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Abstract 13 

This study implements an entropy theory-based approach to infer bathymetry for 14 

29 selected cross-sections along a 1740 km reach of the Congo River. A Genetic 15 

Algorithm optimisation approach is used based on near-surface velocity 16 

measurements analysis to generate a random sample of 1000 bathymetry profiles 17 

from which the analysis is carried out. The resulting simulated bathymetry shows 18 

good agreement compared to the measurements obtained via ADCP, with a 19 

correlation that varies from 0.49 to 0.88. The bathymetry results are subsequently 20 

used to estimate the 2D cross-sectional flow velocity distribution and, 21 

consequently, to calculate the river discharge. The mean errors observed for flow 22 

area, discharge, and mean velocity are found to be equal to 2.7%, 1.3%, and 1%, 23 

respectively. This study demonstrates, for the first time, the successful application 24 

of an entropy-based approach to estimate bathymetry and discharge in large rivers 25 

and provide significant implications for remote sensing applications. 26 

Keywords: bathymetry, discharge, entropy approach, large rivers, near-surface 27 

velocity. 28 
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1 Introduction 29 

Africa hosts some of the world's largest rivers, playing a crucial part in 30 

maintaining vast ecosystems on the continent and supporting the livelihoods of millions 31 

of people. The Nile River is the longest in the world (Gebrehiwot et al., 2019), and the 32 

Congo River Basin (CRB), is the second largest in the world after the Amazon in terms 33 

of drainage area and discharge. Other major rivers such as the Niger, Zambezi, and 34 

Limpopo, are equally essential for the ecological functions and human populations within 35 

their respective basins (Mitchell, 2013; Gaye and Tindimugaya, 2019). 36 

Extensive research has been conducted to shed light on the challenges associated 37 

with sustainable water management in the African river basins. Despite these efforts, our 38 

current understanding of the dynamics of water resources in the continent remains 39 

inadequate. This limited knowledge poses a significant obstacle to the implementation of 40 

effective water resources management strategies across various spatial and temporal 41 

scales. According to Tshimanga (2022), the lack of information on water resources in 42 

African River basins is a critical impediment to their sustainable management and 43 

development. This is primarily attributed to the paucity of hydro-meteorological 44 

monitoring networks, limited financial resources and expertise for water resources 45 

monitoring, and insufficient field investigations. Consequently, developing new methods 46 

for monitoring large rivers in Africa such as the Congo River is of paramount importance 47 

for supporting a global agenda focused on climate change adaptation and achieving 48 

sustainable development goals. Recent studies show that the CRB provides multiple 49 

goods and services in terms of water resources (Runge, 2022). However, implementing 50 

appropriate river basin management strategies within the CRB is particularly challenging 51 

due to the complex nature of hydrodynamic processes associated with the lack of field 52 

data (Trigg and Tshimanga, 2020; Alsdorf et al., 2016). Currently, there are several 53 

initiatives under discussion for the CRB. Some of these initiatives include inter-basin 54 



water transfer, optimisation of the regional river navigation corridor to connect the 55 

riparian countries, development of the African hydropower grid from the Grand Inga 56 

Dam, and maintenance of the recently discovered vast complex of peat lands of the 57 

Cuvette Central. All these initiatives require supporting water resources information, 58 

which is currently critically lacking or will be difficult to obtain in the decade through 59 

direct field measurements. For instance, accurate river discharge, water level, sediment 60 

transport, and bathymetry are essential for improving water resources management. 61 

 Bathymetry is an important parameter for large river management, especially in 62 

the CRB as it provides information on the river topography and the flow conveyance 63 

capacity of the river system. The lack of bathymetric information at the required 64 

management scale in the CRB poses challenges for developing effective models to 65 

enhance water resources management. Several recent studies have attempted to estimate 66 

variables of the Congo River that relate to bathymetry. Some of these studies include: 67 

 Learning regression method (ELQ) to estimate river discharges based on remotely 68 

sensed measurements of water levels, effective river widths, and multi-temporal 69 

surface water extent (Kim et al., 2019); 70 

 Assessment of spatial variability in the water surface slope of the main stem of  71 

the Congo River through in-situ data to identify implications for hydrodynamic 72 

studies of large rivers compared to satellite altimetry (Carr et al., 2019); 73 

 Enhancement of the global estimation of river bathymetry and discharge using 74 

surface water and ocean topography (SWOT), based on the integration of 75 

hydrodynamic modelling and field measurements (Jung et al., 2010; Revel et al., 76 

2018; Trigg et al., 2021); 77 

 Estimation of bathymetry in low gradient multi-thread channel systems using 78 

Manning's equation in-channel flow conditions (Carr et al., 2022); 79 



 New measurements of water dynamics and sediment transport along the middle 80 

reach of the Congo River and the Kasai tributary (Tshimanga et al., 2022a). 81 

However, most of these studies using remote sensing data have encountered 82 

challenges due to high turbidity and suspended sediment load, which limit the penetration 83 

depth of remote sensing signal, even though the Congo River has a relatively low 84 

sediment load compared to other large rivers. Furthermore, the constantly changing river 85 

morphology, including the presence of sandbars and islands, makes it difficult to 86 

accurately model and estimate the riverbed topography. 87 

Moramarco et al. (2019) developed an efficient approach for estimating 88 

bathymetry based on entropy theory, which relies on the analysis of near-surface velocity. 89 

Surface flow velocity can be measured using ground-based technologies such as Acoustic 90 

Doppler Current Profiler (ADCP), airborne remote sensing instruments (Masafu et al., 91 

2022), or earth observation satellites (Legleiter and Kinzel, 2021; Schumann and Everard, 92 

2022). Entropy theory has been widely used by researchers to assess discharge, velocity 93 

distributions, and other variables related to river morphology (Chiu, 1987, 1988, 1989; 94 

Moramarco et al., 2004, 2010, 2011, 2013, 2017; Termini and Moramarco, 2016; Ammari 95 

et al., 2017, 2022; Bahmanpouri et al., 2022a; Singh and Khosa, 2023). Recently, Patel 96 

and Sarkar (2023) developed an indirect flow measurement technique to estimate 97 

discharge at ungauged stations on the Brahmani River and demonstrated its accuracy 98 

compared to a numerical model. The entropy approach has also shown promise for 99 

analysing 2D velocity distributions in large rivers. Bahmanpouri et al. (2022b) applied 100 

the entropy theory in the confluence zone of the Rio Negro and Rio Solimões, one of the 101 

largest confluences of the Amazon River, and found that the error observed was less than 102 

15% compared to ADCP measurements. 103 



One of the key advantages of this method is its ability to provide accurate 104 

estimates with minimal fieldwork, as it only requires sampling a few surface velocities 105 

across the river. This makes it particularly appealing for remote sensing applications 106 

where airborne or satellite-based surface velocity retrieval methods can be leveraged. 107 

Recent studies have demonstrated the effectiveness of using aerial and satellite imagery 108 

to estimate river flow velocities, with Legleiter et al. (2023) developing a moving aircraft 109 

river velocimetry (MARV) framework that uses aerial imagery to accurately estimate 110 

flow velocities in large, turbid rivers. Furthermore, ongoing research into satellite-based 111 

surface velocity retrieval has shown promising results, with Everard et al. (2023),  Masafu 112 

et al. (2023), and Masafu and Williams (2024) demonstrating the ability to accurately 113 

measure surface flow speed in medium and large rivers using high-resolution satellite 114 

video. The development of these satellite-based methods holds significant potential for 115 

applying the entropy-based approach in ungauged and large river systems. 116 

The current entropy-based approach, as applied in previous research, has shown 117 

promise in discharge monitoring. However, certain limitations are noted, particularly 118 

those related to bathymetry. In most previous studies, bathymetry data are considered an 119 

observed quantity and used to infer a 2D velocity distribution and discharge, or they are 120 

estimated only in small and medium rivers with widths ranging from 50 to 500 meters. 121 

The entropy approach has not previously been applied to large rivers, as this approach is 122 

challenging to implement where the bathymetry is difficult to measure, or sometimes 123 

completely unknown. Therefore, the main objective of this research is to assess the 124 

effectiveness of the entropy approach in estimating bathymetry for very large rivers. 125 

Subsequently, the derived bathymetry is used to estimate 2D velocity distributions and 126 

discharge, which are compared to observations, thus allowing for a thorough error 127 

analysis. Additionally, a new aspect of this research here is to apply the approach to the 128 



very complex multi-channel morphology of the Congo River, where the bathymetry is 129 

highly irregular and poses difficulties even for in-situ measurements. 130 

2 The entropy approach: theoretical background 131 

The flow velocity distribution in a cross-section based on the entropy approach 132 

was first proposed by Chiu (1989) and then simplified by Moramarco et al. (2004). This 133 

approach allows estimation of the entropy-based velocity profile along the verticals as:    134 

             𝑢(𝑥, 𝑦) = 𝑢𝑚𝑎𝑥(𝑥)𝑀  𝑙𝑛 [1 + (𝑒𝑀 − 1) 𝑦𝐷(𝑥)−ℎ(𝑥)  exp (1 − 𝑦𝐷(𝑥)−ℎ(𝑥))  ]              (1) 135 

where u is the time-averaged velocity; 𝑢𝑚𝑎𝑥(𝑥) is the maximum value of u at a distance x 136 

from the left bank; y is the distance of the velocity point from the river bottom; D(x) is 137 

the flow depth; h(x) is the dip, i.e., the depth of umax (x) below the water surface when the 138 

maximum velocity occurs at the water surface, h(x) = 0;  M is the entropic parameter, 139 

characteristic of the cross-section that can be estimated based on pairs of measured mean 140 

and maximum river flow velocity, (um, uMAX) respectively, using the linear entropic 141 

relation (Chiu, 1989):  142 

                                                        
𝑢𝑚𝑢𝑀𝐴𝑋 = 𝑒𝑀𝑒𝑀−1 − 1𝑀 = 𝛷(𝑀)                                         (2) 143 

Φ (M) is found to be constant for many measurements in the same cross-section even 144 

when taking into consideration the high and low flow conditions (Ammari and Remini, 145 

2010). 146 

The estimation of the 2D velocity distribution in a river cross-section can be developed 147 

using Eq. (1). However, the quantities that describe the bathymetry of the cross-section 148 

are required, i.e., the water depth D. Such information is rarely available. In this context, 149 



Moramarco et al., (2013; 2019) developed an approach for the estimation of the 150 

bathymetry, which exploits the principle of maximum entropy inferring the Eq. (3): 151 

                                      𝐷(𝑥) = 𝐷𝑀𝐴𝑋𝑊  𝑙𝑛 [1 + (𝑒𝑊 − 1) 𝑢𝑚𝑎𝑥 (𝑥) 𝑢𝑀𝐴𝑋 ]                               (3) 152 

where D(x) represents the mean flow depth at distance x from the left bank; DMAX is the 153 

maximum flow depth in the cross-section; umax (x) is the maximum velocity; uMAX is the 154 

maximum velocity in the cross-section uMAX = max (umax(x)) = max (Usurface(x)); W is the 155 

entropy parameter that depends on the ratio between the mean, Dm, and the maximum, 156 

DMAX, flow depth in the cross-section: 157 

                                                   
𝐷𝑚𝐷𝑀𝐴𝑋 = 𝑒𝑊𝑒𝑊−1 − 1𝑊 = Ø(𝑊)                                          (4)  158 

Ø (W) represents the ratio between the pairs (Dm, DMAX), a function of W. The application 159 

of Eq. (3) is related to the determination of the entropy parameter W and the availability 160 

of measurements of the pairs (Dm, DMAX). 161 

3 Study Area  162 

The CRB is recognised as one of the largest and most ecologically diversified 163 

river systems in the world, with a mean annual discharge of 41,000 m3/s and a catchment 164 

area of 3.7 x106 km2 (Tshimanga et al., 2022b). The CRB comprises nine countries 165 

including, Angola, Burundi, Cameroon, Central African Republic, Republic of Congo, 166 

Democratic Republic of Congo, Rwanda, Tanzania, and Zambia (Trigg et al., 2022a). 167 

This region is of great ecological significance due to its vast forest cover, diverse wildlife, 168 

and the crucial role that it plays in regulating the global climate. 169 

According to Tshimanga et al. (2022b), three major reaches are identified along 170 

the main course of the Congo River. There is the upper reach that starts on the Katanga 171 

Plateaus, running north until the Boyoma Falls at Kisangani, known as Lualaba, thus 172 



draining a basin area of about 960,000 km2. This is followed by the middle reach that 173 

encompasses the region between the cities of Kisangani and Kinshasa, where the river 174 

forms an arc that crosses the equator twice as it runs through the vast swampy basin of 175 

the Cuvette Central, a shallow depression along the equatorial line.  Along this reach, the 176 

river drops only 115 m over 1700 km. In the Cuvette Centrale, the river depths are shallow 177 

and vary from 5 to 10 m, and the morphology of the river takes a very complex multi-178 

channel form with a width ranging up to 10 km. The middle reach differs greatly from 179 

the upper and the lower reaches, with a surface slope averaging around 5.5 cm/km 180 

(O’Loughlin et al., 2020). The middle reach runs towards the city of Kinshasa, and at this 181 

location, the total basin area is about 3.6 x106 km2. Finally, the lower reach extends to the 182 

outlet of the Congo River, the Atlantic Ocean, reaching a total basin drainage area of 183 

about 3.7 x106 km2. 184 

Major hydrographic features of vast lakes, floodplains, wetlands, peatlands and 185 

islands characterise the Congo River's main course from its source to the mouth. At the 186 

outlet of the Cuvette Central, the river course enters a stretch known as the Chenal, 220 187 

km long, from Tchumbiri to Kinshasa. In this section, the channel is confined between 188 

low hills and follows a single narrow channel, with a 900 -1,600 m width, and depths up 189 

to 40 m. A circular riverine water body, the Pool Malebo, marks the end of the Chenal 190 

before the Congo River enters its lower part downstream of Kinshasa (Kechnit et al., 191 

2024). The lower reach extends from the Pool Malebo to the Atlantic Ocean (see Fig. (1)) 192 

The CRB is an area with significant potential for the development of water 193 

resources. It offers a wide range of benefits and services, including generation of 194 

hydroelectric power, provision of water, support for fisheries, and opportunities for large-195 

scale irrigated agriculture. In terms of navigation, the extensive river network spans 196 

approximately 25000 km (including lake routes) and enables inland navigation, 197 



promoting connectivity among the riparian nations (Tshimanga et al., 2022c). Trigg et al. 198 

(2022b) state that there are 17867 km of navigable channels, excluding lakes. These 199 

channels are divided into three categories based on the draft of ships that can safely 200 

navigate them, taking into account the normal water depth that allows for navigability in 201 

both low and high flow seasons: Category 1 (1.30m – 2.0m), Category 2 (1m – 1.30m), 202 

and Category 3 (0.5m – 1m) (CICOS, 2023). The middle reach of the Congo River 203 

mainstream is classified as Category 1 (see Supplementary material, Figure S1), which 204 

represents the deepest reach in the Congo River. 205 

4 Material and Methods 206 

4.1 Data Acquisition   207 

Several field investigations using Acoustic Doppler Current Profiler (ADCP) have 208 

been carried out in the CRB (Trigg et al., 2021; Trigg et al., 2022a; Tshimanga et al., 209 

2022a; Carr et al., 2022) to collect data on discharge and bathymetry. Alsdorf et al. (2016) 210 

state that the limited availability of in-situ data and investigation has been a major 211 

obstacle to scientific research in the CRB. The ADCP measurements used in this study 212 

were collected from several fieldwork campaigns (Tshimanga et al., 2022a). The first set 213 

of measurements carried out between Kunzulu and Kisangani (about 1500 km), was 214 

conducted as part of the Congo River Users Hydraulics and Morphology (CRuHM) 215 

project, and the Congo Basin Water Resources Research Center (CRREBaC). This 216 

project is a research and capacity-building initiative funded by the Royal Society of the 217 

United Kingdom (Bate et al., 2024). The second set of measurements, conducted by the 218 

Congo Basin Water Resources Research Center (https://www.crrebac.org) and the Congo 219 

River authority in the Democratic Republic of Congo (RVF), covered the transect from 220 

https://www.crrebac.org/en_GB/hydraulique-et-morphologie-pour-les-usagers-du-fleuve-congo-cruhm
https://www.crrebac.org/


Maluku to the outlet of the Pool Malebo. The survey was conducted between 2021 and 221 

2022.  222 

Fig. 2 illustrates the middle reach of the Congo River, which spans from Kisangani to 223 

Kinshasa, covering a distance of 1740 km. The surveys primarily focused on the main 224 

reach of the river, where an ADCP was deployed. Additionally, some tributaries were 225 

also included in the investigation. The TRDI River Ray ADCP with 600 kHz with a 226 

maximum depth range of 60 m and a blanking zone estimated at 16 cm was used for field 227 

measurements. The deployment method involved mounting the ADCP on a "mobile boat" 228 

while continuously recording the measurements. The selection of the measurement 229 

transect in the middle reach was based on careful consideration of the water course's 230 

geomorphology, including the presence of the Chenal, multi-thread channel, and the Pool 231 

Malebo. The feasibility of conducting measurements was also taken into account, 232 

especially in challenging areas such as the middle reach with multi-thread channels. 233 

This research aims to exploit two primary components: (i) flow surface velocity, 234 

which will be used as input data for the entropy theory, and (ii) measured bathymetry 235 

data, which will serve as validation data for the simulated bathymetry results.  236 

4.2 Methodology 237 

The estimation of bathymetry is mainly based on the application of Eq. (3). To 238 

this end, all the included variables in this expression must be identified. The approach is 239 

suggested by Moramarco et al. (2019) and adopted for large rivers. The process of 240 

estimating the different variables and applying Eq. (3) can be summarised as follows:  241 

  4.2.1 Determination (usurf, uMAX): 242 

Assuming that the maximum velocity at the surface, the maximum velocity in 243 

each vertical along the x-axis will be equal to the surface velocity, (usurf), i.e.: 244 



 umax(x) = usurf (x).   245 

 uMAX =max (umax (x)) = max (usurf (x)).   246 

usurf   can be derived using ADCP by selecting the value from the first bin above the surface 247 

blanking zone for each vertical along the width of the cross-section. 248 

4.2.2 Determination of the entropy parameter W: 249 

The determination of W is carried out by Eq. (4), which primarily relies on the 250 

pairs (Dm, DMAX). The estimation of W can be evaluated in two different scenarios: 251 

 Scenario (a): W is a calibration parameter that is missing and it will be estimated 252 

as described in section 4.2.4. 253 

 Scenario (b): The Congo River can be divided into different main reaches based 254 

on the different morphology of the watercourse (i.e., Pool Malebo, Chenal, and 255 

multi-thread). Available measurements of the pairs (Dm, DMAX), that can be 256 

obtained through ADCP, can be used for each reach to calculate Ø (W) and W 257 

using Eq. (4). 258 

4.2.3 Determination of the maximum depth DMAX  : 259 

 According to Eq. (4), the determination of DMAX is mainly related to the accurate 260 

estimation of the entropy parameter W for each cross-section. However, in situations 261 

where the investigation cross-sections are wide, it becomes challenging to determine the 262 

value of DMAX without conducting a bathymetric survey. In such cases, if it is assumed 263 

that DMAX is completely unknown, it can be estimated based on previous studies. For 264 

instance, Moramarco and Singh, (2010) introduced the expression to calculate uMAX for a 265 

large river, which depends on (DMAX, W) as: 266 

                                     uMAX_cal = √𝑔   𝐷𝑚 𝑆𝑓𝑘  ln [  1𝑒𝑥𝑝(−𝑎  𝐷𝑚) 
 ]                                        (5) 267 



where uMAX_Cal is the calculated maximum velocity in the cross-section, g is the 268 

gravitational constant, Dm is the mean depth, k is the constant of Von Kàrmàn for clear 269 

water equal to 0.41, Sf  is water surface slope, a is a constant which depends on the position 270 

where the velocity u=0. Replacing the term of Dm from Eq. (4) in Eq. (5), the formulation 271 

of uMAX_cal can be expressed as 272 

          uMAX_cal   = √𝑔 𝐷𝑀𝐴𝑋 ( 𝑒𝑊𝑒𝑊−1− 1𝑊) 𝑆𝑓𝑘  ln [ 1𝑒[−𝑎  𝐷𝑀𝐴𝑋  ( 𝑒𝑊𝑒𝑊−1− 1𝑊)] 

 ]                                          (6)   273 

The integration of Eq. (6) introduces the variables (DMAX, W) that are also present in         274 

Eq. (3), along with other variables (a, Sf). The optimisation of all the variables (DMAX, W, 275 

Sf, a) will be performed by minimising the error between the calculated maximum 276 

velocity (uMAX_cal) and the observed (uMAX) value in Eq. (3), which is equal to the 277 

maximum value of surface velocity over the cross-section  (usurf (x)). 278 

4.2.4 Optimisation of the variables (W, DMAX, Sf, a): 279 

The Genetic Algorithm solver (GA solver) provided by MATLAB®Optimisation 280 

Toolbox (R2019a, The MathWorks Inc., Natick, Massachusetts, USA) is considered an 281 

effective optimisation technique used in scientific and engineering problems 282 

(Sivanandam et al., 2008). The GA solver is used for the optimisation of the different 283 

variables by minimising the following expression: 284 

                                                 uMAX _cal  - uMAX  ≤ 10-6                                                    (7) 285 

The integration of Eq. (6) introduces the variables (DMAX, W) that are also present in        286 

Eq. (3), along with other variables (a, Sf). The optimisation of all the variables (DMAX, W, 287 

Sf, a) will be performed by minimising the error between the calculated maximum 288 

velocity (uMAX_cal) and the observed value in Eq. (3), which is equal to uMAX = max (usurf 289 

(x)). The GA solver begins by assigning initial values to variables within their respective 290 



ranges of variability. These parameters are randomly sampled for 1000 initial values. The 291 

GA solver iteratively modifies this value until finding the optimal combination that 292 

satisfies the conditions stated in Eq. (7).  As a result, 1000 bathymetry profiles are 293 

generated, from which the 25th, 50th, and 75th percentile profiles can be derived. The 294 

process of the estimation of bathymetry and the optimisation of the different variables is 295 

presented in Fig. 3. The two scenarios aim to assess the accuracy of the optimisation 296 

performed by the genetic algorithm (GA) solver. The key distinction lies in the number 297 

of variables used in the optimisation process, as highlighted in step (7) of the figure. 298 

Scenario (a) uses four variables (DMAX, W, Sf, a) by considering the entropy parameter W 299 

as an unknown, while scenario (b) reduces the variables to three (DMAX, Sf, a) by treating 300 

W as a regional parameter estimated through in-situ ADCP data. The main objective of 301 

this comparative analysis is to examine the estimation of the entropy parameter W, 302 

evaluating its performance as both a regional and a calibration parameter to provide 303 

insights into the impact of the bathymetry estimation. 304 

4.2.5 Estimation of velocity distribution and mean flow using entropy formulation 305 

The 2D velocity distribution in a river can primarily be determined using Eq. (1) 306 

based on the simulated results of bathymetry given by Eq. (3). The accuracy of the flow 307 

depth and velocity across the section can be assessed by comparing the profiles obtained 308 

from ADCP and the profiles simulated using the entropy theory, as proposed by 309 

Bahmanpouri et al. (2022b). The estimation of the mean flow is primarily dependent on 310 

two parameters: the results of simulated bathymetry obtained from Eq. (3) for the 311 

determination of the flow area and the entropy parameter M for the estimation of the mean 312 

velocity. This can be expressed according to Eq. (8): 313 

                             Q50th Percentile = A50th Percentile * um                                                    (8) 314 



Where Q50th Percentile is the mean flow, A50
th 

Percentile is the mean flow area calculated by the 315 

integration of the simulated results of bathymetry given by Eq. (3), and um is the mean 316 

velocity which can be derived based on Eq. (2). 317 

5 Results and discussion  318 

5.1 ADCP dataset in the middle reach 319 

Four field campaigns using (ADCP) were carried out on the middle reach of the 320 

Congo River during the years 2017, 2019, 2021, and 2022. Transects were selected from 321 

these campaigns at evenly distributed locations along a stretch of 1740 km in length, 322 

starting from Kisangani to Kinshasa, during both high and low flow seasons. The results 323 

obtained from 2022 revealed that the Chenal reach and the Pool Malebo exhibited higher 324 

flow velocities compared to the multi-thread reach. These findings were consistent with 325 

previous studies in 2017, 2019 and 2021 conducted by Tshimanga et al. (2022a). In 326 

particular, the transect in the Pool Malebo (BZ_kin) recorded the highest flow velocity, 327 

reaching 2.54 m/s. Regarding the maximum depth, this was observed in the Chanel and 328 

the multi-thread reach with a value of 30.5 m. Table 1 provides a summary of the 329 

investigation's results for each cross-section. 330 

5.2 Estimation of the entropy parameters  331 

5.2.1 Estimation of W through analysis of pairs (Dm, DMAX) 332 

The entropy parameter W is determined using the observed data of the pairs (Dm, 333 

DMAX) measured by ADCP in different cross-sections of the middle reach. Due to the 334 

limited number of measurements, establishing a robust correlation between the mean and 335 

maximum depth (Dm, DMAX) is challenging. However, it is crucial to describe each reach 336 

by an entropy parameter W. Considering the morphology of the Congo River in the 337 

middle reach, it is evident that the Chenal reach varies significantly compared to the Pool 338 



Malebo and the multi-thread reach (Kechnit et al., 2024; Carr et al., 2019). Therefore, a 339 

separate W parameter is estimated for each reach of the Congo River, namely the Pool 340 

Malebo (Fig. 2 (a)), Chenal (Fig. 2 (b & e)), and multi-thread (Fig. 2 (c&d)), the results 341 

are represented in Fig. 4 (a, b and c). The pairs (W, Ø (W)) are higher for the Chenal reach 342 

in comparison to the other Pool Malebo and Multi-thread reaches. Note, that an increase 343 

in the value of W indicates a cross-sectional shape that is more rectangular. However, for 344 

larger rivers characterised by irregular bathymetry, the entropy parameter W may assume 345 

negative values (Moramarco et al., 2019). 346 

5.2.2 Estimation of M parameter through analysis of pairs (um, uMAX)  347 

The determination of the entropy parameter M follows a similar approach to that 348 

applied for the entropy parameter W. Despite the limited number of measurements 349 

available to establish a strong relationship between the pairs (um, uMAX), a notable 350 

correlation is observed for the middle reach of the Congo River, see Fig. 4 (d). Therefore, 351 

M deduced by Eq. (2) and Ø(M) can be considered as a parameter that characterises the 352 

entire middle reach of the Congo River in the mainstream, with a coefficient of 353 

determination R2 equal to 0.98. 354 

5.3 Estimated bathymetry using the entropy theory 355 

The comparison between the simulated bathymetry at the 50th percentile using the 356 

entropy theory scenarios in both scenarios (a) and (b) and the observed profile via ADCP 357 

is shown in Fig. 5 respectively for the Pool Malebo, Chenal and Multi-thread reaches. 358 

Other results are represented in the Supplementary material, (see Figures S2, S3 and S4). 359 

The grey area represents the 1000 bathymetry profiles generated by the GA Solver 360 

according to the initial value of the parameters (DMAX, W, Sf, a) that are randomly sampled. 361 

The coefficient of correlation is calculated for each cross-section, as follows: 362 



 R1 is the correlation between the 50th percentile of the simulated bathymetry 363 

(scenario a) and the observed profile via ADCP. 364 

  R2 is the correlation between the 50th percentile of the simulated bathymetry 365 

(scenario b) and the observed profile via ADCP. 366 

  R3 is the correlation between the 50th percentile of the simulated bathymetry 367 

(scenario a) and (scenario b). 368 

A good correlation was observed in the Chanel, specifically in the Maluku and 369 

Kisangani transects, with correlation coefficients ranging from 0.68 to 0.88. The 370 

bathymetry in this reach displayed a rectangular shape. Additionally, a high correlation 371 

coefficient of 0.99 was observed between the estimated bathymetry with the observed 372 

one in scenarios (a, b). Indeed, when the entropic parameter W was used as a calibration 373 

parameter (scenario a), the profile exhibited a closer resemblance to the measured profile 374 

via ADCP. Furthermore, the trend in the multi-thread was found to be higher compared 375 

to the Pool Malebo, with correlation coefficients varying from 0.57 to 0.84 and 0.49 to 376 

0.71, respectively. 377 

It is worth noting that the bathymetry in the Pool Malebo and multi-thread reaches 378 

respectively in Fig. 5 and (see Supplementary material, Figure S1 and S4) differs from 379 

the Chenal reach in Fig. 5 (see Supplementary material, Figure S3). For Pool Malebo, the 380 

flow velocity is low and the distance between the two banks is large, which allows for the 381 

deposition of sand bars, explaining the irregularity of the bathymetry in this reach. 382 

However, the estimated results using the entropy theory yielded a strong correlation with 383 

the measured ones. The difference between the 50th percentile of the estimated results in 384 

both scenarios (a, b) is not significant. Furthermore, a strong correlation is observed in 385 

all the transects of investigation. In the process of optimisation, the performance of a 386 



genetic algorithm (GA) solver depends on the number of variables used in the 387 

optimisation problem, which is the key difference between scenarios (a) and (b). In 388 

scenario (a), the introduction of the entropy parameter W makes the problem more 389 

complex. However, it also shows the advantage of using additional variables, which can 390 

lead to more accurate and robust solutions. 391 

Fig. 6 presents the range of variability for the different parameters (DMAX, W, Sf, 392 

a) used in the optimisation process by GA Solver for both scenarios (a, b). Three transects 393 

from each reach are chosen, respectively Pool Malebo, Chenal, and Multi-thread. In 394 

particular, the choice of whether the entropy parameter W is treated as a calibration or 395 

regional parameter that is derived by measurements of the pairs (Dm, DMAX) has a 396 

significant impact on the variability of the other parameters, as illustrated in Fig. 6. The 397 

restricted number of measurements obtained from the pairs (Dm, DMAX) introduces a 398 

significant amount of uncertainty regarding the value of W in scenario (a). Nonetheless, 399 

this approach might be suitable in large rivers such as the Congo for the regionalisation 400 

of the parameter W where there is a complete lack of ground-based historical observations 401 

and regular field measurements due to accessibility and technical resources problems, 402 

especially during high flow periods (Washington et al., 2013). 403 

5.4 Entropy-based analysis of 2D velocity distribution 404 

The use of Eq. (1) for the analysis of the 2D velocity distribution is primarily 405 

based on the results of the simulated bathymetry obtained from the application of Eq. (3) 406 

and the determination of the M value suggested by Eq. (2). A comparison of the velocity 407 

distribution obtained through ADCP and using the entropy theory is represented in Fig. 7 408 

for the Maluku transect (Chenal reach). 409 

In order to compare the estimated profile obtained through the entropy theory with 410 

the observed profile obtained via ADCP, the approach proposed by Bahmanpouri et al., 411 



(2022b) is adopted. The ADCP velocity data are collected at multiple points across the 412 

cross-section and analysed using Dplot® software (Hydesoft Computing, LLC), which 413 

enables the generation of a continuous, two-dimensional velocity profile spanning the 414 

entire cross-section. This is achieved by interpolating the ADCP data points at consistent 415 

intervals along both the horizontal (x) and vertical (y) axes, ensuring that the resulting 416 

velocity profile has no gaps and providing a detailed two-dimensional representation of 417 

the flow velocity from the water surface to the bed. 418 

The estimated velocity profile is computed based on the simulated bathymetry 419 

from the entropy model and collected surface velocity by ADCP. The velocity data is 420 

interpolated at regular 1 m intervals along the (x, y) coordinates to generate an error 421 

dataset. However, it is important to note that the estimated bathymetry profile may not 422 

accurately represent the actual depth due to variations in correlation along each transect. 423 

The error dataset is determined by comparing the two velocity profiles, where a 100% 424 

error indicates either an error in water depth or in the blanking zone where the ADCP 425 

does not provide velocity values. Fig. 7 shows that the error in the velocity profile remains 426 

within 15% in areas where the two profiles overlap. However, the error increases near the 427 

blanking zone close to the bed, which is an area where acoustic reflections from the bed 428 

interfere with the ADCP measurements. The obtained results are highly satisfactory and 429 

show a remarkable similarity to the observations made by the ADCP. Further velocity 430 

data analyses are represented in the Supplementary material (see Figures S5, S6 and S7) 431 

5.5 Discharge assessment using entropy theory 432 

Table 2 presents a comparative analysis between the 50th percentile simulated 433 

parameters of flow, flow area, and mean velocity obtained using entropy theory and the 434 

corresponding observed values obtained via ADCP in all transects of the middle reach 435 

spanning over 1740 km. 436 



In order to enhance the analysis of the errors observed in discharge, flow area, and 437 

mean velocity, histograms with a normal distribution were fit and are shown in Fig. 8. 438 

The errors observed in all parameters exhibit both positive and negative values. The range 439 

of variability is between -30% to 35% for the discharge, -40% to 45% for the flow area, 440 

and -25% to 30% for the mean velocity. Additionally, the standard deviation for the error 441 

for discharge, flow area and mean velocity are respectively 18 %, 17% and 12%, which 442 

is not above ± 20%.   443 

  5.6 Error variability distribution and uncertainty analysis 444 

The analysis of the error dataset is crucial for understanding the quality and 445 

reliability of the results provided by the entropy theory. One important aspect to consider 446 

is studying the variability pattern of the errors. By thoroughly examining the distribution, 447 

statistical properties, and relationships of the errors, we can gain valuable insights into 448 

the performance and accuracy of the approach. In this study, a graphical method known 449 

as a Quantile-Quantile (QQ) plot is used to analyse the errors in both discharge and flow 450 

areas. This plot compares the observed errors with those expected from a normal 451 

distribution (see Fig. 9). 452 

From Fig. 9, it is evident that the magnitudes closely adhere to a straight line, for 453 

both discharge and flow area, indicating a normal distribution of the error. To confirm 454 

these results, additional statistical tests are employed. In this regard, common goodness-455 

of-fit tests for normal distribution, as outlined by Öner and Kocakoç (2017), are used (see 456 

Table 3). 457 

According to Table 3, the statistics test value falls between 0 and 1, and their 458 

interpretation depends on the specific test and the context of analysis. In the case of 459 

Kolmogorov-Smirnov and Anderson-Darling, the statistic test measures the maximum 460 

difference between the empirical distribution of the dataset and the normal distribution. 461 



A statistics test value closer to 0 indicates a better fit to a normal distribution. On the 462 

other hand, for the Shapiro-Wilk test, the statistic test value represents the correlation 463 

between the observed and expected normal distribution, a higher value suggests that the 464 

data is more likely to follow a normal distribution.  465 

Based on the p-values obtained from tests (Kolmogorov-Smirnov, Anderson-466 

Darling, and Shapiro-Wilk), it is noted that the value exceeds the alpha level of α = 0.05. 467 

This finding further supports the notion that the error data set is normally distributed. The 468 

normality of the error between the estimated and observed results for both discharge and 469 

flow area indicates that a majority of the data points are clustered near the mean values 470 

equal to 1.3% and 2.7%, respectively. These numbers are quite close to zero, indicating 471 

that the simulated and observed results are fairly similar. 472 

6 Conclusions  473 

This study demonstrates, for the first time, the successful application of an 474 

entropy-based approach to estimate bathymetry and discharge in large rivers. The method 475 

lends itself well to monitoring inland waters using ground satellite‐based platforms where 476 

no information on river topography is available and/or the sampling of velocity is not 477 

always feasible across the whole flow area, especially in braided and multi-thread 478 

reaches.  479 

Despite the limited number of measurements for the estimation of W, a good 480 

correlation can be observed between the simulated bathymetry in both scenarios, (a) 481 

universal W and (b) reach-based W, and the observations over a 1740 km reach at 29 482 

cross-sections. The trend of the simulated bathymetry results closely resembles the 483 

observed bathymetry when the cross-section shape is close to rectangular, as seen in the 484 

Chenal reach. For example, the correlation decreases when the bathymetry becomes more 485 

irregular in the Pool Malebo. Additionally, a strong correlation is found between the 486 



simulated results in both scenarios (a) and (b), even though W is estimated with two 487 

different approaches. These findings validate the effectiveness of GA solver optimisation 488 

and identify a novel aspect of entropy application in using W  as a regional parameter for 489 

the bathymetry, based on the river channel morphology.  490 

The approach enables the determination of the 2D cross-sectional velocity 491 

distribution based on the simulated bathymetry results. The error observed is less than 492 

20% when the simulated and the observed velocity profiles of cross-sections are 493 

compared, with a slightly higher error value near the blanking zone. This finding is 494 

consistent with the study of Bahmanpouri et al. (2022b), where they used an entropy 495 

approach based on ADCP data and found an error of no more than 15% in the predicted 496 

2D velocity distribution, while the bathymetry data was considered as an observed 497 

quantity. The entropy method has proven to be effective in discharge monitoring, 498 

providing a reliable result with an average error not exceeding 2.7% in challenging 499 

environments such as the Congo River. This finding aligns with other results from studies 500 

that have also used the entropy approach for discharge assessment. For instance, 501 

Bahmanpouri et al. (2022a) reported an error rate not exceeding 13%, while Vyas et al. 502 

(2020) used both the Shannon and Tsallis approaches and achieved an average not 503 

exceeding 10%. However, this is the first time it has been demonstrated successfully for 504 

a very large river. 505 

The entropy-based approach, which was tested for large rivers such as the Congo 506 

in this study, offers a valuable tool for monitoring discharge by sampling only a few 507 

surface velocities across the river. This approach has significant implications for remote 508 

sensing applications, particularly in ungauged large river basins. Moramarco et al. (2019) 509 

found that using satellite observations to estimate discharge rates resulted in an average 510 

error percentage of approximately 30%. This was achieved by combining data from 511 



MODIS optical and radar altimetry for the surface water level. Recent findings by Everard 512 

et al. (2023), Masafu et al. (2023), and Masafu and Williams (2024) demonstrated that 513 

measuring surface flow velocity in medium and large rivers is possible using high-514 

resolution satellite video. Combining a satellite velocity estimate with the entropy-based 515 

method, demonstrated here, could lead to a new none-contact method for monitoring large 516 

river basins. Further research in this context would be of great interest in future studies, 517 

expanding on the work presented here. 518 

Overall, the application of entropy theory in estimating bathymetry in large rivers, 519 

such as the Congo, holds significant promise. By incorporating this data into hydraulic 520 

models, a more comprehensive understanding of river dynamics and hydraulics can be 521 

achieved. Additionally, further research on the integration of entropy theory with 522 

hydraulics models, particularly in the context of navigation, is still necessary. This is 523 

especially crucial considering the growing number of accidents and fatalities during 524 

navigation in the Congo River, highlighting the importance of exploring entropy theory's 525 

potential with hydraulic models for developing navigation maps and enhancing safety. 526 
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Table 1. Hydraulic parameters observed in the data acquisition using ADCP over 1740 

km in the middle reach of the Congo River: Chainage from River authority RFV gauge 

station (C), Number of transect (N), width of transect (L), mean depth (Dm), Maximum 

depth (DMAX), flow area (A), flow (Q), Mean velocity (um), maximum velocity (uMAX) 

  
Order of 

River 

Date  Transect C N  L Dm DMAX A Q um uMAX 

(km)  (m)  (m) (m)  (m2)  (m3/s) (m/s) (m/s) 

 

 

 

Main course 

(Pool Malebo) 

 

21/12/2021 BZ_Kin   0 1 3671 11 20.8 40417 52650 1.3 2.57 

23/05/2021 2 3548 10.7 20.1 37832 43043 1.14 2.27 

24/05/2021 Kin_Island  1.5 3 3504 10.8 22.1 37826 44310 1.17 2.37 

25/07/2022 Pool_2 4.5 4 3679 6 12.4 22000 26279 1.19 2.45 

27/07/2022 Ndjili  9 5 2042 14.4 22.7 29323 22057 0.75 2.06 

 

 

 

Main course 

(Chenal) 

21/05/2021   45 6 5565 6.9 17.2 38646 39711 1.03 2.07 

20/05/2021 Maluku 53 7 2976 12.1 18.9 35934 43131 1.2 1.94 

20/05/2021   60 8 2341 15.8 26.4 36914 43642 1.18 2.42 

30/07/2017 Kunzulu 155 9 1646 15.3 24 25254 28649 1.13 2.4 

03/08/2017 Kwamouth 190 10 1925 12.2 30.5 23435 29326 1.25 2.53 

03/08/2017 Lenga 195 11 1858 13.1 21.8 24304 22515 0.93 1.73 

Tributary 04/08/2017 Kasai 193 12 623 12.2 14.2 7585 7395 0.97 1.81 

 

Main Course 

(Multi-thread) 

09/08/2017 Lukolela 250 13 1847 11 25.4 20276 19687 0.97 2.03 

10/08/2017 Clocke point 540 14 6352 3.8 16.4 24151 20655 0.86 2.24 

13/08/2017 Gombe 580 15 2676 11.3 30.5 30272 22609 0.75 1.78 

Tributary 16/08/2019 Ruki 700 16 602 7.4 10.4 4458 2997 0.67 1.34 

13/08/2019 Lulonga 770 17 638 3.6 4.51 2318 1653 0.71 1.58 

 

 

 

Main Course 

(Multi-thread) 

12/08/2019  

Makanza 

900 18 2992 4 9.7 11829 8517 0.72 1.45 

13/08/2019 19 1126 4.6 8.86 5165 2970 0.58 1.3 

07/08/2019  

Bumba 

  20 1664 3.2 6.53 5310 3877 0.73 1.34 

08/08/2019 1340 21 301 2.8 7.1 850 591 0.7 1.13 

09/08/2019   22 1793 3.8 8.9 6880 5126 0.75 1.4 

05/08/2019 Mombongo 1450 23 3586 3.7 7.04 13337 9569 0.72 1.84 

04/08/2019 Lokutu 1530 24 3002 4 8.7 12080 7589 0.63 1.28 

Tributary 04/08/2019 Arumimi 1370 25 495 4.9 9.62 2446 1807 0.74 1.46 

Main Course 

(Multi-thread) 

03/08/2019 Lileko 1590 26 1850 4.6 13.8 8484 7602 0.9 1.67 

 

Tributary 

01/08/2019 Lomami 1620 27 664 2.5 7.76 1669 1135 0.68 1.69 

01/08/2019 Isangi 1615 28 1564 3.2 5.55 5060 840 0.17 1.19 

Main Course 

(Chenal) 

28/07/2019 Kisangani 1740 29 783 5.9 11.6 4602 4975 1.08 2.47 



Table 2. Comparison between the observed and the estimated parameters using the 

entropy theory: A (m2) flow area, Q (m3/s) discharge, Um (m/s) mean velocity  

Table 3. Normality test for the error distribution in discharge and flow area, indicating 

0 for non-normal error distribution and 1 for normal error distribution. 

 

Test Name 

Discharge [Q m3/s] Flow Area [A m2] Normality 

Test Statistic p-value 

 

α Test Statistic p-value 

 

α [0, 1] 

Kolmogorov-Smirnov  0.482 0.974 0.05 0.371 0.999 0.05 1 

Anderson-Darling  0.244 0.765 0.05 0.156 0.954 0.05 1 

Shapiro-Wilk  0.964 0.463 0.05 0.988 0.988 0.05 1 

 

 

Transect 

50th Percentile Simulated 

by Entropy 
Observed by ADCP Error (%) 

A50
th  Q Um  A Q Um  

A Q Um 
(m2) (m3/s) (m/s) (m2) (m3/s) (m/s) 

BZ_kin 
43358 52595 1.21 40417 52650 1.3 7.30% -0.10% -6.90% 

39662 42495 1.07 37832 43043 1.14 4.80% -1.30% -6.10% 

Kin Island 40606 45423 1.12 37826 44310 1.17 7.30% 2.50% -4.30% 

Pool_2 23963 27711 1.16 22000 26279 1.19 8.90% 5.40% -2.50% 

Ndjili 25240 24518 0.97 29323 22057 0.75 -13.90% 11.20% 29.30% 

Maluku 

44468 43405 0.98 38646 39711 1.03 15.10% 9.30% -4.90% 

36767 33615 0.91 35934 43131 1.2 2.30% -22.10% -24.20% 

39324 44917 1.14 36914 43642 1.18 6.50% 2.90% -3.40% 

Kunzulu 24221 27403 1.13 25254 28649 1.13 -4.10% -4.30% 0.00% 

Kwamouth 27243 32533 1.19 23435 29326 1.25 16.20% 10.90% -4.80% 

Lenga 21610 17666 0.82 24304 22515 0.93 -11.10% -21.50% -11.80% 

Kasai 6408 5465 0.85 7585 7395 0.97 -15.50% -26.10% -12.40% 

Lukolela 26944 25753 0.96 20276 19687 0.97 32.90% 30.80% -1.00% 

Cock point 29304 27663 0.94 24151 20655 0.86 21.30% 33.90% 9.30% 

Gombe 20385 18281 0.9 30272 22609 0.75 -32.70% -19.10% 20.00% 

Ruki 4191 2643 0.63 4458 2997 0.67 -6.00% -11.80% -6.00% 

Lulonga 2284 1707 0.75 2318 1653 0.71 -1.50% 3.30% 5.60% 

Makanza 
14573 10001 0.69 11829 8517 0.72 23.20% 17.40% -4.20% 

5758 3525 0.61 5165 2970 0.58 11.50% 18.70% 5.20% 

Bumba 
4483 2844 0.63 5310 3877 0.73 -15.60% -26.60% -13.70% 

6953 4598 0.66 6880 5126 0.75 1.10% -10.30% -12.00% 

Mombongo 12824 11131 0.87 13337 9569 0.72 -3.80% 16.30% 20.80% 

Lokutu 9067 5478 0.6 12080 7589 0.63 -24.90% -27.80% -4.80% 

Arumimi 2495 1724 0.69 2446 1807 0.74 2.00% -4.60% -6.80% 

Lileko 12373 9770 0.79 8484 7602 0.9 45.80% 28.50% -12.20% 

Lomami 1363 1084 0.8 1669 1135 0.68 -18.30% -4.50% 17.60% 

Kisangani 5259 6126 1.16 4602 4975 1.08 14.30% 23.10% 7.40% 
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Figure 7. Velocity distribution in 2D using the entropy theory where the simulated 

bathymetry is used with error percentage dataset for the Maluku_2 transect compared to 
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