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Abstract— Inertial measurement units (IMUs) are extensively 

used in biomechanical research to develop wearable devices for 

monitoring biomechanical parameters during rehabilitation 

and disease progression. The accuracy of these measurements 

critically depends on the calibration process. Our study 

introduces an autonomous calibration approach for IMUs using 

sensor architecture and machine learning models to reduce 

computational complexity and calibration time for 

accelerometers, gyroscopes and magnetometers in real-time. 

Our hybrid algorithm combines adaptive bias and scale factor 

correction with machine learning techniques. Accelerometer 

was calibrated using Linear Regression and Decision Trees to 

handle linear and non-linear complexities, while the gyroscope 

was calibrated using a Forest Regression model and the 

magnetometer was proposed to be calibrated using Support 

Vector Machines. Preliminary results demonstrated high 

accuracy and stability. The sensor architecture approach 

achieved a Mean Absolute Error of 0.009g for the accelerometer 

and 0.011 to 0.018 °/sec for the gyroscope, with an overall 

standard deviation close to zero. The machine learning 

approach resulted in an accuracy of 0.009g for the 

accelerometer and 0.011 to 0.012 °/sec for the gyroscope. The 

total calibration times were ~ 1.16 minutes for the architecture 

approach and ~ 9 seconds for the ML-based autonomous 

calibration approach. This innovative approach demonstrates 

the potential for real-time applications, enhancing the reliability 

and efficiency of wearable devices in medical and biomechanical 

fields. 

Keywords— Calibration, Inertial measurement units, IMU, 

Autonomous, Accelerometer, Gyroscope, Magnetometer, 

Machine learning, SVM, Decision tree.  

I. INTRODUCTION

Inertial Measurement Units (IMUs) have garnered 
significant attention in medical applications, particularly in 
areas such as rehabilitation monitoring, gait analysis, and 
postural assessment [1]–[3]. Their compact, affordable, and 
accessible nature offers a viable alternative to bulky and 
expensive devices such as motion capture systems 
(MOCAP). In addition, IMUs provide real-time 
measurements across different body segments, enabling 
continuous monitoring and personalized rehabilitation 
programs outside clinical settings [4]. IMUs offer reliable and 
precise data by attempting rigorous calibration processes to 
minimize errors and optimize performance. Additionally, the 
required calibration time is critical because a long calibration 
time affects time-sensitive and high-demand environments 
such as the ones of medical applications, where extended 
downtime can lead to significant operational delays and 

increased costs [5]. IMUs are prone to various deterministic 
errors, which can be mitigated by adjusting parameters such 
as the sensor axis misalignment, offsets, inaccurate scale 
factors, and cross-axis sensitivity [6], [7]. Calibration 
approaches can be categorized into autonomous and 
nonautonomous methods. Autonomous calibration refers to 
self-calibration methods that require minimal human 
intervention, whereas nonautonomous calibration relies on 
external equipment and specialized setups [6]. 

Traditionally, IMU calibration has been achieved non-
autonomously using turntables and external equipment [8]. 
Although this method yields accurate calibration results, it is 
expensive and requires expert users. Consequently, reducing 
the amount of equipment used and implementing autonomous 
methods have become prominent research topics. 
Autonomous calibration approaches can be categorized into 
software and positioning, deep learning (DL), and fusion 
techniques. Chao et al. [9] implemented the Particle Swarm 
Optimization (PSO) algorithm for software and positioning 
techniques to estimate sensor model parameters, particularly 
for the gyroscope. This optimization technique significantly 
enhances accuracy by precisely adjusting the sensor's 
calibration parameters. Similarly, Jiazhen et al. [10] 
introduced a Four-Position-and-Three-Rotation (FPTR) 
calibration sequence, eliminating the need for turntables and 
reducing calibration time. They integrated bias 
compensation, linearity calibration, and wavelet denoising to 
enhance the accuracy of accelerometers and gyroscopes in 
conjunction with Fiber-Optic Gyroscopes (FOG) IMU. In 
[11], accelerometers and gyroscopes were calibrated by 
developing an algorithm that removed biases and optimized 
outlier awareness. In [7], the authors addressed the non-linear 
scale factors of accelerometers and gyroscopes, proposing an 
algorithm that derives these factors effectively to enhance 
sensor accuracy across a broader measurement range. One of 
the sensor positioning approaches proposed twelve-position 
calibration and ellipsoid fitting to calibrate accelerometers, 
magnetometers, and gyroscopes, enhancing the accuracy of 
attitude estimation for applications in robotics [12]. Other 
studies, such as [13], [14], adopted the multi-position 
approach without precise equipment based on matching 
specific force and gravity vector magnitudes and aligning the 
gravity vector with computed values from the gyroscope 
outputs. In [9], the authors utilized the output vectors of the 
accelerometers and gyroscopes, calculated angles through 
integration, and used an inclined surface to determine the 
rotating heading datum; however, this approach required 60 
min to complete all the calibration steps. Across these studies, 
the gyroscope calibration achieved the highest accuracy of 



0.1 (°/sec) [10], while the accelerometer calibration showed 
a 30% improvement in accuracy [13]. Regarding the DL-
based approaches, in [15], a deep convolutional neural 
network called Calib-Net was employed to dynamically 
calibrate and correct IMU measurements using sequential 
gyroscope and accelerometer data, applying dilation 
convolution for spatiotemporal feature extraction. This 
method showed better results than the Odometry Neural 
Network (IONet) introduced in [16], although it took 8.5 min 
to calibrate the accelerometer and gyroscope. Calib-Net 
achieved significant accuracy improvements, reducing 
orientation drift by approximately 30%. Hybrid learning-
based methods incorporate Convolutional Neural Networks 
(CNN), Long Short-Term Memory (LSTM) networks, and 
attention CNN-LSTM mechanisms (ACL) to address 
gyroscope noise, capturing spatiotemporal features and 
allocating different weights to sequences [17]; this study 
reported the highest accuracy across the reviewed studies, 
with average errors of bias instability and angle random walk 
reduced by 57.1% and 66.7% respectively, compared to the 
raw gyroscope data. In the context of fusion-based 
approaches, several notable studies have been conducted. 
Wen et al. [18] proposed an improved calibration method 
utilizing the KF-based AdaGrad algorithm, reducing IMU 
bias errors by 25% in static tests. Sun et al. [19] developed a 
fast calibration method for strapdown IMU based on 

HMM/KF, achieving a calibration accuracy within 0.1. 
Jafari et al. [20] used a Kalman filter for skew redundant 
MEMS IMU calibration, reducing bias estimation errors by 
approximately 50%. Al-Jlailaty et al. [21] reported enhanced 
calibration accuracy by reducing gyroscope drift errors by 
40%. Additionally, KF was used in [21] to benefit from zero-
velocity measurement updates and was validated through 
extensive simulations and real experiments. According to the 
literature, the fastest time reported for autonomous 
calibration was 4 sec to calibrate the accelerometer and 
gyroscope [13]. 

Although these methods collectively advance the field of 
IMU calibration using affordable solutions, making it more 
accessible for research groups and portable instrument 
applications, several limitations exist. The complexity of DL 
layers can limit their application in real-time or resource-
constrained environments. These relied solely on software 
without considering alterations to hardware registers. Altering 
hardware registers can enhance precision and accuracy, 
optimize performance, ensure persistence, and offer 
customized settings tailored to specific applications [22]. 
Additionally, there are limited studies aimed at calibrating 
accelerometers, gyroscopes, and magnetometers together 
using one algorithm, which could streamline the calibration 
process and improve the overall accuracy and consistency of 
sensor data. The KF calibration approach has limitations, 
including linearity assumptions, Gaussian noise assumptions, 
and observability issues [23]. When the IMU errors exceeded 
certain limits, the KF integration began to degrade, and more 
complex techniques were required. Therefore, we aimed to 
develop an autonomous algorithm based on learning 
approaches and the sensor’s architecture to reduce the 
computational complexity and calibration time for 
accelerometer gyroscopes. In this study we evaluated the 
effectiveness of calibration using sensor hardware and 
assessed the accuracy of calibrated data after implementing 
adaptive bias and scale factor correction for real-time 
autonomous calibration. We implemented lightweight 

machine learning (ML) models in the calibration process to 
reduce computational complexity. 

II. MEHTODOLOGY 

A. System Overview  

Calibration was performed using a standard setup 
composed of an IMU (ICM20948 from SparkFun) with 
sampling rates up to 4kHz, 9kHz, and 100 Hz for 
accelerometer, gyroscope and magnetometer, respectively. 
This sensor has an acceleration range of ±16 g, an angular 
velocity range of ±2000 (°/sec) and a magnetometer with a 
range of ±49μT. The other component of the setup is the 
microcontroller. The system was mounted on a rigid box to 
maintain stable sensors and provide a controlled data 
collection environment. The calibration algorithm was 
implemented on the microcontroller which has dual-core 
processing capability, running at a clock speed of up to 240 
MHz and equipped with 520 KB of SRAM. The 
microcontroller ran a real-time operating system, with 
calibration algorithms developed using MATLAB (R2021a) 
and C/C++ with relevant libraries for numerical computations 
and data handling. The IMU coordinates were set to be aligned 
with the frame’s coordinate system, where the x-axis points in 
the forward, y-axis right, and z-axis down directions. 
 

B. Calibration Framework and Data Acquisition 

Figure 1 shows the conceptual framework that outlines the 
overall algorithm for IMU calibration. This framework 
integrates adaptive bias correction and ML models. The 
implemented algorithm relied on collecting raw IMU data 
autonomously without additional equipment. Raw gyroscope 
data were collected while the sensor was stationary for 
specific periods. This approach ensures accurate bias and drift 
estimation by minimizing external influences on sensor 
readings. The accelerometer was calibrated using a multi-
position static method first introduced by Lotters et al. [24], 
where the sensor was oriented in six different positions [25]. 
This orientation was adopted to capture the effect of gravity 
on each axis, providing comprehensive coverage for 
estimating and correcting the scale factors and offsets. For 
simplicity, it was assumed that the sensor had a linear 
response; the errors were constant across the measurement 

 

Figure 1. Our proposed auto calibration algorithm pipeline. 



range and the gravitational force was the only external 
acceleration acting on the sensor. In contrast, the 
magnetometer raw data were collected by waving the IMU in 
a spherical shape in the air to cover all possible directions, 
exposing the sensor to a wide range of magnetic field 
orientations. A calibration framework was developed to 
provide a high-level overview of the calibration process used 
to align and correct the gyroscope, accelerometer, and 
magnetometer data.   
 

C. Sensor’s Architecture Approach 

This approach relied on assigning calculated biases to the 
registers of the sensor. The bias registers are typically 
available for the accelerometer and gyroscope but not for the 
magnetometer; this is because the magnetometer measures the 
Earth's magnetic field, which can vary significantly based on 
location and environmental factors [26]. Thus, this approach 
was focused on the gyroscope and accelerometer. The detailed 
algorithm is illustrated in Table 1. The auto dynamic 
calibration was achieved by implementing an adaptive bias 
and scale factor correction that also works to enhance the 
accuracy and stability of the raw data without introducing 
delays by ensuring that any gradual changes in the bias due to 
temperature variations or other environmental factors were 
accounted for. This approach was activated when the buffer 
became filled with historical raw data collected from the 
accelerometer and gyroscope. Then, the raw data was 
averaged for each axis over a specified historical size. These 
average values represent the dynamic biases, which were then 
subtracted from the sensor's readings.  

Table 1. Sensor's architecture autonomous calibration approach. 

Algorithm 1.1. Gyroscope & accelerometer autonomous calibration  
1. Determine initial parameter estimates using real-time data 

collection 

a) Initialize ĝx,0 , ĝy,0 , ĝz,0, âx,0 , ây,0 , âz,0 to zero.  
b) Collect gyroscope readings following the prescribed 

orientations then the average is computed for each 
orientation to determine the biases and scale factor    ĝx,0 = 1n∑fx,in

i=1  , ĝy,0 = 1n∑fy,in
i=1  , ĝz,0 = 1n∑fz,in

i=1  

âx,0 = 1n∑rx,in
i=1  , ây,0 = 1n∑ry,in

i=1  , âz,0 = 1n∑rz,in
i=1  

ŝi,0 = 2xACC_SENSITIVTYri,pos − ri,neg   for i ∈ {x, y, z} 
Where, ŝi,0  is the calculated scale factor and ri is the posittive and negative readings 

2. Repeat the following steps for continuous calibration in the 
“loop” function 

a) Collect gyroscope readings fx,t , fy,t, fz,t  for calibration 
and collect accelerometer readings rx,t , ry,t, rz,t 

b) Apply low-pass filter to obtain filtered reading for 
gyroscope (f̃x,t, f̃y,t, f̃z,t)   and for accelerometer (r̃x,t, r̃y,t, r̃z,t), the general equation is: ṽi,t =∝ vi,t + (1−∝)ṽi,t−1 

Where, ṽi,t  is the filtered readings for gyroscope and 
accelerometer; ∝  is the low-pass filter coefficient; vi,t  is the 
sensor’s raw readings; ṽi,t−1 is the previous filtered readings.  

c) Apply dynamic bias correction to update ĝx,i , ĝy,i , ĝz,i 
and âx,i , ây,i , âz,i 

Algorithm 1.1. Gyroscope & accelerometer autonomous calibration  ĝx,i = 1n∑fx̅,jn
j=1  , ĝy,0 = 1n∑fy̅,jn

j=1  , ĝz,0 = 1n∑fz̅,in
j=1  

Correct (rx,t , ry,t, rz,t) as follows:  r̃i,t= {sign(ri,t)if|ri,t| > 1−∈ and|rj,t| <∈ and|rk,t| <∈ {x, y, z}and i ≠ j ≠ k   

Where, r̃i,t is the corrected readings and ri,t is the raw readings.  
d) Apply calibration adjustments for gyroscope fi,j  and 

accelerometer ri,j, assuming gyroscope scale factor =1 v̂i,j = { fi,j − ĝi,j(ri,j − âi,j) xScalei  ;  i, j ∈ {x, y, z} 
e) Update parameter estimates ĝi , âi based on the collected 

readings from each axis i ∈ {x, y, z} p̂i = p̂i−∝ (vi,t − p̂i),where p̂i is the updated parameter estimate ; vi,t is the raw data   
and ∝ is the learning rate/update coefficient.   

f) Write updated biases into gyroscope registers (if it is 
available) 

g) Repeat continuously within the loop function  
 

D. Autonomous calibration Using ML Techniques 

The calibration of the accelerometer using a hybrid 
approach of Linear Regression (LR) and Decision Trees (DT) 
was initiated when the sensor did not have bias registers. Table 
2 shows the working process of the proposed algorithm. This 
algorithm was developed by collecting raw data from each 
axis orientation; then, these raw data were used as features to 
train the model. Then, they were split into training and testing 
sets, with 80% of the data used for training and 20% for 
testing, using MATLAB. After the LR model was trained, the 
intercept and coefficient of each axis were extracted for later 
use in the deployment stage on the microcontroller’s 
firmware. Then, the DT model was trained with a single tree, 
and the mathematical rules were extracted.  

Table 2. Accelerometer ML hypered approach. 

Algorithm 1.2. Accelerometer LR-DT autonomous calibration   
1. Determine initial parameter estimates using real-time data 

collection; Initialize  𝑎̂𝑥,0 , 𝑎̂𝑦,0 , 𝑎̂𝑧,0 to zero.  
2. Repeat the following steps for continuous calibration in the 

“loop” function 

a) Collect accelerometer readings 𝑎𝑥,𝑡 , 𝑎𝑦,𝑡 , 𝑎𝑧,𝑡    
b) Apply low-pass filter to obtain filtered reading 𝑟̃𝑥,𝑡 , 𝑟̃𝑦,𝑡, 𝑟̃𝑧,𝑡 
c) Predict the calibrated values using the linear regression 

model for each axis i ∈  {𝑥, 𝑦, 𝑧}  𝑐̂𝑖,0 = 𝑐𝑜𝑒𝑓𝑖,𝑗𝑟𝑗,𝑡 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖 
d) Apply decision tree to the filtred raw data from each axis 

i ∈            {𝑥, 𝑦, 𝑧} 𝑡𝑟𝑒𝑒𝑅𝑒𝑢𝑙𝑡𝑠𝑖,𝑡 = {−1         𝑖𝑓 𝑟𝑖,𝑡 < 𝛿1 0   𝑖𝑓 𝑟𝑖,𝑡 ≥ 𝛿1  𝑎𝑛𝑑 1      𝑖𝑓 𝑟𝑖,𝑡 ≥ 𝛿2 𝑟𝑖,𝑡 < 𝛿2  
 

Where,  𝛿1 and 𝛿2 are the upper and lower thresholds of the DT 
and 𝑟𝑖,𝑡 is the raw reading for axis i.  

e) Combine LR and DT results to calibrate each axis, by 
mulitpying by the proper wight (w): calr⃗ ,t = w1. (C⃗ r⃗ . r t + I r⃗ ) + w2. treeResultsr⃗ ,t 
Where: calr⃗ ,t  calibrated values for each axis; C⃗ r⃗   is vector of 
coefficients for each axis; r t vector of raw measurements at time 
t; I r⃗  intercept for each axis.  



 

Table 3 shows the algorithm that was implemented to 
autonomously calibrate the gyroscope. This algorithm uses 
Random Forest Regression (FR). First, a synthetic dataset was 
generated to train the model, which represented various 
motion patterns to mimic real-world scenarios, such as 
constant rotation, sinusoidal motion and stationary conditions 
with low and high noise levels. Then, all the generated 
datasets were merged into a single dataset. The generated raw 
data for each axis were used as features to train the model, 
while the data were split into 70% for training, 15% for 
validation and 15% for testing. The model’s hyperparameters, 
such as the number of trees and leaf size, were tuned using the 
validation set based on experimental trials, where a single leaf 
showed the lowest Mean Square Error (MSE) for each axis. 
Then, the decision rules were extracted as mathematical 
equations that can be deployed on the constrained hardware 
setups.  

Table 3. Gyroscope ML autonomous calibration approach. 

Algorithm 1.3. Gyroscope FR model autonomous calibration   
1. Collect convenient raw data for each axis x,y and z 

2. Initialize the buffers for moving average filter   xBuffer[i] = 0, yBuffer[i] = 0, zBuffer[i] = 0  ∀i= 0, . . , window size 

3. Repeat the following steps within the “loop” function for 
continuous calibration in real-time:  
a) Collect gyroscope readings  gx,t ,         gy,t  , gz,t 
b) Apply low-pass filter to obtain the filtered readings 

for each axis; N is the size the moving average filter  g̃a,t = 1N ∑ ga,t−iN=1
i=0         

c) Apply the decision rules to the filtared data to 
obatined the calibarted data 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧 

 

The ellipsoid fitting approach was adopted [27] to 
calibrate the magnetometer for hard and soft iron corrections. 
This approach was handled by collecting the raw data from 
the magnetometer offline; then the raw data was calibrated 
using the MATLAB built-in functions. To evaluate the 
calibration, the Root Mean Square Error (RMSE) was 
computed for each axis to quantify the difference between the 
sensor’s measurements and the true Earth magnetic field 
values. Due to their complementary strengths, the calibrated 
data was used to train two different models, K-Nearest 
Neighbors (KNN) and Support Vector Machines (SVM). 
KNN effectively captured local data patterns and non-linear 
relationships, while SVM excelled in high-dimensional spaces 
and provided robust global optimization. The extracted 
features were the raw data of three axes, x, y and z; then they 
were normalized to scale features between 0 and 1. Then, the 
dataset was trained randomly into 80% training and 20% 
testing. Simultaneously, SVM models with Gaussian kernels 
were trained for each dimension. These models were 
standardized and cross-validated using five folds to enhance 
their generalization capabilities. The best-performing model 
from the cross-validation was selected based on the minimum 
k-fold loss. Predictions were made on the test set, and RMSE 
was calculated to assess the model's accuracy. Then, the 
mathematical models of each training model were extracted as 
shown in Equations (1) and (2).  

ŷ = 1k ∑yik
i=1  (1) 

Where ŷ , is the predicted value, k  is the number of 
neighbors and yi are the values of the nearest neighbors.  

f(x) = ∑ ∝i K(x, xi) + bn
i=1  

K(x, xi) = e(−γ‖x−xi‖2) 
(2) 

Where ∝i are the SVM coefficients, and b is the bias.   

E. Performance Evaluation and Robustness Testing 

In order to evaluate the performance of the proposed 
approach, we conducted a series of tests focusing on accuracy, 
stability, and reliability. These tests were applied to both the 
accelerometer and gyroscope sensors of the ICM20948 and 
LSM9DS1 (STMicroelectronics) IMUs. The evaluation was 
carried out in three trials for each sensor to ensure the 
robustness and repeatability of the results by averaging each 
matric for each axis. To assess accuracy, we compared the 
sensor readings from our proposed autonomous calibration 
method against the ground truth values, which were zero for 
the gyroscope at a stationary state and ±1g for the 
accelerometer when aligned with gravity. The accuracy was 
quantified as the computed mean absolute error (MAE) 
between the measured and reference values for each axis using 
Equation (3). Stability testing was performed by evaluating 
the consistency of sensor readings over time. We measured 
the variance of the sensor outputs during a static condition 
across the three trials, with lower variance indicating higher 
stability using Equation (4). Reliability was assessed by 
observing the sensor's performance during repeated 
measurements under controlled conditions. For this, the 
sensors were placed in a stationary position for each trial to 
ensure that external influences were minimized. We 
specifically measured the standard deviation (SD) of the 
sensor outputs using Equation (5) to verify that the 
accelerometer and gyroscope maintained consistent values 
across multiple trials under these controlled conditions. 

MAE = 1n∑|yi| − ŷin
i=1  (3) 

Where n is the total number of collected data; yi is the 
ground truth values; ŷi is the predicted measurements.  

ariance = 1n∑(xi − μ)2n
i=1  (4) 

Where n is the total number of collected data; xi is the 
i-th value of the dataset; μ is the mean of the collected 
raw data.  

 

SD = √Variance (5) 

III. RESULTS 

The performance metrics for the accelerometer and 
gyroscope calibration using sensor architecture and ML 
techniques are summarized in Table 4. For the accelerometer 
calibrated using the sensor architecture approach, the MAE 
was 0.009g on the x-axis and zero (g) on the y and z-axes. The 
stability of this method, as indicated by variance, was close to 



zero across all axes. The measured reliability by SD was 
0.027g for the x-axis and zero (g) for the y and z-axes. The 
calibration time was ~1 minute. The gyroscope using the same 
approach achieved an MAE ranging from 0.011 to 0.018 °/sec 
across different axes. Variances were minimal, close to zero 

(/sec), indicating high stability. The SD ranged from 0.002 to 
0.005 °/sec, suggesting reliable measurements. The 
calibration time for the gyroscope was ~9.6 sec. When 
employing the ML approach, the accelerometer achieved an 
MAE of 0.009g for the x and y-axes and 0.006g for the z-axis. 
The variances were close to zero (g). The SD ranged from 
0.008g to 0.013g, demonstrating high stability. The 
calibration time was significantly reduced to ~2.8 sec. For the 
gyroscope using the ML approach, the MAE was 0.011 to 
0.012 °/sec across all axes. Variances remained minimal 
(0.000 °/sec). The SD was consistently ~0.003 °/sec across all 
axes. The calibration time was ~2.8 sec.  For the accelerometer 
using the ML approach with the LSM9DS1 sensor, the MAE 
was 0.006g on the x-axis, 0.008g on the y-axis, and 0.004g on 
the z-axis. The variances were close to zero (g). The SD 
ranged from 0.005 to 0.006g, indicating high stability. The 
calibration time was ~ 5.6 sec. The performance comparison 
between the k-NN and SVM models shown in Table 5 for 
magnetometer calibration revealed that the SVM model 
achieved lower RMSE values across all axes. The SVM 
model's RMSE was 0.016 μT for the x and y-axes and 0.018 μT for the z-axis, compared to the k-NN model's RMSE of 
0.032 μT  across all axes. Additionally, Figure 2 highlights 
that the SVM model can identify and represent the boundary 
of the data distribution accurately to autonomous calibrate the 
magnetometer.  On the other hand, Table 6 shows the ellipsoid 
calibration approach for the magnetometer with RMSE values 
of 1.207 µT for the x-axis, 1.176 µT for the y-axis, and 1.200 
µT for the z-axis, indicating effective performance. 

 
 

IV. DICUSSION  

This study introduced an innovative approach to the 
autonomous calibration of IMUs using a hybrid combination 
of sensor architecture and ML techniques. The main 
objectives were to improve the accuracy, stability, and 
reliability of IMU measurements while minimizing 

computational complexity and calibration time. Chao et al. 
[9], used the PSO algorithm for gyroscope calibration and 
required 60 min to achieve an accuracy of ~0.01 °/sec. 
Similarly,  Calib-Net [16] introduced a DL-based method for 
calibrating low-cost IMUs, and they achieved a calibration 
time of around 8.5 min. However, this study did not provide 
specific numerical accuracy values for gyroscope and 
accelerometer measurements. Additionally, a study on in-situ 
[28] gyroscope calibration based on accelerometer data 
achieved a gyroscope RMSE of ~ 0.03 °/sec (x-axis), 0.02 
°/sec (y-axis), and 0.03 °/sec (z-axis) with calibration times of 
around 5 sec per axis. In comparison, our hybrid approach 
achieved similar accuracy demonstrated in [9] and improved 
accuracy compared to the one obtained in [28], ranging from 
0.011 to 0.018 °/sec, in significantly reduced calibration times 
~ 1.16 min for the sensor’s architecture approach and  ~9 sec 
for the ML-based autonomous calibration, highlighting the 
efficiency and practical applicability of our approach for real-
time applications. Our findings suggest that the proposed 
approach can effectively balance complexity, accuracy and 
time. Furthermore, the low values in performance matrices 
underscore our approach's accuracy, stability and reliability. 
Specifically, the consistent improvements in accuracy, 
stability, and calibration time observed for the LSM9DS1 
sensor validated the effectiveness of our approach and 
highlighted the versatility and robustness across different 
sensor models. On the other hand, the initial results obtained 
for autonomously calibrating magnetometer indicate the 
potential efficiency of using the SVM model. However, it 
needs to be validated on real-time data to assess its 
performance.  

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a simple and effective 
autonomous sensor architecture-based calibration algorithm 
and ML models that showed efficacy in calibrating 
accelerometers, gyroscopes, and magnetometers in IMUs by 

Table 4.Performance metrics for accelerometer and gyroscope calibration using sensor architecture and ml techniques. 

Sensor  Approach  
Accuracy (MAE) Stability (Variance) Reliability (SD) Taken 

time  Model 
x y z x y z x y z 

Accelerometer (g) Sensor 
architecture 

0.009 0.000 0.000 0.004 0.000 0.000 0.027 0.000 0.000 1 min 

ICM20
948 

Gyroscope (/sec) 0.011 0.012 0.018 0.000 0.000 0.000 0.005 0.002 0.002 9.6 sec 

Accelerometer (g) 
ML 
technique 

0.009 0.009 0.006 0.000 0.000 0.000 0.010 0.013 0.008 2.8 sec 

Gyroscope (/sec) 0.011 0.012 0.011 0.000 0.000 0.000 0.003 0.003 0.003 2.8 sec 

Accelerometer (g) 0.006 0.008 0.004 0.000 0.000 0.000 0.006 0.006 0.005 5.6 sec 
LSM9D

S1 Gyroscope (/sec) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 
 

 

          

 

Table 5. Comparison 
performance between k-NN and 

SVM based on RMSE (𝜇𝑇) 
metric  

 Table 6. RMSE (𝜇𝑇)  
metric to evaluate the 

calibrated 
magnetometer using 
ellipsoids approach   

Model  x y z  x y z 

k-NN 0.032 0.032 0.031  
1.207 1.176 1.200 SVM 0.016 0.016 0.018  

 

Figure 2. SVM performance visualized Vs. calibrated raw 
data. 



reducing both computational complexity and calibration time. 
Our approach leveraged adaptive bias and scale factor 
correction to ensure real-time autonomous calibration, thus 
enhancing the accuracy and reliability of the sensor data. 
While our results demonstrated the potential of this approach, 
there are several key points to consider. First, the algorithm's 
performance was validated using simulated and controlled 
experimental data, and its effectiveness in diverse real-world 
scenarios remains to be evaluated. Second, the lightweight 
ML models used, although less computationally intensive, 
still required optimization to handle highly dynamic 
environments or extreme conditions. The hybrid approach for 
the accelerometer calibration necessitated the adjustment of 
weights in the hybrid mathematical model to allow the model 
to handle the autocalibration properly based on the sensor's 
characteristics. Additionally, retraining the model on different 
sensors is necessary to fine-tune the calibration rules for the 
DT model. Furthermore, the sensor's architecture approach 
requires careful adjustment of the bias registers according to 
the specific sensors used. Despite these considerations, the 
proposed calibration approach showed promising results for 
improving the accuracy, stability, and reliability of IMUs. 
Notably, the calibration approach enhanced with 
mathematical models can be applied to different sensors with 
slight adjustments, underscoring its versatility and broad 
applicability. Future work will involve extensive real-time 
testing to validate the robustness and reliability of the 
proposed method in various operational settings, such as 
clinical gait analysis and rehabilitation exercises. 
Additionally, further refinement of the ML models will be 
pursued to enhance their adaptability and performance under 
different conditions, such as temperature variation and usage 
in indoor/outdoor environments. As well as the IMUs post-
calibration using our approach will be validated on human 
subjects during different biomechanical applications to ensure 
the reliability of the sensor for real-time applications.  
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