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Which pairs of cardinals can be Hartogs and Lindenbaum
numbers of a set?

by

Asaf Karagila and Calliope Ryan-Smith (Leeds)

Abstract. Given any λ ⩽ κ, we construct a symmetric extension in which there is
a set X such that ℵ(X) = λ and ℵ∗(X) = κ. Consequently, we show that ZF + “for all
pairs of infinite cardinals λ ⩽ κ there is a set X such that ℵ(X) = λ ⩽ κ = ℵ∗(X)” is
consistent.

1. Introduction. The Axiom of Choice is one of the most successful
axioms in modern mathematics, generating many applications as well as
several “paradoxes” (or rather counterintuitive surprises). One of its famous
equivalents is Zermelo’s theorem stating that every set can be well-ordered.
Therefore, if the Axiom of Choice fails in a universe of set theory, some sets
cannot be well-ordered. Nevertheless, we can still consider two ways in which
a set X is “large”, by asking how large are well-orderable subsets of X and
how large are well-orderable partitions of X.

For example, if a set X can be mapped onto ω13, then at the very least
there is a sense in which it is large compared to ω. Moreover, if we extend the
universe so that X can be well-ordered, then (at least) one of two scenarios
must hold: (1) X will have the cardinality of at least ℵ13, or (2) ω13 will be
collapsed.

Definition 1.1. Let X be a set. The Hartogs number of X is

ℵ(X) ..= min {α ∈ Ord | there is no injection f : α → X}.

The Lindenbaum number of X is

ℵ∗(X) ..= min {α ∈ Ord \{0} | there is no surjection f : X → α}.
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The existence of ℵ(X) is guaranteed under ZF by Hartogs’s lemma,
from [2] (1). Furthermore, ℵ(X) must also be a cardinal number, and when
X is well-orderable, ℵ(X) = |X|+. The existence of ℵ∗(X) is guaranteed
under ZF by a lemma first used in the proof of Lindenbaum’s theorem (2).
Again, ℵ∗(X) must also be a cardinal number, and when X is well-orderable,
ℵ∗(X) = |X|+.

It is also not difficult to see that for any set X, ℵ(X) ⩽ ℵ∗(X). How-
ever, it need not be the case that ℵ = ℵ∗. Indeed, in ZF the statement
(∀X)(ℵ(X) = ℵ∗(X)) is equivalent to the Axiom of Choice for well-ordered
families of sets, established in [8] (this axiom is weaker than the Axiom of
Choice in its general form). So, if the Axiom of Choice for well-ordered fam-
ilies fails, there is some X such that ℵ(X) < ℵ∗(X). We are concerned with
a maximal possible violation of this principle.

Main Theorem. ZF is equiconsistent with ZF+ “for all pairs of infinite
cardinals λ ⩽ κ there is a set X such that ℵ(X) = λ ⩽ κ = ℵ∗(X)”.

1.1. Structure of the paper. Section 2 establishes preliminaries for
the paper, in particular our conventions for handling cardinalities, forcing,
and symmetric extensions. Some time is also given to permutation groups.
In Section 3 we show the consistency of the existence of a single set X such
that ℵ(X) = λ and ℵ∗(X) = κ for arbitrary infinite λ ⩽ κ. In Section 4 we
use the machinery established in Section 3 to construct a class-sized product
of notions of forcing to prove the main theorem.

2. Preliminaries. Throughout this paper we work in ZFC. Our treat-
ment of forcing will be standard. By a notion of forcing we mean a preordered
set P with maximum element denoted 1P, or with the subscript omitted when
clear from context. We write q ⩽ p to mean that q extends p. Two conditions
p, p′ are said to be compatible, written p ∥ p′, if they have a common ex-
tension. We follow Goldstern’s alphabet convention so p is never a stronger
condition than q, etc.

When given a collection of P-names, {ẋi | i ∈ I}, we will denote by
{ẋi | i ∈ I}• the canonical name this class generates: {⟨1, ẋi⟩ | i ∈ I}. The
notation extends naturally to ordered pairs and functions with domains in
the ground model. An immediate application of this is a simplified definition
of check names; given x, the check name for x is defined inductively as
x̌ = {y̌ | y ∈ x}•.

Given a set X, we denote by |X| its cardinal number. If X can be well-
ordered, then |X| is simply the least ordinal α such that a bijection between

(1) One can also go to [1, Theorem 8.18] for a proof in English.
(2) The theorem was first stated without proof in [7, Théorème 82.A6]. The first

published proof is in [10], or can be found in English in [11, Ch. XVI, Section 3, Theorem 1].
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α and X exists. Otherwise, we use the Scott cardinal of X, that is, |X| =
{Y ∈ Vα | there is a bijection f : X → Y } with α taken minimal such that
the set is non-empty. Greek letters, when used as cardinals, will always refer
to well-ordered cardinals. We call an ordinal α a cardinal if |α| = α.

We write |X| ⩽ |Y | to mean that there is an injection from X to Y ,
and |X| ⩽∗ |Y | to mean that there is a surjection from Y to X or that X
is empty. These notations extend to |X| < |Y | (and |X| <∗ |Y |) to mean
that |X| ⩽ |Y | (respectively |X| ⩽∗ |Y |) and there is no injection from Y
to X (respectively no surjection from X to Y ). Finally, |X| = |Y | means
that there is a bijection between X and Y .

Using this notation, one may redefine the Hartogs and Lindenbaum num-
bers as

ℵ(X) ..= min {α ∈ Ord | |α| ⩽̸ |X|},
ℵ∗(X) ..= min {α ∈ Ord | |α| ⩽̸∗ |X|}.

2.1. Symmetric extensions. It is a fundamental property of forcing
that if V ⊨ ZFC, and G is V -generic for some notion of forcing P ∈ V ,
then V [G] ⊨ ZFC. However, this demands additional techniques for trying to
establish results that are inconsistent with AC. Symmetric extensions expand
the technique of forcing in this very way by constructing an intermediate
model between V and V [G] that is a model of ZF.

Given a notion of forcing P, we shall denote by Aut(P) the collection of
automorphisms of P. Let P be a notion of forcing and π ∈ Aut(P). Then π ex-
tends naturally to act on P-names by recursion: πẋ = {⟨πp, πẏ⟩ | ⟨p, ẏ⟩ ∈ ẋ}.

Due to the construction of the forcing relation from the notion of forcing,
we end up with the following lemma [3, Lemma 14.37].

Lemma 2.1 (The Symmetry Lemma). Let P be a notion of forcing, π ∈
Aut(P), and ẋ a P-name. Then p ⊩ φ(ẋ) if and only if πp ⊩ φ(πẋ).

Note in particular that for all π ∈ Aut(P) we have π1 = 1. Therefore,
πx̌ = x̌ for all ground model sets x, and π{ẋi | i ∈ I}• = {πẋi | i ∈ I}•,
similarly extending to tuples, functions, etc.

Given a group G , a filter of subgroups of G is a set F of subgroups of G
that is closed under supergroups and finite intersections. We say that F is
normal if whenever H ∈ F and π ∈ G , then πHπ−1 ∈ F .

A symmetric system is a triple ⟨P,G ,F ⟩ such that P is a notion of forc-
ing, G is a group of automorphisms of P, and F is a normal filter of sub-
groups of G . Given such a symmetric system, we say that a P-name ẋ is
F -symmetric if symG (ẋ)

..= {π ∈ G | πẋ = ẋ} ∈ F , and that ẋ is hereditar-
ily F -symmetric if this notion holds for every P-name hereditarily appearing
in ẋ. We denote by HSF the class of hereditarily F -symmetric names. When
clear from context, we will omit subscripts and simply write sym(ẋ) or HS.
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The following theorem, [3, Lemma 15.51], is foundational to the study of
symmetric extensions.

Theorem 2.2. Let ⟨P,G ,F ⟩ be a symmetric system, G ⊆ P a V -generic
filter, and let M denote the class HSGF = {ẋG | ẋ ∈ HSF}. Then M is a
transitive model of ZF such that V ⊆ M ⊆ V [G].

Finally, we have a forcing relation for symmetric extensions ⊩HS defined
by relativising the forcing relation ⊩ to the class HS. This relation has the
same properties and behaviour of the standard forcing relation ⊩. Moreover,
when π ∈ G , the Symmetry Lemma holds for ⊩HS.

2.2. Wreath products. Frequently within this paper we will exhibit
groups of automorphisms G as permutation groups with an action on the
notion of forcing. By a permutation group (of a set X) we mean a subgroup
of SX , the group of bijections X → X. If π ∈ SX , then by the support of π,
written supp(π), we mean the set {x ∈ X | π(x) ̸= x}. Given an infinite
cardinal λ we denote by S<λ

X the subgroup of SX of permutations π such
that |supp(π)| < λ.

Definition 2.3 (Wreath product). Given two permutation groups
G ⩽ SX and H ⩽ SY , the wreath product of G and H, denoted G ≀H, is the
subgroup of permutations π ∈ SX×Y which have the following property:

• there is π∗ ∈ G and a sequence ⟨πx | x ∈ X⟩ ∈ HX such that for all
⟨x, y⟩ ∈ X × Y , π(x, y) = ⟨π∗(x), πx(y)⟩.

That is, π first permutes each column {x} × Y according to some πx ∈ H,
and then acts on the X co-ordinate of X × Y , permuting its columns via
some π∗ ∈ G.

Given π ∈ G ≀H, we will use the notation π∗ and πx to mean the elements
of G and H respectively from the definition. Note that if π, σ ∈ G ≀H, then
(πσ)∗ = π∗σ∗.

Note also that {id} ≀ SY ⩽ SX×Y is the group of all π ∈ SX×Y such that
for all ⟨x, y⟩ ∈ X × Y , π(x, y) ∈ {x} × Y .

3. Realising a single pair as Hartogs and Lindenbaum numbers
of a set. Let us spend some time establishing the consistency and construc-
tion of a single set X such that ℵ(X) = λ and ℵ∗(X) = κ. The construction
used here will then be iterated in Section 4 to prove our main theorem.

Theorem 3.1. Let λ ⩽ κ be infinite cardinals. There is a symmetric
system ⟨P,G ,F ⟩ and a P-name Ẋ ∈ HSF such that

1P ⊩HS “ℵ(Ẋ) = λ̌ and ℵ∗(Ẋ) = κ̌”.
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Proof. Let µ be a regular cardinal such that µ ⩾ λ, and let

P = Add(µ, κ× λ× µ).

That is, the conditions of P are partial functions p : κ× λ× µ× µ → 2 such
that |dom(p)| < µ, with q ⩽ p if q ⊇ p.

For p ∈ P and A ⊆ κ × λ × µ, we will write p↾A to mean p↾A × µ, and
for B ⊆ κ×λ we will write p↾B to mean p↾B×µ×µ. Furthermore, we shall
write supp(p) to mean the projection of the domain of p to its first three
co-ordinates, so supp(p) ⊆ κ× λ× µ.

We define the following P-names:

• ẏα,β,γ ..= {⟨p, δ̌⟩ | p ∈ P, δ < µ, p(α, β, γ, δ) = 1};
• ẋα,β ..= {ẏα,β,γ | γ ∈ µ}•;
• Ẋ ..= {ẋα,β | ⟨α, β⟩ ∈ κ× λ}•.

In the extension, Ẋ will be the name for the set X such that ℵ(X) = λ and
ℵ∗(X) = κ.

Let G = S<λ
κ×λ ≀ Sµ. That is, G is the group of permutations π in the

wreath product Sκ×λ ≀Sµ such that π∗ ∈ Sκ×λ fixes all but fewer than λ many
elements of κ×λ. The group G acts on P via πp(π(α, β, γ), δ) = p(α, β, γ, δ).
Note that, for π ∈ G ,

πẏα,β,γ = {⟨πp, πδ̌⟩ | p ∈ P, δ < µ, p(α, β, γ, δ) = 1}
= {⟨πp, δ̌⟩ | p ∈ P, δ < µ, πp(π(α, β, γ), δ) = 1}
= {⟨p, δ̌⟩ | p ∈ P, δ < µ, p(π(α, β, γ), δ) = 1}
= ẏπ(α,β,γ).

Similar verification shows that πẋα,β = ẋπ∗(α,β) and πẊ = Ẋ. When we have
defined the filter of subgroups F (which we shall do upon the conclusion of
this sentence), it will be clear from these calculations that these names are
hereditarily F -symmetric.

For I ∈ [κ]<κ, J ∈ [I × λ]<λ, and K ∈ [J × µ]<λ, let HI,J,K be the
subgroup of G given by those π such that

• π∗↾I × λ ∈ {id} ≀ Sλ;
• π∗↾J = id;
• π↾K = id.

That is, we are taking those π ∈ S<λ
κ×λ ≀ Sµ such that π∗ fixes the columns

taken from the set I of cardinality less than κ, and fixes pointwise the set J
of cardinality less than λ. We then further require that π fixes pointwise the
set K of cardinality less than λ.
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Let F be the filter of subgroups of G generated by groups of the form
HI,J,K for I ∈ [κ]<κ, J ∈ [I × λ]<λ, and K ∈ [J × µ]<λ (3). We shall
refer to triples I, J,K as being “appropriate” to mean that they satisfy these
conditions.

By previous calculations, πẏα,β,γ = ẏα,β,γ whenever π(α, β, γ) = ⟨α, β, γ⟩,
so that sym(ẏα,β,γ) ⩾ H{α},{⟨α,β⟩},{⟨α,β,γ⟩} ∈ F . Similarly sym(ẋα,β) ⩾

H{α},{α,β},∅ ∈ F and of course sym(Ẋ) = G ∈ F .

Claim 3.1.1. F is normal. Hence ⟨P,G ,F ⟩ is a symmetric system.

Proof of claim. Note that for appropriate I, J,K and I ′, J ′,K ′,

HI,J,K ∩HI′,J ′,K′ = HI∪I′,J∪J ′,K∪K′

and I ∪ I ′, J ∪J ′,K ∪K ′ is appropriate. Therefore, for all H ⩽ G , H ∈ F if
and only if there is appropriate I, J,K such that H ⩾ HI,J,K . Hence, to show
that F is normal, it is sufficient to show that for all appropriate I, J,K and
all π ∈ G , there is appropriate I ′, J ′,K ′ such that πHI,J,Kπ−1 ⩾ HI′,J ′,K′ ,
or equivalently that HI,J,K ⩾ π−1HI′,J ′,K′π. Given such I, J,K and π, we
define

K ′ = π“K,

J ′ = Proj(K ′) ∪ supp(π∗) ∪ J ∪ π∗“J,

I ′ = Proj(J ′) ∪ I.

We must first show that I ′, J ′,K ′ is appropriate. Firstly, note that |K ′| =
|K| < λ, |J ′| ⩽ 2 · |J | + | supp(π∗)| + |K ′| < λ, and |I ′| ⩽ |I| + |J ′| < κ
as required. Secondly, the inclusion of the projections in the definitions of
I ′, J ′,K ′ guarantees that this triple is appropriate. We claim that HI′,J ′,K′ is
the required group. Letσ ∈ HI′,J ′,K′ ; thenwemust show thatπ−1σπ ∈ HI,J,K .

Firstly, for all ⟨α, β, γ⟩ ∈ K, π(α, β, γ) ∈ K ′, so σ(π(α, β, γ)) = π(α, β, γ)
and hence π−1σπ(α, β, γ) = ⟨α, β, γ⟩ as required.

Secondly, we claim that (π−1σπ)∗ = σ∗ and that this is sufficient. Indeed,
if this is the case then, since J ⊆ J ′ and I ⊆ I ′, we get π−1σπ ∈ HI,J,K as
desired. Note also that since π∗ is a bijection, ⟨α, β⟩ ∈ supp(π∗) if and only
if π∗(α, β) ∈ supp(π∗).

If π∗(α, β) ̸= ⟨α, β⟩ then both ⟨α, β⟩ and π∗(α, β) are in supp(π∗) ⊆ J ′,
and thus (σπ)∗(α, β)=π∗(α, β) and σ∗(α, β)=⟨α, β⟩. Hence (π−1σπ)∗(α, β)
= ⟨α, β⟩ and ⟨α, β⟩ = σ∗(α, β) as desired.

Finally, we deal with the case π∗(α, β) = ⟨α, β⟩. If (πσ)∗(α, β) ̸= σ∗(α, β),
then σ∗(α, β) ∈ supp(π∗) ⊆ J ′, so (σσ)∗(α, β) = σ∗(α, β) and thus σ∗(α, β)
= ⟨α, β⟩. Hence, π∗(α, β) ̸= ⟨α, β⟩, and as before (π−1σπ)∗(α, β) = σ∗(α, β).
Therefore, if π∗(α, β) = ⟨α, β⟩ then we must have (πσ)∗(α, β) = σ∗(α, β).

(3) Since P is λ-closed and F is λ-complete, DC<λ holds in the symmetric extension.
A proof can be found in [6, Lemma 1].
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Now, π∗(α, β) = ⟨α, β⟩, so (πσ)∗(α, β) = (σπ)∗(α, β) and (π−1σπ)∗(α, β)
= σ∗(α, β) as desired. ⊣

Claim 3.1.2. Let q ∈ P, H = HI,J,K ∈ F , and ⟨α, β⟩, ⟨α′, β′⟩ ∈ κ × λ.
The following are equivalent:

(1) There is π ∈ H such that π∗ is the transposition (⟨α, β⟩ ⟨α′, β′⟩) and
πq ∥ q.

(2) {α, α′} ∩ I ̸= ∅ =⇒ α = α′, and

{⟨α, β⟩, ⟨α′, β′⟩} ∩ J ̸= ∅ =⇒ ⟨α, β⟩ = ⟨α′, β′⟩.
Proof of claim. (1)⇒(2). By the definition of H, if there is a π ∈ H as

in (1) then (2) must be satisfied.
(2)⇒(1). If α, α′, β, β′ satisfy (2), then any π ∈ G such that π∗ equals

(⟨α, β⟩ ⟨α′, β′⟩) is a candidate for an element of H (as |supp(π∗)| = 2 < λ).
Firstly, if ⟨α, β⟩ = ⟨α′, β′⟩ then we may take π = id, so assume otherwise. Let
A = {γ ∈ µ | ⟨α, β, γ⟩ ∈ supp(q)}, and B = {γ′ ∈ µ | ⟨α′, β′, γ′⟩ ∈ supp(q)}.
Since |A|, |B| < µ, there is a permutation σ of µ such that σ“A∩B = ∅ and
A ∩ σ“B = ∅. Therefore, setting πα,β = πα′,β′ = σ we will have

supp(q↾⟨α, β⟩) ∩ supp(πq↾⟨α, β⟩) = σ“A ∩B = ∅,
supp(q↾⟨α′, β′⟩) ∩ supp(πq↾⟨α′, β′⟩) = A ∩ σ“B = ∅.

Hence q↾{⟨α, β⟩, ⟨α′, β′⟩} ∥ πq↾{⟨α, β⟩, ⟨α′, β′⟩}, and for all other ⟨α′′, β′′⟩ we
have q↾⟨α′′, β′′⟩ = πq↾⟨α′′, β′′⟩. ⊣

The remainder of the proof will be spent showing that the name Ẋ will
give us the object that we are searching for, that is, 1 ⊩HS ℵ(Ẋ) = λ̌ and
1 ⊩HS ℵ∗(Ẋ) = κ̌. We shall first prove the inequalities 1 ⊩HS ℵ(Ẋ) ⩾ λ̌ and
1 ⊩HS ℵ∗(Ẋ) ⩾ κ̌, and then prove that they can be sharpened to equalities.

Towards the inequalities, for any α, η < κ let

ια,η ..=

{
α if α < η,

0 otherwise.

Then consider the name ėη ..= {⟨ẋα,β, ι̌α,η⟩• | ⟨α, β⟩ ∈ κ× λ}•. Routine ver-
ification shows sym(ėη)⩾Hη,∅,∅, so ėη ∈HS. Furthermore, 1 ⊩ “ėη : Ẋ → η̌

is surjective”, and thus 1 ⊩HS ℵ∗(Ẋ) ⩾ κ̌.
Similarly, for any η < λ and any α ∈ κ, take ṁη

..= {⟨β̌, ẋα,β⟩• | β < η}•.
Routine verification shows that sym(ṁη) ⩾ H{α},{α}×η,∅, so ṁη ∈ HS as
well. Furthermore, 1 ⊩ “ṁη : η̌ → Ẋ is injective”, and thus 1 ⊩HS ℵ(Ẋ) ⩾ λ̌.

It remains to show that these inequalities are, in fact, equalities, starting
with ℵ∗. Suppose that ḟ ∈ HS and p ⊩ ḟ : Ẋ → κ̌. Let H = HI,J,K ⩽ sym(ḟ).
Then suppose that for some q ⩽ p and ⟨α, β⟩ ∈ κ × λ there is η such that
q ⊩ ḟ(ẋα,β) = η̌.
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By Claim 3.1.2, if α /∈ I then for any α′ /∈ I and any β′ ∈ λ there is
π ∈ H such that π∗(α, β) = ⟨α′, β′⟩ and πq ∥ q. Then πq ⊩ ḟ(ẋα′,β′) = η̌, so
q ∪ πq ⩽ q forces that ḟ(ẋα,β) = ḟ(ẋα′,β′). Hence p forces that ḟ is constant
outside of I × λ.

If instead α ∈ I but ⟨α, β⟩ /∈ J then, again by Claim 3.1.2, for any
β′ ∈ λ such that ⟨α, β′⟩ /∈ J there is π ∈ H such that π∗(α, β) = ⟨α, β′⟩ and
πq ∥ q. Once again πq ⊩ ḟ(ẋα′,β′) = η̌, and so p forces that in (I × λ) \ J

the value of ḟ(ẋα,β) depends only on α. This means that ḟ can take only
at most |J | + |I| + 1 < κ many values, so cannot be a surjection, and thus
1 ⊩HS ℵ∗(Ẋ) = κ̌.

Finally, if ḟ ∈ HS and p ⊩ ḟ : λ̌ → Ẋ, then let H = HI,J,K ⩽ sym(ḟ).
We shall show that p ⊩ ḟ“λ̌ ⊆ {ẋα,β | ⟨α, β⟩ ∈ J}•, and hence ḟ cannot be
injective.

Suppose otherwise, that for some q ⩽ p, ⟨α, β⟩ /∈ J , and η < λ we have
q ⊩ ḟ(η̌) = ẋα,β . Since ⟨α, β⟩ /∈ J , for any β′ ∈ λ such that ⟨α, β′⟩ /∈ J
there is π ∈ H such that π∗(α, β) = ⟨α, β′⟩ and πq ∥ q. Since |J | < λ,
we may take β′ ̸= β, and so πq ⊩ ḟ(η̌) = πẋα,β = ẋα,β′ . Therefore,
πq ∪ q ⊩ ẋα,β = ḟ(η̌) = ẋα,β′ , contradicting our assumption that β′ ̸= β.
Thus our assertion is proved and 1 ⊩HS ℵ(Ẋ) = λ̌.

4. Realising all pairs at once. We have now constructed enough tech-
nology to prove our main theorem.

Main Theorem. ZF is equiconsistent with ZF+“for all pairs of infinite
cardinals λ ⩽ κ there is a set X such that ℵ(X) = λ and ℵ∗(X) = κ”.

The structure shall be similar to the treatment of class products of sym-
metric extensions found in, for example, [4].

We begin in a model V of ZFC + GCH. We shall define inductively a
symmetric system ⟨Pα,Gα,Fα⟩ for each α ∈ Ord. Each such system will
be precisely of the form described in Theorem 3.1, and so to fully define
each system we need only define the parameters λα, κα, and µα. First, let
{⟨λα, κα⟩ | α ∈ Ord} be an enumeration of each pair ⟨λ, κ⟩ with ℵ0 ⩽ λ ⩽ κ,
using (for example) the Gödel pairing function. Then we shall define µα to
be the least cardinal satisfying the following conditions:

• µα is regular;
• for all β < α, µβ < µα;
• for all β ⩽ α, κβ < µα;
• setting Q to be the finite-support product

∏
β<α Pβ , we require |Q| < µα;

• for all β < α, 1Q ⊩Q |V̇µ+
β
| < µ̌α;

• ℵα < µα.
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Let P be the finite-support product of all Pα, G the finite-support product of
all Gα, and F the finite-support product of all Fα. For E ⊆ Ord, we denote
by P↾E (respectively G ↾E,F ↾E) the restriction of P (respectively G ,F ) to
the coordinates found in E. Since any P-name ẋ is a set, it is a P↾α-name for
some α, and so ẋ is hereditarily F -symmetric if and only if it is hereditarily
F ↾α-symmetric for some α. Therefore, setting HS = HSF , HSα = HSF ↾α,
and letting G be V -generic for P, we get⋃

α∈Ord

HSG↾α
α =

⋃
α∈Ord

HSGα =
( ⋃
α∈Ord

HSα
)G

= HSG.

Let M = HSG and Mα = HSG↾α
α . Then M =

⋃
α∈OrdMα. We wish to prove

that M ⊨ ZF, and shall use the following theorem [5, Theorem 9.2].

Theorem 4.1. Let ⟨Pα,Gα,Fα | α ∈ Ord⟩ be a finite-support product
of symmetric extensions of homogeneous systems. Suppose that for each η
there is α∗ such that for all α ⩾ α∗, the αth symmetric extension does not
add new sets of rank at most η. Then no sets of rank at most η are added by
limit steps either. In particular, the end model satisfies ZF.

The conditions of the theorem are also desirable for our construction. We
shall show that for all α there is a hereditarily symmetric name Ẋα such that
Ẋα ∈ HSα+1 and Mα+1 ⊨ “ℵ(ẊG

α ) = λα and ℵ∗(ẊG
α ) = κα”. In this case, if

we can preserve a large enough initial segment of Mα+1 for the rest of the
iteration, then ẊG

α will still have this property in M.
We shall require the following fact [4, Lemma 2.3].

Lemma 4.2. Let κ be a regular cardinal, P a κ-c.c. forcing, and Q a κ-dis-
tributive forcing. If 1Q ⊩ “P̌ is κ̌-c.c.”, then 1P ⊩ “Q̌ is κ̌-distributive”.

Proposition 4.3. Let δ < β < α. Then Mβ and Mα agree on sets of
rank less than µ+

δ .

Proof. It is sufficient to prove that for all β ∈ Ord, Mβ and Mβ+1 agree
on sets of rank less than µδ; this is the successor stage for an induction on α
of the statement of the proposition, and Theorem 4.1 provides the induction
at the limit stage. Towards this end, let δ < β ∈ Ord and N = V [G↾β].
We shall show that Pβ adds no sets of rank less than µ+

δ to N , and since
Mβ ⊆ N and Mβ+1 ⊆ N [G(β)], the claim will be proved.

Let κ = |V N
µ+
δ

|. Then, by the definition of µβ , κ < µβ , and so it is sufficient

to prove that Pβ is µβ-distributive. Since Pβ = Add(µβ, κβ × λβ × µβ)
V ,

certainly in V it is µ+
β -distributive. Furthermore, by definition, |P↾β| < µβ ,

so P↾β is µβ-c.c., and indeed Pβ ⊩ “P̌↾β is µ̌β-c.c.”. Hence, by Lemma 4.2,
P↾β ⊩ “P̌β is µβ-distributive”, as required.
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Proposition 4.4. For all α ∈ Ord,

Mα+1 ⊨ (∃Xα)(ℵ(Xα) = λα ⩽ κα = ℵ∗(Xα)).

Proof. Let N be the symmetric extension of V [G↾α] given by the sym-
metric system ⟨Pα,Gα,Fα⟩ and the generic filter G(α). By the usual argu-
ments concerning product forcing, G(α) is V [G↾α]-generic for Pα whenever
G↾α + 1 is V -generic for P↾α + 1. Therefore, Mα+1 ⊆ N ⊆ V [G↾α + 1] is
a chain of transitive subclasses, and V [G↾α] is a transitive subclass of N as
well.

Let Xα ∈ Mα+1 be the realisation of the name Ẋ exhibited in Theo-
rem 3.1. Since Ẋ is a Pα-name, it is equivalent to its realisation under G↾α+1.
Similarly, the realisations of ėη and ṁη for appropriate values of η are still
the desired functions, and so Mα+1 ⊨ “ℵ(Xα) ⩾ λα and ℵ∗(Xα) ⩾ κα”.

Theorem 3.1 required no assumptions about the ground model other than
ZFC, and so N , in its role as a symmetric extension of V [G↾α], must satisfy
ℵ(Xα) = λα and ℵ∗(Xα) = κα. Therefore, since any function f ∈ Mα+1 is
also in N , we deduce that f cannot be an injection λα → Xα or a surjection
Xα → κα. Hence, Mα+1 satisfies ℵ(Xα) = λα and ℵ∗(Xα) = κα as well.

With some care over the construction of Xα, we may now prove our main
theorem.

Proof of the Main Theorem. Firstly, by Proposition 4.3 and Theorem 4.1,
M ⊨ ZF. Next, by Proposition 4.4, for all α ∈ Ord, Mα+1 ⊨ “ℵ(Xα) = λα

and ℵ∗(Xα) = κα”. Note that, for all α ∈ Ord, the set Xα is constructed as
an element of P3(µα). Since µα > κα ⩾ λα, it must be the case that any
function λα → Xα or Xα → κα must have rank less than µ+

α . Hence, by
Proposition 4.3, we see that for all α < β, Mβ ⊨ “ℵ(Xα) = λα and ℵ∗(Xα)
= κα”. This, combined with Theorem 4.1, shows that for all α ∈ Ord,
M ⊨ “ℵ(Xα) = λα and ℵ∗(Xα) = κα”.

5. Open questions

Question 5.1. What are the limitations of the spectrum of Hartogs–Lin-
denbaum pairs in arbitrary models of ZF?

In other words, considering {⟨λ, κ⟩ | (∃X)(α(X) = λ, ℵ∗(X) = κ)} in
a fixed model of ZF, what are the limitations on this class? Clearly, one
requirement is that λ ⩽ κ. We can also deduce that if this spectrum is
exactly λ = κ, then ACWO holds. Is there anything better that we can say
about the spectrum or deduce from its properties?

In [9], the spectrum of models of SVC are studied and classified into
various well-behaved subclasses. For example, if M ⊨ SVC then there is
a cardinal κ such that for all X, if ℵ∗(X) ⩾ κ then ℵ∗(X) is a successor
cardinal.



Hartogs and Lindenbaum numbers 11

Question 5.2. What type of forcing notions preserve all Hartogs–Lin-
denbaum values from the ground model?

Assuming ZFC holds, the above question has a simple answer: any car-
dinal-preserving forcing will suffice. More generally, in the case of Hartogs’s
number, any <Ord-distributive forcing will not add any injections from an
ordinal into a ground model set. So, for example, any σ-distributive forcing
must preserve Dedekind-finiteness. But what about preservation of Linden-
baum numbers as well?
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