
This is a repository copy of Just one word:An analysis of just as a speaker discriminant 
using various acoustic measures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219628/

Proceedings Paper:
Gibb-Reid, Ben (2023) Just one word:An analysis of just as a speaker discriminant using 
various acoustic measures. In: Skarnitzl, Radek and Volín, Jan, (eds.) Proceedings of the 
20th International Congress of Phonetic Sciences. International Congress of Phonetic 
Sciences, 07-11 Aug 2023 GUARANT International spol. s r.o. , CZE , pp. 3775-3779. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Just one word: An analysis of just as a speaker discriminant using various 

acoustic measures 
 

Ben Gibb-Reid 

 

University of York 
ben.gibb-reid@york.ac.uk

 

ABSTRACT 

The task of forensic voice comparison (FVC) requires 

phonetic variables that are frequent in speech and 

easy to measure. The aim of this paper is to 

investigate the value of a frequent word in British 

English, just, as a speaker discriminant by comparing 

its performance across simple and complex 

combinations of measurements. Various likelihood 

ratio (LR)-based FVC systems are evaluated to assess 

the performance of vowel formants, segment and 

word durations and centre of gravity (CoG) 

measurements individually and in combination. 

Promisingly, just performs better than STRUT and 

the vowel in um. Overall, including vowel durations 

and /s/ CoG measurements in a model offers slight 

improvements, but just F1~F3 vowel measurements 

alone perform well as speaker discriminants. In the 

case of just, an increased complexity of analysis does 

not offer a useful improvement in performance.  
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1. INTRODUCTION 

An ongoing goal of forensic speech science is to find 

suitable features of the voice which are highly 

variable between speakers but have low variation 

within an individual's speech [1,2]. To ensure 

comparison across samples of speech in forensic 

voice comparison (FVC), it is also necessary that 

these features are frequent, easy to measure, and 

ideally resistant to disguise and robust in transmission 

[2]. Looking at the most frequently spoken words 

could therefore provide a good source of potential 

FVC features. This study aims to assess the suitability 

of one such word: just. This is the 17th most frequent 

word in the spoken 2014 British National Corpus 

(BNC) [3], and it is increasing in usage in English 

when compared with the 2007 BNC (where it was the 

42nd most used word). There are studies which also 

show increased usage in Tyneside [4] and Toronto 

English [5].  

Although just has potential for the task of FVC, it 

is not always easy to measure. Frequent words are 

more likely to reduce phonetically [6], and just is no 

exception. For example, reliable formant estimates 

cannot be extracted from a token of just where the 

vowel is elided. As just is a word canonically made 

up of four segments /d͡ʒʌst/, there is the potential to 

combine various segmental and long-term acoustic 

measurements, with the aim of producing a more 

robust FVC analysis than one which relies on 

formants alone. 

The measurements selected for analysis here are 

vowel formants, fricative centre of gravity (CoG), 

segment and word durations, and Mel-Frequency 

Cepstral Coefficients (MFCCs). Most of these are 

single parameter measurements, involving one 

segment only – for example vowel formants are only 

estimates of the vowel quality and do not pay 

attention to the whole token. However, word 

durations and MFCCs are comparatively long-term 

measurements and capture information from a 

broader range of the token. It is predicted that long-

term measurements will perform better than single-

parameter ones as they offer information from the 

entirety of a token. Due to their holistic nature, long-

term measurements are also arguable easier to 

measure than single parameter ones as they do not 

rely on segmental variation to the same degree. 

Understanding how these measurements (and their 

combinations) affect the discriminatory power of just 

assesses the potential of word-based phonetics as new 

‘features’ for the FVC toolkit. First, the performance 

of just vowel formant combinations is evaluated, and 

contrasted with the performance of vowel formants 

from um and STRUT. This is followed by an analysis 

of just durations and CoG measurements and a brief 

description of the MFCC results. The combinations 

of all features is also assessed and finally there is a 

discussion of the implications of these results for 

FVC. 

2. METHODS 

2.1. Data and token extraction 

Data is taken from Task 1 in the DyViS corpus [7] – 

100 male speakers of standard southern British 

English recorded in mock police interviews. Tokens 

were annotated manually and measured using Praat 

[8] with formant settings adjusted to look for five 

formants with a formant ceiling of 55kHz and a 

window length of 25ms. 1,019 tokens of just were 

extracted as suitable for vowel formant analysis, from 



76 speakers. 92 vowel tokens were excluded due to 

fricative coarticulation, overlapping talk or short 

durations which made formant readings unreliable. In 

addition, 496 tokens of the vowel in um and 584 

tokens of STRUT were extracted from the same 76 

speakers for comparative analysis. STRUT is selected 

as the canonical vowel in just, and um is selected as it 

has performed well in FVC testing in the past [12]. 

596 tokens of just from 55 speakers were also 

extracted as suitable for segment duration, CoG and 

MFCC measurements. 12 MFCCs were extracted 

from 20ms frames within 10ms shift across each 

token of just using a MATLAB script [9]. These 

results were then processed within the likelihood-

ratio (LR) framework using various scripts in R, 

tidyverse packages were utilised to plot the results of 

these analyses [11,12]. 

2.2. Likelihood Ratios 

To analyse potential FVC features, likelihood ratio 

(LR)-based testing is undertaken. LRs are a logical 

way to numerically express a conclusion comparing 

features of the voice and they are a broadly accepted 

way of presenting voice comparison evidence [13]. 

LR testing involves assessing the potential of a 

system to separate same-speaker (SS) and different-

speaker (DS) pairs. In this study there are three stages 

of analysis which were achieved using the fvclrr 

package in R [14]. The first two (feature-to-score and 

score-to-LR) are achieved following previous 

research on potential FVC features [12]. The third  

stage (replication) follows the methods of [15].  In 

testing, the data is split into three subsets (test, 

training, and reference) before comparisons are run. 

Firstly, LR-like scores are calculated for the training 

data set against a set of reference data (feature-to-

score stage) which assesses typicality using 

Multivariate Kernel Density (MKVD) [16]. Then, 

these test scores are calibrated using scores made 

from a training dataset (score-to LR stage). This 

calibration stage uses separate training data to make a 

logistic-regression model, which converts the LR 

scores to log likelihood ratios (LLRs) [17]. After this, 

the results were validated (replication stage). The 

first two stages were run with 25 replications – 

varying the arrangement of speakers across the 

training, test, and reference datasets.  For example, 

one replication may have had speakers 1–25 in the 

training subset, speakers 26–50 in the test subset and 

speakers 51–76 in the background subset. Further 

replications would arrange the speakers in different 

permutations. 

Two metrics are used to measure the validity of 

LRs in the study, the equal error rate (EER) – a 

measure of how many errors a system makes – and 

the log LR cost function (Cllr) [18], a measure of the 

severity of errors. The lower these are, the better a 

system is performing. For all results, the mean EER 

and Cllr across all replications is presented to ensure 

that variability in performance caused by sampling is 

accounted for. As speakers are compared against each 

other, a lower limit of six tokens is set to ensure no 

fewer than three same-speaker comparisons occurred. 

Any speakers who had less than six tokens which 

contained the required segments for analysis were 

excluded from that system. This excluded 24 speakers 

for vowel measurements and 45 speakers for segment 

duration, CoG and MFCC measurements. 

3. RESULTS 

The following section outlines the performance of 

each acoustic feature in various combinations. The 

EER and Cllr values for each system are used to assess 

them against each other in the form of averages across 

replications and the number of replications in which 

there is an improvement between systems. 

3.1 Formants 

Firstly, the performance of combinations of vowel 

formant is assessed and displayed in Figure 1. 

 
Figure 1: Mean Cllr plotted against mean EER  

comparing F1, F2 and F3 just vowel formant 

combinations across replications. 

Just F1~F3 performs best overall. It has a lower mean 

EER (21.2%) than other systems, and a slightly lower 

mean Cllr (0.66, compared to 0.70 for F2~F3), 

meaning that a system relying on F1~F3 produces 

fewer errors of a smaller magnitude than a system 

based on any other combination of formants. F1~F3 

has a lower Cllr than F2~F3 across 22 of the 25 

replications and a lower EER for 21 replications, 

showing robustness across variable samples. 

Figure 2 shows a comparison of just FVC 

performance against STRUT and um. Surprisingly 

um F1~F3 performs worse than just with a Cllr of 0.75 

and an EER of 22.1%–more errors and of a greater 

magnitude. One reason for this difference in 



performance could be that there were fewer tokens of 

um in the model than just.  Um has a higher Cllr than 

just in 19 out of the 25 replications and a higher EER 

in 13 replications. However, these are smaller 

differences compared with the low performance of 

STRUT (0.80 Cllr, 30.6% EER)–a higher Cllr than just 

in 22 out of 25 of the replications and a higher EER 

in all 25 replications. 

 
Figure 2: Mean Cllr plotted against mean EER  comparing 

F1~F3 formant estimates from just, STRUT and the 

vowel in um across replications. 

3.2 Durations 

Figure 3 displays the performance of duration 

measures. The models are compared with a system 

which contains only F1~F3 vowel estimates (as there 

are fewer speakers, the performance of this F1~F3 

system is slightly reduced against the one displayed 

in Figures 1 and 2). 

 
Figure 3: Mean Cllr plotted against mean EER  

comparing just segment duration measurements 

across replications. 

There are very slight differences in performance 

when including segment or word durations compared 

with a system containing only F1~F3 (19.35% EER, 

0.74 Cllr). Including word duration reduces model 

performance (a change of 0.37% EER and 0.01 Cllr). 

Including  /d͡ʒ/ and /s/ duration measurements in a 

model leads to a very slight improvement in mean Cllr 

(by -0.02 and -0.03 respectively), with an 

improvement seen across 14 out of the 25 replications 

for /d͡ʒ/ and 17 replications for /s/. However, /d͡ʒ/ and 

/s/ also slightly increase EER scores (by 1.12% and 

0.08% respectively). This is seen across 17 

replications for /d͡ʒ/ and 13 replications for /s/. The 

biggest effect, though, is the improvement in 

performance seen when vowel duration is included. A 

system which contains F1~F3 and vowel duration has 

a Cllr 0.04 lower and an EER 0.5% lower than a 

system containing F1~F3 (this occurs in 20 out of the 

25 replications for Cllr and 17 for EER scores). 

Adding vowel durations to a model therefore 

improves its FVC performance and it also reduces Cllr 

and EER standard deviation. 

3.3 Centre of gravity 

Centre of gravity (CoG) measurements were 

extracted from /dʒ/ and /s/. Mean performance across 

systems containing CoG measurements is shown in 

Figure 4. Three systems were tested: one containing 

tokens with F1~F3 vowel measurements and both 

CoG measurements, and two containing the vowel 

formant measurements and one CoG measurement. 

 
Figure 4: Mean Cllr plotted against mean EER  

comparing just centre of gravity measurements 

across replications. 

Adding /s/ CoG measurements to a voice 

comparison system improved its performance. This is 

true for Cllr (a decrease of 0.04) and EER (a decrease 

of 1.43%) scores. Improvement is seen across 23 out 

of the 25 replications for Cllr scores and 20 

replications for EER scores. Adding /dʒ/ CoG to a 

system reduced model performance (an increase in 

mean Cllr  of 0.08, and in mean EER of 0.71%). 

However, an increase in Cllr and EER for /dʒ/ CoG is 

only seen across 12 out of the 25 replications. With a 

standard deviation of 5.6% for EER scores, /dʒ/ CoG 

seems to be less stable than vowel formants or /s/ 

CoG in terms of just voice comparison performance. 

A system containing both CoG measurements 

performed in-between systems containing only /s/ or 

/dʒ/ CoG – a slight improvement for mean EER, but 

an increase In mean Cllr. The addition of /dʒ/ CoG 

measurements to a system which contains /s/ CoG 

does not improve voice comparison performance. 



3.4 MFCC measures of just 

MFCC measurements were extracted from 726 

tokens of just across 55 speakers. Calibrated LR voice 

comparison tests were run for 25 replications. The 

results of these suggest that MFCCs performed 

poorly, with a mean Cllr of 1.58 and a mean EER of 

43.3%. Cllr and EER scores increase across 24 out of 

the 25 replications. However, this result is not a 

reliable reflection of the potential of MFCCs but 

rather a well-known statistical modelling issue, as is 

discussed in section 4. 

3.5 Combining measures 

The analysis of measurements of just has shown the 

following: for vowel formant estimates, a system 

containing F1~F3 performs best, and including vowel 

durations and /s/ CoG measurements improves model 

performance. A combined system made up of the 

best-performing single-parameter measures was also 

tested. This contains vowel F1~F3 and durations, and 

/s/ CoG measurements from each just token. Figure 5 
displays a comparison between the best performing 

systems across segmental measurements, and this 

combined system. 

 
Figure 5: Mean Cllr plotted against mean EER  

comparing the best performing combinations of 

just acoustic measurements. 

Overall, the combined single-parameter system 

performs better than F1~F3, with a mean Cllr of 0.67 

and a mean EER of 19.1% – the lowest mean Cllr score 

across all systems tested. There are, however, very 

slight improvements in model performance against a 

system containing only F1~F3 measurements. A 

reduction in Cllr measures is seen across 19 out of the 

25 replications, whereas a reduction in EER is only 

seen across 9 replications. The system with the lowest 

mean EER is the one containing F1~F3 and /s/ CoG 

measurements (17.9%). 

4. DISCUSSION 

Combining just single-parameter measurements 

provides the best system for FVC in this study. 

Looking at the word as a forensic feature of the voice, 

it is possible to combine many components to make a 

more robust speaker discriminant. As [2] argues, ideal 

speaker discriminant features of the voice should be 

easy to measure, but display low within-speaker and 

high between-speaker variation. There is a fine 

balance between these two requirements. On one 

hand, features should be as robust as possible in their 

discriminatory power, but often, as in the case of just, 

a higher performance is found with a complex 

combination of features. Vowel formant estimates are 

widely used in FVC analysis and casework, and that 

is why the  baseline for much of this analysis has been 

F1~F3 vowel midpoint estimates. By adding /s/ CoG 

and vowel duration measurements, this increases 

model complexity but also produces the best 

performing system. Even when only considering 

vowel formants, however, just outperforms um and 

STRUT as a speaker discriminant in this study 

indicating that a word token contains more speaker-

specific information than the lexical vowel it 

canonically relates to. 

It was predicted that long-term measurements 

would perform better as speaker discriminants than 

the single-parameter (segmental) measurements. 

There is, in fact, a reduction in performance when 

including word durations and MFCCs. ). It is possible 

that word duration is sensitive to the segmental 

variation of just in that the presence/absence of 

segments influenced how long or short a token would 

be. However, the performance of MFCCs in this 

study is problematic. Cllr scores higher than 1 are not 

useful for FVC, so it is surprising that MFCC 

measurements of just yielded a Cllr of 1.58. The 

problem may be to do with MVKD, which assumes 

that each data point is correlated even though each 

MFCC is not correlated. Previous research on LR-

based FVC has highlighted an issue with MVKD 

when dealing with a high number of parameters [19]. 

Future research may find a better performance for 

word-based MFCCs in FVC systems using a less-

problematic method of analysis such as Gaussian 

Mixture Model-Universal Background Models 

(GMM-UBMs). 

Just shows good potential as a speaker 

discriminant. More work may reveal that other long-

term measurements such as long-term formants and 

fundamental frequency contribute to its effectiveness. 

As it is, the potential of word tokens in FVC analysis 

broadens what is thought of as an individual’s speech 

pattern beyond segmental or suprasegmental 

variation. 
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