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Abstract  

CD8+ T cells are crucial for antitumor immunity. In higher-risk myelodysplastic neoplasms (HR-

MDS) and acute myeloid leukemia (AML), CD8+ T cells exhibit altered functionality. To 

address their role in the course of the disease, we performed in-depth immunophenotypic 

analysis of 104 pre-treatment bone marrow (BM) samples using mass and flow cytometry and 

observed an increased frequency of the CD57+CXCR3+ subset of CD8+ T cells in patients who 

failed azacitidine (AZA) therapy. Furthermore, an increased baseline frequency (>29%) of the 

CD57+CXCR3+CD8+ T cell subset was correlated with poor overall survival. We performed 

scRNA-seq to assess the transcriptional profile of BM CD8+ T cells from treatment-naive 

patients. The response to AZA was positively associated with the enrichment of IFN-mediated 

pathways, whereas an enhanced TGF-β signaling signature was observed in non-responders. Our 

results suggest that targeting CD8+ T cells with inhibitors of TGF-β signaling in combination 

with AZA is a potential therapeutic strategy for HR-MDS and AML. 

 

Statement of significance 

Immunophenotypic analysis identified a bone marrow CD57+CXCR3+ subset of CD8+ T cells 

associated with response to azacitidine in patients with MDS and AML. scRNA analysis 

revealed that IFN signaling is linked to the response to treatment, whereas TGF-β signaling is 

associated with treatment failure, providing insights into new therapeutic approaches. 
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Main Text: 

Introduction 

Myelodysplastic neoplasms (MDS), chronic myelomonocytic leukemia (CMML), and acute 

myeloid leukemia (AML) are clonal disorders that share common features in pathobiology.(1) 

While genetic alterations and epigenetic modifications are central in the pathobiology of myeloid 

neoplasms, the interaction between clonal and immune cells is also crucial(2–4). Compelling 

evidence indicates that the interplay between clonal cells and the bone marrow (BM) 

microenvironment plays a significant role in the development and progression of MDS and 

CMML.(5,6) In particular, CD8+ T cells play a crucial role in the regulation of tumor 

microenvironment.(7) Aberrant functionality of CD8+ T cells has been observed in patients with 

myeloid neoplasms compared to healthy individuals,(4,8,9) rendering this cell population a 

major target for immunotherapeutic interventions.(10,11)  

The standard of care for patients with higher-risk MDS (HR-MDS) and non-proliferating 

CMML, as well as for patients with secondary AML who are not eligible for intensive 

chemotherapy, is treatment with hypomethylating agents (HMA) such as azacitidine (AZA).(12–

14) Additionally, AZA in combination with venetoclax is currently used in patients with 

previously untreated AML.(15) However, not all patients exhibit a favorable response, and there 

is a significant risk of relapse.(16) Additionally, molecular predictors of the response to HMA 

and the precise mechanism of action of this drug are not well defined. The exact genetic and 

cellular processes through which HMA exerts its effects are still being studied(13); however, 

there is no therapeutic approach to overcome resistance to treatment.(17) Several lines of 

evidence suggest that AZA promotes cellular and cytokine-mediated effector T cell tumor 
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lysis.(18,19) Nevertheless, the exact role of CD8+ cells in disease progression and the response 

to HMA in myeloid neoplasms remains unclear. 

The aim of this study was to comprehensively investigate the immune cell compartment in the 

BM of patients with myeloid neoplasms at various disease stages, to identify immune cell 

populations or molecular pathways that could predict the response to treatment with HMAs 

and/or serve as targets for immunotherapies. For this reason, we initially engaged a systematic 

approach to study the immune landscape of BM samples by utilizing mass cytometry (Cytometry 

by time of flight; CyTOF) for the immunophenotypic characterization of immune cell 

populations in the BM. Based on this analysis, we focused on BM CD8+ T cells and performed 

single-cell RNA sequencing (scRNA-seq) to address the molecular signature in CD8+ T cell 

subsets that are linked to response to treatment with AZA. 

 

Materials and Methods 

Study design 

The overall aim of our study was to investigate the BM immune landscape of patients with 

myeloid neoplasms to uncover specific immunophenotypic disparities and molecular signatures 

related to the development and advancement of myeloid neoplasms, as well as the response of 

patients to AZA treatment. To this end, we initially performed mass cytometry (CyTOF) to study 

the immune cell populations in BM samples from patients with LR-MDS, HR-MDS, CMML, 

and AML collected before treatment initiation. We then engaged flow cytometry in an additional 

cohort to validate the results derived from CyTOF. Based on the findings from the 

immunophenotypic analysis, we focused on BM CD8+ T cells and performed scRNA-seq to 

determine the molecular signature of CD8+ T cell subsets. 

Study patients 
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BM samples were collected from treatment-naïve patients with MDS, AML and CMML-2. 

Patient diagnosis was conducted based on the 2022 5th World Health Organization (WHO) 

classification(20) and MDS patients were categorized based on their IPSS-R score, into lower-

risk MDS (LR-MDS; IPSS-R score ≤ 3.5) and higher-risk MDS (HR-MDS; IPSS-R score > 

3.5).(21) Except from patients with LR-MDS, patients were treated with Azacitidine (AZA) in a 

subcutaneous dose of 75 mg/m2 for 7 consecutive days within a 28-day cycle. To manage 

myelotoxicity or complications associated with myelosuppression, potential measures such as 

reducing the dose by up to 50% or delaying treatment were considered. Response assessment 

was determined using the International Working Group Response Criteria for MDS(22) and the 

recently revised European LeukemiaNet criteria for AML.(23) The baseline characteristics of the 

patients included in this study are provided in Supplementary Table S1. The study was approved 

by the local Ethics Committee, under the reference number (877). All patients provided informed 

written consent in accordance with the principles outlined in the Declaration of Helsinki. 

Collection and handling of samples 

Density gradient centrifugation, using Ficoll-Histopaque 1077 (Sigma-Aldrich), was employed 

to isolate bone marrow mononuclear cells (BMMCs). Immediately after isolation, BMMCs were 

cryopreserved in a freezing medium consisting of 90% Fetal Bovine Serum (FBS) and 10% 

Dimethyl Sulfoxide (DMSO). 

Mass cytometry and data analysis  

High-dimensional immunophenotyping of BMMCs was performed with mass cytometry using 

established and validated workflows from previous studies.(24,25) We employed the Maxpar 

Direct Immune Profiling Assay (MDIPA) that contains 30 pre-conjugated antibodies 

(Supplementary Table S2) with metal probes in lyophilized form (Standard Biotools).(26) Prior 
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to staining, BMMCs were thawed in prewarmed RPMI medium and supplemented with 10% 

FBS. After two washes, the cells were resuspended in fresh medium. BMMCs were subjected to 

a blocking step using Human TruStain FcX (Biolegend; RRID:AB_2818986). Subsequently, 

cells were stained for surface markers following the MDIPA manufacturer's instructions. Two 

additional washes with Cell Staining Buffer (CSB) were performed, and fixation was carried out 

using a 1.6% filtered formaldehyde solution from Sigma for 20 minutes at room temperature. 

Finally, cells were stained in a DNA intercalator solution (1:1000 dilution of 125 μM Cell-ID™ 

Intercalator-Ir) in Maxpar Fix and Perm buffer (Standard BioTools). The next day, cells were 

washed with CSB buffer and Cell Acquisition Solution (CAS) and then resuspended with EQ 

Passport beads (Standard Biotools, 1:10 dilution) immediately before acquisition. Acquisition 

was performed using a Helios™ system. To ensure data quality during acquisition, the flow rate 

at the Helios™ system (RRID:SCR_019916) did not exceed 350 events per second. Data were 

subsequ ently normalized using Passport beads with CyTOF software (version 10.7.1014). Prior 

to analysis, we performed data cleanup, with bivariate dot plots in FlowJo™ (v10.8 Software, 

BD Biosciences; RRID:SCR_008520), to refine gaussian parameters, and live, singlet cell events 

were selected for downstream analysis. Data analysis was performed on CD45+ cells, to exclude 

blasts from the analysis. FlowSOM (RRID:SCR_016899) clustering analysis (version  2.11.2), 

dimensionality reduction via tSNE (Rtsne, version 0.17; RRID:SCR_024305) and UMAP (uwot, 

version 0.2.2; RRID:SCR_018217), which were implemented within the CATALYST (version 

1.26.1; RRID:SCR_017127) package, were carried out in the R programming environment 

(version 4.1.0), following established open-source workflows previously described.(25)  

For targeted analysis of T cell populations, data were imported into Cytobank (accessible at 

https://premium.cytobank.org; RRID:SCR_014043) for further assessment. All related statistical 
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tests and illustrations were generated through Cytobank. The FlowSOM algorithm (version 

2.11.2) was utilized to hierarchically cluster gated CD4+ and CD8+ T cell populations into 

distinct metaclusters, based on their surface marker expression profiles. Proportional sampling 

was employed to maximize the inclusion of total events in the analysis. The default/automatic 

settings were used for the clustering method, iterations, seed, and number of clusters, while the 

number of metaclusters was set to 10 or 6 based on the specific analysis requirements. For 

illustration purposes, metaclusters were also projected onto representative tSNE maps that were 

generated using the dimensionality reduction algorithm tSNE-CUDA, using the default 

parameters provided by Cytobank. 

Flow cytometry 

Sample preparation and flow cytometry was performed as previously described.(18) Briefly, 

cryopreserved BMMCs were thawed in a water bath (37oC) and washed with PBS. Following a 

centrifugation at 300 × g for 10 min, the supernatant was carefully discarded, and the cell pellet 

was resuspended in PBS. The cells were then treated with DNAse I 1mg/ml (Sigma-Aldrich) for 

10 min at room temperature. Next, the BMMCs were stained with a custom antibody panel for 

20 min, on ice. Details about the antibodies used are provided in Supplementary Table S3. After 

a single washing step with PBS, the samples were ready for cell acquisition and analysis by flow 

cytometry. Data were collected, on an 8-color flow cytometer FACS Canto II (BD Biosciences; 

RRID:SCR_018056), using BD FACSDivaTM (version 8.0.1 for Windows; RRID:SCR_001456) 

software and subsequently analyzed using FlowJoTM (version 10 for Windows, BD Biosciences; 

RRID:SCR_008520) software. A full representative gating strategy of the CD57+CXCR3+CD8+ 

T cell subset, is illustrated in Supplementary Fig. S1. 

Next-generation sequencing 
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DNA extraction was performed on BMMCs or peripheral blood mononuclear cells (PBMCs), 

before treatment initiation. In brief, 1-5*106 cells were counted from each patient’s sample, and 

resuspended in PBS. The genomic DNA was isolated utilizing the Purelink Genomic DNA Mini 

Kit (Invitrogen, #K182001).  Prior to next-generation sequencing, qualitative and quantitative 

evaluation of the isolated DNA samples was performed using NanoDrop™ 2000/2000c (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA; RRID:SCR_020309). The VariantPlex 

Myeloid panel (IDT, Coralville, Iowa, USA) was utilized to detect copy number variations 

(CNVs), single-nucleotide variants (SNVs) and indels in 75 myeloid associated genes as per 

manufacturer’s instructions. Target-enriched libraries of extracted nucleic acids for next-

generation sequencing were prepared using Anchored Multiplex PCR (AMP), a target 

enrichment chemistry utilizing unidirectional gene-specific primers (GSPs), sample indexes and 

molecular barcodes for multiplex targeted NGS. Adapters ligated to the molecules before 

amplification carry molecular barcodes (MBCs) that ensure accurate unique molecule counting 

and error correction, allowing for reliable mutation detection. Dual, independent coverage across 

all target regions ensures the detention of some reads when a primer fails to bind to the target 

sequence due to SNVs blocking the primer. Open-ended amplification provides the flexibility 

needed for detecting novel RNA fusions and offers strand-specific bidirectional coverage in 

DNA. After sequencing on an Illumina platform, analysis was performed on Archer 

(RRID:SCR_015854) Analysis bioinformatics platform.   

scRNA-seq and data processing 

BMMCs were thawed and washed with RPMI-1640 (GlutaMAX™, Gibco, #61870) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco, #10270), 100 U/ml 

penicillin–streptomycin (10,000 U/ml, Gibco, #15140). Then, BMMCs were treated with DNAse 
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I 1mg/ml (Sigma-Aldrich) for 10 min at room temperature. Samples were stained with 7-AAD 

Viability Staining Solution (420404, Biolegend), CD45 APC/Cy7 (304014, Biolegend; 

RRID:AB_314402), CD3 PE (317308, Biolegend; RRID:AB_571913), CD8 APC (345775, BD 

Biosciences; RRID:AB_2868803), CD4 FITC (345768, BD Biosciences; RRID:AB_2868797). 

After antibody staining, cells were incubated with Cell Multiplexing Oligos (3' CellPlex Kit Set 

A, 10x Genomics) following the manufacturer’s instructions. Based on 7-AAD- CD3+CD4-CD8+ 

profile, cells were sorted on a FACS ARIA III (BD Biosciences; RRID:SCR_016695) v8.0.1 

software (BD Biosciences). Flow sorting compensation was initially performed using single-

stain controls and was further refined with small changes based on FMO (fluorescence minus 

one) controls for each antibody. For the flow sorting process, a 70um nozzle was used, while the 

pressure was set at 70psi. The electronic abort was close to zero to minimize cell loss. Cell purity 

was above 95%. 

Sorted cells were counted, resuspended in PBS + 10% FBS at a concentration of 1600 cells/ uL, 

and samples were combined by three per well of the Chromium Next GEM Chip G (10X 

Genomics) before being loaded onto the Chromium Controller (10X Genomics; 

RRID:SCR_019326). Pooling the patient samples into groups of three per reaction ultimately 

resulted in three scRNA-seq libraries encompassing nine samples in total. Discrimination of 

single cells and their allocation to each patient sample, per pooled reaction, were performed with 

the assistance of the Cell Multiplexing Oligos. Samples were processed for single-cell 

encapsulation, cDNA and cell multiplexing library generation using the Chromium Next GEM 

Single Cell 3ʹ Reagent Kits v3.1 (Dual Index) (10X Genomics). The constructed libraries were 

sequenced on an NovaSeq 6000 sequencer (RRID:SCR_016387) with a paired-end reads 

sequencing mode. The 10X Genomics Cell Ranger (RRID:SCR_023672) multi v7.1.0 pipeline, 
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was used to map the sequencing reads to the human genome (GRCh38) and generate the gene 

expression and feature barcode matrices. We specified the r1-length and r2-length to 28+90, 

respectively, for both the gene expression and feature libraries, while preserving all other 

parameters of the pipeline under default setting. Supplementary Fig. S2A depicts the GEX 

Barcode Rank Plots for each library as generated in the web summary output file of the 

CellRanger multi. Additionally, the results of the web summaries, suggested that most of the 

sequencing reads were assigned to cell-associated barcodes (Supplementary Fig. S2B), as shown 

under the “Metrics Per Physical Library” section. According to 10x Genomics, ideally over 70% 

of the sequencing reads should be mapped to cell associated barcodes and significantly lower 

values than this threshold would be strong indications for the need to perform ambient RNA 

correction. As the particular metric was significantly higher than the ideal threshold value given 

by 10x Genomics, we concluded that estimation and correction for ambient RNA contamination 

was not critical for these libraries. The generated matrices consisted of 38298 cellular barcodes, 

spanning all samples, with a sequencing depth of 34822 mean reads per barcode (cDNA) and 

were inserted to the R (Version 4.1.1) software package Seurat (v4.3.0; RRID:SCR_016341)(27) 

for all downstream analyses. The gene expression matrices were filtered to discard cells 

expressing less than 200 genes as well as genes found in less than 3 cells. Each library was 

processed individually for sample demultiplexing and singlet identification in R using Seurat 

“HTODemux” function based on the feature barcode matrices generated by CellRanger. As an 

example of the procedure, in the dot plots of Supplementary Fig. S3 the expression profile for 

cell multiplexing oligos is presented for all the cell associated barcodes detected in scRNAseq 

library 3. After applying the Seurat demultiplexing pipeline, inter-sample doublets are 

recognized and only singlets belonging to each of the three pooled samples remain in the dataset. 
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Finally, cellular barcodes corresponding to single cells were merged to a single Seurat object. 

Graphs for quality control metrics that are routinely used in the Seurat analysis pipeline, 

specifically showing violin and feature plots for the percent of mitochondrial genes as well as the 

nCount_RNA and nFeature_RNA parameters per cell, are depicted in Supplementary Fig. S4A-

B. These metrics are presented for the total singlets identified after the “HTODemux” analysis 

step and the final dataset after applying extra filtering criteria. During quality control of the 

combined dataset, cells expressing less than 200 or more than 4500 genes and having more than 

13% of mitochondrial associated genes were removed from further analysis. Additionally, we 

have used the nFeature_RNA parameter to exclude cells with high probability of being intra-

sample doublets, due to the high number of uniquely expressed genes. Overall, doublet detection 

was performed in two steps considering the expression profile of cell multiplexing oligos and 

quality control metrics. 

Gene expression data of the remaining 28585 cells that passed quality control, were normalized 

and scaled using the “LogNormalize” method and “ScaleData” command, respectively, while 

variable features were identified using the “FindVariableFeatures” command. The algorithm 

Harmony (RRID:SCR_022206)(28) was used to perform batch correction and for further 

clustering of the data. Distribution of cells composing the final dataset in two-dimensional space 

pre- and post-Harmony integration, and their UMAP visualization using as input the PCA or 

Harmony dimensionality reduction are displayed in Supplementary Fig. S5A-B. The first 63 

principal components of the Harmony reduction were selected, based on the Seurat Elbow plot, 

and were designated for the “dims” argument of the “FindNeighbors” and “RunUMAP” 

functions. A resolution of 0.3 was selected for graph-based cluster identification in the 

“FindClusters” function and, finally, cluster visualization in a two-dimensional space was 
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performed using non- linear dimensional reduction via uniform manifold approximation and 

projection (UMAP). The “FindAllMarkers” command was implemented to identify cluster 

defining genes, expressed at least in 20% of the cluster cells at a minimum of 0.25-log-fold 

difference between the respective cluster and the residual cells in the dataset. Contaminating 

clusters, comprising non-CD8+ T cells were identified via their gene expression profile and were 

removed from subsequent analysis. To identify differentially expressed markers between 

conditions in the same cluster(s) the “FindMarkers” command with the MAST 

(RRID:SCR_016340) statistical test were used. For increased sensitivity purposes, the output of 

the “FindMarkers” comparison contained genes having an adjusted p-value < 0.05, expressed in 

at least 5% of the cells in least one condition, without implementing log-fold-change thresholds. 

Calculation of curated gene set scores was performed with the AUCell (RRID:SCR_021327) 

package.(29) Enrichment pathway analysis of the differentially expressed genes was performed 

using the EnrichR (RRID:SCR_001575) tool.(30,31)  

Gene regulatory network analysis 

The single-cell RNA-seq data underwent further bioinformatic analysis through the utilization of 

SCENIC (v1.3.1; RRID:SCR_017247). SCENIC is a computational tool that constructs intricate 

gene regulatory networks (GRNs) and uncovers distinct cellular states within the framework of 

single-cell RNA-seq data.(29) SCENIC relies on three main R/bioconductor packages: GENIE3 

(v1.20.0; RRID:SCR_000217), RcisTarget (v1.18.2; RRID:SCR_024860), and AUCell (v1.20.2; 

RRID:SCR_021327). GENIE3(32) identifies potential targets of Transcription Factors (TFs) by 

elucidating the coexpression relationships existing between these TFs and their corresponding 

targets. Subsequently, RcisTarget(29) is utilized to pinpoint direct targets through the analysis of 

cis-regulatory motifs and construct transcription factor regulons. The third component, 
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AUCell,(29) is used to assess the activity of each of these regulons within individual cells. 

SCENIC was employed to establish regulons, estimate the activity scores of transcription factors, 

as well as to conduct enrichment analysis. Additionally, differential regulon activity analysis was 

conducted within the clusters previously identified by Seurat. The outcomes were represented 

through UMAPs, heatmaps and pie charts. Notably, the heatmap that depicts the activity of 

certain regulons per cluster (switched on/off state) was based on the binary values generated by 

the AUCell algorithm. The methodology and the scripts for this part used as a guide the SCENIC 

vignettes curated by Aibar et al,(29) along with relative scripts by Zhu et al.(33) 

Statistical analysis 

Τo compare two groups, a two-tailed unpaired Student's t-test or a Mann-Whitney U test was 

used as appropriate. For the comparison of multiple groups, one-way ANOVA followed by a 

"two-stage" Benjamini, Krieger & Yekutieli multiple comparison test, or Kruskal-Wallis test 

followed by a "two-stage" Benjamini, Krieger & Yekutieli multiple comparison test were used as 

appropriate. The independence between variables was assessed using the chi-square (χ²) test and 

Fisher's exact test. Kaplan-Meier analysis was utilized for survival analysis, and the log-rank test 

was employed to assess the significance. To explore the association of BM CD57+CXCR3+CD8+ 

T cells with response to treatment, univariate analysis was performed. Optimal CD57+CXCR3+ 

cut-off was determined by transformation of continuous variable to binary one through optimal 

scaling; in detail, discretization to seven groups, regularization using ridge regression, and 10-

fold cross-validation were performed through SPSS CATREG procedure. To explore the 

independent correlations between BM CD57+CXCR3+CD8+ T cells along with mutational status, 

as well as age, gender, and IPSS-R (both score and components), with response to treatment, a 

single univariate and separate multivariate analyses for each mutation of interest were performed 
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using Cox proportional hazards regression analysis; every parameter that was significantly 

correlated in a certain univariate analysis (p≤0.05) was treated as a potential independent 

parameter in the relevant multivariate one. Statistical analysis was performed using GraphPad 

prism 9 (version 9.0.0 for Windows, GraphPad Software, Inc., San Diego, CA, USA; 

RRID:SCR_002798), IBM SPSS Statistics software (version 26.0 for Windows, IBM 

Corporation, North Castle, NY, USA; RRID:SCR_016479) and the Cytobank platform. The 

level of significance was established at P < 0.05. 

Ethics 

This study was approved by the local Ethics Committee (reference number: 877). All patients 

provided written informed consent in accordance with the principles outlined in the Declaration 

of Helsinki. 

Data Availability 

The authors state that all data supporting this study are available in the main text or 

supplementary materials. The raw scRNA-sequencing data for this study have been deposited in 

the NCBI Gene Expression Omnibus repository (RRID:SCR_005012) and are accessible through 

accession number GSE250077.  

Additionally, all flow and mass cytometry data have been deposited and are available in the 

Zenodo (RRID:SCR_004129) repository (https://doi.org/10.5281/zenodo.13949296). All other 

raw data are provided by the corresponding authors upon request. 

Results 

Immunophenotypic analysis of BM immune cells from patients with myeloid neoplasms 
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To study the immune cell compartment, we performed deep immunophenotyping using CyTOF 

in BM samples from patients with LR-MDS (n=12), HR-MDS (n=15), AML (n=16), and CMML 

(n=5) collected before treatment initiation. Detailed demographic and clinical data are presented 

in Supplementary Table S1. Multidimensional scaling analysis was initially performed in 

samples derived from patients with MDS, AML and CMML (Fig. 1A). Untargeted cluster 

analysis identified 14 cell clusters (Fig. 1B, C). We observed a significantly decreased frequency 

of cells in the cluster of CD4+ T cells (CD4 T1) and B cells in patients with CMML, with a 

corresponding increase in the frequency of myeloid cluster 2 monocytic cells, characterized by 

the expression of CD11c, CD14, and CD38 (Fig. 1D). As chemokine signatures and the 

expression patterns of chemokine receptors potentially have prognostic implications in MDS and 

AML,(34,35) we further evaluated the expression of the chemokine receptors C-C chemokine 

receptor 4 (CCR4), CCR6, CCR7 and C-X-C Motif Chemokine Receptor 3 (CXCR3), CD161, 

and CD294 within the T cell clusters (Supplementary Fig. S6). We observed increased CXCR3 

expression in cells from patients with AML and CMML compared with MDS patients in the 

CD4 T2, CD8 T1, and CD8 T2 clusters (Fig. 1E).  

Based on these findings, we focused on CD4+ and CD8+ T cells and performed an untargeted 

cluster analysis of CD3+CD4-CD8+ (Fig. 2) and CD3+CD4+CD8- T cells (Supplementary Fig. 

S7A-C). Ten clusters of CD8+ T cells were identified (Fig. 2A). We noted a significantly 

decreased frequency of cells within cluster 1 in samples from patients with LR-MDS and HR-

MDS compared to AML and CMML (Fig. 2B), a cluster that included terminal effector cells 

(CCR7-CD45RA+) expressing CD57 and CXCR3 (Fig. 2C). We also identified an additional 

cluster (cluster 2) of terminal effector cells (CCR7-CD45RA+) that did not express CD57 and 

CXCR3 and did not show any differences among the groups (Fig. 2B, C). Additionally, the 
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expression of CXCR3 in cells from cluster 1 was higher in patients with AML and CMML than 

in those with MDS (Fig. 2D). A similar analysis of CD4+ T cells did not reveal any differences in 

the frequency of generated clusters (Supplementary Fig. S7A-C).  

To further confirm the above findings, we performed conventional flow cytometry on BM cells 

from an additional cohort of patients (n=64), focusing on the frequency of CD57+CXCR3+CD8+ 

T cells (Fig. 2E, F). We also analyzed with flow cytometry samples from eight patients that were 

also analyzed with CyTOF, to compare the two methods. We observed that the frequency of this 

cell population within CD8+ T cells was higher in patients with AML and CMML than in those 

with LR- and HR-MDS (Fig. 2F), which is consistent with the findings from the unsupervised 

analysis of data derived from CyTOF. In contrast, no difference was observed in the frequency 

of CD57+CXCR3- CD8+ T cells (Supplementary Fig. S8).  

Next, we characterized CD57+CXCR3+ CD8+ T cells compared with CD57+CXCR3- CD8+ T 

cells using mass cytometry data. Increased expression of chemokine receptors CCR4 and CCR6 

and decreased expression of the co-stimulatory molecules CD27 and CD28 were observed in 

CXCR3+ cells from patients with HR-MDS and AML (Supplementary Fig. S9A-B). 

Additionally, flow cytometry analysis revealed decreased PD-1 expression in CXCR3+ cells 

compared to that in CXCR3- cells (Supplementary Fig. S10). 

The frequency of CD57
+
CXCR3

+
CD8

+ 
T cells is associated with the response to AZA  

Dynamic changes in chemokine receptor expression on T cells may indicate prognosis,(35) 

whereas AZA may alter the BM chemokine profile in MDS patients. Having observed a gradual 

increase in the frequency of the CD57+CXCR3+CD8+ T cell subset from LR-MDS to AML, we 

next assessed whether the proportion of this cell population before AZA treatment initiation was 

associated with response to treatment. Univariate analysis revealed that a lower percentage of 
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CD57+CXCR3+CD8+ T cells was associated with a better response (Supplementary Table S4). 

Furthermore, multivariate analysis confirmed the independent association of the baseline 

frequency of CD57+CXCR3+CD8+ T cells with patient responses (Supplementary Table S4). In 

line with this, using flow cytometry data, we observed that the baseline frequency of this cell 

subset was significantly increased in patients with HR-MDS and AML that did not respond to 

treatment, whereas no difference was observed in patients with CMML (Fig. 3A). Next, utilizing 

the CyTOF data, we performed unsupervised cluster analysis of CD3+CD4-CD8+ T cells in 

responders and non-responders to AZA in patients with MDS and AML, which resulted in the 

identification of six cell clusters (Fig. 3B). We observed an increased frequency of cluster 3 in 

non-responders (Fig. 3B, C), a cluster of CCR7-CD45RA+ cells characterized by the expression 

of CD57 and CXCR3 (Fig. 3D). Conversely, we observed an increased frequency of cluster 6 in 

responders, characterized by the naive/memory markers, CD28, CD27, CCR7, and CD127 (Fig. 

3C, D), whereas there was no difference between responders and non-responders in the analysis 

of total CD3+CD8-CD4+ T cells (Supplementary Fig. S11A-C). 

We further evaluated whether the baseline frequency of the CD57+CXCR3+CD8+ T cell subset is 

associated with survival. To do so, the optimal CD57+CXCR3+ cut-off was determined to be 

>29% by transformation of the continuous variable to a binary variable through optimal scaling. 

We observed that patients with ≤29% CD57+CXCR3+CD8+ T cells had better overall survival 

(OS) (Fig. 3E). However, when patients with HR-MDS, AML, and CMML were evaluated 

separately, we observed that this cutoff value could be applied to patients with HR-MDS and 

AML, but not to patients with CMML (Fig. 3F). We next aimed to assess the response rate to 

AZA using this cut-off value. Patients with HR-MDS and AML, characterized by a baseline 

frequency of ≤29% CD57+CXCR3+CD8+ T cells, demonstrated higher rates of response to AZA 
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(Fig. 3G). In contrast, the percentage of CD57+CXCR3+CD8+ T cells was not associated with the 

response to treatment in patients with CMML (Fig. 3G), which further illustrates the distinct 

immune background of the latter. Together, these findings suggest that an increased frequency of 

the CD57+CXCR3+CD8+ T cell subset is associated with treatment failure and poor survival in 

patients with MDS and AML treated with AZA.  

Association between mutational status and frequency of CD57
+
CXCR3

+
CD8

+
 T cells 

We further investigated whether there was a connection between mutational burden, type of 

mutation, and the frequency of CD57+CXCR3+CD8+ T cells in patients with HR-MDS and 

AML. No difference was found in the frequency of this cell population when the patients were 

categorized based on oncogenic mutations (Supplementary Fig. S12A), whereas no single 

mutation was associated with an increased frequency (>29%) of the CD57+CXCR3+CD8+ T cell 

subset (Supplementary Fig. S12B). Furthermore, the number of oncogenic mutations was not 

significantly altered in patients with >29% CD57+CXCR3+CD8+ T cells compared to that in 

patients with a lower frequency (≤29%) (Supplementary Fig. S12C) and no specific group of 

oncogenic mutations was associated with the frequency of CD57+CXCR3+CD8+ T cells 

(Supplementary Fig. S12D).  

Single-cell transcriptomic landscape of CD8
+
 T cells in patients with HR-MDS and 

secondary AML 

We next sought to assess the molecular signature of BM CD8+ T cells from patients with MDS 

and AML secondary to MDS at the single-cell level to further identify molecular signatures in 

specific CD8+ T cell subpopulations associated with disease progression and clinical outcomes of 

AZA monotherapy. scRNA-seq was performed on sorted BM CD8+ T cells from patients with 

HR-MDS (n=4) and secondary AML (n=5), prior to AZA initiation (Supplementary Table S5). 
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We obtained transcriptomes of 28,449 cells in total. Based on unsupervised clustering, cells were 

partitioned into 11 clusters (Fig. 4A), which were characterized according to the gene expression 

of markers associated with T cell phenotype,(36) including naive/memory markers (CCR7, IL7R, 

SELL, CD27, CD28, CD44), cytotoxic markers (GZMA, GZMB, GZMK, PRF1, CX3CR1, NKG7, 

HOPX, KLRG1), cell cycle genes (MKI67 and CCNB2), transcription factors (TFs) LEF1, 

EOMES and TCF7, the cytokine IFNG, and the cell surface markers ITGA1, CD69 and CCR6 

(Fig. 4B, C). Differential expression data are reported in Data sheet 1. We identified clusters of 

cells characterized by the expression of GZMK (cluster 0) and EOMES, KLRG1 and GZMK 

(cluster 1), previously characterized as pre-dysfunctional cells in studies of patients with solid 

tumors.(36,37) We further identified two clusters of cytotoxic CD8+ T lymphocytes, clusters 2 

(CTL_1) and 4 (CTL_2), based on the expression of GZMA, GZMB and PRF1.(38) Clusters 1, 2, 

and 4 had the highest frequency of cells expressing B3GAT1, the gene that encodes CD57 

(Supplementary Fig. S13). We identified a cluster of memory-like cells, characterized by the 

expression of IL7R and low expression of CCR7, SELL, CD27 (cluster 3), a cluster of naive-like 

cells that expressed CCR7, SELL, CD27 and the TFs TCF7 and LEF1(39) (cluster 5), a cluster 

characterized by the expression of CCR6 (cluster 6), and a cluster characterized by the highest 

expression of CD44 (cluster 7) (Fig. 4B, C). Cluster 8 included cells expressing ITGA1 and 

ITGAE (Fig. 4D), previously described as resident memory cells (cluster 8)(39–41) and cluster 9 

included cytotoxic cells expressing IFNG, GZMK and NKG7. Finally, a cluster of proliferating T 

cells (Cluster 10) was identified (Fig. 4B, C). The top differentially expressed genes (DEGs) for 

each cell cluster are shown in Fig. 4D. We further used a previously reported cytotoxic score(42) 

to confirm the enhanced cytotoxicity of cells in clusters 2 (CTL_1), 4 (CTL_2), and 9 (IFNG) 

(Fig. 4E), and a cell cycle score(42) to confirm the increased proliferation activity of cells in 
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cluster 10 (proliferative) (Fig. 4F). Finally, utilizing a previously reported 

dysfunctional/exhaustion score(42) we did not identify a specific cluster characterized by the 

high expression of genes associated with exhaustion, such as PDCD1, LAG3, HAVCR2, 

ENTPD1 or CTLA4(36) (Supplementary Fig. S14A). Nevertheless, cluster 1 (EOMES) exhibited 

the highest dysfunctional score among clusters with the highest cell abundance (Supplementary 

Fig. S14B). 

We further studied whether there was a difference in the transcriptomic landscape of CD8+ T 

cells between HR-MDS and secondary AML (Supplementary Fig. S15A). Differential 

expression data are reported in Data sheet 2. We observed that the frequency of cells in cluster 4 

(CTL_2) was increased in patients with AML (Supplementary Fig. S15B and S15C), a cluster 

showing high expression levels of B3GAT1, which encodes the CD57 protein (Supplementary 

Fig. S13). Pathway analysis of the DEGs in cluster 4 (CTL_2) (Supplementary Fig. S15D) 

revealed an overrepresentation of the T cell receptor pathway and anabolic pathways involved in 

DNA transcription, gene expression, mRNA processing, and cell cycle in cells from patients with 

HR-MDS, and IFN response pathways and oxidative phosphorylation (OXPHOS) pathway in 

cells from patients with AML (Supplementary Fig. S15E). Notably, when we studied the 

exhaustion signature (42) between the two groups in cluster 1 (EOMES), a cluster characterized 

by the highest dysfunctional score among the clusters, we observed a significantly higher 

dysfunctional score in the HR-MDS group (Supplementary Fig. S15F), which was associated 

with enhanced expression of CD7, FAM3C, TIGIT, TNFRSF9, DGKH, LYST, RAB27A, 

TNFRSF1B (Supplementary Fig. S15G) and PDCD1, CD244, AKAP5, KIR2DL4 

(Supplementary Fig. S16). Taken together, CD8+ T cells in AML show a distinct molecular 
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profile compared to MDS, exhibiting an increased frequency of CTLs with an IFN-related 

signature. 

Single-cell transcriptomes of CD8
+
 T cells are associated with treatment outcome 

We next sought to identify the molecular signatures in CD8+ T cell subpopulations associated 

with AZA response (Fig. 5A). We did not observe any statistically significant difference in the 

cluster abundance in patients who achieved complete remission (CR) after treatment with AZA 

(n=2 patients with HR-MDS, 7,571 cells; n=2 patients with secondary AML, 6,096 cells) and 

patients that failed treatment (FAIL) (n=2 patients with HR-MDS, 8,026 cells; n=3 patients with 

secondary AML, 6,756 cells) (Fig. 5B), except for an increased abundance of cluster 10 

(proliferative) in the CR group (Supplementary Fig. S17). Differential expression data are 

reported in Data sheet 3. 

Pathway analysis revealed that the DEGs upregulated in the CR group were associated with the 

IFN response in all clusters (Fig. 5C). Increased expression of the IFN-responsive genes MT2A, 

BST2, STAT1 and IRF2 was observed in the CR group (Fig. 5D). We then focused on specific 

clusters and used a score derived from the expression of interferon-stimulated genes (ISG 

signature).(43) We observed higher ISG signature scores in the CR group in cluster 0 (GZMK), 

which was associated with increased expression of IFN-responsive genes CCL5, MT2A, BST2, 

CD74, GZMA, PSME1, PSME2, CD69, VAMP8 and TXNIP (Fig. 5E). Similarly, increased 

expression of HLA-DRB1, MT2A, BST2, CD74, TXNIP, GZMA, PSME1, PSME2, CD69, 

PTPN2, IRF2, STAT1, SOCS1 and KLRK1 was observed in cluster 1 (EOMES) (Fig. 5F). 

Regarding the cytotoxic clusters 2 (CTL_1) (Fig. 5G, Supplementary Fig. S18A), and 4 (CTL_2) 

(Fig. 5H, Supplementary Fig. S18B), higher ISG signature, and increased expression of IFITM2, 
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MT2A, BST2, STAT1, GZMA, PSME1, PSME2 and CD69 were detected in cells from the CR 

group from both clusters.  

Pathway analysis of DEGs upregulated in the FAIL group demonstrated that cells from clusters 0 

(GZMK), 1 (EOMES), 2 (CTL_1), 3 (Memory), 4 (CTL_2), 5 (Naïve), 6 (CCR6), and 8 (Trm) 

were enriched for DEGs associated with TNF signaling (Fig. 6A, Supplementary Fig. S19A-D). 

Moreover, cells from cytotoxic clusters 2 (CTL_1), 4 (CTL_2), and 9 (IFNG), and clusters 3 

(Memory), 6 (CCR6), and 7 (CD44) were enriched for DEGs in the TGF-β signaling pathway 

(Fig. 6A). Specifically, for cluster 2 (CTL_1), there was a higher TGF-β signature score in the 

FAIL group and an increased expression of TFGB1, SMURF2, SMAD7, SKI, SKIL (Fig. 6B, 

Supplementary Fig. S18A), whereas for cluster 4 (CTL_2), a higher TGF-β signature score was 

associated with an increased expression of TFGB1, ARID4B, SMAD7, SKI, SKIL and SMURF2 

(Fig. 6C, Supplementary Fig. S18B). Since TGF-β signaling has been previously associated with 

decreased cytotoxicity(44) we used the cytotoxic signature score (Fig. 6D) to determine whether 

the TGF-β signature is associated with decreased cytotoxic activity in CTL clusters in the FAIL 

group. We observed higher cytotoxicity scores in the CR group in cluster 2 (CTL_1), which was 

associated with enhanced expression of GZMA, GZMB, CX3CR1 and CCND3 (Fig. 6E), and in 

cluster 4 (CTL_2), which was associated with enhanced expression of FGFBP2, GZMA, GZMB, 

GZMH, CCND3, C1orf162 and CX3CR1 (Fig. 6F). These data together show that an IFN-related 

signature is associated with response to treatment, whereas TGF-β signature is associated with 

failure, which could be, at least in part, the result of decreased cytotoxic activity.  

We further utilized the dysfunctional score(42) to study the potential differences in the 

expression of exhaustion-associated genes based on treatment outcomes. This analysis revealed 
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no significant differences in dysfunctional scores across all clusters between the CR and FAIL 

patients (Supplementary Fig. S20). 

Cytokines act together with transcription factors (TFs) to regulate T cell fate and 

functionality.(45) To study the TFs that could act as possible regulators of the transcriptomic 

alterations observed in responders to AZA compared to non-responders, TF regulatory network 

analysis was performed using SCENIC,(29) which resulted in the identification of 11 clusters-

regulons (Fig. 7A). We observed that regulon 5 was enriched in cells from the CR group of 

patients, whereas regulon 7 was enriched in cells from the FAIL group (Fig. 7B, C). Regulon 

cluster 5 was characterized by IRF7-, CHURC1-, NFYB-, and RFXANK-regulated networks 

(Fig. 7D) and was enriched mainly in cells from cluster 4 (CTL_2) (Supplementary Fig. S21). 

On the other hand, regulon 7 was characterized by the NFKB2-, REL-, RELB-, CREM- and 

NFKB1-regulated networks (Fig. 7D) and it was enriched with cells from cluster 0 (GZMK) and 

cluster 1 (EOMES) (Supplementary Fig. S21), which were previously described as pre-

dysfunctional cells.(36,37) 

Differential TF activity analysis between the two groups of patients within regulon 5, predicted 

that the activity of the interferon-related TFs IRF2, IRF9 and STAT1 was increased in the CR 

group and the activity of SMAD3, and the NF-κB superfamily TFs RELB, REL, NFKB2 and 

NFKB1 was increased in the FAIL group (Fig. 7E). Similar analysis within regulon 7 predicted 

increased activity of IRF2 and STAT1 and decreased activity of NFKB1 in cells derived from 

the CR group (Fig. 7F). Taken together, TF regulatory network analysis further supports that BM 

CD8+ T cells in the CR group are targeted by TFs associated with IFN signaling, whereas TFs 

linked to TGF-β and NF-κB signaling target CD8+ T cells in the FAIL group.  

Discussion 
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Alterations in CD8+ T cell functionality in the tumor milieu promote tumor evasion and 

compromise responses to immunotherapies.(36) In AML and MDS, several CD8+ T cell defects 

have been described that are potentially reversible by various treatments, including AZA.(4,8,46) 

However, the architecture of CD8+ T cell immunity and its impact on the clinical behavior of 

AML and MDS are still incompletely understood, thus hampering the development of successful 

immunotherapeutic approaches.  

Herein, we provide a systemic analysis of CD8+ T cells derived from the BM immune 

microenvironment of patients with clonal myeloid disorders at the single-cell level. We focused 

on the identification of specific immunophenotypic and molecular signatures associated with the 

outcome of AZA treatment.  

Deep immunophenotyping with CyTOF resulted in the identification of a BM 

CD57+CXCR3+CD8+ T cell population with an increased frequency in patients with AML and 

CMML compared to MDS. We further observed that an increased pre-treatment frequency of 

BM CD57+CXCR3+CD8+ T cells was associated with poor OS and response to AZA treatment 

in patients with HR-MDS and AML. Interestingly, no association between the frequency of this 

cell population and the disease course was observed in patients with CMML, supporting the 

notion that this disorder does not share common immune features with MDS and AML. 

Although the mutational profile may sculpt specific immune response patterns across 

heterogeneous tumors(47), no definite association between somatic mutations and defects in T 

cell immunity has been shown in MDS.(48) Consistent with this report and our previous 

observation, showing the absence of an association between alterations in CD4+ T cells and 

somatic mutations(18), we could not find any correlation between the levels of the 

aforementioned subpopulation and the mutational profile of patients.   
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The expression of CD57 by CD8+ T cells, coupled with the absence of CD28 expression, 

characterizes a senescent-like phenotype linked to chronic immune activation in several 

disorders.(49) These CD57+CD28-CD8+ T cells are antigen-specific effector cells that have 

limited proliferation capacity owing to their advanced differentiation stage.(50) Previous studies 

have demonstrated increased levels of CD57+CD28-CD8+ T cells in patients with MDS and 

AML compared to those in healthy individuals.(9,51) CXCR3, on the other hand, is expressed on 

Th1-CD4+ T cells(52) and effector CD8+ T cells, and is considered crucial for the recruitment of 

T cells to inflammatory sites.(52,53) The expression of CXCR3 on CD8+ T cells has been 

associated with changes in the equilibrium from memory to effector cell populations.(54) 

Interestingly, recent studies using scRNA-seq in CD8+ T cells isolated from cancer patients have 

described cells expressing CXCR3 together with GZMK and EOMES as a pre-dysfunctional cell 

population.(37)  

In line with our findings, it has been recently demonstrated that the accumulation of senescent-

like CD8+CD57+ T cells is negatively associated with the response to chemotherapy and 

checkpoint blockade immunotherapy in patients with AML.(55) By utilizing in vitro studies, the 

authors further demonstrated that patient-derived senescent-like T cells were not able to 

sufficiently eliminate autologous AML blasts compared to their non-senescent CD8+ T cell 

counterparts, providing direct evidence for their limited antileukemic activity.(55)  

Based on our immunophenotyping findings, we performed scRNA-seq analysis to investigate the 

transcriptomic profile of BM CD8+ T cells from patients with HR-MDS and secondary AML. 

We observed that the abundance of cells within the CTL_2 cluster, characterized by higher 

expression compared to other clusters of B3GAT1, the gene that encodes the CD57 protein, was 

increased in patients with secondary AML compared to those with HR-MDS, which is consistent 
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with the immunophenotypic findings. Regarding response to treatment, a significant enrichment 

of the TGF-β signaling pathway was observed in cytotoxic clusters (CTL_1 and CTL_2) of non-

responders. This pathway has been previously shown to directly inhibit the cytotoxic activity of 

CD8+ T cells, leading to compromised antitumor responses, tumor evasion, and poor 

outcomes.(44) In line with this, non-responders displayed a decreased cytotoxic signature within 

the same clusters. Notably, upregulated TGF-β signaling has also been reported in ex vivo–

expanded BM mesenchymal cells from AZA-treated patients(56), potentially implying 

ubiquitous targeting of TGF-β signaling by AZA. Luspatercept, an inhibitor of TGF-β signaling, 

has been recently approved by the FDA for the treatment of transfusion-dependent LR-MDS 

patients either after failure of erythropoiesis-stimulating agents or at the first line.(57) The effect 

of luspatercept on tumor immunity is still unknown; however, given the immunoregulatory role 

of TGF-β,  it could be worthwhile considering the potential benefit of adding luspatercept to 

AZA refractory patients. 

In contrast, responders exhibited a significant enrichment of pathways associated with IFN 

responses across many BM CD8+ T cell clusters. Interferons play a crucial role in immune 

activation during anti-tumor responses.(58,59) Notably, there is evidence indicating that AZA 

exerts its effects in an IFN-dependent manner by activating type I and III Interferon signaling in 

tumor cell lines(60,61), as well as upregulating the expression of interferon-stimulated genes 

(ISGs), all of which aid in the rejuvenation of anti-tumor immunity.(60) This process is 

suggested to be mediated by AZA-induced expression of endogenous retroelements (EREs), a 

subfamily of transposable elements (TEs), driving the elevation of intracellular dsRNA levels 

and the activation of IFN I or III pathway, leading to a viral mimicry state.(60,61) AZA has been 

shown to increase the representation of EREs in bone marrow hematopoietic stem cells of 
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patients with MDS and CMML compared to their baseline levels, however the upregulation of 

total EREs could not predict treatment response.(62) On the other hand, investigation of the gene 

profile of malignant cells in patients with MDS, CMML and AML showed that response to AZA 

was associated with upregulation of a specific subset of evolutionary young TEs and enrichment 

of the type I Interferon pathway.(63) Therefore, our findings further support the notion of an 

IFN-mediated mechanism of AZA in patients with myeloid neoplasms, potentially acting 

synergistically with TE induction. 

Taken together, our findings suggest that the balance between TGF-β and IFN signaling in CTLs 

within the BM microenvironment may regulate their antitumor effects, affecting the response to 

treatment.   

Immunotherapies based on immune checkpoint blockade (ICB) have revolutionized the field of 

oncology.(64) Many studies employing scRNA-seq in solid tumors have demonstrated that CD8+ 

T cells show a distinct molecular signature, indicative of an exhausted phenotype, which is 

associated with disease progression and treatment resistance(42,65) thereby providing evidence 

supporting the effectiveness of ICB treatment in these patients. In contrast, ICB therapy in 

myeloid malignancies, including MDS and AML, has yielded limited results, while the risk of 

serious adverse events remains.(66) For this reason, the identification of alternative pathways, 

such as the TGF-β signaling pathway, that could be targeted by immunotherapies in patients with 

myeloid neoplasms, is of paramount importance.  

In conclusion, by performing a mass cytometry-guided transcriptomic analysis of BM CD8+ T 

cells at the single-cell level, we provide evidence of abnormalities in BM CD8+ T cells 

associated with response to AZA in AML and MDS patients. We further identified TGF-β 

signaling in BM CD8+ T cells as a potential immune-mediated mechanism of AZA resistance, 
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thus arguing for the use of inhibitors of the TGF-β pathway to prevent or overcome AZA 

refractoriness. Recent data suggest a T-cell mediated antileukemic activity of venetoclax,(46) 

and a triple combination of AZA, venetoclax, and luspatercept may have the potential to induce a 

fully competent immune-mediated control of the leukemic clone in AML and MDS patients. 
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Figures 

Fig. 1. Untargeted analysis of CD45
+
 immune cells in patients with MDS, AML and CMML 

by CyTOF. (A) Multidimensional scale plot depicting the relationship between bone marrow 
(BM) samples of patients with LR-MDS (n=12), HR-MDS (n=15), AML (n=16) and CMML 
(n=5). (B) Heatmap showing the expression of the markers used for the characterization of each 
cell cluster. (C) UMAP displaying the major immune cell clusters. (D) Box charts displaying the 
frequency of each cell cluster. (Ε) Violin plots showing the expression level of CXCR3 in the 
CD8 T1, CD8 T2 and CD4 T2 clusters, respectively. Kruskal Wallis followed by "two-stage" 
Benjamini, Krieger & Yekutieli multiple comparison test was used in D. One-way ANOVA 
followed by "two-stage" Benjamini, Krieger & Yekutieli multiple comparison test was used in E. 
*p < 0.05, **p < 0.01. 
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Fig. 2. Identification of a CD8
+
 subpopulation (CD57

+
CXCR3

+
) which distinguishes MDS 

patients from AML and CMML patients. (A) Representative viSNE plots, derived from the 
FlowSOM analysis of BM CD8+ T cells from patients with LR-MDS (n=12), HR-MDS (n=15), 
AML (n=16) and CMML (n=5). (B) Bar plots displaying the proportion of the metaclusters 
between the groups, expressed as percentage within CD8+ T cells. (C) Heatmap depicting the 
expression level of the T-related markers between the metaclusters. (D) Violin plots showing the 
expression level of CXCR3 in metacluster 1. (E) Representative flow cytometry plots for the 
identification of the CD57+CXCR3+CD8+ T cell subpopulation in a cohort of patients with LR-
MDS (n=7), HR-MDS (n=27), AML (n=20) and CMML (n=10). (F) Percentage of 
CD57+CXCR3+ cells within CD8+ T cells. Kruskal Wallis was used in B and D. One-way 
ANOVA followed by "two-stage" Benjamini, Krieger, & Yekutieli multiple comparison test was 
used in F. *p< 0.05, **p < 0.01, ***p < 0.001. 
 

Fig. 3. Association between the frequency of CD57
+
CXCR3

+
CD8

+
 T cells and outcome in 

patients with HR-MDS and AML under treatment with AZA. (A) Box plots displaying the 
percentage of the CD57+CXCR3+ cells within CD8+ T cells, assessed by flow cytometry in 
responders and non-responders (HR-MDS, n=12 Responders and 9 Non-Responders; AML, n=9 
Responders and 11 Non-Responders; CMML, n=5 Responders and 5 Non-Responders). (B) 
After stratification of HR-MDS and AML patients to responders (n=12) and non-responders 
(n=19), FlowSOM analysis was performed on BM CD8+ T cells, which generated 6 metaclusters 
that are projected onto the viSNE plots. Representative viSNE plots (one for each group) are 
shown. (C) Box plots showing the proportion of all metaclusters, expressed as frequency within 
CD8+ T cells. (D) Heatmap depicting the expression levels of all T-related markers. (E) Kaplan 
Meier curves for overall survival (OS) in patients which received AZA treatment, with ≤29% 
(n=51) and >29% (n=26) CD57+CXCR3+ CD8+ T cells before treatment initiation. The survival 
curves were compared by Log-rank (Mantel-Cox) test and the p value is shown. Median OS of 
the ≤29% group was 20.98 months, while the median OS of the >29% group was 12.05 months. 
(F) Survival curves for each disease subgroup. Increased (%) CD57+CXCR3+ correlates 
significantly with worse survival in HR-MDS and AML patients, whereas no association is 
observed in CMML patients. (G) HR-MDS and AML patients with ≤29% CD57+CXCR3+ 

exhibited higher response rates. No association between the frequency of CD57+CXCR3+CD8+ T 
cells and response to therapy was observed in CMML patients. Unpaired Student’s t test was 
used in A. Mann-Whitney U test was used in D. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Fig. 4. Profiling of BM-derived CD8
+
 T cells of HR-MDS and secondary AML patients with 

scRNA-seq. (A) Uniform Manifold Approximation and Projection (UMAP) of CD8+ T cells 
identified 11 clusters. A total of 28,449 CD8+ T cells were pooled from 4 HR-MDS (15,597 
cells) and 5 secondary AML patients (12,852 cells). (B) Bubble plot depicting the average 
expression of genes used to characterize the clusters. (C) Expression of selected genes projected 
onto UMAPs. (D) Heatmap showing selected top differentially expressed genes for each cell 
cluster. (E) Ridgeline plots displaying the cytotoxic signature score for each cell cluster, as 
defined by the expression of key-related genes. (F) Ridgeline plots displaying the cell cycle 
signature score for each cell cluster.  
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Fig. 5. BM-derived CD8
+
 T cells from responders (CR) to AZA show an enhanced ISG 

molecular signature compared to non-responders (FAIL) in scRNAseq analysis. (A) 
Comparison of separate UMAPs for CR (a total of 13,667 cells, 7,571 from MDS and 6,096 cells 
from secondary AML patients, respectively) and FAIL patients (a total of 14,782 cells, 8,026 
cells from MDS and 6,756 cells from secondary AML patients, respectively). (B) Stacked bar 
chart showing the average distribution of clusters between the two groups. The percentage of 
cluster 10 (Proliferative) was increased in CR compared to FAIL patients (Unpaired Student’s t 
test, p=0.0418). (C) Dot plot representing MSigDB (Hallmark 2020) enrichment analysis of 
positively enriched pathways in CR patients. Enriched pathways with a q-value <0.05 
(Benjamini-Hochberg correction) are shown. (D) Gradient expression of representative selected 
genes involved in IFN-related pathways, as they are projected onto UMAPs. (E) ISG (Interferon 
Stimulated Genes) score of cluster 0 (GZMK) and violin plots showing the expression levels of 
the top differentially expressed IFN-stimulated genes of cluster 0 (GZMK) between CR and 
FAIL. (F) ISG score of cluster 1 (EOMES) and violin plots showing the expression levels of the 
top differentially expressed IFN-stimulated genes of cluster 1 (EOMES) between CR and FAIL. 
(G) ISG score of cluster 2 (CTL_1) and violin plots displaying the expression levels of the top 
differentially expressed IFN-stimulated genes of cluster 2 (CTL_1) between CR and FAIL. (H) 
ISG score of cluster 4 (CTL_2) and violin plots displaying the expression levels of the top 
differentially expressed IFN-related genes of cluster 4 (CTL_2) between CR and FAIL.  

 
Fig. 6. BM-derived CD8

+
 T cells of non-responders (FAIL) displayed suppressed cytotoxic 

molecular signature at the single-cell level. (A) Dot plot representing MSigDB (Hallmark 
2020) enrichment analysis of positively enriched pathways in FAIL patients. Enriched pathways 
with a q-value <0.05 (Benjamini-Hochberg correction) are shown. (B) TGF-β signaling score of 
cluster 2 (CTL_1) and violin plots displaying the expression levels of the top differentially 
expressed genes of cluster 2 (CTL_1), involved in the enrichment of the TGF-β signaling 
pathway between CR and FAIL. (C) TGF-β signaling score of cluster 4 (CTL_2) and violin plots 
displaying the expression levels of the top differentially expressed genes of cluster 4 (CTL_2), 
involved in the enrichment of the TGF-β signaling pathway between CR and FAIL. (D) 
Comparison of the cytotoxic score of each group, as it is projected onto the respective UMAPs. 
(E) Cytotoxic score of cluster 2 (CTL_1) and violin plots exhibiting the expression levels of the 
top differentially expressed cytotoxicity-related genes of cluster 2 (CTL_1) between CR and 
FAIL. (F) Cytotoxic score of cluster 4 (CTL_2) and violin plots exhibiting the expression levels 
of the top differentially expressed cytotoxicity-related genes of cluster 4 (CTL_2) between CR 
and FAIL.  

 

Fig. 7. Transcription Factor (TF) regulatory network analysis in BM-derived CD8
+
 T cells. 

(A) UMAP depicting the clustering of CD8+ T cells based on regulons. (B) Pie charts illustrating 
the representation of cells from CR and FAIL patients within each regulon. (C) Comparison of 
cell distribution in regulons between the groups utilizing separate UMAPS for each group. (D) 
Heatmap showing the top differentially activated TFs of each regulon-cluster. (E-F) Violin plots 
depicting the activity score of selected TFs per sample type in regulons 5 and 7, respectively. 
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