origin of the AMR bac-

teria (Fig. 1a). Therefore, inferring the dynamics and bio-

geography of human movement, pathogens, microbes, 

and AMR transmission will aid in the development of pol-

icies related to human activities and AMR, as well as travel 

guidance recommendations, to reduce the risk of acquiring 

AMR microorganisms. Similarly, the global trade of goods 

like foods is a source of the AMR spread (Hassan and 

Kassem 2020). Tracing AMR transmission routes is essential 

to assess the potential of epidemiological risk and popula-

tion migration to AMR transmission.

Inferring the biogeographical origins of microorganisms 

remains a complex and unresolved challenge. To address 

this, we developed the microbiome geographic population 

structure (mGPS), the first machine learning (ML)–based 

tool that leverages microbial relative sequence abundances 

(RSAs) to pinpoint the fine-scale source locations of micro-

organisms. mGPS was rigorously tested on microbiomes 

from built urban, soil, and marine environments, se-

quenced using different approaches. mGPS’s ability to dis-

tinguish local from nonlocal microorganisms allows it to 

effectively trace the global spread of AMR genes recorded 

in the MetaSUB dataset in 2016 and 2017.

Results

The mGPS Tool Implementation

Developing a biogeographical toolkit requires close coord-

ination of experimental data collection (Shamarina et al. 

2017) and method development with designing predictive 

models (Widder et al. 2016). For that, we implemented 

mGPS as a parameter-free ML-based tool that predicts 

the geographic source of microbiome samples from the 

RSA and metadata (Fig. 1). We postulated that predictive 

biogeographical models should capitalize on the spatio-

temporal patchiness that some taxa exhibit. We termed 

these as geographically informative taxa (GITs) that can 

be used as markers for fine-scale biogeography. To select 

an optimal subset of bacterial taxa for predictive modeling, 

we applied a recursive feature elimination procedure (see 

Materials and Methods) that ranks taxa by how geograph-

ically informative they are and retains the most informative 

ones. mGPS was then trained on the RSA of the selected 

GITs, calculated from the fraction of reads classified to 

each taxon. The mGPS model was designed to produce pre-

dictions for different levels of regional locations (e.g. con-

tinent, country, latitude, and longitude). It is initially 

trained on the first hierarchical level for continent predic-

tions. Then, the predictions are augmented with the train-

ing data and used to train the next model level, for which 

predictions would be augmented again with the training 

data until the final level is trained for specific coordinate 
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Fig. 1. Schematic overview of the ecological microbiome model and mGPS’s workflow. a) Microbiomes are characterized by taxa with local (color) and global 

(gray) dispersion. Human and natural activities mix these taxa, yet it is unclear to what extent the local taxa can survive and adapt to their new locations. 

b) Sampling can be done to identify the taxa of each site (triangles) and record its metadata (e.g. country and city) and geographical coordinates 

c). Following sequencing, the RSA of each taxon can be calculated d). The coordinates of the sampling sites and the RSA of the taxa are used to train the 

mGPS model. mGPS starts by identifying the geographically localized taxa e) and learning the relationships between their RSA and geography. The final 

mGPS model f) can then be used to convert any similarly-processed RSA taxa data into precise geographical locations. The mGPS model is detailed in g). 

First, GITs are selected after a random forest–based feature elimination step computes the RSA data of taxa with geographic information. The RSAs of 

GITs are used in the model training of XGBoost. The prediction model consists of chained submodels trained step-by-step using multilevel geographic infor-

mation. We assembled five microbiome datasets from the global urban environment collected during 2016 and 2017 (#1 and #2, respectively) (Danko et al. 

2021), the urban environment of three highly sampled cities: Hong Kong, New York City, and London (#3) (Danko et al. 2021), the soil environment (#4) 

(Delgado-Baquerizo et al. 2018a), and the marine environment (#5) (Sunagawa et al. 2015) d). i) We then applied the mGPS model g) to the RSA data of 

the different environments h). The training:testing of the aforementioned datasets was done as follows: 1 + 2:1 + 2, 2:1, 3:3, 4:4, and 5:5.
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predictions. Finally, mGPS outputs the predicted latitude 

and longitude.

To evaluate the performance of mGPS, we applied it to 

the RSA data calculated separately from the next-generation 

data of the urban biome (Danko et al. 2021) (global metage-

nomic dataset and three-city high-resolution dataset), the 

16S rRNA gene-based soil biome (Delgado-Baquerizo et al. 

2018), and the prokaryotic shotgun sequencing data of 

the marine biome (Sunagawa et al. 2015). These micro-

biome datasets used different sequencing platforms, data 

processing methods, and different read thresholds in calcu-

lating RSA, allowing us to rigorously test mGPS and its inde-

pendence of data sequencing and processing.

Biogeographical Predictions of Worldwide Transit 
Stations

We first analyzed the MetaSUB dataset (Danko et al. 2021), 

which contains the RSAs of 3,660 species identified from 

4,135 metagenomic samples collected in 53 cities over 3 

years (2015 to 2017) (Table 1; supplementary text S1, 

Supplementary Material online) (Ryon et al. 2022). The glo-

bal RSA consisted of ∼97% bacteria, 0.97% eukaryotes, 

0.01% viruses, 0.05% archaea, and ∼1.5% unannotated 

organisms. Interestingly, unlike typical microbial distribu-

tion patterns (Pascoal, Costa, and Magalhães 2020), where 

few microorganisms are common across sites and the vast 

majority is rare, here, the trend is disrupted by the existence 

of a large number of microorganisms in a large number of 

samples (supplementary fig. S1.1a1, Supplementary 

Material online). Overall, 55% of the species were common, 

and 45% were rare (appearing in less than 5% of the sam-

ples). The most common species, found in 95% of the sam-

ples, accounted for 1% of all species. Species fluctuated 

across cities, with all cities sharing 8% of the species and 

city-unique taxa accounting for 11% of all species, without 

a clear trend (supplementary fig. S1.1a2, Supplementary 

Material online). Across cities, 310 taxa were potentially 

pathogenic, 222 and 73 affecting animals (including humans) 

or plants, respectively, and 15 affecting both kingdoms. 

Globally, the most common potential pathogens were 

Pseudomonas aeruginosa, Stenotrophomonas maltophilia, 

and Pseudomonas fluorescens, all potentially pathogenic 

to humans. The average RSAs of potential pathogens var-

ied by site. After Barcelona, English cities had the highest 

potential pathogen abundance based on our analyses 

(supplementary fig. S1.7a, Supplementary Material on-

line). Pathogens are important biomarkers for mGPS pre-

dictions. Of the 200 MetaSUB GITs, 25 (12.5%) were 

potential pathogens.

While the core urban microbiome is present in almost all 

samples, there was nonetheless a wide range of variation in 

taxonomy and localization across all the cities, already ob-

served by Danko et al. (2021). To evaluate the suitability of 

the dataset for biogeographical applications, we carried out 

a dimensionality reduction of the RSA data using UMAP (uni-

form manifold approximation and projection) (McInnes et al. 

2018) with Manhattan distance. UMAP (Fig. 2a) suggests that 

the entire microbiome is unsuitable for biogeographical appli-

cations due to the high overlap of microbiome from different 

regions. Compared with two controls consisting of all 

non-GITs (Fig. 2b) and randomly selected 200 non-GITs 

(Fig. 2c), using only 200 GITs species provided the most 

refined biogeographical predictions (Fig. 2d).

After quality control (see in Materials and Methods), we 

applied mGPS to 4,070 worldwide samples from 40 cities 

spanning all continents excluding Antarctica using 200 

GITs. These GITs are globally abundant taxa with high 

regional variation, ensuring they would be found in all 

samples. mGPS predicted the source city and the geograph-

ical coordinates for each sample assigning 92% of the sam-

ples to their sampling city with high mean sensitivity (78%) 

(true positives over true positives and false negatives) and 

specificity (99%) (true negatives over true negatives and 

false positives) (supplementary table S1a, Supplementary 

Material online). Applying mGPS to the global microbiome 

dataset yielded high accuracy at regional (Fig. 3), city, and 

within-city levels (supplementary fig. S1, Supplementary 

Material online). mGPS predicted 62%, 74%, and 84% 

of the samples within 250, 500, and 1,000 km, respective-

ly, from their sampling sites with a median distance of 

137 km (Table 2; supplementary fig. S2, Supplementary 

Material online). We compared those results with those 

of a random model by reshuffling the RSAs, normalizing 

them to maintain the sum of taxa RSA as 1, and applying 

the trained mGPS model to these data. mGPS predicted 

Table 1 Sizes and counts of samples and taxa included in the basic and post-QC datasets

Dataset Sample sizes and counts (basic QC) Sample sizes and counts (post-QC)

Sample 

size

Number of cities, 

countries, or water 

bodies

Taxa 

count

Pathogens 

count

Samples 

size

Number of cities, 

countries, or water 

bodies

GIT 

count

Pathogenic GIT 

count

MetaSUB 4,135 53 3,660 310 4,070 40 200 25

Soil 237 18 25,224 7 231 13 200 0

Marine 131 9 2,328 50 131 9 200 1

The basic QC steps included removing unreliable samples, whereas follow-up steps included removing cities with small sample sizes. All the QC steps are detailed in the 

Materials and Methods section. Post-QC data were used to construct the mGPS model.
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only 0.05%, 0.2%, and 1.4% of the samples within 250, 

500, and 1,000 km, respectively, from their sampling sites 

with a median distance of 7,445 km. We note that most mi-

crobiomes are expected to be predicted to their sampling 

site; however, deviations from this are also common.

To thoroughly evaluate the effectiveness of mGPS and 

confirm our findings, we created receiver operating charac-

teristic (ROC) curves. These curves visualize the perform-

ance of mGPS’s classification hierarchy (country and city). 

By examining these ROC curves that plot sensitivity against 

1-specificity across various threshold settings, we can evalu-

ate how well mGPS accurately classifies microbial samples 

from different geographical regions using different sample 

sizes. We employed both the one-vs.-one (OVO, comparing 

all possible two-class combinations [e.g. Asia vs. Europe; 

Hong Kong vs. London]) and one-vs.-all (OVA, comparing 

each class against all others) approaches to calculate 

multiclass results. The mean area under the curve (AUC) va-

lues ranged from 0.99 to 0.996 for both continent and city 

levels, regardless of the approach—OVO or OVA. This ro-

bust range of AUC values highlights the high-level perform-

ance of mGPS in discriminating between various 

geographical regions (Fig. 4a to d). Overall, the compelling 

AUC values reinforce the reliability and effectiveness of the 

mGPS approach in accurately predicting continents and 

cities.

Due to uneven sample distribution across locations, lead-

ing to dataset imbalance, we conducted additional analysis 

to gage mGPS’s predictive performance in categorizing sam-

ples into continents (Fig. 4e) and cities (Fig. 4f) by carrying out 

a precision–recall curves (PRC) analysis. The AUCs of 0.97 and 

0.87, respectively, underscore the accuracy and reliability of 

mGPS in effectively handling both broad geographical classi-

fications and finer-grained city-level distinctions.

Fig. 2. Global distribution of species. UMAPs of taxonomic profiles based on Manhattan distance between samples, which are color coded by the region of 

origin for each sample. Axes are arbitrary and without meaningful scale. a) All species, b) all non-GITs, c) 200 randomly selected non-GITs, and d) 200 GITs.
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We found no correlation between the prediction 

accuracy and city population size (T-test, n = 40, r = 0.017, 

P = 0.92, 95% confidence interval [CI] = [−0.33, 0.30]) 

(supplementary fig. S3, Supplementary Material online). The 

highest concordance between mGPS predictions and the sam-

pling cities was for cities that are well represented in the 

training dataset (T-test, n = 40, r = 0.53, P = 0.0005, 95% 

CI = [0.26, 0.72]) with the highest concordance for cities 

that are better represented in the training data 

(e.g. New York, Hong Kong, London) (supplementary fig. 

S4, Supplementary Material online). The exceptions were 

Singaporean samples that are poorly predicted although wide-

ly sampled, which may represent a high-traffic and heteroge-

neous microbial exchange network, and samples from the two 

Scandinavian cities, Stockholm and Oslo, which are accurately 

predicted despite being moderately represented in the training 

data, suggesting a distinct microbial signature in the area with 

respect to the remaining samples. For comparison, we re-

trained the model using a random subset of 200 taxa, exclud-

ing the 200 GITs. City prediction accuracy dropped to 77%, 

and only 44% of samples were predicted within 500 km of 

their sampling sites. These results indicate a substantial vari-

ation in the relationship between geography and taxa abun-

dance. The differences in median abundance between the 

optimal GITs (supplementary fig. S5, Supplementary Material

online) and randomly selected taxa (supplementary fig. S6, 

Supplementary Material online) show that only the first exhibit 

regional or city-specific geographic clustering.

To test the prediction accuracy of microbiome samples 

more rigorously, we next applied a leave-one-out proced-

ure at the spatial cluster level. In this test, one region con-

taining nearby cities is predicted after its removal from 

the training set (see Materials and Methods). The outcome 

is the mean prediction accuracy for all removed cities. Due 

to the relative density of the MetaSUB data, mGPS’s accur-

acy decreased slightly, with 36%, 51%, and 66% of sam-

ples predicted within 250, 500, and 1,000 km of their 

sampling site, respectively. As before, the prediction accur-

acy was not correlated with the population size (T-test, n =  

40, r = 0.027, P = 0.87, 95% CI = [−0.287, 0.336]) but 

Fig. 3. mGPS geographical predictions for the MetaSUB’s global dataset. Crosses represent the predicted locations of MetaSUB samples. The pie charts show 

the proportion of samples that mGPS predicted for their sampling regions. Predictions are color coded based on their sampling region (triangle, inset); each 

includes several cities (see supplementary fig. S1, Supplementary Material online).

Table 2 mGPS prediction accuracy per dataset

Dataset mGPS prediction accuracy

% sample (0 to 250 km) % sample (0 to 500 km) % sample (0 to 1000 km) Median distance (km)

MetaSUB 62% 74% 84% 137 from the sampling site

Soil 66% 71% 77% 0.74 from the sampling country

Marine 0 2.3% 10% 2,834 from the sampling site

For the MetaSUB and marine samples, the percent of predicted samples is reported in terms of distances between the sampling site and the predicted site. For the soil 
microbiome (all samples), the percent of predicted samples is reported in terms of distances from the sampling country (the finest geographical resolution for this dataset), 

with samples that match the sampling country and are considered to have a distance of zero.
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Fig. 4. ROC and PR curves for mGPS classification of MetaSUB samples to continents (ROC: a and b, PR: e) and cities (ROC: c and d, PR: f). The OVO approach a 

and c) compares all possible combinations of geographical classes. The OVA approach b and d) compares each class against all the others. Each set of ROC and 

PR curves is color coded based on the quartile sample size (n) of continents or cities (see legend). The red line represents the mean ROC or PR curve. The gray 

background indicates one standard deviation of the mean. A horizontal line represents an AUC of 0.5 for reference.
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Fig. 5. mGPS predictions for the transit systems and residential in Hong Kong a) and New York b) using the MetaSUB data. a) Pie charts depict the 33 sampling 

sites in Hong Kong and the prediction accuracy. All major train lines are shown. Sampling was done along these train lines. Pie chart sizes represent the number 

of samples taken at the corresponding sample site: large pie chart, 69 to 99 samples; medium pie chart, 16 to 21 samples; and small pie chart, 4 to 6 samples. 

b) Triangles show the New York sampling sites, and crosses show the predicted locations, color coded by the three boroughs. Pie charts depict the prediction 

accuracy. Symbols may overlap.
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rather with the training data size (supplementary fig. S7, 

Supplementary Material online).

To determine the effect of heavily sampled regions on 

the accuracy, we retrained the model only on the 31 cities 

that had less than 100 samples and calculated a prediction 

accuracy of 87% with 95% CI (0.85,0.9), a slight drop from 

the 92% accuracy of the complete dataset. The mean sen-

sitivity and specificity were slightly higher than in the com-

plete dataset (80%, ∼100%, respectively) (supplementary 

table S1b, Supplementary Material online), suggesting 

that the existence of oversampled sites does not reduce 

the prediction accuracy.

Finally, to determine the robustness of mGPS to small 

sample sizes and potential temporal effects on the under-

lying microbiome profile, we separated the MetaSUB data-

set into its two temporal subsets: the samples collected as 

part of Global City Sampling Day 2016 (gCSD16) and 

2017 (gCSD17). We obtained 264 and 452 samples from 

cities sampled on both sampling days (Denver, Ilorin, 

Doha, New York, and Tokyo) in gCSD16 and gCSD17, re-

spectively. Based on their sample sizes, we extracted GITs 

and trained mGPS on the gCSD17 subset, which had 

more samples, to localize the gCSD16 samples. The model 

predicted the sampling city for 62% of the gCSD16 sam-

ples with a mean sensitivity of 61% across all cities, similar 

to the result obtained from the combined datasets 

(Table 2).

These findings call for reevaluating the effects of the 

rank abundance curves (RACs) on the distance decay of mi-

crobiome community similarity. It has been suggested that 

the number of taxa shared among all samples will decrease 

with the number of studied samples because microorgan-

isms exhibit a patchy spatiotemporal distribution in which 

few microorganisms are common while the vast majority 

are rare. Interestingly, we found that, on average, there 

were more taxa present in 60% to 80% of the samples 

compared to those found in 40% to 60% and 20% to 

40% of the samples, most likely because of the role of hu-

mans in dispersing the urban microbiome and modulating 

the community dynamics (supplementary text S1, 

Supplementary Material online).

Fine-Scale Biogeography at the Transit Station Level

To assess the fine-scale accuracy of mGPS, we next trained 

it on the quality-controlled MetaSUB data from the 

three most extensively sampled cities: Hong Kong 

(n = 664), New York (n = 105), and London (n = 542) 

(supplementary fig. S8, Supplementary Material online). 

In Hong Kong, mGPS predicted the subway station of origin 

for 82% of the samples with a mean of 53% sensitivity and 

99% specificity. Moreover, nearly half of the samples were 

predicted within 1 km of their sampling site, with a median 

distance of 1.25 km.

Hong Kong is divided into small islands by the ocean. We 

separated Hong Kong into distinct regions based on the 

three main islands in the north, west, and south. We ob-

served clear separation and spatial clustering of predictions 

around stations (supplementary fig. S9, Supplementary 

Material online), even between stations in high proximity, 

as 86% of the sample coordinates were predicted to the 

sampling island region (Fig. 5a). Our model explained 

a large amount of the variance in sample coordinates 

(r2 = 85% and r2 = 63% for latitude and longitude, re-

spectively). By contrast, in a random model with reshuffled 

RSAs, mGPS predicted only 9.7% and 28.4% of the sam-

ples to their original subway station and sampling island re-

gion, respectively. No samples were predicted within 1 km 

of their sampling site, with a median distance of 21.4 km. 

The high concordance between mGPS predictions and 

the sampling sites at such a fine-scale level indicates the re-

markable distinctiveness of the microbial communities of 

each transit station. mGPS’s classification accuracy in 

Hong Kong was further evaluated by utilizing the OVO 

(mean AUC of 0.92) and OVA (mean AUC of 0.97) method-

ologies (supplementary fig. S10a and b, Supplementary 

Material online). The PRC plot demonstrated how under-

sampling resulted in a reduced accuracy of mGPS. The 

high AUPR (∼0.6) can be expected to be improved if suffi-

cient data are provided (supplementary fig. S11a, 

Supplementary Material online).

In the New York MetaSUB subset, mGPS predicted the 

transit station of origin for 43% of the samples, likely due 

to the smaller sample size (an average of 3.6 samples per 

station, compared to 20.1 per station for Hong Kong). 

Consequently, less information was available to train the 

model during each iteration of the cross-validation proced-

ure. Nonetheless, the predicted coordinates showed a high 

clustering level toward the sampling boroughs, allowing us 

to predict 64% of the samples within the right borough 

(Fig. 5b) with a median distance of 2.39 km from the transit 

station. Most of the remaining samples were predicted 

along the borough boundaries. After reshuffling the RSAs 

of samples, mGPS predicted only 24% of the samples with-

in the right borough with a median distance of 6.56 km 

from the station. mGPS’s classification accuracy in 

New York was also evaluated by utilizing the OVO and 

OVA methodologies, both yielding a mean AUC of 0.87 

(supplementary fig. S10c and d, Supplementary Material

online). The AUPR (>0.4) can also be expected to improve 

further if sufficient data are provided (supplementary fig. 

S11b, Supplementary Material online).

Due to the layout of London’s subway stations, most 

sampling took place at stations in the city center. As a re-

sult, while the London MetaSUB dataset is comparable in 

sample size to the Hong Kong dataset and nearly five times 

larger than the New York City dataset, it exhibited the low-

est geographical spread and smallest average sample size 
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(87% of London stations had fewer than four samples, 

whereas over 50% of Hong Kong stations had at least 15 

samples available). While there was a high concordance be-

tween the sampling sites and the city in the global dataset 

(supplementary fig. S1c, Supplementary Material online), 

these limitations have considerably reduced the fine- 

mapping efficiency of mGPS. To overcome these data lim-

itations, we divided the city into six clusters using k-means 

clustering (K = 6) applied to sample coordinates. mGPS 

predicted the sampling region for 48% of samples 

(supplementary fig. S12a, Supplementary Material online). 

After reshuffling the RSAs of samples, mGPS predicted the 

sampling region for only 20% of the samples.

The distribution of samples to clusters was uneven, ran-

ging from 44 to 191 in the central cluster raising questions 

as to how sample distribution affects mGPS’s accuracy. To 

test how uneven cluster sizes, affect mGPS’s performances, 

we carried out several analyses where we manipulated the 

cluster sizes (Table 3). First, we randomly sampled 20 

and 40 samples from each cluster 100 times and 

calculated the median cluster prediction accuracy as 

30.8% and 35.8%, respectively (supplementary fig. S12b, 

Supplementary Material online). Compared with the origin-

al dataset, the low accuracy of the subsets showed that even 

sample sizes with undersampling were not advantageous 

for mGPS. Next, we tested three more conformations using 

even sample sizes in five clusters, with the last cluster en-

riched as much as possible. These conformations included 

even sampling with enrichment of the South London (R1) 

cluster, which yielded an accuracy of 35.7%, with 155 sam-

ples clustering at the R1 cluster but not the central R5 clus-

ter, and even clustering with enrichment of the Central 

London (R5) cluster, which yielded an accuracy of 46%, 

with 139 samples clustering at the largest R5 cluster. 

Finally, we tested a similar conformation to the last one 

with even higher enrichment of the R5 cluster, which 

yielded an accuracy of 52.22% with 245 samples clustering 

at the fifth and largest cluster (supplementary fig. S12b, 

Supplementary Material online). Overall, these results 

show that mGPS is unbiased toward the central clusters 

but, as expected, is affected by the sample sizes, with 

the largest samples offering more training opportunities. 

Evaluating mGPS’s classification accuracy in London 

using the OVO and OVA methodologies yielded mean 

AUCs of 0.75 and 0.77, respectively (supplementary fig. 

S10e and f, Supplementary Material online). The relatively 

low AUPR (0.42) indicates the low precision of mGPS 

in London (supplementary fig. S11c, Supplementary 

Material online).

Overall, the global and fine-scale trends highlight the ro-

bustness of the mGPS across diverse datasets and popula-

tion sizes, alongside its sensitivity to insufficient sampling 

data, suggesting that mGPS performances can be expected 

to improve over time as more data become available. While T
a
b
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London was predicted accurately in the MetaSUB city data-

set, mGPS could not achieve fine-grade predictions as those 

achieved for Hong Kong and New York City.

Biogeographical Predictions for Soil Microbiomes

We analyzed the RSA data from a worldwide survey of soil mi-

croorganisms across 18 countries on six continents that de-

tected 25,224 bacterial phylotypes (common soil bacterial 

species) in 237 samples (Delgado-Baquerizo et al. 2018) 

(Table 1; supplementary text S1, Supplementary Material

online). In over 95% of the samples, just 0.03% of the phylo-

types were shared, and fewer than 1% were distributed across 

all countries (supplementary fig. S1.1c, Supplementary 

Material online). Considering the dominant soil taxa, all phyla 

except WS2 were present in all samples (supplementary fig. 

S1.3c2, Supplementary Material online). The most common 

phylotypes were affiliated with Bradyrhizobium, Rhodoplanes, 

and Mycobacterium—all Pseudomonadota. The RSAs of com-

mon and rare phylotypes differed by country. Unlike in the 

MetaSUB dataset, where common taxa had a high RSA, com-

mon soil phylotypes did not. Puerto Rico had the highest abun-

dance of rare phylotypes, followed by Peru (supplementary fig. 

S1.2c1, Supplementary Material online). The most common 

potential pathogen was the plant pathogen Pseudomonas 

viridiflava, followed by the animal and human pathogen 

Stenotrophomonas maltophilia. Potential soil pathogens 

were relatively uniformly distributed across continents 

(supplementary fig. S1.7c, Supplementary Material online).

We applied mGPS to the quality-controlled soil microbiome 

data (231 samples collected from 13 countries). The geo-

graphic dispersion of the top GITs demonstrates the potential 

of mGPS for biogeographical predictions for this dataset 

(supplementary fig. S13, Supplementary Material online). For 

example, the genus Actinomycetospora (operational taxo-

nomic unit [OTU], #2106) of Actinobacteria (most likely A. 

chiangmaiensis), first isolated from tropical rainforest soil in 

Northern Thailand, was one of the taxa found primarily or sole-

ly in Australia. Although each sample contained over 500 

abundant taxa, only a subset of 200 taxa provided the highest 

prediction accuracy, suggesting that most soil taxa are, at best, 

weakly associated with geography (supplementary fig. S14, 

Supplementary Material online). To address inconsistent sam-

pling in the soil microbiome data, we employed the synthetic 

minority oversampling technique (SMOTE), which equalizes 

sample sizes by oversampling. After oversampling to ensure 

sample sizes of not less than 10 for all countries, mGPS pre-

dicted the sampling country for 88% of the samples with a 

mean of 75% sensitivity and 99% specificity. After reassigning 

samples to countries (the finest geographical resolution avail-

able in this dataset) based on the predicted latitude and longi-

tude, samples that match the sampling country were 

considered to have a distance of zero from the sampling coun-

try. For samples not assigned to the sampling country, the 

distance between the predicted coordinates and the sampling 

country was calculated. Looking at the predicted geographical 

coordinates (Fig. 6), 61% of samples were predicted within 

100 km of their true sampling countries and 71% within 

500 km (Table 2). Expectedly, countries well represented in 

the training dataset were predicted more accurately 

(supplementary fig. S15, Supplementary Material online). 

Comparing those results with those of a random model by re-

shuffling RSAs, mGPS predicted the sampling country for only 

28% of the samples, with 2.2% and 2.6% of samples pre-

dicted within 100 and 500 km, respectively.

Here, too, we applied a leave-one-out procedure, but at 

the country level because, unlike in the MetaSUB dataset, 

the soil dataset is sparsely sampled. mGPS’s prediction con-

cordance with the sampling site decreased, with 33% of 

predictions made within 100 km of their country of origin 

and 41% within 500 km. These results illustrate one of 

the known limitations of ML tools: their requirement of 

relatively large datasets for training. When provided with 

a medium-sized, sparsely sampled dataset, ML algorithms 

cannot be adequately trained, which results in lower accur-

acy (Fig. 6). Overall, the results reinforce both the regional 

uniqueness of some microbial communities and the rela-

tionships between geography and biodiversity, which allow 

the identification of the geographical source of microbial 

samples with high accuracy based solely on microbial RSA 

data. Lastly, we generated ROC curves to visualize the per-

formance of the classification hierarchy of mGPS models in 

predicting samples to continents and countries utilizing the 

OVO and OVA approaches. The average AUC ranged from 

0.94 to 0.97, demonstrating the robustness of mGPS per-

formances for soil microbiomes (supplementary fig. S16, 

Supplementary Material online). The excellent AUPR 

(>0.8) demonstrates highly accurate localization, even in 

an imbalanced dataset. As before, smaller sample sizes 

were associated with lower prediction accuracy 

(supplementary fig. S17, Supplementary Material online).

Biogeographical Predictions for Marine Microbiomes

We last analyzed the Tara Oceans microbiome dataset, 

which includes 2,328 taxa and 131 samples from 

nine oceanic water bodies (Sunagawa et al. 2015) 

(Table 1; supplementary text S1, Supplementary Material

online). Archaea accounted for about 5% of taxa, whereas 

bacteria comprised the remainder. Here, a large percentage 

of taxa (22%) appeared in all nine oceanic regions, and 6% 

appeared in only one ocean (supplementary fig. S1.1b2, 

Supplementary Material online). The most common phyla 

were Actinobacteria, Bacteroidetes, and Cyanobacteria. A 

small number of potential pathogens were found, primarily 

affecting animals.

mGPS achieved 74% accuracy in predicting the oceanic 

water body of origin with a mean sensitivity of 70% (Fig. 7; 
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supplementary table S2, Supplementary Material online). 

The median distance of the predictions from their true ori-

gin is 2,834 km, which is not unexpected given the homo-

geneity of surface ocean habitats, the dispersion of 

samples, their mobility in the aquatic medium, and the 

small size of this dataset. When compared with the random 

model with reshuffled RSAs, mGPS only predicted the sam-

pling oceanic region body for 7.6% of samples, with a me-

dian distance of the predictions from their true origin of 

8,035 km (Table 2). Finally, we generated ROC curves to 

visualize the performance of mGPS in predicting samples 

to oceanic bodies. Using the OVO and OVA approaches, 

the average AUC ranged from 0.93 to 0.94, demonstrating 

the robustness of mGPS performances for marine micro-

biomes (supplementary fig. S18, Supplementary Material

online). The very good AUPR (∼0.7) demonstrates highly ac-

curate localization, even in an imbalanced dataset. Very 

small (Q1) and large (Q4) sample sizes were associated 

with lower and higher prediction, respectively, with inter-

mediate sample sizes (Q2 to Q3) showing mixed patterns 

(supplementary fig. S19, Supplementary Material online).

Mobility among mGPS Predicted Local and Nonlocal 
Taxa

In the remaining study, we focused on the MetaSUB 

dataset due to its large size and high biodiversity. 

Further analysis of the 200 GITs found in the MetaSUB 

dataset showed that the most informative GITs are not 

rare in specific cities but instead have a higher dispersion 

in samples and cities (occupancy value). GITs account for 

most of the taxa’s RSAs in cities, with the most dominant 

phyla being Pseudomonadota, Actinobacteria, and 

Firmicutes. Gammaproteobacteria, Actinomycetia, and 

Alphaproteobacteria were the most abundant classes. 

Interestingly, 12.5% of the GITs were global potential 

pathogens that varied in dispersal between cities. We found 

no correlations between the pathogens’ RSAs and the cities’ 

populations, nor between the pathogens’ alpha diversities 

and the cities’ populations (Table 1; supplementary text 

S2, Supplementary Material online).

Establishing the accuracy of mGPS predictions, whether 

on or off the sampling site, can be challenging given that 

we have information only on the sampling site and the 

site of origin (where the sample originated before it was 

translocated to the sampling site) is unknown. In our former 

analyses, we demonstrated that mGPS could predict most 

samples to their sampling sites and that, unlike classifica-

tion algorithms, it can do so even if it was not trained on 

the sampling site. By analogy, consider the three-island 

model shown in Fig. 8a. Trained only on samples collected 

from islands α and γ, mGPS predicted samples collected 
from the northern area of island β. It did that by comparing 
the relative abundances of the β GITs to those of α and γ 
GITs in a similar manner to what we described above. 

However, mGPS predicted the samples collected from the 

southern area of island β to island γ (Fig. 8b), suggesting 
one or more translocation or migration events from islands 

γ to β. Are these predictions wrong?
Thus far, we treated off-sampling-site mGPS predictions 

as incorrect predictions, as we reported accuracy under the 

assumption that most predictions should match the sam-

pling site. However, this assumption ignores the mobility 

Fig. 6. mGPS’s geographical predictions for the soil microbiome data. Crosses represent the predicted location of the 231 samples in the dataset. Predictions 

are color coded based on their sampling region. Sampling sites are marked in triangles (inset).
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of microbiomes due to migrations, import, tourism, and 

similar mechanisms that translocate microbiomes between 

environments. While we lack the historical knowledge 

to prove these translocations, we can support them 

using a statistical framework. To test whether mGPS off- 

sampling-site predictions are reasonable and whether 

mGPS can distinguish local from nonlocal microorganisms, 

we developed a test that compares the GITs’ RSA distribu-

tions to answer the three questions shown in Fig. 8c.

The rationale of our test is that if mGPS correctly predicts 

the source site, then the RSA distribution of the tested GITs 

should be more similar to those of samples in the predicted 

site than to those of the sampling site, given that the local 

populations of the two sites exhibit different RSAs. If the 

answer to all three questions is positive (Fig. 8c), we can 

confidently say that mGPS off-site predictions are correct. 

Overall, if mGPS correctly predicts samples as nonlocal, 

the GITs’ RSA distributions would exhibit a specific pattern 

shown in Fig. 8d. This pattern entails two notable distinc-

tions (determined by the Wilcoxon test with a significance 

level of P < 0.05): firstly, between the nonlocal samples 

and the local samples at the sampling site, and secondly, 

between the local samples at the sampling site and the local 

samples at the predicted site. By contrast, there will be a 

nonsignificant (P > 0.05) or less significant difference be-

tween the samples predicted nonlocally and the local sam-

ples in the predicted site, as is the case in this example. We 

propose two controls, the first of which consists of mixed 

samples predicted locally and nonlocally, which 

violate the first condition (Fig. 8e). The second control con-

sists of non-GITs violating the first and last conditions 

(Fig. 8f).

The aforementioned pattern (the test sample’s RSA dis-

tribution is significantly different from that of the neighbor-

ing sites, which is significantly different from that of the 

predicted site, and the sample’s RSA distribution is similar 

to that of the predicted site) shown in Fig. 8d is expected 

to be most visible in geographically remote prediction, 

and sampling sites are expected to harbor different micro-

bial communities. To test if we can observe it in mGPS pre-

dictions, we selected three distinct geographical region 

groups and searched for the above pattern among the 

top 15 most important GITs (supplementary text S3, 

Supplementary Material online). We observed this 

pattern 8.7 times on average (supplementary fig. S3.1, 

Supplementary Material online), demonstrating that the 

nonlocally predicted samples have likely originated in the 

predicted sites. The pattern was not observed in the first 

control group, which consisted of mixed samples predicted 

nonlocally and locally (e.g. a mix of American samples pre-

dicted to America and Europe). As a second control, we 

analyzed non-GITs. The RSA distributions remained mostly 

unchanged between the three groups, and the pattern ap-

peared only 2.6 times on average in the 15 randomly 

Fig. 7. mGPS’s geographical predictions for marine microbiome data. Crosses represent the predicted coordinates for all marine microbiome samples 

(n = 131) color coded by the oceanic body of origin. Sampling sites are marked in triangles (inset).
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selected non-GITs. These results demonstrate that mGPS 

correctly predicts the source site in most cases and can be 

used to infer AMR transmission routes.

Comparing the proportion of MetaSUB samples 

predicted by mGPS to their local sampling region or 

elsewhere (e.g. do the migration), we found that the 

Middle East has the smallest nonlocal proportion and 

Oceania the highest, with more than half of all taxa 

being nonlocal (supplementary fig. S3.2, Supplementary 

Material online). On the city level, Barcelona had the smal-

lest proportion of nonlocal taxa. We note that mGPS distin-

guished both the samples and individual local and nonlocal 

taxa.

Comparing the RACs of the local and nonlocal samples 

(supplementary text S3, Supplementary Material online), 

we found that, excepting Oceania, nonlocal samples tend 

to have a lower taxa richness. Oceania had the lowest 

taxa richness in the world. The variation in taxa uniformity 

of the local and nonlocal migrants provides a novel means 

of comparing urban microbiomes (supplementary fig. S3.3, 

Supplementary Material online).

AMR Genes of Local and Nonlocal Samples 
Differentiated by mGPS

As bacterial resistance and antimicrobial diversity rise, epi-

demiology increasingly focuses on the spread and trans-

mission of AMR genes (Ahmad et al. 2021). Current 

approaches to identifying the source of AMR genes involve 

a combination of microbiological, molecular, and epi-

demiological techniques, requiring extensive data collec-

tion. A previous study has verified that AMR genes are 

urban-specific and can be used to predict the origin of ur-

ban microbial samples (Casimiro-Soriguer et al. 2019). 

However, until now, bioinformatic tools that can leverage 

Fig. 8. A statistical framework for testing mGPS’s off-site predictions using differences in the RSA distributions of GITs. Islands α, β, and γ harbor diverse micro-
biome populations, which include GITs (“G”) and non-GITs (empty circles), some of which carry AMR genes (rectangles). In a), mGPS correctly predicted test 

samples (gray) from the Northern island β to β, although not previously sampled. In b), mGPS predicted test samples (white) from the Southern island β to γ. c) 
Testing the validity of these predictions requires answering three questions. For that, we compared the RSA distribution of the GITs in the test sample (non-

locals, immigrants) to local samples from sites β and γ (predicted as such by mGPS) in d). If the test sample’s RSA distribution is significantly different from that 
of the neighboring sites, which is significantly different from that of the predicted site, and if the sample’s RSA distribution is similar to that of the predicted site, 

it supports mGPS’s prediction that the test sample originated in the predicted site. Two control cases are next described: in e), mixing the test (nonlocally pre-

dicted) samples with the neighboring site and selecting 20 random samples. If the mixed samples’ distribution is similar to both distributions of the neighboring 

sites and the predicted site and if the distribution of the neighboring sites is significantly different from that of the predicted site, it supports mGPS’s prediction 

that the mixed sample arrived from sites β and γ) In f), the original analysis is repeated for non-GITs. Finding no difference between the three distributions 
demonstrates that non-GIT taxa carry little to no biogeographical information compared to GITs. Significance was assessed using the Wilcoxon signed-rank 

test with the P-value marked in the plots as 0 to 0.001*** or NS (nonsignificant difference).
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this knowledge to support such efforts at low cost have re-

mained unavailable.

mGPS provides a simple, accurate, and affordable means 

to localize AMR samples. By applying mGPS to the samples, 

we can predict their source, and because AMR genes have 

been discovered in each sample, we can differentiate local 

and nonlocal samples to trace AMR transmission. For ex-

ample, assume that island α bacteria had only the red 
AMR and island γ only the blue AMR (Fig. 8). mGPS can 

be used to show that a bacterium from northern island β 
with the two AMRs is the likely product of AMR gene trans-

fer from southern island β, which migrated from island γ 
(Fig. 8b) and reached the southern island β via its land 
bridges, which can now be better monitored.

To study the influence of microorganism migration on 

AMR spread, we compared the relative abundance of 20 

common AMRs using reads/kilobase/million mapped reads 

(RPKM) (Danko et al. 2021) in samples that mGPS predicted 

as local or nonlocal. We found that the RPKM values of dis-

tinct AMRs differ between the two groups, with the nonlo-

cal samples having higher RPKM values overall (Fig. 9a). The 

two groups exhibited significant differences (Wilcoxon test: 

P < 0.05) in the RPKM values in aminocoumarins, elfamy-

cins, fluoroquinolones, rifampin, and beta-lactams 

(Fig. 9b). The total AMR RPKM values varied by city. 

Nonlocal samples had higher AMR RPKM values in about 

55% of cities. Among the top 15 cities with the highest 

AMR RPKM values, 75% had nonlocal samples with higher 

AMR RPKM values than local samples (Fig. 9c). Compared 

to locally predicted samples, nonlocal samples tend to 

have higher AMR relative abundance (Fig. 9a and c), de-

marking the transmission routes. Interestingly, we found 

no correlation between the AMR relative abundance of 

nonlocal samples and the city’s tourist population annually 

(Pearson test, n = 35, r = −0.031, P = 0.86) (Fig. 9d).

Finally, we sought to understand how AMRs are trans-

mitted globally by charting the geographical start and 

end points of the 20 most common AMRs. mGPS was al-

ready applied to the AMR-containing samples, and it was 

predicted that they would be local or nonlocal (where the 

source site differs from the sampling sites). Considering 

mGPS’s predicted source sites as the starting points and 

the sampling sites as the ending points, we could trace 

the migration route of each AMR. We used an animation 

Fig. 9. AMR relative abundance (RPKM values) patterns. a) Comparing RPKM values of each AMR between local and nonlocal (migrant) samples on a global 

level. Bar colors distinguish local from nonlocal samples. b) Comparisons of AMRs’ RPKM value (after min–max normalization) distributions of local and non-

local samples globally. Significance was assessed using the Wilcoxon signed-rank test with the P-value marked in the plots as 0 to 0.001***, 0.001 to 0.01**, 

0.01 to 0.05*, or NS (nonsignificant difference). c) Total AMR RPKM values for local and nonlocal samples per city. Colors as in a). d) The correlation of total 

AMR RPKM values of nonlocal samples and the annual number of tourists (supplementary table S3, Supplementary Material online) (Pearson-test, n = 35, r =  

−0.031, P = 0.86).
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to show how AMR transfers globally by plotting those 2016 

and 2017 migrations when data were collected 

(supplementary video S1, Supplementary Material online; 

Fig. 10). We found that in 2016, AMR was transmitted 

mainly from America, Western Europe, Eastern Africa, 

and Japan, whereas in 2017, the focus moved to 

Southeast and Eastern Asia and the whole of Europe 

(supplementary fig. S20, Supplementary Material online). 

We emphasize that AMR types vary by site. For example, 

the five most common AMRs (MLS, beta-lactams, elfamy-

cins, rifampin) and multidrug resistance genes are globally 

transmitted (rifampin and multidrug resistance were not 

traced to Oceania). By contrast, tunicamycin originated in 

South and North America, West Africa, and West Europe 

and has spread to Northeast America and North Africa. 

Overall, our findings offer a longitudinal and latitudinal 

view of AMR transmission.

Discussion

In recent years, multiple large-scale projects aimed at im-

proving our knowledge of a global microbiome, with ef-

forts ranging from ocean to soil to the built environment 

and even archeological sites (e.g. Sunagawa et al. 2015; 

Thompson et al. 2017; Delgado-Baquerizo et al. 2018; 

Habtom et al. 2019; Danko et al. 2021; Zhang et al. 

2023). It is intriguing to ask to what extent the data 

generated by microbiome projects are geographically 

identifiable. Traditional community analyses revealed com-

monalities within and between communities (Leung et al. 

2021) and that microbial abundance exhibits geographical 

differences (Wu et al. 2022). However, those studies were 

unable to biotrace microorganisms, nor could they distin-

guish local from nonlocal microorganisms, without which 

AMR transmissions cannot be tracked.

Past efforts to develop microbiome-based biotracing tech-

nology were limited by relatively small sample sizes, specific 

ecosystems, or specific sequencing technology and could 

not be applied universally (Mason-Buck et al. 2020; 

Robinson et al. 2021). In the absence of a biogeographical 

tool, studies resorted to classification instead of prediction. 

For instance, it was shown that the microbiome of nine offices 

across three cities showed a high degree of similarity between 

offices within the same city, allowing classifying samples to cit-

ies with 85% accuracy (Chase et al. 2016), that dust samples 

were classified to their national source with 90% accuracy 

based on the presence of fungi (Grantham et al. 2020), and 

that 88% of microbiome samples can be classified to cities 

(Danko et al. 2021).

This motivated us to develop the mGPS—the first 

ML-based tool that employs microbiome RSA data to predict 

their source communities. mGPS is a parameter-free tool 

that relies solely on the RSA of the most GITs over large geo-

graphical regions. mGPS is agnostic to the ecosystems’ 

ecological properties, different sequencing approaches, 

taxonomic definitions, and bioinformatics pipelines. 

However, in the case of multiple microbiome datasets that 

differ in those properties, mGPS may best be applied separ-

ately to each dataset, as done in this study, unless the data-

sets are produced using the same standards and pipelines. 

This is because microbiome research has experienced expo-

nential growth over the past decade; however, studies still 

suffer from irreproducibility across investigations (Baykal 

et al. 2024), even when analyzing the same sample (Wood 

et al. 2021), due to using different pipelines and a lack of 

standardization. While there has been an increased em-

phasis on quality control and standardization in recent years 

(e.g. Amos et al. 2020; Meyer et al. 2023), these practices 

have not been adopted by all data-producing labs. These is-

sues hinder any meta-analysis of different datasets. Briefly, 

mGPS first identifies GITs that exhibit distinct geographic 

distributions. Next, it is trained to associate their RSA pat-

terns with geographical coordinates to predict their source 

location (Fig. 1). Interestingly, 12.5% of the MetaSUB GITs 

were potential pathogens like P. aeruginosa and S. malto-

philia, both are globally widespread (Table 1). While it is rea-

sonable to expect a large agreement between the sampling 

and predicted sites, as demonstrated in Figs. 3 and 5 to 7, 

predictions outside the sampling sites should be justified. 

For that, we developed a statistical framework that em-

ployed three statistical tests that together offer support 

for those predictions (Fig. 8). We have shown that mGPS 

is applicable to microbiome data from very different micro-

biome environments: urban, soil, and marine and trace sam-

ples from worldwide regions, countries, cities, broader 

areas within cities, and, in some cases, even to individual 

sites.

The high resolution of the MetaSUB dataset demon-

strated the fine-scale resolution of mGPS in inferring bio-

geography. This was evident in Hong Kong, where mGPS 

could distinguish between two subway stations just 

172 m apart. In New York City, mGPS could differentiate 

a kiosk from a nearby handrail that is less than a meter 

away. These results contrast with the low prediction accur-

acy in London, where only half of the samples were correctly 

assigned to their geographical clusters. We speculated that 

the high accuracy of prediction accuracy in Hong Kong is 

due to the cleaning protocols of their subway systems, de-

scribed as “absolutely spotless,” which include regular 

cleaning, antibacterial coating to handrails and escalators, 

and implementing procedures to minimize contact between 

incoming and outgoing passengers (Maitin 2018), even be-

fore COVID-19. These practices “reset” the microbiome sig-

natures from geographically diverse regions and reduce the 

mixing of microbiomes from different environments, which 

creates a unique microbiome profile for each station. By 

contrast, the London underground stations were described 

as “often dirty” and lacking sufficient handholds, resulting 
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in passengers bumping into each other and mixing their mi-

crobiomes (Maitin 2018). Because cleaning practices im-

proved post-COVID-19, repeating this analysis with newer 

samples would be intriguing.

It is well established that small sample sizes challenge ML 

tools and can reduce their accuracy. However, mGPS 

achieved high prediction accuracy for the soil and marine 

datasets despite their relatively small sample sizes. This suc-

cess can be attributed to the high differentiation of the GITs 

in these biomes. Due to the vast differences between the 

three datasets, it is difficult to assess to what extent specific 

differences in protocol, sampling strategies, or sequencing 

techniques affected the accuracy of mGPS results. 

However, analyzing the within differences of each dataset 

showed that low sample sizes and uneven samples were 

the largest factors that reduced prediction accuracy.

Further analyzing the MetaSUB dataset, we found that 

migratory samples (i.e. predicted elsewhere from their sam-

pling site) are typically richer in AMR genes. We also differ-

entiated local and nonlocal taxa, which were predicted 

elsewhere than the sampling site, allowing tracking of the 

spread of AMR genes in 2016 and 2017. Although inter-

national travelers are proportionally much more likely to 

spread AMR (Hassan and Kassem 2020), we found that 

there was no correlation between the number of tourists 

in each region and the total RSA of the 20 common AMR 

genes for nonlocal samples, indicating that rising tourism 

may not be the main reason for the foreign AMR. 

Therefore, foreign AMR is considered more likely to be trans-

mitted by drug-resistant bacteria brought about via alterna-

tive transmission routes like trade, animal transmission, and 

discharge of wastewater into the environment (Grenni et al. 

2018; Kraemer et al. 2019). It is noteworthy that the timing 

of the tourism count does not exactly coincide with the AMR 

sample collection time. This can be further studied more ac-

curately by collecting more temporal samples. For the anti-

microbial compounds beta-lactams and fluoroquinolones 

(Rice 2012), which are highly susceptible to resistance, the 

relative abundance distribution of their resistance genes 

was shown to be significantly different between local and 

nonlocal samples, and the nonlocal samples exhibited high-

er RPKM values for both types of compounds. Combined 

with mGPS for their source prediction, it is expected to pro-

vide data and support for AMR biotracking, facilitate the 

construction of effective models for AMR transmission 

from a spatial scale, and provide more information for policy 

and environmental monitoring against antimicrobial treat-

ments and outbreaks (Zhu et al. 2018).

Throughout this study, we trained and applied mGPS 

to each dataset separately to demonstrate the typical 

use of mGPS. An intriguing question is whether an 

all-environment generic mGPS model is feasible. While 

we cannot test it with the current datasets due to the non-

overlap of the taxa, we believe this is possible, provided the 

training data includes all environments of interest. This is 

supported by our observations that the GITs are environ-

ment specific. The existence of GITs in other environments 

in the training dataset will not affect a sample that com-

pletely lacks those GITs. Instead, the model will utilize the 

environment-specific GITs for that sample.

mGPS has several advantages. First, the input data (RSA 

data) required for the model training are easy to calculate 

Fig. 10. A snapshot of the AMR transmission at a global scale from the MetaSUB dataset. Samples move from mGPS predicted site of origins to their sampling 

site.
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and do not require additional annotation information such 

as environmental factors and functional microbial profiles 

(e.g. KEGG, resistance genes) (Casimiro-Soriguer et al. 

2019). We do not deny that richer information would likely 

provide more accurate predictions, but this would defeat 

the applicability of mGPS to different datasets. Second, 

due to their small cell sizes and mostly single-celled lifestyle 

microbial communities have a higher diversity per area as 

plant and animal communities, hence they are prone to se-

vere undersampling (Meyer et al. 2018), where rare species 

are not collected, and species abundance measures are not 

associated with the actual environment. mGPS reduces this 

risk by employing GITs, most of which have a higher disper-

sion in samples and cities (higher occupancy). Third, unlike 

current tools that use regional names to classify sample 

sources (Casimiro-Soriguer et al. 2019; Walker and Datta 

2019), the final output of the mGPS regressor chain is lati-

tude and longitude that can be directly tagged to the actual 

location in the map without the constraints of the class 

name (e.g. the classification labels need to be covered in 

the training set), thus achieving prediction of unsampled 

sites.

mGPS has several limitations. First, as with all ML meth-

ods, a relatively large training dataset (several hundred 

samples), globally uniform and balanced as much as pos-

sible, is required to yield accurate predictions. We can ex-

pect the prediction accuracy to improve over time as 

more data are accumulated. Second, imbalanced datasets 

may pose a challenge for mGPS. To overcome this chal-

lenge, we adopted three strategies: we removed cities 

with small sample sizes that insufficiently represented the 

microbial uniqueness of those cities; we trained the model 

using the XGBoost method, which is more robust for imbal-

anced datasets than alternative methods; and we demon-

strated (in the soil dataset) that a simple resampling 

scheme can markedly improve the results. We also adopted 

a range of measures to evaluate the accuracy of mGPS, in-

cluding AUC of ROC, F1 score, and AUPR. We acknowledge 

that further improvements can be made to reduce the im-

pact of imbalanced datasets and will explore those in a sep-

arate study. Third, small, well-connected environments 

create a fertile ground for microbiome exchange and there-

by reduce the accuracy of mGPS. For example, in the 

London metropolitan area, the major stations are sorted 

in a small and dense ring around London and branch into 

different lines; the closely knit stations homogenize the mi-

crobiome and prevent fine-scale geographical predictions, 

as in Hong Kong. Similar concerns exist for marine micro-

biome as it is unclear how localized it is. Fourth, temporal 

changes in microbiome communities may bias mGPS pre-

dictions. For example, in the MetaSUB dataset, all the sam-

pling days were carried out around June 21 every year. We 

demonstrated via a temporal replication that mGPS (trained 

on the GSD2017 dataset) could accurately predict a novel 

dataset (GSD2016). Although the accuracy slightly dropped 

compared to the original model, the results show a promise 

that temporal effects are likely not a major barrier to the ef-

fectiveness of the mGPS algorithm. The effect of seasonal-

ity remains unknown for this dataset; however, both the 

soil and marine datasets were sampled yearlong. Here 

again, prediction accuracy is likely due to their small sample 

sizes rather than the effects of seasonality. We note that 

while soil bacterial communities exhibit distinct differences 

among geographical sites, they exhibit high similarities over 

the years (Liu et al. 2019). Much remains unknown about 

the mechanisms that govern compositional dissimilarity 

in biological communities over time and space, and 

large-scale studies are necessary to determine the seasonal 

effects on the microbiome. Currently, the existing context-

ual data are not comprehensive enough, but even assum-

ing that the taxa abundance exhibits a large difference 

between the seasons if trained on seasonal data, mGPS 

could be modified to localize the microbiome and distin-

guish between seasons. Finally, the microbial community 

may change as the environment changes (Yang et al. 

2020) (e.g. train lines added or removed, floodings). 

However, if the nature of the disturbance is short, the mi-

crobiome can be expected to revert to its predisturbed le-

vels over time; otherwise, mGPS should be retrained for 

the new microbiome signature.

We envision that, with time, biogeographical applica-

tions will become enhanced for more worldwide micro-

biome communities due to the addition of GITs to the 

training dataset and potentially accounting for seasonality. 

Therefore, our results should be considered a lower bound 

to the full potential of mGPS for biogeography. Our study 

also provides additional insights into the relationships be-

tween bacteria and geography by showing that taxa exhibit 

varying degrees of relationship, and GITs should be pre-

ferred for biogeographical applications. mGPS is freely 

and publicly available and has a multifunctional, interactive, 

and user-friendly interface. We finally caution that with 

DNA sequencing now being routinely utilized at many loca-

tions, accumulating metagenomes, may make microbiome 

tracking a reality, which raises ethical, consent, ownership, 

legal, and privacy questions (Hawkins and O’Doherty 2011; 

Mason et al. 2014; Shamarina et al. 2017; Elhaik et al. 

2021; Robinson et al. 2021).

Materials and Methods

Global Datasets

We analyzed three different microbiome datasets 

that differ in their ecosystem’s ecological properties, 

different sequencing approaches, taxonomic definitions, 

and bioinformatics pipelines: the MetaSUB urban biome 

(n = 4,728) (Danko et al. 2021), with samples collected 
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from urban mass transit systems in 60 worldwide cities 

during two global city sampling days (gCSD) in 2016 

and 2017 available at https://github.com/MetaSUB/Meta 

SUB-metadata and https://portal.geoseeq.com/sample- 

groups/0625c15e-cf0d-4241-b33d-e967d55b91e62021. 

Samples’ taxonomic profiles were generated by 

KrakenUniq (v0.3.2) (Breitwieser et al. 2018), and the 

RSA, i.e. the fraction of DNA in a sample from a given tax-

on, was calculated after subsampling to 100,000 classified 

reads and dividing the number of reads of each taxon by the 

total number of reads in each sample (Danko et al. 2021). 

Unless specified otherwise, we combined the annual data-

sets to reduce data missingness. The name and coordinates 

of the city of origin were given for each sample. Seven cities 

with unclear geographical coordinates were removed, leav-

ing 4,135 samples from 53 cities across 6 continents for 

the biogeographical analysis. The soil microbiome dataset 

(n = 237) (Delgado-Baquerizo et al. 2018) consisted of 

soil samples collected from sites across 18 countries across 

continents. Phylotypes were identified based on the 16S 

rRNA gene using the Ribosomal Database Project classifier 

(Cole 2005) and the Greengenes database (DeSantis et al. 

2006) and then calculated RSAs after the samples were rar-

efied to 10,000 sequences (Delgado-Baquerizo et al. 2018). 

The marine dataset (n = 131) consisted of samples collected 

from nine global oceanic bodies during the Tara Ocean ex-

pedition (Sunagawa et al. 2015) (https://www.ebi.ac.uk/ 

metagenomics/studies/ERP001736#overview). The tax-

onomy was profiled using 16S tags and metagenomic 

OTUs in the SILVA database (Quast et al. 2013). fetchMG 

(Sunagawa et al. 2013) is a tool for identifying microbial 

OTUs from metagenomic data based on single-copy phylo-

genetic marker genes. fetchMG-inferred profiles were em-

ployed to identify metagenomic OTUs (quasispecies). We 

analyzed the RSAs of the MetaSUB project provided by 

Danko et al. (2021). For the soil and marine dataset, the 

RSAs were calculated from the reads data by dividing the 

number of reads of each taxon by the rarefied 10,000 se-

quences (soil) and the total number of reads in each sample 

(marine) separately. All the datasets included the latitude 

and longitude coordinates of the sampling sites.

Microorganism Distribution and Pathogenicity

UMAP plots were calculated using the R package umap 

(version 0.2.10.0) (McInnes, Healy, and Melville 2018). 

We calculated the regional average RSAs (a city in 

MetaSUB, a country in soil datasets, and an oceanic body 

in the marine dataset) and the global average RSA of micro-

organisms weighted by the sample size per region. We also 

calculated the occupancy by counting the number of times 

each microorganism appeared in the samples and regions. 

That is, sample occupancy and regional occupancy denote 

the percentage of samples or regions where a given taxon 

was present with RSA higher than zero, respectively. To cal-

culate the occupancy of taxa at the phylum level, we anno-

tated the taxonomic hierarchy of taxa using the 

Microbiome Directory V2.0 (Sierra et al. 2019) and GTDB 

(Parks et al. 2022). The heterotypic synonym of microor-

ganisms was adjusted manually according to their name 

in the Microbe Directory, NCBI_taxonomy, and GTDB tax-

onomy in GTDB metadata. To calculate the sum of occu-

pancy of each phylum, we clustered the taxa according to 

their phylum. To measure the microbial diversity, we sorted 

microorganisms in each dataset according to the rank of 

sample occupancy and found the most common taxa. 

Taxa that appeared in more than 95% of samples were 

considered common, whereas rare taxa appeared in less 

than 5% of samples. The distributions of common and 

rare taxa were compared using the RSA sum of each group 

per region. All the analyses were done in R (version 4.0.3) 

(R Core Team 2020). We calculated Pearson correlations 

using the function stat_cor in “ggpubr” package (version 

0.4.0) (Kassambara 2020) and Wilcoxon signed-rank test 

using the function geom_signif in “ggsignif” package (ver-

sion 0.6.2) (Ahlmann-Eltze and Patil 2021) and visualized 

the results using the “ggplot2” package (version 3.3.3).

Pathogenicity annotation was obtained from the 

Microbe Directory. Potential pathogens were divided into 

three groups based on their hosts: animal, plant, and 

dual-kingdom pathogens. The sample occupancy, regional 

occupancy, regional average RSA, and global average RSA 

were calculated as per above. For the alpha diversity indexes, 

we utilized functions from the “vegan” package (version 

2.5-7) (Oksanen et al. 2013) to calculate various metrics. 

Specifically, we used the estimateR function to compute 

the observed species and the diversity function to determine 

the Evenness index, Shannon–Wiener diversity index, and 

Gini–Simpson diversity index. Because pathogenicity depends 

on various conditions (e.g. host susceptibility, environmental 

conditions, and interactions with other organisms), we con-

sidered the respective organisms’ potential pathogens.

mGPS Implementation

QC Procedure

MetaSUB cities with insufficient sampling data (less than 

eight samples) were removed, leaving 4,070 samples from 

40 cities with 3,669 taxa (including nine taxa recorded in 

the removed city samples that have a global RSA of zero 

otherwise). A second fine-scaled subdataset of the global 

MetaSUB dataset included three extensively sampled 

MetaSUB cities: Hong Kong, New York, and London. After 

filtering out samples with missing sampling coordinates 

and insufficient data, the dataset included 664 samples 

from 33 stations (Hong Kong), 105 samples from 29 sta-

tions (New York), and 542 samples clustered into 6 regions 

according the coordinates using k-means (kmeans() 
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function in R) from 175 stations (London). Countries with 

insufficient sampling data (less than three samples per 

site) were removed from the soil dataset, leaving 231 sam-

ples from 13 countries with 511 taxa (Delgado-Baquerizo 

et al. 2018). Given the limited data size, we employed 

the SMOTE (Chawla et al. 2002) by function SMOTE in R 

package “smotefamily” (version 1.4.0) to oversample 

and ensure that sample sizes for all countries were not 

less than 10 (k = 3, dup_size was set to oversample coun-

tries to 10 samples). Due to their distinct geographic loca-

tions, Alaska and Hawaii were individually extracted from 

the USA during the oversampling process. The marine dataset 

had even sample sizes (5 ≤ n ≤ 34) and remained unchanged.

Feature Selection

Features are the variables that contribute to predicting the 

outcome. Selecting informative, discriminating, and inde-

pendent features is crucial for mGPS to accurately predict 

geographical locations. In this context, the features re-

present the dominant taxa within microbial communities, 

which display varying abundance levels (RSA) across differ-

ent geographical locations, thus providing geographic in-

formation. We termed those taxa GITs. To 

computationally identify the features (or GITs), we carried 

out recursive feature elimination using random forests 

and their well-established feature importance measures 

to remove redundant and nonpredictive variables. For 

that, the dataset is first randomly split into training (80%) 

and testing (20%) datasets. An initial random forest classi-

fier is then trained for the classification of the relevant tar-

get variable—city for global MetaSUB data, station for local 

MetaSUB data subsets, country for soil data, and oceanic 

body for marine data—using the training data and all pos-

sible predictor variables (all taxa). The prediction accuracy is 

then calculated for the testing set. The accuracy of 

out-of-bag predictions for the random forest model is re-

corded. For each sample i, the prediction is made using 

the decision trees within the forest that did not use i for 

training, and the same is done after permuting each pre-

dictor variable. The difference between the two measures 

is averaged over all trees and normalized by the standard 

error. Based on this measure, the variables are ranked 

from the most to least important. Using this ranking, 

we retained five subsets of predictor variables Si, repre-

senting the i most important variables. For MetaSUB, 

i = (50, 100, 200, 300, 500, 1500); for the soil data, 

i = (20, 30, 50, 100, 200); and for the marine data, i = 

(100, 200, 300, 500). For each subset Si, the model is 

retrained, and predictions are made for the held-back testing 

set. This process is repeated five times using different training 

and testing splits to reduce selection bias. The subset size that 

produces the highest average classification accuracy is con-

sidered the optimal size. Given this optimal subset size i, 

the most informative variables with the i highest average im-

portance values are selected as the optimal predictor vari-

ables. For MetaSUB, a subset of 200 taxa was optimal 

(Table 1; supplementary fig. S21, Supplementary Material on-

line). A separate feature selection process identified features 

for each of the three cities, where sampling was done at a 

fine-scale station level in New York (100), London (200), 

and Hong Kong (400). For the soil and marine data, 200 in-

formative features (taxa) were found (Table 1). Variable im-

portance plots are used to illustrate the importance of GITs 

in model prediction accuracy. These plots demonstrate the 

importance of each variable (GIT) by showing how much 

the model’s accuracy decreases when each variable is ex-

cluded. The more significant the reduction in accuracy, the 

more critical the variable is for successful classification. The 

variables are presented in descending order of importance. 

The feature selection is built into mGPS, but users can adjust 

the feature size.

Model Training

To predict the geographical coordinates from the RSA data 

of the GITs, mGPS is trained to find a set of hyperpara-

meters (GIT combinations) per set of hierarchical classes 

(continent, country, city, and station and the site’s coordi-

nates). The core mechanism of the mGPS model involves a 

chained series of gradient-boosted decision trees, i.e. a 

multilayered geographical model that employs independ-

ent tree-like models to predict the geographical coordi-

nates (Fig. 1).

More specifically, consider the geographical hierarchy in 

the MetaSUB global dataset: M1 (continent), M2 (country, 

city, or site), M3 (latitude), and M4 (longitude). mGPS capi-

talizes on this hierarchical structure and utilizes correlations 

between latitude and longitude by employing a prediction 

chaining method, shown to improve prediction accuracy 

for multitarget problems (Melki et al. 2017). For our 

mGPS model (Fig. 1g), a vector x of the predictor variables 

(the RSA of the GITs) is used as input. For the first-level sub-

model M1, it predicts the first level of the geographical hier-

archy. The predicted class probabilities from M1 are then 

augmented with the input vector x, which is passed as input 

for the next level submodel M2—the prediction of the next 

level in the geographical hierarchy. As before, the predicted 

class probabilities are augmented with the M2 input vector, 

which is passed as input for submodel M3, a regression 

model for latitude prediction. This prediction is augmented 

by the M3 input vector passed as input to submodel M4, a 

regression model for longitude prediction. These submo-

dels make up the mGPS prediction model. The predictions 

for submodels M2, M3, and M4, are given as the final model 

output {y1, y2, y3 }, respectively. M2 produces predictions 

at the country level for soil data, city level for MetaSUB glo-

bal data, and transit level for MetaSUB’s three local subsets. 

Zhang et al.                                                                                                                                                                     GBE

20 Genome Biol. Evol. 16(11) https://doi.org/10.1093/gbe/evae209 Advance Access publication 7 October 2024 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
b
e
/a

rtic
le

/1
6
/1

1
/e

v
a
e
2
0
9
/7

8
1
4
7
1
0
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 1

9
 N

o
v
e
m

b
e
r 2

0
2
4

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae209#supplementary-data


In the latter case, submodel M1 was omitted as there is no 

variation at a regional (continental) level. To train the mGPS 

model, 5-fold cross-validation is carried out at each level 

using only the training data; out-of-fold predictions are 

then passed to the next level submodel for training. The 

gradient boosted decision trees (GBDT) algorithm 

(Friedman 2001) builds on the concept of a decision tree. 

A decision tree uses a tree-like structure (or flowchart) in 

which each internal node is a test, and branches represent 

the test’s outcome test, which leads to other nodes until the 

end nodes (or leaves) with the final outcome are reached. 

GBDT is based on iterations of nodes in a decision tree, ran-

domly and additively generated based on a subset of the 

features found in the input data. Each node is built to im-

prove the shortcomings of the previous node and produce 

the most appropriate separation between the features. All 

the underlying mGPS submodels employ GBDT with the 

XGBoost implementation (Chen and Guestrin 2016) de-

signed to maximize speed and performance. XGBoost 

requires the careful tuning of a series of crucial hyper-

parameters. These include shrinkage, maximum depth 

of trees, the maximum number of iterations, minimum 

loss reduction for splitting, subsample ratio of columns, 

and subsample ratio of the training instances. These are 

optimized using the grid search method with 5-fold 

cross-validation during training to maximize prediction 

accuracy while not overfitting the training data. In this 

approach, 80% of the data were used to train the model, 

including hyperparameter tuning. The trained mGPS 

model was then used to generate predictions for the 

held-out 20% unseen dataset (supplementary fig. S22, 

Supplementary Material online). This was repeated five 

times using five disjointed testing datasets, resulting in 

out-of-fold predictions generated for all samples, which 

were used to assess mGPS’s accuracy. All the results re-

ported here, including AMR transfer patterns, were ob-

tained from samples that were not used to train mGPS. 

All downstream analyses and predictions were done on 

the unseen dataset. We repeated the training procedure 

for each dataset.

Interface

To make mGPS more accessible, we developed a user- 

friendly interactive interface. mGPS can be used to train a 

new prediction model using our existing datasets, train a 

new prediction model using a new dataset, and finally pre-

dict the geographical source of samples provided by a pre-

diction model. The interface provides various flags and 

plots.

Evaluation of mGPS Performance

We used the term sampling site to denote the place from 

which samples were physically collected, the predicted 

site to denote mGPS’s predicted location, and the source 

site to denote the original site from which the microbiome 

migrated to the sampling site (if different).

When analyzing MetaSUB global predictions, the M2 

submodel was trained for city predictions. For the local pre-

dictions, in the case of Hong Kong, New York, and London, 

the M1 submodel was bypassed (as the continent of origin 

shows no variation at a local level), and the M2 submodel 

was trained for transit station or regional clusters, and co-

ordinate predictions were generated using the same cross- 

validation procedure as for global predictions, including a 

separate feature elimination procedure carried out for 

each city. When applying the model to soil data, the M1 

submodel was trained for continent prediction, the M2 sub-

model for country prediction, and M3 and M4 for latitude 

and longitude predictions, respectively. When applying 

the model to the marine data, the M1 submodel was 

trained for oceanic body prediction and M2 and M3 for lati-

tude and longitude predictions, respectively. The accuracy 

of the classification hierarchy (M2) for mGPS models was 

reported for each model. To assess the accuracy of mGPS 

coordinate predictions, the distances between the sam-

pling and predicted sites were calculated using the 

Haversine formula, which determines the great-circle dis-

tance between two points on a sphere, i.e., the shortest dis-

tance over the Earth’s surface. For the soil datasets, the 

distances were calculated from the predicted coordinates 

to the nearest sampling country border. Samples assigned 

to the sampling country based on predicted latitude and 

longitude were considered to have a distance of zero 

from that country.

To estimate mGPS assignment accuracy, we utilized the 

leave-one-out approach at the spatial cluster level. First, 

due to the high heterogeneity of the dataset, we divided 

each locality (country [relevant for the Soil microbiome] or 

city [relevant for the global MetaSUB microbiome]) into dis-

tinct spatial clusters. Clusters were obtained by applying 

k-means clustering (K = 120) to the haversine distances cal-

culated from latitude and longitude coordinates. Due to 

their high dispersal, clusters were not calculated for the 

marine dataset. This generated more homogeneous sample 

clusters for each locality; each was held out when training 

the model. The predictions were made for this held-out 

cluster, and this was repeated for all clusters. We reported 

the sensitivity and specificity of the prediction model when 

it predicted the sampling site (although not a measure of 

accuracy), which were calculated for each locality and 

then averaged across all localities.

To further assess the accuracy of the mGPS model, we 

subjected our model to predict the origins of a shuffled mi-

crobial dataset. This evaluation determines the ability of 

mGPS to discern regional patterns in taxa’s RSA compared 

to random predictions. For that, we randomized the RSA va-

lues of each taxon for each sample across all samples. We 
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then applied the final model, trained on the original dataset, 

to predict the geographic origins of the shuffled samples.

ROC curves were used to evaluate the classification hier-

archy of mGPS models and were calculated using the OVO 

and OVA approaches using the R package “pROC” (version 

1.18.4) (Robin et al. 2011). OVO compares each pair of 

classes, considering one of the classes in a pair as the posi-

tive class and the other class as the negative class. Each pair 

has two ROCs because each class in the pair can be positive. 

OVA approach compares each class with all the rest, con-

sidering one class as the positive class and the others as 

the negative classes. After obtaining the ROC curves for 

all classes, we plotted the average ROC curve with one 

standard deviation. Here, we interpolated all ROC curves 

at 1,000 points using the approx function in the R package 

“stats” (version 4.2.2) (R Core Team 2020). Then, the mean 

and one standard deviation of all the true positive percen-

tages for all classes were calculated for each false positive 

percentage point. The precision-recall curve (PR) and area 

under the curve (AUPR) were calculated using the R package 

“PRROC” (version 1.3.1) (Grau et al. 2015). For each class, 

we labeled it as a positive class, with others as negative class.

Distinguishing Local from Nonlocal Samples and 
Comparing Their Biodiversity

Local samples were defined as samples that mGPS pre-

dicted to their sampling site (city-level), with nonlocal sam-

ples considered the outcome of migration when this is not 

the case. To calculate the RACs, we adopted an abundance 

cutoff of 10−6 RSA for each region using the R function 

rankabundance in the “Biodiversity” package (Kindt and 

Coe 2005). The Kolmogorov–Smirnov test, implemented 

in the R function ks.test in the “stats” package, was used 

to evaluate the difference in RSA distributions.

AMR Transmissions

Using the AMR gene RPKM values dataset that describes the 

relative abundance of AMR (Danko et al. 2021), we com-

pared the average RPKM values of each AMR gene in local 

and nonlocal samples globally and per city. To compare the 

RPKM distribution in local and nonlocal samples, we normal-

ized the RPKM values of each AMR gene into a range of [0.1] 

by min–max normalization (Patro and Sahu 2015). Using the 

prediction and sampling sites as the first and second data 

points, respectively, we plotted the transmission of the non-

local AMR genes during the two sampling years (2016 to 

2017). The animation was produced using the professional 

GPS package licensed from Anath Genomic Consultants AB.

Supplementary Material

Supplementary material is available at Genome Biology and 

Evolution online.
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