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ABSTRACT: Hydrogen−deuterium exchange (HDX) has become a pivotal method for
investigating the structural and dynamic properties of proteins. The versatility and sensitivity
of mass spectrometry (MS) made the technique the ideal companion for HDX, and today
HDX-MS is addressing a growing number of applications in both academic research and
industrial settings. The prolific generation of experimental data has spurred the concurrent
development of numerous computational tools, designed to automate parts of the workflow
while employing different strategies to achieve common objectives. Various computational
methods are available to perform automated peptide searches and identification; different statistical tests have been implemented to
quantify differences in the exchange pattern between two or more experimental conditions; alternative strategies have been
developed to deconvolve and analyze peptides showing multimodal behavior; and different algorithms have been proposed to
computationally increase the resolution of HDX-MS data, with the ultimate aim to provide information at the level of the single
residue. This review delves into a comprehensive examination of the merits and drawbacks associated with the diverse strategies
implemented by software tools for the analysis of HDX-MS data.
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1. INTRODUCTION
Proteins are the most important gears in the engine of life.
Since the seminal work by Anfinsen in 1960, scientists have
wondered how their linear sequence of amino acids folds into a
defined three-dimensional structure, how these structures
change upon binding, and how they maintain health and
cause disease. High-resolution snapshots of protein structures
can be captured by X-ray crystallography, NMR spectroscopy,
or electron microscopy (EM), while their dynamic behavior in
solution is harder to probe. Hydrogen bonding is one of the
defining aspects of a protein’s structure (or lack thereof), but
equally important for how it interacts with the surrounding
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solvent. One unique feature of proteins is the exchange of their
amide hydrogens with hydrogens in solution.1 “Proteins
continuously emit signals in the language of hydrogen
exchange”,2 and understanding how to detect and interpret
these signals is a unique opportunity to harness protein design.

When diluted into a deuterated buffer, the amide hydrogens
of the protein spontaneously exchange with deuterium in
solution.1 The phenomenon is referred to as hydrogen−
deuterium exchange (HDX). In the case of fully unstructured
proteins, the rate of exchange depends on chemical properties
of the buffer (pH, temperature, ionic strength) on one side,
and on the amino acid’s effective pKa (determined by its side
chain and its direct neighbors). When a protein acquires its
native structure, hydrogen bonding and solvent accessibility
lower the rate of exchange by means of “protection”, and HDX
measures this perturbed rate of exchange, thereby informing on
the protein’s structural and dynamic properties.2 Measuring
the isotopic exchange in proteins posed a technical challenge.
In its early years, HDX was measured using an ultra-
centrifugation procedure;3 later, by infrared4 or UV5 spectros-
copy. These techniques have low “spatial resolution”: they
cannot monitor the exchange at a residue-level, but only the
global exchange of the protein (i.e., the summed exchange of
labile sites); yet they cannot determine the overall extent of
deuterium incorporation very accurately either. The popularity
of HDX increased with the advent of two-dimensional NMR.6

Hydrogen and deuterium have different spins (hydrogen has
spin 1/2, while deuterium has spin 1); leveraging the decrease
of 1H NMR signal upon deuteration in an HSQC spectrum,7

HDX-NMR can monitor the exchange of individual labeled
residues (high spatial resolution) but is limited to the study of
small proteins (<40−50 kDa)8 and requires larger amounts of
sample as well as 15N labeling. In the last 30 years, HDX
coupled with mass spectrometry (MS) has been established as
a viable alternative.9 The versatility of the technique10 and
recent technological advancements11 led to the generation of
large amounts of data, and today the technique needs
computational tools for an automated analysis and for
retrieving more detailed and statistically accurate information
from the raw data.12

HDX-MS measures the mass increase of a protein caused by
deuteration (Figure 1).9,13 The protein (or complex) is first
equilibrated in a suitable biochemical buffer at desired pH,
ionic strength and temperature. Continuous H/D exchange
starts with dilution into deuterated buffer at a typical ratio of
between 1:5 to 1:20 (buffers are generally 80−95%
deuterated) and labeling occurs for a variable amount of
time. Labeling times generally range from 10s of seconds to
hours, but recent technological developments gave access to
the millisecond scale,14−16 which is crucial to probe the fast
exchange of highly dynamic regions and intrinsically
disordered proteins,16 as well as unstructured peptides17

(these are highly valuable for fundamental studies, e.g., to
study how H/D exchange is dependent on the buffer
conditions). HDX can be monitored at the level of the intact
protein (global HDX); it is worth noting here that global
HDX-MS has been applied to study structured oligonucleo-
tides18 and a software, OligoR (not reviewed here), has been
developed to analyze these data.19 In order to obtain higher
spatial resolution (local HDX), a “bottom-up” approach is
generally implemented: the protein is digested, and the mass
spectra of the proteolytic peptides are acquired. While
measuring the mass shifts of the intact peptides yields data

on the incorporation of deuterium per peptide, MS/MS
fragmentation using collision-induced dissociation (CID) is
used to confirm the sequence of the peptide without
deuteration, but it scrambles hydrogen and deuterium within
peptides and is therefore not useful for determining of
exchange sites at the single amino acid (residue) level. Before
digestion, the exchange must be quenched at low pH (∼2.5)
and temperature (∼0 °C) to minimize back-exchange, which
corresponds to a partial loss of deuterium label. Pepsin is the
most used enzyme for protein digestion in HDX-MS
experiments because it is active at acidic pH, although other
enzymes have been used (such as the fungal proteases XIII and
XVIII,20 nepenthesin,21 Aspergillus niger prolyl endoprotease,22

rice field eel pepsin and aspergillopepsin23). These enzymes
cleave the protein into peptides, producing nonpredictable yet
reproducible patterns of overlapping peptides; the use of
multiple enzymes can increase the spatial resolution, which is
determined by the digestion pattern. The proteolytic peptides
are separated by rapid reversed-phase liquid chromatography
(LC) with a gradient time of ∼10 min (possibly holding the
column close to 0 °C), ionized with electrospray ionization
(ESI), and eluted into the mass spectrometer. Alternative
experimental setups for local HDX-MS, not covered in this
review, include the fragmentation of the intact labeled protein
(“top-down”) or of the proteolytic peptides (“middle-down”)
using electron capture dissociation (ECD), electron transfer
dissociation (ETD),24 or ultraviolet photodissociation
(UVPD).25

Figure 1. Typical experimental workflow of an HDX-MS experiment:
(1) labeling: the undeuterated protein (blue) is diluted in a 80−95%
deuterated buffer where the HDX occurs at the protein level for times
ranging from milliseconds to hours; deuterated residues are shown in
red; (2) quench: the exchange, still occurring at the protein level, is
minimized by lowering the temperature (to ∼0 °C) and the pH (to
∼2.5), back-exchange can occur at the protein level (blue/red beads);
(3) digestion: the protein is digested, from this point forward-
exchange and back-exchange (red-blue circles) occur at the peptide
level; and (4) ionization: the proteolytic peptides are ionized and
eluted in the mass spectrometer.
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The raw data of the peptide-level experiment comprises the
time evolution of the mass spectra of proteolytic peptides of
the protein, i.e. their mass shifts. A comprehensive tool for
HDX-MS data analysis would (1) identify a list of proteolytic
peptides assigned to mass spectra in the raw control
(undeuterated) data, (2) assign peaks in the labeled
(deuterated) raw spectra of the identified peptides, (3) identify
peptides showing a bimodal spectrum (see section 4.3), (4)
calculate the mass increase of each peptide, (5) correct for
back-exchange, (6) increase the spatial resolution, ideally to
residue level (protection factor analysis), and (7) localize and
quantify statistically significant differences in the uptake
pattern of two (or more) experimental conditions (differential
analysis). Steps 1, 2, and 4 are generally conducted using
vendor-specific software tools (namely PLGS and DynamX for
Waters instruments, BioPharma Finder and HDExaminer for
Thermo Fisher Scientific instruments), and the results are then
exported to perform further analysis. Back in 2006, HX-
Express26 was one of the first software tools for HDX-MS data
analysis. Since then, several platforms have been developed,
such as HDX workbench,27 Hydra,28 Hexicon,29 and ExMS30

that have been previously reviewed.12 In response to the
recommendations for performing, interpreting and reporting
HDX-MS experiments published by the international com-
munity in 2019,9 several methods have been implemented with
the goal of providing a standard and comprehensive framework
for data visualization and differential analysis. Moreover, stand-
alone computational methods have been developed to tackle
the most common challenges provided by HDX-MS data, such
as corrections for back-exchange, deconvolution of EX1/EX2
kinetics, and protection factor analysis.

The purpose of this paper is to review the recent tools (both
commercial and open-source) available for the analysis of
continuous labeling, local HDX-MS data. First, we evaluate the

capability of comprehensive software (by comprehensive, we
mean a tool ideally able to cover all 7 points mentioned above)
of providing a standardized framework for qualitative data
visualization and quantitative data analysis for differential
experiments (when two or more experimental conditions are
compared). Most biochemical experiments have this differ-
ential nature, as they compare two or more states of a protein
(e.g., mutation, ligand binding, or free against complex). In this
common scenario, the data analysis workflow is divided into
two parts: a commercial instrument-dependent software is first
used to preprocess the experimental data, then a third-party
open-source software is used for statistical data analysis. In
most scenarios, this analysis is sufficient to answer the research
question. Here, we particularly focus on more advanced tools
where much more information contained in the data can be
extracted. We review and discuss stand-alone programs
implementing unique features for “nonstandard” analysis,
such as automated peptide search (section 4.1), multimodal
analysis (section 4.2), and protection factor analysis (section
4.4). The software and methods reviewed in this paper are
listed in Table 1. Note that the figures in this paper have not
been created by one of the reviewed methods but by our own
Python scripts.

2. THEORETICAL BACKGROUND
When a protein is diluted in a solution containing deuterium
oxide (D2O), its amide hydrogens spontaneously exchange
with deuterium (D). It is fair to say that all the hydrogens (H)
of the protein are exchanging. However, the labeling time
scales that can be probed with an HDX-MS experiment range
from milliseconds to hours. In the light of this, carbon-bound
aliphatic and aromatic hydrogens exchange far too slowly to be
detected, while side chain acidic and basic hydrogens and polar
−OH, −SH, and −NH2 groups exchange too fast, and

Table 1. List of Software Tools and Methods Reviewed in This Papera

Software Access to Raw Data

Automated Peptide Search
(section 4.1)

Multimodal Analysis
(section 4.2)

Differential Analysis
(section 4.3)

High Resolution HDX-MS
(section 4.4)

Claesen et al.31 +
DECA32 + +
deMix33 + +
Deuteros 2.034 +
ExMS235,36 + + +
ExPfact37,38 +
HaDeX39 +
HD-eXplosion40 +
HX-Express41 + +
Hdflex42 + +
HDXAnalyzer43 +
HDXModeller44 +
Hdxstats45 + +
HDX-Workbench27 + + + +
HR-HDXMS46 +
Mass Spec Studio47−50 + + +
MEMHDX51 +
Protein Metric (Dotmatics) + + + +
PyHDX52 +
ReX53 + +
Saltzberg et al.54 +

aAn updated list of software, publications and other resources for HDX-MS data analysis is available at the following link: https://github.com/
hadexversum/HDX-MS-resources. Commercial software are shown in italic.
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therefore they rapidly back-exchange into hydrogen during the
LC-MS analysis and are lost before detection.55,56

Amide hydrogens are fully “exchange competent” (“open”
state NHop) when they are surface exposed and not engaged in
secondary structure (i.e., they do not form hydrogen bonds
other than with water). Some residues are structurally
protected against exchange (“closed” state NHcl), but local
fluctuations (defined by the opening and closing rates kop and
kcl) can expose them to solvent-enabled deuteration and
subsequently undergo exchange to form the deuterated state
(ND).2 As a consequence, HDX of a single amide hydrogen
can be modeled as a two-step process (Linderstrøm-Lang
model):1

k

k

k

k
NH NH ND ND

k
cl

op

cl

op op

cl

op

cl
int

H Iooo H Iooo

(1)

The intrinsic exchange rate kint corresponds to the exchange
rate of the residue in a completely unfolded structure. It
depends on chemical properties of the buffer (pH, temperature
and ionic strength) as well as the amino acid itself and the
neighboring residues.17,57−59 HDX-MS is a kinetic experiment,
with the ultimate goal of determining the rates of exchange
defined in eq 1.

The exact analytical solution for the model in eq 1 is a
double exponential.60 Under the so-called native approxima-
tion for a mostly folded peptide backbone (kop ≪ kcl, i.e. the
amide residue is mostly in the closed, protected state) and the
EX2 regime (kint ≪kcl, i.e. the exchange is slow compared to
the local structural dynamics), the deuteration of a single
residue (d)�considering the deuterated residue either in the
NHop or NDcl state�can be approximated as a single
exponential:

td( ) 1 e k /Ptint= (2)

The pseudo (pre)equilibrium constant P ≡ kcl/kop is known
as protection factor and encodes dynamic properties of the
protein:61 several microscopic models have been developed
aiming to connect the structure of a protein to its protection
factors; the most known model, often addressed as
“phenomenological model”, describes the protection factor of
a residue as the linear combination of heavy contacts (i.e., the
number of atoms in the proximity of the amide not belonging
to neighboring residues in the primary sequence) and
hydrogen bonds.62,63 These models have already been
reviewed by Devaurs et al.64 and will not be discussed here.

Under denaturing conditions and for intrinsically disordered
proteins, the amide backbone is largely exposed and the
exchange kinetics may follow the so-called EX1 regime
(occurring when kcl ≪ kint).65 The deuterium uptake of a
single residue can be approximated to occur in a single step
with a rate kop:

td( ) 1 e k top= (3)

The presence of EX1 or EX2 kinetics (or their coexistence,
known as EXX kinetics) can be discriminated in the raw HDX-
MS data by the emergence of a bimodal pattern of the isotopic
distribution in the mass spectrum of the peptide (see section
4.3).66 However, this bimodal pattern is not guaranteed to
occur in EX1 conditions. Indeed, when EX1 conditions are
met, the exact analytical solution of the Linderstrøm-Lang

model (eq 1) provides fast exchange kinetics per residue but
no explanation for the bimodal pattern for the peptide. The
explanation of the bimodal pattern stands in the cooperativity
between residues, which is exclusive to peptide-level HDX-MS
data and cannot be monitored by NMR experiments: under
EX1 conditions, the probabilities of closing (kcl) and
exchanging (kint) are such that, if subsets of residues open
cooperatively, it is likely that most of (or all) the residues
exchange, forming the second, fully exchanged population of
the distribution.67 Other factors, discussed in section 4.2, may
also lead to a bimodal pattern.

3. CONNECTING THEORY AND HDX-MS DATA
HDX-MS experiments usually detect the deuterium uptake of a
protein through its proteolytic peptides. Before performing any
kind of analysis, preprocessing of the raw mass spectra is
required to identify these peptides from the LC-MS/MS runs.
This peptide search is performed on a digested control sample
(without deuterium labeling). Identification of proteolytic
peptides follows similar procedures as bottom-up proteomics,
albeit for nontryptic peptides in the case of HDX, and is
generally performed using commercial software included with
the instrument: PLGS and DynamX for Waters instruments,
BioPharma Finder and HDExaminer for Thermo Fisher
Scientific/Trajan (section 3.1). Next, the quality of the
isotopic envelopes of each peptide (and charge state) is
checked manually to verify assignments and eliminate false
identifications. The major drawbacks of the semiautomated
peptide search provided by these software and alternative
strategies are discussed in section 4.1.

The peptide list is generally reported in a coverage map
(Figure 2), where peptides are depicted as horizontal bars and

visualized across the sequence of the protein. The quality of
the data set can be quantified mainly with 3 parameters: the
number of peptides, the sequence coverage (the percentage of
residues of the protein covered by the proteolytic peptides)
and the redundancy (the “overlap”, defined as average number
of proteolytic peptides available per covered residue).
3.1. Absolute and Fractional Uptake
After the generation of a peptide list and the manual or
automated assignment of isotopic envelopes at different
labeling times, the intensity-weighted average m/z of the

Figure 2. Example of a typical coverage map. Horizontal bars
represent proteolytic peptides localized along the sequence of the
protein. Number of peptides, sequence coverage, redundancy, and
average length (number of amino acids) are reported.
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isotopic envelope of the peptide is recorded as a function of
time (Figure 3).

The measured m/z value (mz) at a specific charge state z is
converted into a mass scale (m) using the following formula:

m m z zz= × (4)

The mass increase (or absolute uptake) is defined as the
difference of the mass of the peptide at labeling time t (m(t))
and the mass of the peptide in the control sample (m0):

m t mAbsolute Uptake (Da) ( ) 0= (5)

If the mass of the fully deuterated peptide (mFD) is
measured,68 then the absolute uptake is commonly converted
to the fractional deuterium uptake (DFrac):

D
m t m
m m

( )
Frac

0

FD 0
=

(6)

The measured fully deuterated sample often does not match
the theoretical fully deuterated mass, which corresponds to the
number of exchangeable amides (i.e., excluding prolines and
the first/second residues56). This discrepancy arises because
back-exchange (i.e., deuterium loss) can happen at different
stages along the experimental workflow (section 3.2). When a
fully deuterated sample is available, the fractional uptake in eq
6 represents the conventional back-exchange correction.
3.2. Back-Exchange
The Linderstrøm-Lang model (eq 1) considers “forward” HDX
(i.e., H to D) to be an irreversible process, which is true only
during the labeling phase (before quenching), when the
protonated protein is exchanging within a 100% deuterated
buffer, and when further processing steps from the quench
onward are neglected. This is not the case in typical HDX-MS
experiments, where the protein is diluted resulting in an 80−
95% deuterated buffer. While higher dilution factors could

reduce reverse exchange and more closely align with the
theoretical model, they are often impractical because the
resulting protein concentrations might fall below the detection
limit of the mass spectrometer. During the HDX-MS
experimental workflow, there are several steps at which back-
exchange, i.e. partial loss of deuterium label, can occur (Figure
1). The deuterium labeling is performed in a highly (yet not
purely) deuterated buffer (80−95%), and therefore reverse
exchange (D to H, deuterium/hydrogen exchange) is occurring
at the native protein level (e.g., with a 5% probability in a 95%
deuterated buffer). From the quench onward, the deuterated
solution is mixed with a water-based quench buffer (generally
at a 1:1 ratio): forward exchange and back-exchange are
competing mechanisms occurring at the protein level from
quench to digestion and at the peptide level afterward.
Additional back-exchange can occur during ionization and in
the gas phase before detection in the mass spectrometer. To
minimize back-exchange after the labeling phase, the temper-
ature of the solution should be decreased (even below 0 °C)
by placing the reversed-phase column for peptide separation in
a refrigerated unit; but the digestion unit is usually kept at
higher temperature to ensure efficient digestion.69 However
minimized, it is not possible to completely remove back-
exchange from the HDX-MS workflow, and therefore a proper
quantification of back-exchange levels and consequent data
normalization are highly desirable, but currently still lacking.

Most differential studies (i.e., where two or more
experimental conditions of the protein are compared) do not
perform any back-exchange correction and instead compare
the absolute uptake (eq 5) of the same proteolytic peptides
derived from different biological states of the protein, under
the same experimental (technical) conditions. This procedure
is correct only under the assumption that the extent of back-
exchange is the same in the two experimental conditions, such
that the denatured intact protein (from quench to digestion)

Figure 3. Isotopic envelopes of proteolytic peptides for different experimental conditions under analysis (simulated data). Data shown for
visualization purposes only for one peptide under two arbitrary experimental conditions: condition 1 (orange) and condition 2 (purple). At
increasing labeling times, the isotopic envelope shifts toward higher values of m/z. The centroid of the isotopic envelope, i.e., the intensity-weighted
average, is monitored. The absolute uptake (right) is defined as the difference between the centroid of the envelope at a specific time and the
centroid of the control (fully protonated) envelope. The absolute uptake of different conditions is compared.
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and the peptides (from digestion onward) are fully
unstructured or retain similar residual structure. The validity
of this assumption is not straightforward: for example, Sheff et
al.70 have shown that proteolytic peptides can retain residual
structure in the LC column, hence different protein
conformations may induce different back-exchange levels.
Beyond differential studies, a proper back-exchange correction
is essential if absolute and quantitative biophysical properties
are required (such as exchange rates or protection factors, see
section 4.4).

When implemented, the standard approach to correct for
back-exchange is the acquisition of a fully deuterated sample
and the normalization of absolute uptake values into fractional
uptake (eq 6). There exist different protocols to acquire fully
deuterated samples. For example, a fully deuterated control can
be acquired by leaving the protein to deuterate for a time that
is long enough to see the plateau in the kinetic uptake curves
(e.g., for 12 h). In many settings, researchers decide to avoid
this strategy because many proteins are unstable for such long
times (their partial denaturation resulted in lower intensities in
the chromatogram, or their aggregation causes false protec-
tion), and in rare cases membrane proteins retain regions so
protected that their exchange after 12 h is negligible. A second
strategy to acquire a fully deuterated control consists of
diluting the protein in a deuterated buffer containing high
levels of denaturant (e.g., 4 M urea) and leaving it overnight to
exchange. A third strategy consists in performing offline
digestion and deuteration of the proteolytic peptides. In the
absence of a published study which systematically compares
the results of the different strategies to acquire a fully
deuterated sample, we recommend either of the latter two
approaches.

As an alternative to the standard approach, the software
DECA32 was implemented around the need for developing a
back-exchange correction. The authors identified two distinct
forms of back-exchange that can influence deuteration (Figure
4): they called these “global back-exchange” that occurs at the
level of the intact, but denatured protein (from quench to
digestion on the pepsin column), and “local back-exchange”

that acts at the level of the peptide (from digestion to the point
of injection into the mass spectrometer).71 Back-exchange
causes the deuterium uptake curve to plateau at a value lower
than the theoretical fully deuterated mass.

The authors of DECA32 also identify a “long exposure
effect”, which causes later time points to slowly deviate from
the fully deuterated plateau. There are a number of possible
reasons which can cause such effects, the most obvious being
related to the stability of the protein at longer time points
where aggregation could lead to apparent protection against
exchange. In addition, ambient moisture can also lead to
deuterium loss in the sample causing a drop from the
deuterated plateau. During a multiday series of time points
and replicates, protein samples may end up being kept at 0 °C
for several days in the autosampler; but issues arising from this
can be addressed by careful experimental design (e.g., mixing
replicates of different time points randomly, or regularly
replacing the protein sample with fresh aliquots). Protein
stability tests done prior to HDX analysis are also helpful. In
addition, the DECA paper describes an experimental artifact
which can be misinterpreted as an additional form of back-
exchange, caused by different liquid handling procedures at
short and long time points. For example, when a LEAP robot is
used for time points below 2 min, the mixing syringes skip a
step, and this results in a slightly lower back-exchange. DECA
allows to correct for global and local back-exchange by the
application of a scaling factor, as well as accounting for this
long exposure effect by the application of a universal, linear
correction to all peptides. A recent paper by Wrigley et al.72

expanded on the subject, confirming that automated liquid
handling procedures can indeed introduce a large variability to
the measured deuteration. While liquid handlers provide
excellent efficiency with respect to manual pipetting, the
number of steps involving syringe operations with small liquid
volumes that occur during an HDX-MS experiment can be
source for volumetric errors, which can cause minor differences
in the final deuterium concentration or in pH, and in turn can
be sufficient to cause significant differences in the uptake
curves of peptides. These robot-related issues can be resolved
by tracking the performances of the liquid handler over the
different operations performed during the workflow and
consequently optimizing the robot methods (e.g., changing
the needle position or depth) to reduce the variability in the
measured deuteration.

The corrections for back-exchange mentioned in this section
underscore our limited knowledge of the phenomenon, and
several questions remain unsolved: what is the best strategy to
acquire a fully deuterated sample? What percentage of forward-
and back-exchange is occurring during deuterium labeling,
during the quench procedure, during digestion and in the gas
phase, respectively? Can we reduce or eliminate any of these
contributions, or at least control them so that they can be
quantified accurately? Fundamental studies are needed to
systematically answer these questions, for example studying the
behavior of model proteins while varying the deuterium
percentages in the quench buffer, or by replacing the water-
based LC solutions with deuterium-based equivalents. While a
proper back-exchange correction offers minor advantages for
differential studies, it becomes crucial when integrating
experimental data with modeling (i.e., for the methods
described in section 4.4) as the standard back-exchange
correction may yield inaccuracies in that it assumes all residues
in a peptide back-exchange to the same extent.

Figure 4. Back-exchange correction applied by the software DECA.32

The global and local back-exchange correction (red) produces a
peptide-dependent plateau, resulting from both protein-dependent
back-exchange (occurring from sample dilution into labeling buffer to
digestion) and peptide-dependent back-exchange (occurring from
digestion to detection in the mass spectrometer). The long exposure
effect is an apparent back-exchange correction suggested by DECA
which consists of a linear correction that is universally applied to all
peptides.
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3.3. Replicates

The reported mass increase (eq 5) or fractional uptake (eq 6)
is averaged over the available number of replicates, generally
limited to 3 or 4. The main factor limiting the number of
replicates in HDX-MS experiments is the cost associated with
additional sample consumption and instrument runs. The error
associated with the experimental measure is either the standard
deviation or the standard error (standard deviation divided by
the square root of the number of replicates). Replication allows
to assess whether the observed differences are likely to occur
by chance or not,73 and to ensure the reliability of the
conclusions drawn from the observed data. Increasing the
number of replicates results in a more precise inference
regarding differences between groups.74

Not all replicates are equivalent. In the context of HDX-MS
experiments (as well as proteomics and other biophysical
techniques), replicates can be divided into two categories:75

biological replicates, which can derive from (i) independent
protein expression or isolation from source tissue and (ii) steps
prior to the addition of deuterium (e.g., incubation with a
ligand or membrane), and technical replicates, which can be in
turn subdivided into three subcategories: (i) labeling replicates,
corresponding to independent deuterium additions to the
same protein stock material, testing sample conditions during
labeling (timing, pH, temperature) and LC-MS parameters,
(ii) analysis replicates, which are repeated LC-MS injections of
the identically labeled sample, testing the variables from the
point of injection into the LC-MS system, and (iii) processing
replicates, that are software-based replicates on the same set of
data that test the computational parameters and data
processing reliability.

These types of replicates have a well-defined hierarchy:
inferences drawn from biological replicates are more powerful
than inferences made from technical replicates.76 Currently
available software are not able to account for these differences.
Multiple approaches are being used to account for technical
and biological replicates. A commonly applied approach is
averaging the deuteration values of the technical replicates
within each biological replicate. This strategy yields consistent
estimates, but gives incorrect uncertainty estimates, leading in
a differential study to a higher number of false findings.
Another approach is to analyze each biological replicate
separately. Such an approach ignores the dependencies of the
technical replicates within a biological replicate and ignores
relevant biological variation, limiting generalization and
replication of results. Both approaches should be avoided as
they do not properly acknowledge the data structure. A third
approach is the use of statistical models and tests that account
for the level of replication (technical/biological), such as linear
mixed models, which are described in more detail in section
4.2.3. It is worth mentioning that most published studies report
only technical replicates. As a general recommendation,
biological replicates should be prioritized over technical
replicates whenever possible. When the number of biological
replicates is limited (e.g., when there are only two), collecting
data from both biological replicates, along with multiple
technical replicates, allows for more robust inferences than
relying on technical replicates alone. In the latter case,
implementing a mixed effects model is essential to appropri-
ately account for the level of replication.

3.4. Charge State Effect

Many peptides can be found in electrospray ionization mass
spectra with more than one charge state, and the apparent
deuterium uptake behavior of the same peptide at different
charge states can show systematic differences. This is a well-
known but rarely reported effect,77 and is caused by back-
exchange postionization in the electrospray source and gas
phase of the mass spectrometer. Guttman et al.78 demonstrated
that this charge state offset, which occurs to different extents
on different instruments, is due to nonuniform gas-phase
exchange with water vapor within the ion optics of the
instrument. For example, such back-exchange in a Waters
Synapt G2-Si can be reduced (yet not completely removed) by
adjusting the settings of the StepWave ion guide (mainly DC
offset potential and the traveling wave height and velocity).
There are two policies implemented by the available software
packages: (1) the mass increase (or fractional uptake) is
reported as an average over the available charge states of a
peptide; (2) only the mass increase (or fractional uptake) of
the most intense charge state is reported. We note here that
neither option is ideal as the first one is not able to account for
the possible systematic difference in deuterium loss between
charge states, and the second introduces a selection bias in the
analysis. A third alternative, which probably represents the best
option, is to analyze different charge states individually and
check that the results are consistent across the different charge
states; in this latter strategy replication may be a problem as
not all charge states are found for each replicate or condition.
3.5. Linderstrøm-Lang Model for Peptide-Level Data

The Linderstrøm-Lang model (eq 1) describes HDX at the
level of the single amino acid. However, most HDX-MS
experiments detect the deuterium uptake of a protein via its
proteolytic peptides. For this reason, HDX-MS data are coarse-
grained: they monitor the behavior of entities (peptides) that
are smaller than the whole system (protein) but bigger than
the smallest resolvable unit (amino acid).

For a peptide with N exchangeable residues (i.e., excluding
prolines), the deuterium uptake (D) of the proteolytic peptide
can be written, using the Linderstrøm-Lang model, as the sum
of the uptake di of its residues:

D t d( ) (1 e )
i

N

i
i

N
k Pt

2 2

/i iint,= =
= = (7)

The first amino acid (i = 1) is excluded from the
contributing residues because its amide hydrogen is lost
upon digestion. Sometimes, depending on the sequence of the
proteolytic peptide, also the second residue should be
excluded, assuming it rapidly back-exchanges during the
quench step and the deuteration is lost.79 In certain sequences,
such as those containing histidines, the back-exchange rate for
even a middle amide can be so fast that all deuterium will be
nearly lost by the time the peptide is analyzed, and therefore
the amide will not contribute to the overall deuterium
measurement. A paper by Hamuro nicely summarized the
expected deuterium loss for different sequence contexts.56

One of the challenges for the analysis of HDX-MS data is to
retrieve single residue information (i.e., the individual
protection factors) from peptide-level data. In statistics, this
problem is defined as underdetermined: the number of
parameters to be estimated is greater than the number of
experimental data points.38 In the case of an isolated peptide
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formed by N residues, whose exchange has been monitored at
K time points, we can distinguish two scenarios (assuming for
simplicity that experimental error is negligible): (i) when N >
K (which is the most common case as the average peptide
length is ∼10 amino acids and the HDX is generally detected
at between 3 to 5 time points), the consequence of under-
determination is that there are multiple solutions (i.e., patterns
of protection factors) in agreement with experimental data; (ii)
when N < K, there is one only solution in agreement with
experimental data, but the extracted protection factors cannot
be assigned to a specific residue (indeed, eq 7 does not account
for the order of the residues). Using the complementary
information contained in overlapping peptides helps reducing
the multiplicity of the solutions, up to the point that single
residue information can be in principle obtained in an ideal
data set where all peptides differ by one amino acid only.35

This is usually not the case, and other approaches have been
used instead. Different methods aiming to extract protection
factors from HDX-MS data are discussed in detail in section
4.4.
3.6. Visualization of Preprocessed Data for One Condition

Preprocessed data are generally visualized through uptake
curves (Figure 5A), reporting either the (average) mass
increase (eq 5, in Da) or the (average) fractional uptake (eq
6, in % of the maximum) at different labeling times of
proteolytic peptides. Heat maps (Figure 5B) can be generated

to visualize the time evolution of the uptake at a pseudoresidue
resolution along the sequence of the protein. Generally, the
deuterium uptake of a residue at a specific labeling time is
calculated as an equal fraction of the average over the mass
increase (or fractional uptake) of the peptides covering the
amino acid position. However, this calculation varies from
software to software. For example, DECA32 generates heat
maps by assigning residues to the most representative peptide
available (i.e., the shortest). An alternative approach uses
weighted averaging, where peptide uptake values are weighted
by the inverse of the peptide’s length.80 If the structure of the
protein is available, the pseudoresidue uptake provided by the
heat map can be mapped onto a 3D structure (Figure 5C).
Many pieces of software provide a PyMol script to generate
these plots. HDX-Viewer81 is an online tool that was
developed to provide an easy-to-use interface to visualize
deuteration within the structure of the protein. It is worth
stressing that these representations are useful tools to map
experimental data onto protein models, but they can be
misleading as the high resolution achieved is artificial.

Alternative visualization tools involving multivariate analysis,
such as principal component analysis (PCA) or spectral
mixture analysis (SMA), can be used to check the quality of
the data (e.g., to see if samples from the same condition or
time group together),31 and have been proven useful to show

Figure 5. Visualization of preprocessed data for one condition. (A) The uptake curve shoes the fractional uptake as a function of the labeling time.
Average and standard deviation are displayed. (B) The heat map shows the fractional uptake as a function of the labeling time along the sequence
of the protein. The fractional uptake of each residue is the equal fraction of the average fractional uptake of the proteolytic peptides covering that
specific amino acid position. (C) The heat map is projected onto the protein structure at labeling time 1 h.
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whether compounds with similar in vivo properties were
forming statistically distinct clusters.82

3.7. Preprocessing Data with Commercial Software
It is needless to say that a correct preprocessing of data is a
crucial step in the data analysis workflow of HDX-MS
experiments as poorly curated data can lead to incorrect
biological conclusions. In the context of HDX-MS data, we
define as data “pre-processing” the steps of the data analysis
workflow that start from the raw data and a list of potential
peptides, and lead to the generation of deuterium uptake
curves. Most HDX-MS publications utilize commercial
software to preprocess raw data, namely DynamX for Waters
instruments and HDExaminer for Thermo Scientific/Trajan.
These two programs share common features: they require
knowledge of the protein sequence, in the form of a peptide list
(whose generation is later discussed in section 4.1), and the
raw HDX-MS data as inputs. They enable the identification
and assignment of the undeuterated and labeled isotopic
envelopes, to calculate the absolute uptake of peptides, to
visualize the data through coverage maps, uptake plots and
heat maps; and they return a spreadsheet containing the
information about the uptake of peptides over time. They
mostly differ on how the user can interact with the isotopic
envelopes identified by the software and edit them manually.
They also share the same limitations: they do not perform
statistical analysis, back-exchange correction or fully deuterated
normalization, which must be done using third-party software
packages. While these commercial software packages are
critical for preprocessing raw data, they must be integrated
with other software packages to achieve comprehensive and
publishable results.

Two additional commercial software packages, Protein
Metrics (Dotmatics) and HDXWorkbench,27 must be
mentioned. They both aim to integrate the entire analysis
workflow into a single platform. These tools facilitate
automated peptide search starting from the raw data (section
4.1), identification and assignment of undeuterated and labeled
isotopic envelopes, and provide statistical methods for
differential analysis (section 4.2). Additionally, they offer
features for multimodal analysis (section 4.3) and enhanced
spatial resolution (section 4.4).

4. COMPUTATIONAL TOOLS FOR HDX-MS DATA
ANALYSIS

4.1. Automated Peptide Search and Identification
At the beginning of the data analysis pipeline, it is necessary to
identify peptides and assign peaks in the raw mass spectra. As
already mentioned, the identification of proteolytic peptides is
generally performed using commercial software included with
the instrument, and the quality of the isotopic envelopes of
each peptide is then checked manually. Peptides showing
saturation (the intensity of the peptide signal exceeds the
instrument’s dynamic range, altering the shape of the isotopic
envelope), multimodal behavior which can be due to EX1 or
EXX kinetics (see section 4.3), carryover (peptides retained on
the fluidics system from the previous sample injection) or
ambiguous assignment (e.g., due to the presence of different
envelopes in the same m/z range) can be kept or rejected
depending on the practitioner. There are no clear guidelines on
how to perform these assignments, and policies vary from
group to group. Consequently, this preprocessing step is time-
consuming and user dependent. Moreover, a major disadvant-

age of commercial software packages is that they do not allow
to export the isotopic envelopes but only the average m/z
values, making it hard to retrieve information about the
detailed characteristics of the assigned mass spectra of the
peptides.

Tools have been developed to tackle the drawbacks
mentioned above. ExMS236 proposes an automated peptide
validation pipeline to speed up the peptide quality checks. This
requires as input a peptide list generated by SEQUEST/
Bioworks (alternatively Proteome Discoverer or MassLynx)
from the control sample (undeuterated, all-H protein). Each
peptide is associated with its chromatographic retention time
(RT) and its m/z value. For each peptide in the list, ExMS2
selects the MS scans within the known RT window and
compares the experimental spectra with calculable mass
spectrometric information, such as monoisotopic mass, charge
state, and isotopic peak positions. The process is repeated for
each sample at the different time points available. ExMS2
records m/z values and relative intensities for each isotopic
peak to define the shape of the isotopic envelope. The
recorded peptides are validated through 12 quality tests (six
performed on a peptide level and six on a multipeptide level),
for example checking if the overall peak intensity is above a
certain threshold or if the peak is within the possible m/z range
for a peptide in the list. Peptides failing one or more tests are
flagged and can be manually inspected.

Mass Spec Studio47−49 first proposed HXpipe (peptide
identification and peptide evaluation) as a tool for automated
peptide search and validation. Two searches are performed
independently: (i) an MS/MS search, which looks for peptides
in the LC-MS/MS files using one of two available search
engines (MS-GF+ or OMSSA+); (ii) an MS search, which uses
a peak picker that scans within the LC-MS/MS data to create a
library of chromatographic features, which are then compared
with theoretical isotopic distributions calculated using Senko’s
Averagine model83 for peptides. The results from the two
searches are then combined together. A new module, named
AutoHX,50 has been implemented into Mass Spec Studio, to
facilitate (and ideally remove) the manual inspection of the
peptide search. AutoHX leverages the information contained in
the deuterated fragment peptides to (i) validate the identity of
the peptide and (ii) confirm the deuteration level of the
precursor peptide by checking that the deuterium content of
the peptide fragments has a linear relationship with the
fragment length. This automatic authentication and validation,
which exploits MS/MS data and uses deuterium-scrambled
CID or HCD fragments as surrogates that confirm the identity
and the deuteration value of any given peptide, yields objective
results with known certainty, rather than biased results with
unknown certainty provided by a traditional approach, which
uses MS data only and is followed by laborious manual (i.e.,
user dependent) validation.

In the previous paragraphs, we reviewed different software
packages designed for automated peptide search and
identification from raw LC-MS data. These tools bridge the
gap between researchers and raw data, facilitating the
preprocessing and validating peptide-peak assignments along
with deuteration values at specific labeling time points. While
they serve as a viable alternative to the commercial software
described in section 3.7, their adoption is limited mostly due to
a lack of know-how outside of the group of researchers which
generated them. Although their documentation is generally
robust, we believe that additional tutorials and workshops for
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HDX users would help with their broader adoption in the
community, and this has also been suggested at the recent
conference of the International Society of HDX-MS in April
2024 in Monterey, CA/USA. Among the software reviewed,
Mass Spec Studio stands out as the most comprehensive;
integrating automated peptide search and identification with
subsequent workflow steps, such as differential analysis
(section 4.2) and multimodal analysis (section 4.3). It is
crucial for software developers to consider the integration of
diverse data types (e.g., tools for analyzing ExD or UVPD
fragment data) and ensure easy access to processed data (e.g.,
straightforward export of processed isotopic envelopes).
Likewise, instrument manufacturers should be encouraged to
enable the export of HDX-MS data sets with key information
such as the isotope patterns and charge states of peptides.
4.2. Differential Analysis

The analysis of HDX-MS data generally relies on a side-by-side
comparison of two (or more) conditions (e.g., a protein in
absence or presence of a ligand). For each proteolytic peptide,
the difference in deuterium content obtained from the different
experimental conditions is classified as signif icant, or not, using
thresholding and/or statistical tests and models. Differences in
the uptake pattern of peptides highlight regions of the protein
where a structural perturbation has occurred (binding site,
allosteric change, etc.). There are two strategies to analyze
differential HDX-MS data. The first (and most used) looks at
the difference in deuterium content at a given time point:
manual thresholding (section 4.2.1), simple hypothesis tests
(section 4.2.2), or linear models (section 4.2.3). The second
approach compares deuterium uptake curves (section 4.2.5).
These two strategies, summarized in Table 2, are described in
this section.

4.2.1. Manual Thresholding. One approach used to
analyze differential HDX-MS data consists of defining a
manual threshold for the difference in deuterium content
between conditions.84−86 This threshold is set to a predefined
value (generally 0.5 Da87) or based on the standard deviation
of the data (e.g., using the pooled standard deviation88). If the
difference in deuterium content at a specific time point exceeds
this threshold, then the peptide is classified as dif ferent. This
approach ignores the variability of the peptide-deuteration
levels and can therefore lead to false findings.31,88 For example,
defining a strict threshold to reduce the number of false
positives leads to ignoring small yet biologically relevant
differences in deuteration (i.e., false negatives), while a
generous threshold limits the number of false negatives, but

results in many false positives. We therefore advise against
manual thresholding approaches and advocate the use of
statistical methods to test for differences, as they account for
the variability of measured deuterium levels and thus control
the number of false findings.
4.2.2. Simple Hypothesis Testing. In simple hypothesis

testing, a null hypothesis (H0) is compared against an
alternative hypothesis (Ha). In differential HDX-MS, the null
hypothesis commonly states that there is no difference in the
deuterium content of a peptide between two or more
conditions, while the alternative hypothesis claims that there
is a difference. Statistical tests are used to test the null
hypothesis, i.e., to reject or not to reject the null hypothesis, by
calculating a test statistic. Student’s t-test is commonly used
when one wants to compare the means between conditions/
groups. Student’s t-test is in essence a signal-to-noise ratio test,
where the difference in the average deuterium content is
divided by a nuisance parameter, which is a function of the
variability of the data. The larger this ratio, the more likely the
null hypothesis can be rejected in favor of the alternative
hypothesis. The exact value (critical value) required to reject
the null hypothesis depends on the number of observations
and the specified significance level (α). Generally, a p-value is
reported instead of the critical value. If this p-value is smaller or
equal than α, then the null hypothesis can be rejected. When
more than two conditions have to be compared, an F-test
which tests if at least one mean is different from the others.
Student’s t-test and the F-test both assume that the data is
normally distributed. If this is not the case, nonparametric
alternatives, i.e. the Wilcoxon signed-rank test or Mann−
Whitney U-test and the Kruskal−Wallis test can be used. Note
that when the underlying assumptions of the parametric tests
are true, the nonparametric test statistics are less powerful than
their parametric counterparts, i.e. they identify less differences
in deuteration that are truly different as statistically significant.

Differential HDX-MS experiments are generally done with a
limited number of replicates. As a consequence, the variability
of the deuterium content of a peptide is harder to estimate
accurately. This can potentially lead to more false findings, i.e.,
more false positives and/or false negatives. Claesen et al.31

proposed using moderated t- and F-statistics instead of
Student’s t-test and F-statistics. These test statistics borrow
information from other peptides with similar deuteration
values to reliably estimate the standard error of the mean,
resulting in a lower number of false findings.
4.2.3. Linear Regression Models. Although simple

hypothesis testing is a convenient way to test for differential
hydrogen−deuterium exchange (per peptide), uniting all
hypothesis tests in a linear regression model allows to directly
estimate differences between the different groups or conditions
(protein states). Additionally, it allows to correct for other
factors (confounders) that could have an effect on the
deuteration.

In a linear regression model, the response variable or
dependent variable (y) is a linear function of one or more
explanatory or independent variables (x):

y x= + (8)

where ε is the residual error and follows a normal distribution
(ε ∼ N(μ = 0,σ2)), and β are regression coefficients that are
derived from the data and express the effect of the explanatory
variables. The reader would be familiar with the simplest case
of a straight line with slope m and intercept q: y = mx + q,

Table 2. List of Software to Analysis Differential HDX-MS
Data

differential analysis

name approach

DECA32 t test
Deuteros 2.034 linear model
HaDeX39 t test
HD-eXplosion40 t test
HDflex42 t test
HDXAnalyzer43 linear model
Hdxstats45 functional analysis
Mass Spec Studio47−49 t test
MEMHDX51 mixed model

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.4c00438
Chem. Rev. 2024, 124, 12242−12263

12251

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.4c00438?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


which is equivalent to eq 8 in the case xx (1 )= and ( )q
m= .

In the latter case, a linear regression model fits a line to the
data and allows to evaluate the effect (m) of the explanatory
variable x on the response variable (y). The same linear
regression model in eq 8 to compare means of different groups
and check whether they are significant different from each
other by testing the estimates for β with a t test. The advantage
of a linear model over a t test is that it can account for more
than one explanatory variable at a time.

Deuteros 2.034 and HDX-Analyzer43 implemented the
following multiple regression-model, where the absolute
deuteration of a peptide D is modeled as a function of the
explanatory variables Time (labeling time) and State (bio-
logical state of the protein):

D Time State Time State( )= + × + × + × ×
+ (9)

where α represent the intercepts of the model, β the regression
coefficients for the labeling time points, δ the regression
coefficients for the different conditions/states, γ the regression
coefficients for the interaction of state and time, and ε the
residual errors of the model. In this model, Time and State are
categorical variables, i.e., characteristics that are not quantifi-
able. In other words, if we have three time points, then they are
treated as time point number one, two and three (rather than,
for example, 30 s, 5 min and 1 h)�as a consequence,
interchanging the time points would not affect the results. This
regression model can be used to test whether changes in the
deuterium-uptake of a peptide are associated to changes in
state and/or time, and the interaction between state and time.
Note that including the labeling time points as a continuous
variable (rather than categorical variables) is possible, but time
would have to be transformed to account for the nonlinear
relationship between labeling time and deuteration uptake, or a
nonlinear regression model would be required. The proposed
multiple regression model can also be extended by adding
other (categorical) variables, for example, charge state.

Depending on the experimental design, HDX-MS data can
have correlated and/or repeated measures, for example, when
an experiment is run in different batches or when both
technical and biological replicates are acquired (see section
3.3). In the latter case, for example, we expect data from within
the same biological replicate to be more similar to data
between different biological replicates. The linear model, as
defined in (eq 8 and 9), can be updated to a linear mixed
effects model to account for the correlation present in the data:

y X Zu= + + (10)

where ε represent the residual error of the model and follows a
normal distribution (ε ∼ N(0,σε

2)), u is an unknown vector of
random effects and also follows a normal distribution (u ∼
N(0,σu

2), and Z is a design matrix for the random effects. The
random effects, u, account for the correlation that is present in
the data.

To clarify the content of eq 10, we now provide two
examples where using a mixed model is advisible in the context
of HDX-MS experiments.

Suppose we performed an experiment with 3 biological
replicates, and 3 technical replicates per biological replicate
(i.e., 9 experiments). The design matrix Z in eq 10 indicates
which observations come from which biological replicate. (For

a peptide i at time point j, we can assign uZij = 1 for all
technical replicates of the first biological replicate and similarly
uZij = 2 and uZij = 3 for the technical replicates acquired from
the second and third biological replicate).

Alternatively, suppose that the same protein was studied
under different experimental conditions in three different
laboratories, and we wanted to combine all measurements into
a single data set to perform a separate meta-analysis. The
different protocols implemented by the different groups (for
sample handling, automation of the LEAP robot, different
parameters for the LC-MS gradient, etc.) introduce random
fluctuations to the deuterium uptake value of the same peptide
under the same experimental condition. Differences in uptake
between conditions (for the same peptide at the same time
point) are systematic and should be visible, but combining the
results from the different laboratories without considering this
as a source of random effects might introduce a bias into the
outcomes of the experiment. For example, a peptide with
significant differences correctly detected (i.e., a true positive)
by the three different laboratories might be misclassified as
nonsignificant if all measurements were combined (Figure 6).
A mixed model can deconvolve the effect of the standard
deviation of the different laboratories on the standard deviation
of the combined data set.

MEMHDX51 is the only software that implements a mixed
model for the analysis of HDX-MS data. Here, time and
experimental condition represent fixed effects and the
replicated or repeated measures are considered as a random
effect, meaning that each technical replicate is assigned to a
dif ferent random effect. The GUI version of the software only
allows the user to perform a traditional differential analysis, and
it does not allow the cross-experiment statistics described in
the experiments above, which can however be performed using
the multiple statistical packages in R, such as nlme.89

4.2.4. Multiple Testing or Multiplicity. Hypothesis tests
(such as the t-test) are prone to false positive results when
multiple comparisons are performed simultaneously, i.e.,
comparing peptides across conditions at each time-point
separately. In order to control the probability of finding false

Figure 6. Example of random effects affecting the outcomes of an
analysis. The absolute uptake of a proteolytic peptide of a protein has
been measured at labeling time 2 min under two different
experimental conditions (Condition 1, blue; Condition 2, red) in
three different laboratories. Each laboratory classifies the peptide as
significant (p-values are 0.0066 for Lab1, 0.0048 for Lab2, 0.0005 for
Lab3). When the results are combined together into a single data set,
the peptide is no longer significant (p-value = 0.0183).
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positives, several multiple testing or multiplicity correction
approaches have been proposed that adjust the p-value.90 The
best-known multiple testing correction method is the
Bonferroni correction, which divides the significant threshold
α by the number of comparisons m, therefore the adjusted
significance threshold reads α* = α/m. However, the
Bonferroni method is very conservative,31 i.e. it leads to a
very high number of false negatives. Another well-known
approach is the Benjamini-Hochberg procedure,91 which is less
conservative than the Bonferroni approach. Hageman and
Weis proposed a hybrid approach that combines t-tests with
manual thresholding to correct for multiplicity:88 the difference
in deuterium content between two conditions is classified as
statistically significant if two conditions are met simulta-
neously: (i) the p-value returned by the t-test is smaller than
the significance level (α) and (ii) the difference in deuteration
is greater than a predefined threshold. This hybrid approach is

implemented in HaDeX,39 HD-eXplosion40 and Mass Spec
Studio.47

4.2.5. Comparing Deuterium Uptake Curves. Crook et
al. introduced a novel approach to the analysis of HDX-MS
data in the framework of functional analysis.45 Experimental
uptake curves of peptides are fitted with a Weibull model (also
referred to as stretched exponential) of the form:

D t a d( ) (1 e )bt q
= + (12)

where the parameter d represents the mass at time 0 (no
exchange; undeuterated), which is inferred from the data; a
controls the value at which the exchange reaches a plateau
(maximum incorporation); b, the exchange rate constant,
which models the exchange kinetics; q refers to additional
factors that are deflecting the uptake curve from a single
exponential behavior. The stretched exponential in eq 12

Figure 7. Qualitative visualization of HDX-MS differential analysis. (A) Uptake plots for peptides covering residues 25−38 and 49−76 are shown
for two different experimental conditions. Differing curves highlight structural changes in this area of the protein. (B) Differential heat maps show
the difference in uptake between two conditions as a function of the labeling time and along the sequence of the protein. Blue regions identify areas
where Condition 2 is more protected than Condition 1; red regions correspond to areas where Condition 2 is less protected than Condition 1. (C)
The differential heat map is mapped onto the 3D structure of the protein at labeling time 5 min.
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approximates the multiexponential behavior derived from the
Linderstrøm-Lang model (eq 7).

The Weibull model (eq 12) is fitted with experimental data
from two conditions and tools of functional analysis are
implemented to assess whether the curves are significantly
different. The underlying null hypothesis of functional analysis
is that the same parameters can fit experimental curves from
both conditions. The alternative hypothesis is that two
independent models describe better the data. The p-values
are returned by an F test, and multiple testing corrections (see
section 4.2.4) can be applied (as for t tests, linear models and
mixed models).

When using a linear model, time is modeled as a categorical
variable: changing the order of time points does not affect the
results of the analysis. With a mixed model, the random effect
can account for the correlation present between time points for
a given peptide. The major advantage of the functional model
implemented is the possibility of explicitly modeling the
deuterium content as a function of time, which allows to
incorporate intrinsic exchange rates of the residues forming a
peptide. This comes at the cost of acquiring a relatively large
number of informative time points (early/late, spacing) to
properly sample the uptake curve of each peptide.
4.2.6. Visualization of Differential Analysis. The tools

to visualize data for a single condition (uptake plots, heat maps
and 3D structure visualization, see section 3.6) can also be
used to qualitatively visualize the results of a differential
analysis (Figure 7). Differential heat maps show the difference
in uptake between 2 conditions rather than the mass increase
of a single condition. These differences are often mapped onto

a 3D protein structure, with a color scheme showing regions in
white without significant differences, in blue those that are
more protected in the target condition and in red regions that
are less protected.

The plots in Figure 7 do not show the results provided by
the statistical test used. The results of a differential analysis are
generally reported in publications using Woods plots:
proteolytic peptides are visualized across the sequence of the
protein with horizontal bars and positioned along the y-axis
according to the difference in uptake between two conditions;
peptides showing statistically significant differences are high-
lighted (in blue or red). The statistical significance can be
defined either by a single threshold on the p-value (p-value <
α) or by a double threshold on the p-value and on the
difference in uptake. If a t test, a linear model, or a mixed
model is used, then each time point will be visualized on a
different Woods plot; if functional analysis is implemented,
then the results of the whole time-course will be displayed in a
single Woods plot.

The volcano plot is an alternative tool to visualize the results
of a differential analysis. Each proteolytic peptide is a point in
the plot: the horizontal axis represents the difference in uptake
between conditions; the vertical axis shows −log(p-value),
which can be considered a measure of the statistical
significance (the p-value depends on the statistical test
implemented): the higher the differences between conditions,
the lower the p-value, and therefore the higher −log(p-value).
The volcano plot is ideal to visualize statistically significant
peptides using the double threshold (on the p-value and on the

Figure 8. Quantitative visualization of the results of differential analysis on the same data set using Woods plots, Volcano plots, and Manhattan
plots. See main text for plot description.
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difference in uptake), but it does not visualize the location of
the peptide along the protein sequence.

The Manhattan plot is another alternative tool to directly
visualize the p-values returned by the chosen statistical test
along the sequence of the protein. In this plot, the horizontal
axis represents the peptide index, while the vertical axis shows
the statistical significance (−log(p-value)). Alternatively, as
shown in Figure 8, peptides can be visualized as horizontal bars
positioned along the sequence of the protein.

Woods plots, volcano plots and Manhattan plots (examples
are shown in Figure 8) are all valid options to show the results
of a differential analysis. We find the Woods plots to be more
complete as they show directly the difference in uptake and the
position of the perturbation, and indirectly the statistical
significance. Volcano plots show the difference in uptake and
the statistical significance but fail to directly localize changes
along the sequence of the protein; Manhattan plots can localize
the differences and show the statistical significance but fail to
show the difference in uptake.
4.2.7. Which Statistical Test to Choose? In section 4.2,

we reviewed several strategies implemented in software to
analyze differential HDX-MS data: (i) manual thresholding,
(ii) simple hypothesis testing (t test), (iii) linear regression
model, (iv) mixed models, and (iv) functional analysis-based
strategies. We strongly suggest avoiding manual thresholding
as it fails to control for false positives. While simple hypothesis
testing is not inherently flawed, it can be easily generalized into
a linear regression model. A t test is limited to comparing one
explanatory variable at a time, whereas a linear model can
account for multiple variables�such as labeling time,
experimental condition, and charge state�making it more
suitable for HDX-MS data. The choice between linear models,
mixed models or functional analysis-based strategies depends
on the data set available and on the specific research question.
Mixed models are ideal in cases where data are not

independent, such as when both biological and technical
replicates are available, when meta-analysis of data sets from
different research groups needs to be performed, or when
newly acquired data on one variant of a protein have to be
compared with older data, possibly collected by different
researchers but using the same instrument. In most scenarios, a
linear model is the most pragmatic solution to assess
statistically significant differences between two conditions.
The function analysis-based strategies, on the other hand, are
powerful when kinetic information is needed, but require an
informed selection of time points to accurately estimate the
underlying deuterium uptake curve.
4.3. Multimodal Analysis

Sometimes the presence of EX1, mixed EX1/EX2 (also known
as EXX) behavior, or the coexistence of multiple conforma-
tional states of a protein, can cause the isotopic envelope to
assume a multimodal shape (Figure 9). Pure EX1 kinetics can
produce two isotopic envelopes with fixed m/z values (the fully
protonated and fully deuterated) but with variable intensities
(the intensity of the fully deuterated envelope increases and
the undeuterated one decreases accordingly over time). The
coexistence of EX1 and EX2 kinetics (EXX) is also
characterized by the presence of bimodal isotopic envelopes,
with the first population gradually shifting toward higher m/z
values (as in the EX2 regime) and the second associated to the
fully deuterated spectrum (as in a pure EX1 kinetics); in this
mixed regime, an intensity shift to the higher-deuterated state
is observed. It is also common to find a multimodal behavior
with two populations that can both undergo EX2 kinetics,
which is associated with two distinct conformations of the
protein that are not interexchanging.92,93 In such cases, the
modes of the bimodal spectrum should be deconvolved before
comparing the intensity-weighted average of the individual
populations with the statistical models described in section 4.2.

Figure 9. Multimodal behavior from two coexisting conformations. (A) The time evolution of the isotopic envelope of a peptide with bimodal
behavior is shown. Both populations follow an EX2 kinetics, and therefore identify two distinct conformations of the protein that are not
interexchanging. The bimodal distribution is fitted with two binomial distributions, and the mass increase and ratio of the two populations is
recorded. (B) The mass increase of the two populations is shown as a function of time. The size of the scatter points is proportional to the fraction
of molecules following the specific population.
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In other words, two values of deuterium uptake are needed to
fit the isotopic distribution properly and to quantify the
fraction of molecules following EX1 or EX2 behavior (or,
analogously, the population in either conformational state).
Note that EX1 kinetics is a rare phenomenon and should not
be confused with carryover.94

To perform a multimodal analysis, the raw mass spectra of
the proteolytic peptides are needed in order to obtain the full
isotopic distributions. We note here that retrieving such raw
spectra is not trivial: the majority of the tools described here
require the csv output files generated by DynamX (for Waters
instruments) or HDExaminer (for Thermo Fisher Scientific),
which only contain information on the intensity-weighted
average of the isotopic envelope that have been automatically
assigned and manually curated. Manually analyzing raw data is
very time-consuming and error prone, even for a data set with
a limited number of samples. One can also use tools from MS-
based proteomics and/or MS-based metabolomics to extract
the needed information from the raw spectra. However, these
tools cannot be used out-of-the-box and are therefore not very
user-friendly for the inexperienced user. A third option is to
implement a method from scratch that takes as input the raw
files, implements a peptide search, carries out automated or
manual mass spectrum assignments, and stores information on
the shape of the isotopic envelopes. The latter strategy has
been developed by several groups which, being able to
interface with raw data, have developed methods to study the
bimodal behavior caused by EXX kinetics or by the coexistence
of multiple conformations.

Mass Spec Studio49 and HX-Express,41 for example, can
identify peptides showing bimodal behavior in the isotopic
distribution. These software packages allow fitting experimen-
tal spectra with a double binomial distribution and to extract
the associated parameters, namely the center of mass of the
two subdistributions and their relative intensities.

ExMS236 can detect peptides showing multimodal behavior
through a “unimodality check” introduced in the latest version
of the software to assess the quality of peptide selection. These
peptides are flagged and can be further studied by a module
named “Multimodal analysis”. The isotopic envelope of the
peptide can be fitted with several functions (varied binomials,
uniform binomial and Gaussian(s), Gaussians, or reference
shapes�in case a control sample displaying the pure
subspectrum of one population is available). The multimodal
behavior can be detected, and the parameters extracted
through the fitting procedure can be used to determine the
fraction of sample following EX1 or EX2 regime.

deMix33 is a recent method aiming to tackle the issue of
discriminating different populations when a bimodal distribu-
tion appears due to mixed EX1 and EX2 behavior in HDX-MS
data. The deuterated isotopic distribution (of every peptide
and at every time point) is fitted with a separate binomial
distribution. An optimal value for deuteration dA is calculated.
If the deuterated distribution is not explained enough by dA,
then bimodal analysis is performed. The top two-scoring
deuteration values dA and dB are calculated. The resulting
bimodal distribution is fitted with experimental data to
determine how each species is populated. deMix reports two
values of deuteration only if the error of the bimodal
distribution is significantly improved and if the weight factor
for the least abundant species is greater than 10%.

Here we presented various strategies for analyzing HDX-MS
data of peptides exhibiting multimodal behavior, which can

arise from several factors, including carryover, coexistence of
different noninteracting protein conformations, EX1 kinetics,
or mixed EXX kinetics. The methods discussed here enable
robust deconvolution of the extent of deuteration of each
population, but they do not inform the user per se about what
causes the bimodal behavior. If bimodality is known to be due
to carryover, then these methods allow for its correction
(rather than redoing the experiment). In the case of coexisting
protein conformations (both following EX2 kinetics), they
help determining the fraction of molecules in each
conformation. When the relative intensities of both popula-
tions are sufficiently high, this enables the study of the
exchange kinetics of both conformations. In the rare instances
of pure EX1 kinetics or mixed EX1/EX2 kinetics, these
methods allow determination of the fraction of fast- and slow-
exchanging molecules. The weakness in the latter scenario is
the unclear application of this information. Indeed, peptides
showing EX1 or EXX kinetics are generally excluded from
differential analysis. Sometimes, for example, standard EX2
kinetics might be observed for one protein state, while pure
EX1 kinetics is observed for another. It is true that the
emergence of EX1 or mixed EXX kinetics can qualitatively
assess protein disorder, but quantitatively assess statistically
significant differences between different states and integrating
these data into modeling remain unresolved challenges.
4.4. Protection Factor Analysis

The Linderstrøm-Lang model (eq 1) describes HDX as a
phenomenon occurring at the level of the single residue. The
exchange kinetics follows an exponential law with an exponent
that, in the EX2 limit, depends on the intrinsic exchange rate
and on the protection factor (eq 2). The intrinsic exchange
rate represents the rate that the same type of residue (amino
acid) has in a completely unfolded structure. The protection
factor of the residue depends on the local structure of the
protein surrounding the residue. Retrieving protection factors
from HDX-MS data would enable to connect the experimental
data with microscopic properties that can be inferred from
atomistic modeling and MD simulations. Indeed, protection
factors can be measured for labeled residues of a protein
through HDX-NMR.8 However, the information provided by
HDX-MS is coarse-grained to the peptide level and under-
determined (see section 3.5), and extracting protection factors
(or exchange rates) at the resolution of the single amide from
HDX-MS data is not trivial.

The spatial resolution of HDX-MS data can be increased
experimentally. On the one hand, different proteases20−23 or
multienzyme strategies have shown to be beneficial in
increasing peptide overlaps.95 On the other hand, MS/MS
fragment data can be exploited. Among the fragmentation
techniques available, collision induced dissociation (CID) has
the drawback of favoring H/D scrambling within the peptide
(protons and deuterium atoms are mobile within the peptide).
Alternative dissociation techniques, such as ECD/ETD (more
generally ExD) and UVPD, have been proven to increase
spatial resolution while minimizing H/D scrambling.24,25

However, reaching single residue resolution for the whole
protein with these fragmentation techniques is still challenging,
mainly for two reasons: sensitivity (the intensity of peptides
and fragments vary significantly due to the broad specificity of
pepsin, the fragmentation and ESI efficiencies) and protein size
(the proportion of inter-residue cleavages decreases with the
protein size).96
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Advanced data analysis strategies can be used to computa-
tionally increase spatial resolution of peptide-level HDX-MS
data or to estimate protection factors (computational tools for
such purpose are listed in Table 3).

To increase resolution, DECA32 implements a computa-
tional method named Overlapping Peptide Segmentation
(OPS). OPS exploits the overlapping of peptides to assign
better-resolved uptake values to nonoverlapping areas (Figure
10). When two peptides have a common terminus (e.g.,

peptide A covering residues 10−15 and peptide B covering
residues 10−19), the absolute uptake of a smaller peptide
defined by the nonoverlapping residues of the observed
peptides (i.e., an artificial peptide C covering residues 16−19)
is calculated as the difference in absolute uptake of the bigger
peptides (if peptide A has absolute uptake 3.5 Da and peptide
B 5.5 Da, the uptake of peptide C is set to 5.5−3.5 = 2.0 Da).
Because of error propagation, the error associated with the
uptake of these artificial peptides is bigger than the original.
For this reason, OPS should not be repeated more than once.

HDfleX42 and hdxstats45 fit peptide level data with a
stretched exponential (eq 12). The fit returns a peptide-level
exchange rate that can be used to obtain a pseudo (peptide-
level) protection factor. HDflex42 has the unique capability of
analyzing peptide- and ETD fragment- level data simulta-
neously. The uptake curve of the peptide/fragment is divided
by the number of exchangeable sites, so that the uptake curve
of a residue is an average over the available peptides and
fragments covering that specific residue. The combination of

ETD data and this “data flattening” procedure thus allows an
improvement in spatial resolution beyond the peptide level.

ExMS236 contains a module named HDSite to extract
protection factors. Here, the estimation of amide exchange
rates can be performed using two different strategies. In the
envelope-based method, the isotopic envelopes calculated by
ExMS2 are fitted at each time point to calculate the
deuteration of the residues, exploiting the overlapping of
peptides. The uptake of each residue is then fitted with a single
exponential (eq 2) to extract the exchange rate of the single
amide. Alternatively, HDSite attempts to directly fit the amide
exchange rates for a whole set of peptides and exchange times.
These two methods provide better results depending on the
data set.

ExPfact37 is a computational method aiming to extract
protection factors at the resolution of the single amide and
relies on the information encoded in the intensity-weighted
average of the isotopic envelopes. The time-dependent uptake
of each peptide is fitted simultaneously with eq 7 and the
values of the protection factors are adjusted to minimize the
difference between predicted and experimental values (i.e., a
cost function). Because of underdetermination, the solution is
not unique (the existence of a multiplicity of solutions is
known as “degeneracy”): different sets of protection factors
have the same agreement with experimental data. To attenuate
the degeneracy of the solutions, the fitting algorithm is coupled
to a regularizer, i.e. an additional term in the cost function that
favors the finding of smooth patterns of protection factors (this
can be interpreted as an assumption that adjacent residues do
not “jump” in protection). ExPfact calculates alternative sets of
protection factors, where each set is the result of a
minimization procedure starting from a randomized initial
guess. To further reduce the degeneracy of the solutions, a
clustering algorithm (based on a mixture of multivariate
Gaussian distributions) is applied and ExPfact returns a
discrete number of families of solutions. Each element of each
family is a set of protection factors in agreement with
experimental data. The additional information contained in
the isotopic distribution can be used a posteriori to rank sets of
protection factors.38 HDSite and ExPfact have been cross-
validated with HDX-NMR data.

HDXModeller44 implements a strategy very similar to
ExPfact: a minimization procedure is repeated multiple times
starting from a random initial guess; the software introduces a
correlation matrix as an autovalidation tool to estimate the
accuracy of the modeled protection factor of individual amino
acids.

PyHDX52 uses a machine learning framework to perform the
fitting directly in a free energy landscape (the connection
between the protection factor and the free energy is P = eΔG/RT,
where ΔG represents the difference in free energy between the
open and closed states); the problem of underdetermination is
mitigated because one specific initial guess is selected and the
(stochastic) fitting algorithm is coupled with a regularizer.

Also HR-HDXMS46 implements nonlinear programming to
estimate HDX exchange rates at single amino acid resolution.
The degeneracy is moderated by choosing a data-oriented
initial guess for the exchange rates: Overlapping Peptide
Segmentation (OPS) is used to artificially increase spatial
resolution and the deuteration of subpeptides is fitted with an
exponential model to obtain a rate constant. This rate constant
is used as initial guess for all the residues belonging to the
subpeptide considered.

Table 3. List of Software Packages for High-Resolution
HDX-MS Data Analysis at the Peptide Level

High Resolution HDX-MS

Name Strategy

DECA32 overlapping peptide segmentation
HDflex42 stretched exponential
Hdxstats45 stretched exponential
ExMS235,36 isotopic envelope fitting
ExPfact37,38 intensity-weighted average fitting
pyHDX52 intensity-weighted average fitting
HDXModeller44 intensity-weighted average fitting
Saltzberg et al.54 intensity-weighted average fitting
HR-HDXMS46 intensity-weighted average fitting
ReX53 change-point model

Figure 10. Example of Overlapping Peptide Segmentation (OPS) for
two peptides A and B, covering respectively residues 10−15 and 10−
19 and with absolute uptake 3.5 and 5.5 Da. OPS generates an
artificial peptide C covering residues 15−19 with absolute uptake 2.0
Da.
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A Bayesian framework to estimate protection factors from
HDX-MS data was first proposed by Saltzberg et al.54 The
Bayesian approach estimates the probability of a particular
model, given all the information about the modeled system,
including prior knowledge of the system, experimental data on
the system and models of experimental noise. In other words,
the output of a Bayesian approach is the probability
distribution of an exchange rate is calculated, not a specific
value. The problem of selecting an initial guess is translated
into selecting an initial probability distribution. An unin-
formative Jeffrey’s prior (which corresponds to a uniform
probability distribution) is applied to each individual exchange
rate constant to represent a lack of information on the bounds
and distribution of the parameter. Best scoring solutions are
clustered, and mean values and standard deviations are
reported.

ReX53 is a new strategy, proposed by the same authors of
Hdxstats,45 to infer residue-level rates from HDX-MS data.
“ReX combines a likelihood model, which models the
deuterium per residue, with a prior change-point model that
permits correlations or jumps between the parameters of
adjacent residues”.53 HDX is modeled as a latent process (i.e.,
unobserved) occurring at the level of the single amino acid.
The exchange of each residue is modeled as a mixture of a
stretched exponential (eq 12) and a standard exponential (eq
2)�the proportion of the mixture is learned during the
inference process. If every residue was considered as a separate
entity, then the model would have too many parameters to be
fitted to experimental data. To overcome this issue, a change-
point model97,98 is implemented, which allows the parameters
between segments of residues be either similar or discontin-
uous (jump). The number of change points (where the jump
occurs) is determined via a specific Markov Chain Monte
Carlo (MCMC) algorithm, known as Reverse Jump Markov
Chain Monte Carlo (RJMCMC),97 that allows the number of
change points to be variable (i.e., not fixed a priori).

Protection factor analysis requires knowledge of the
contributions of each amide to the overall, observed deuterium
incorporation into a peptide. In this section, we reviewed
various strategies developed to increase spatial resolution from
peptide-level HDX-MS data, which can be grouped into five
classes (Table 3): (i) overlapping peptide segmentation, (ii)
stretched exponential, (iii) isotopic envelope fitting, (iv)
intensity-weighted average fitting, and (v) change-point
model. We discourage the use of overlapping peptide
segmentation as it has been shown that subtractive methods
for improving spatial resolution in HDX-MS data often yield
inaccurate predictions as they neglect different levels of back-
exchange for peptides of different lengths.70 Fitting individual
uptake curves with a stretched exponential can be useful to
obtain a qualitative parameter describing the kinetics of a
specific peptide, but this parameter is barely connected with
the parameters of the Linderstrøm-Lang model (opening/
closing rate or protection factor). The same limitation applies
to the change-point model. We believe the most effective
strategies to achieve single-residue resolution from peptide-
level experimental data are the isotopic envelope fitting
provided by ExMS2 and the intensity-weighted average fitting
provided by ExPfact. These are the only two methods that have
been cross-validated with NMR experiments, demonstrating a
strong correlation between the protection factors derived from
both techniques. A reference data set analyzing the HDX of a
model protein with both NMR and MS would significantly aid

the development of these methods. The main drawback
associated with these strategies is that the results are highly
dependent on the quality of the HDX-MS data set, which is
determined by the number of peptides and redundancy
provided by the coverage map, as well as by the number and
distribution of labeling time points. Additionally, the limited
understanding of back-exchange and of EX1/EXX kinetics are
holding back the development of these methods, which remain
an active area of research. While they have shown promising
results in inferring single residue resolution from peptide level
data, a protocol to perform a “protection factor analysis” for
HDX-MS data has yet to be established. To encourage the use
of the tools described here across the community, software
developers should prioritize the creation of user-friendly
graphical interfaces, comprehensive documentation, and
tutorials.

5. CONCLUDING REMARKS
The growing popularity of HDX-MS spurred the recent
development of several data analysis tools, which are described
here alongside more basic (vendor-specific) software. We took
the different steps of the data analysis workflow of HDX-MS as
a guide and discussed how the preprocessing of raw data,
which is generally performed with vendor-specific software, can
be now performed with alternative open-source platforms,
allowing the user to better interact with the raw data.
Moreover, commercial software such as Protein Metrics
(Dotmatics) and HDX Workbench27 provide a comprehensive
tool for HDX-MS data analysis. The curation of HDX-MS is
however still lacking in some aspects of a complete theoretical
understanding, for example in a proper correction for back-
exchange.

We discussed differential experiments, where HDX-MS
enables the relative and qualitative comparison of exchange
patterns under different experimental conditions to pinpoint
perturbations along a protein’s sequence. While statistical
analysis and data visualization for differential HDX-MS
experiments are now well-established, there are still some
nuanced aspects that warrant attention. First and foremost is
the critical choice of an appropriate statistical test for
comparing exchange curves across different states. We
advocate for the use of statistical tests (t tests, functional
analysis, linear models, or mixed models) over manual
thresholding. The rationale behind this choice is that the
latter approach provides no control over false positives and
false negatives. Additionally, we encourage the use of multiple
testing corrections. The selection of the most appropriate
statistical test is contingent upon the experimental design’s
architecture. For experiments encompassing both technical and
biological replicates, mixed models emerge as the optimal
choice. Conversely, if only one type of replication is available
and no specific information about the average exchange rate is
required, then the linear model represents the simplest and
most pragmatic alternative. Functional analysis offers the
advantage of modeling the time variable and providing
quantitative insights into exchange kinetics at the cost of
needing many time points to model the nonlinear relation
adequately. Second, it is worth noting the well-established
observation that the deuteration of a peptide can be influenced
by its charge state. This phenomenon, which arises from back-
exchange occurring during the gas phase, remains incompletely
understood, and necessitates a careful treatment of different
charge states to avert spurious discoveries. When performing a
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differential analysis, it is important to compare the same charge
state for the different experimental conditions available. When
multiple charge states have been detected, it is important to
check that the same results (protection/deprotection) are
consistent among the different charge states. This can relatively
easily be tackled by adding an extra variable (the charge state)
to the linear model implemented in eq 9.

We discussed how conventional differential analysis
approaches should be coupled with deconvolution tools
when dealing with peptides exhibiting EX1 or EXX kinetics.
Several methodologies have been devised to address these
scenarios, enabling the analysis of the bimodal behavior of
isotopic envelopes and the extraction of information regarding
deuteration and the fractions of the two modes involved.
However, it is important to acknowledge that such analysis
hinges on the availability of raw mass spectra, which can be
challenging to obtain. Moreover, it remains unclear how the
information derived from bimodal distributions can be
interpreted and integrated with protein modeling, and care
should be taken when coming across such complex peptide
spectra, and their precise cause established. We also discussed
how HDX-MS holds promise beyond its utility in differential
experiments. It affords the opportunity to delve into exchange
kinetics at the single-residue level, making it an ideal candidate
for validating ab initio models or predictions of protein
structure. Numerous techniques have been proposed for
extracting protection factors from HDX-MS data, but a
universally accepted standard for protection factor analysis
has yet to be established.

What should ideal HDX-MS software look like in five years’
time? Ultimately, the goal of HDX-MS software development
is to enable researchers to obtain a deeper understanding of
protein dynamics, functions and interactions. Therefore, the
software should remove HDX-MS experimental idiosyncrasies
and express the information contained in the data in the form
of more physical descriptions of protein dynamics. These
physical descriptors can take many forms, for example as
outputs which are already established, such as protection
factors or Gibbs free energies. Due to the richness of HDX-MS
data sets we anticipate that future software development can
give more detailed insights into hydrogen-bond networks and
protein allostery, identify regions of local cooperative
unfolding, or generalize functional patterns from series of
protein mutations. These physical descriptions of protein
dynamics could then function as input for downstream
bioinformatics methods, in the form of constraints for
molecular dynamics simulations or as training data for
predictive artificial intelligence (AI), taking deep learning
approaches such as Alphafold99 beyond static predictions of
protein structure and instead offer functional information
based on protein dynamics. For example, predictive AI models
could learn from HDX-MS data how to identify allosteric
regulation in de novo designed proteins.

In general, while it is important that software serves the
direct needs of the HDX-MS community itself, in the form of
statistical testing and data set quality validation, we envision
that future software development will facilitate dissemination
of novel insights toward broader audiences and allow for
increased interfacing with neighboring fields.

To work toward these goals, the software should perform the
following basic steps. The software would accept the protein
sequence and undeuterated raw data as input, performing
robust peptide search and identification to generate a coverage

map. This search would support not only peptide-level data
but also fragment-level data from CID, ExD, or UVPD
fragmentation. In the next step, the software would process the
deuterated raw data, automatically detecting the isotopic
envelopes of previously identified peptides. Since a large body
of user-annotated peptides data sets are readily available, we
anticipate that AI models can be trained on this data and
provide further automation and validation in this critical step,
increasing both throughput and accuracy. The identified
peptides could then be exported in a single operation as
isotopic envelopes in a standardized format. It would also
perform accurate back-exchange correction (or the best
available correction based on future research), showing users
how the correction modifies raw input data and provide
feedback on confidence and potential experimental artifacts.
The software would deconvolute peptide spectra exhibiting
multimodal behavior, enabling researchers to export results for
further analysis of EX1/EXX kinetics.

In “Differential Analysis” mode, researchers could select the
most appropriate statistical test for their experimental design
and research question. The software would then generate
publication-quality Woods plots, Manhattan plots, and volcano
plots to highlight statistically significant changes across the
protein sequence. Protein structural information could be
uploaded to the software, either obtained from experimental
methods or Alphafold predictions. The software could feature
one or multiple modeling options or fitting strategies, such as
“Protection Factor Analysis”, where users are guided through
steps and various modeling parameters, and the software would
evaluate the data set’s quality and providing a confidence level
for the final predictions. The estimated pattern of protection
factors or other modeling output could then be mapped onto
the uploaded protein structure and presented as an integrative
structural and functional output. There should be a strong
focus on accessibility, providing comprehensive documentation
and a user-friendly graphical user interface. Data processing
best-practice and the effect of user-configurable settings and
tunable parameters such as thresholds and how they influence
output and confidence should be clearly explained through
tutorials or other forms of documentation. Publication of
source code under a permissive license is required for other
researchers to validate and review the processing pipelines as
well collaborate and iterate on published works.

Experimental researchers would focus on the experiment,
and the software would provide real-time results and
suggestions to guide their decisions, while computational
researchers would be able to download online data sets from a
standardized repository, rapidly perform the same analysis
performed in published papers, and easily and exhaustively
export all the information they need to improve the
implemented methods or to propose alternative solutions to
tackle the remaining challenges.
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