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Evaluation and prediction of interface fatigue performance between asphalt 22 

pavement layers: application of supervised machine learning techniques  23 

Abstract: 24 

Assessing interlayer fatigue performance is key to ensuring the durability and structural integrity of asphalt 25 

pavements. This research pioneers the application of supervised machine learning (ML) techniques 26 

in estimating interface fatigue life (IFL) and interface shear stiffness (ISS) between asphalt layers. 27 

Utilizing 84 lab-prepared specimens, tested under diverse conditions—temperature, normal pressure, 28 

loading frequency, and shear stress, with a constant tack coat type and application rate—enabled the training 29 

and validation of predictive models. Based on the experimental results, the study evaluated the influence of 30 

each factor on fatigue indices before employing genetic expression programming (GEP) and artificial neural 31 

networks (ANNs) for prediction. The efficacy of these models was quantified using several statistical 32 

metrics, highlighting their robustness in predicting IFL and ISS. A comparative analysis showed the ANN 33 

model's superior performance (R2=0.980, RMSE=0.826, MAE=0.636 for ISS and R2= 0.972, RMSE=0.498, 34 

MAE=0.383 for IFL) over the GEP model (R2=0.921, RMSE=1.402, MAE=1.079 for ISS and R2=0.913, 35 

RMSE=0.623, MAE=0.479 for IFL). Sensitivity analysis confirmed the models' alignment with 36 

experimental data. Finally, the analysis of importance of variables revealed temperature as the most critical 37 

and frequency as the least influential factor on interface fatigue performance. The findings of this study 38 

could further pave the way for the realization of a reliable and efficient design of interlayer bonding between 39 

asphalt pavement layers. 40 

Keywords: Asphalt pavement, interface fatigue life, interface shear stiffness, machine learning, 41 

genetic expression programming, artificial neural networks 42 

 43 

1. Introduction 44 

In recent years, the durability of asphalt pavement structures has become increasingly critical owing to the 45 

rapid growth in traffic volumes, vehicle loads, and the effect of more severe than before climatic 46 



conditions. As a result, there is a greater demand for enhanced performance standards. Asphalt pavement, 47 

commonly referred to as flexible pavement, is a multi-layered structure consisting of various materials, 48 

with each layer playing a distinct role. It is widely recognized that the durability of the pavement structure 49 

is affected not only by the overall design, properties of the materials used, and construction quality but 50 

also by the bonding condition at the layer interface between the adjacent layers.  51 

Layer interface between successive layers in a pavement structure experiences both shear and normal 52 

stresses simultaneously and repeatedly during its service life. As a result, the interface stiffness will be 53 

negatively influenced due to the cyclic loading, leading to a reduction in interface fatigue life. The 54 

sufficient bond at layer interface allows continuous distribution of stresses within the pavement structure 55 

and reduces the damage and cracks between pavement layers. In practice, insufficient bonding may 56 

prematurely cause several distresses and performance degradation as the debonded structure no longer 57 

behaves as a monolithic structure. Consequently, it can significantly impact the pavement's durability and 58 

longevity during its service life (Uzan J et al. 1978, Romanoschi and Metcalf 2001, Tashman et al. 2006, 59 

Alae et al. 2020, Mohammad et al. 2009, Salinas et al. 2013). In this context, many studies have addressed 60 

this issue. Khweir and Fordyce (2003) reported that interface bonding failure between surface course and 61 

binder course could lead to a predicted loss of 40% of the potential life of a pavement. Similarly, West et 62 

al. (2005) reported that with only a 10% loss of bond strength, a 50% reduction in fatigue life could be 63 

expected. Moreover, a study conducted by Roffe and Chaignon (2002) revealed that the absence of 64 

bonding between successive layers in a pavement would result in a considerable 60% decrease in its 65 

overall longevity. Furthermore, these issues increase maintenance costs and negatively influence 66 

pavement durability (Vaitkus et al. 2011).  67 

The reasons behind poor bonding have not been fully understood thus far, but certain contributing factors 68 

seem to play a significant role in causing debonding between the layers of pavement. These factors 69 

include mixture properties (air voids, type of aggregate, materials content), structural parameters (layer 70 

thickness, tack coat type, dosage), surface characteristics (roughness, cleanness, durst), construction 71 

parameters (compaction, temperature, aging, contamination), and environmental conditions (high and low 72 



temperature, freeze and thaw cycle, frost, moisture) (Mohammad et al. 2002, Partl et al. 2008, Leng et al. 73 

2009, Raab et al. 2009, Hun et al. 2012, Raposeiras et al. 2013, Salinas et al. 2013, Johnson et al. 2015). 74 

Figure 1 presents a comparison of the stress distribution for two different bonding conditions in an asphalt 75 

pavement under traffic loading. 76 

Figure 1. Stress distribution between adjacent layers of an asphalt pavement with two different bonding 77 

conditions.  78 

Given this background, it can be realized that the evaluation and accurate prediction of interlayer 79 

performance between adjacent asphalt layers is crucial for ensuring the longevity and structural integrity 80 

of the pavement structure. Interface bonding properties in asphalt pavement are mostly evaluated using 81 

monotonic and cyclic loading tests. Rahman et al. (2017) classified test methods for evaluating interface 82 

bonding into eleven distinct test protocols. Among which, the monotonic direct shear test is the most 83 

widely used method to evaluate the interface bonding strength.  However, the monotonic behavior is not 84 

representative of typical in-situ traffic loading conditions (which are cyclic in nature). Cyclic loading tests 85 

are employed to assess fatigue properties of interface bonding. These tests measure the interface stiffness 86 

at small strain amplitudes and evaluate the resistance to repeated shear loads, including fatigue life and 87 

permanent strain accumulation. As such, cycle tests provide valuable insights into the interface's damage 88 

behavior over the pavement's lifespan, which can be beneficial for pavement design and modeling 89 

purposes. Researchers have developed numerous test methods to study the fatigue behaviour of interface 90 
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bonding between asphalt pavement layers. These methods include an inclined testing configuration 91 

(Romanoschi and Metcalf 2001),  a customized double shear testing (DST) device (Diakhaté et al. 2011), 92 

a repeated direct shear box test (Tozzo, Fiore, et al. 2014), a direct shear fatigue test (Song et al. 2016), a 93 

four-point shear setup (Rahman et al. 2019), and a shear-torque fatigue testing (Ragni et al. 2020) to 94 

analyze and investigate the interlayer fatigue performance of double-layered asphalt specimens. 95 

Moreover, various studies have implemented numerical analysis methods to investigate and analyze the 96 

fatigue behavior of interlayer bonding. Cho et al. (2019), for instance, utilized the FlexPAVE simulation 97 

software to study how debonded pavement structures influence fatigue cracking. Using the same software 98 

and informed by cyclic shear test data, Ragni et al (2022) developed a three-dimensional (3D) finite 99 

element model to measure bond properties at the interface. In a related effort, Yao et al (2024)  developed 100 

a numerical model with the EverStressFE program, aiming to analyze the responses of asphalt pavement 101 

under various interlayer bonding conditions. The behavior of asphalt pavement interlayers, subjected to 102 

diverse loading and temperature conditions, has been thoroughly investigated and assessed using 103 

ABAQUS software (Guo et al. 2016, Rahman et al. 2021 , and Kim et al. 2011). 104 

Although these approaches provide reliable results, they often involve high costs and time-consuming 105 

processes. Furthermore, complex loading conditions and stress state at layer interface, compounded by a 106 

combination of a number of factors, such as temperature, humidity, and other environmental 107 

circumstances, result in complex and nonlinear behavior of the interface.  108 

To address the aforementioned challenges, recent advances in soft computing and data science resulted in 109 

a rapid development of artificial intelligence (AI) and machine learning (ML) as promising alternative 110 

techniques owing to their competence in solving complex problems. In this context, different studies were 111 

conducted, focusing on calibrating ML algorithms to generate models that describe the behavior of 112 

interlayers. These models aim to capture the response of the interface under different influencing 113 

parameters within a given range. Table 1 summarizes these works and the developed models related to 114 

interface bonding characteristics between asphalt pavement layers.  The table reveals that the application 115 

of ML models has a superior capability to predict and explain the experimental data with high accuracy 116 



and low computational cost. Furthermore, it is found that the most frequently used ML technique is 117 

artificial neural networks (ANNs).  118 

Table 1: Developed ML models related to interface bonding characteristics between asphalt pavement 119 

layers. 120 

Year Outputs Test conditions and input variables Model Findings Authors 

2013 Interlayer 

shear bond 

properties 

• Static test. 

• Temperature: 20 and 40°C 

• Traffic loading: ADT (9800 to 

94990vpd) and percentage of heavy 

vehicles (2.6 to 11.1t) 

• Aggregate passing through sieve 8, 

2, and 0. 09 mm (layer 1) 

• Aggregate passing through sieve 8, 

and 2 mm (layer 2) 

• Void content of layer 1: 4 to 12.8% 

• Void content of layer 2: 4.4 to 

9.9% 

• Age: aged and non-aged 

Artificial Neural 

Networks  

Artificial 

Neural 

Network are 

suitable for 

deriving 

models from 

datasets and 

to predict 

interlayer 

shear bond 

properties 

Raab et 

al. (2013) 

2015 Interlayer 

bond 

strength 

• Static test. 

• Type of tack coat: Cationic 

emulsion (200g/m2), SBS polymer 

-modified tack coat (300g/m2) and 

no tack coat 

• Age: aged and non-aged 

• Void content of layer 1: 4 to 12.8% 

• Void content of layer 2: 4.4 to 

9.9% 

• Temperature 10 to 35°C 

• Deformation rate: 0.5 to 9.5 

mm/min 

Artificial Neural 

Networks  

Artificial 

Neural 

Networks 

can model 

data and 

predict 

interlayer 

bond 

strength 

Raab et 

al. (2015) 

2022 Interlayer 

shear 

strength  

 

• Static test.  

• Aggregate diameter: 12.5mm 

(AC12.5), 19mm (AC19), and 25 

mm (AC25)  

• Tack coat type: Emulsion CRS-1 

• Tack coat application rate: 0.5 l/m2 

• Temperature: 25, 40 and 60°C.  

• Normal pressure: 0, 0.14, 0.2, 0.4, 

and 0.6 MPa. 

Adaptive Neuro 

Fuzzy Inference 

System with 

metaheuristic 

optimization 

Algorithms 

High 

accuracy of 

prediction  

R2 = 0.95 

Dao et al. 

(2022) 

2022 Interlayer 

shear 

strength 

• Static test. 

• Specimen composition: AC-13/ 

AC-20, AC-16/ AC-20 and AC-13/ 

AC-16; 

Artificial Neural 

Networks 

High 

accuracy of 

prediction  

R2 = 0.99 

Nian et al. 

(2022) 



• Tack coat type: Base asphalt, SBS-

modified asphalt, emulsified 

asphalt, and no tack coat; 

• Tack coat dosage: 0.16 –0.66 l/m2  

• Shear angle: 15, 40, 60, and 90° 

• Temperature: -20, 0, 20, 45, and 

58°C 

• Loading rate: 3, 8, 16, 30, 40, and 

50 mm/min 

2023 Interlayer 

shear 

strength 

• Static test. 

• Specimen composition: AC-11/ 

AC-16 

• Temperature: 0, 10, 20, 30, and 

40°C 

• Normal stress: 0 to 0.6MPa 

• Tack coat type: Conventional 

Emulsion, Modified Emulsion and 

no tack coat  

• Curing-time: Short and Medium 

• Shear deformation rate: 0.5 to 

9.5mm/min 

• Layer thickness of top and bottom 

layers 

• Air void content of top and bottom 

layers 

• Asphalt content of top and bottom 

layers 

• Tack coat application rate: 0.0, 

0.15, and 0.3 kg/m2 

Random forest 

and Feed-Forward 

Artificial Neural 

Networks 

 High 

accuracy of 

prediction  

R2 = 0.96 

Al-Jarazi 

et al. 

(2023) 

2024 Interface 

bonding 

strength 

• Static test. 

• Specimen composition: AC-13/ 

AC-20 

• Temperature: 5, 20, 35, and 50°C 

• Shear stress: 0, 0.05, 0.1, 0.15, and 

0.20MPa 

• Tack coat type: Cationic emulsified 

asphalt  

• Tack coat application rate: 0.4 to 

1.6 kg/m2 

Feed-Forward 

Backpropagation 

Artificial Neural 

Networks 

High 

accuracy of 

prediction  

R2 = 0.99 

Al-Jarazi 

et al. 

(2024) 

 121 

It can be seen that existing models currently available are trained to predict the behavior of interface 122 

bonding under a monotonic loading condition. However, thus far, there have been no specific 123 

developments of ML models to predict the interface fatigue behavior, considering a comprehensive range 124 

of parameters and properties. It is noteworthy that accurate prediction and evaluation of interlayer fatigue 125 



performance is of great importance to the overall performance of the pavement structure. In this regard, 126 

Interface fatigue life (IFL) and interface shear stiffness (ISS) are two common evaluation indexes of the 127 

interface fatigue performance.  128 

All things considered, this study aims to employ two ML-based techniques namely, gene expression 129 

programming (GEP) and artificial neural networks (ANNs) for the accurate estimation of IFL and ISS in 130 

asphalt pavement from limited input-determined parameters. Variables of test temperature, normal 131 

pressure, loading frequency, and shear stress were selected to conduct laboratory experiments on double-132 

layered asphalt beam specimens made up of stone mastic asphalt (SMA-13) and asphalt concrete (AC-20). 133 

The ANN and GEP algorithms were employed due to their effectiveness in solving complex problems. 134 

Such models can provide time and cost-saving options for the purposes of initial design, construction, and 135 

maintenance of asphalt pavement. ANN is commonly used to address complex nonlinearities between 136 

predictors and responses as mentioned in Table 1. On the other hand, the GEP technique has demonstrated 137 

a high potential for using mathematical functions to solve complex problems and provide accurate 138 

predictions  (Ashteyat et al. 2020). For example, Liu et al. (2017) employed the GEP algorithm to develop 139 

a predictive model of the dynamic modulus of asphalt mixtures. In another study, multigene genetic 140 

programming (MGGP) was used to predict asphalt concrete fatigue performance subjected to the 3-point 141 

bending cylinder fatigue test (Seitllari and Kutay 2023). The developed models based on GEP algorithm 142 

exhibited improved prediction accuracy compared to the regression-based models. The GEP technique 143 

utilizes a diverse range of inputs to construct an optimal model. By minimizing errors and ensuring robust 144 

fitness, it achieves accurate predictions of outcomes.  In this study, the universality of the developed 145 

models was further tested to provide a theoretical basis for reviewing the parameters that influence the 146 

interlayer fatigue behavior of asphalt pavement. This step was taken to validate the reliability of the 147 

proposed models. 148 

The structure of this article is as follows. In Section 2, the methodology adopted in this study was 149 

introduced, including the experimental program and the proposed ML techniques. Section 3 introduces 150 

performance measures, discussing the various indices critical for evaluating the accuracy, reliability, and 151 



precision of the developed models. Section 4 presents the results and discussion, including experimental 152 

findings, the application of proposed ML (ANN and GEP) models, comparisons of model performance, 153 

and a sensitivity analysis to further validate the universality of the prediction models. Finally, Section 5 154 

concludes the paper, summarizing the key findings and contributions. 155 

2. Methodology 156 

This research work was carried out in two phases. The first phase involved laboratory experiments to 157 

evaluate the interlayer fatigue performance. During this stage, composite asphalt beam specimens, 158 

consisting of SMA and AC mixtures, were designed and produced. The tests were carried out with a 159 

developed 4-point shear setup which can also apply normal pressure perpendicular to the interface plane. 160 

The test factors considered in this study are temperature, normal stress, loading frequency, and shear 161 

stress. The material used as tack coat is a high-performance styrene butadiene styrene (SBS)-modified 162 

asphalt binder. The effect of each parameter on the ISS and IFL were evaluated. In the subsequent phase, 163 

data from the initial laboratory experiments were processed and utilized in this phase, where ANN and 164 

GEP techniques were developed for forecasting and evaluating the interlayer fatigue indices. Figure 2 165 

illustrates an overview of the methodology introduced in this study. 166 



Figure 2. An overview of the proposed approach in this study. 167 

2.1. Experimental program  168 

2.1.1. Materials 169 

Interface shear fatigue assessment was performed through a four-point shear setup installed in an 170 

environmental chamber of a universal testing machine (UTM). The tests were carried out with a total 171 

number of 84 double-layered asphalt beam specimens, comprising of stone mastic asphalt (SMA-13) and 172 

asphalt concrete (AC-20). Table 1 displays the aggregate gradation design of two mixtures as per the 173 

Chinese Specification for Highway Asphalt Pavement Construction (JTGF40-2004 (Code of China 174 

2004)). Limestone was utilized for both coarse and fine aggregates in the preparation of asphalt mixtures. 175 

These aggregates were clean, dry, free of weathered particles, and pure. Mineral limestone powder was 176 

used as filler. Properties of mineral materials were met the specification requirements (JTG F40-2004 177 

(Code of China 2004)). Two mixtures were prepared using an SBS-modified asphalt binder with 178 

properties shown in Table 2. The optimum asphalt content of SMA-13 and AC-20 mixtures by percentage 179 

of weight was 5.8% and 4.5%, respectively. The tack coat material utilized at layer interface was a high-180 

performance SBS-modified emulsified asphalt. Properties of tack coat material are presented in Table 3. 181 
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Table 1. Aggregate gradation of mixtures. 182 

 183 

Table 2. Properties of the SBS modified asphalt. 184 

 185 

Table 3. Properties of tack coat material. 186 

Property Unit Test result 
Specification 

limit 

Softening point (R & B) °C 113.4 ≥ 85 

Penetration (100 g, 5 s, 25℃) 0.1mm 42.8 ≥ 40 

Ductility at 15℃ cm 68 ≥ 50 

Flexural tensile toughness (-20℃) kPa 427.5 ≥ 400 

Flexural tensile modulus (-20℃) MPa 96.5 ≤ 100 

Tests on residue after rolling thin-film oven test    

Mass loss  % 0.002 ≤ 0.6 

Penetration ratio  % 83.1 ≥ 65 

Mixture Type 
Sieve size (mm) 

26.5 19 16 13.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

 Passing percentage (%) 

SMA-13 100 100 100 95 62.5 27 20.5 19 16 13 12 10 

AC-20 100 95 85 71 61 41 30 22.5 16 11 8.5 5 

Property Unit Test result Specification limit 

Penetration (100 g, 5 s, 25℃) 0.1mm 41.1 ≥ 40 

Ductility at 15℃ cm 75 ≥ 50 

Softening point (R & B) °C 112.1 ≥ 85 

Flashpoint 

Tests on residue after rolling thin-film 

oven (RTFO) test 

°C 276 ≥ 260 

 

Mass loss  % 0.06 ≤ 0.6 

Penetration ratio  % 88.2 ≥ 65 



Flash point °C 265 ≥ 260 

 187 

2.1.2. Specimen preparation 188 

In this study, rectangular beams with two halves representing a double-layered asphalt mixture and a 189 

vertical interface plane in between for tack coat application were manufactured. To produce asphalt beam 190 

specimens, a steel mold with the plan dimensions 300mm × 400mm and 100mm depth was used in this 191 

experiment. In addition, a removable vertical steel plate was installed in the middle of the steel mold to 192 

divide the mold in two halves for mixture preparation. The specific specimen preparation process is as 193 

follows: 194 

1) An adequate amount of the loose AC-20 asphalt mixture was poured into one-half of the mold, 195 

and then it was evenly distributed. Afterward, a roller compactor was utilized to compact the 196 

mixture to its maximum density with a 5% air void content and the desirable thickness of 100 197 

mm. The compacted mixture was then allowed to cool down to room temperature for 1 day before 198 

tack coat application. 199 

2) In the second stage, the movable steel plate was removed, and the tack coat material was 200 

uniformly sprayed on the cleaned surface at desired application rate (0.30 L/m2) accordingly. 201 

Subsequently, the coated surface was set aside at room temperature for 2 hours to allow the curing 202 

procedure to be completed. 203 

3) Following the application of the tack coat and its curing, the loose SMA mixture (160℃) was 204 

placed into the second half of the mold and compacted using a similar method applied in the first 205 

half of the mold. The target air void content of the SMA-13 mixture was set at 3.5%. Before 206 

performing the cutting operation, the slab was allowed to cool and cure at room temperature for 207 

one day, and the mold was detached form the prepared slab accordingly. 208 



4) Finally, each slab was marked to match the final specimen's dimensions. The extra parts from 209 

each side were sawed, and five test specimens were obtained from the slab's remaining part. 210 

 Figure 3 illustrates the laboratory procedure for fabricating specimens to conduct interface shear fatigue 211 

tests. 212 

Figure 3. Laboratory procedure for fabricating specimens: (a) Placing AC-20 mix, (b) Mix compaction, 213 

(c) Application of tack coat, (d) Laying SMA-13 mix, (e) Specimen cutting, and (f) Final specimen. 214 

 215 

The unusual compaction method for specimen preparation used in this study differs from the compaction 216 

methods commonly employed for lab-scale interface bonding investigations. As such, the lack of vertical 217 

compaction between layers represents a limitation of the current experimental methodology. However, 218 

roller compaction was selected to improve simulation of realistic field construction conditions and air 219 

void distributions within each independent asphalt layer. Future studies will explore specimen fabrication 220 

methods that balance both constructability and representation of field bonding. 221 
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2.1.3. Four-point shear device 223 

In this study, a new four-point shear device was developed to assess interface shear bonding, as illustrated 224 

in Figure (4). This apparatus represents an advancement over the original device (De Bondt 1999), 225 

featuring modifications in the force distance and orientation of the central two points, allowing the 226 

loading block to exert shear stress parallel to the interface plane. A cylinder-pump assembly was also 227 

integrated to apply normal stress perpendicular to the interface plane. The vertical shearing load, which 228 

simulates the shear forces acting on pavement surface as a result of vehicle maneuvering, was generated 229 

by the actuator of the universal testing machine (UTM-100).  230 

The double-layered asphalt specimen (280 × 70 × 50 mm) was positioned within the clamps ensuring the 231 

interface lay within the two central clamps (the interface zone), with a center-to-center distance of 60 mm 232 

between them. This setup is designed to induce interface failure in this zone through shear stress from the 233 

repeated loading by the UTM actuator. The device for applying the normal pressure, representing the 234 

wheel load on roads, delivers controllable and consistent pressure. The normal load feature consists of a 235 

cylinder, a hose, a pump, a load measurement system, and load distribution plates. Upon specimen 236 

placement within the clamps, load distribution plates are affixed to each end. Subsequently, hydraulic 237 

pump pressure is applied to the cylinder until it extends to the distribution plate. The applied normal load 238 

on the specimen is continuously monitored by a load cell located on the opposite side. To gauge relative 239 

vertical shear displacement at the interface, two linear variable differential transducers (LVDTs) were 240 

attached to the interface zone of the specimen. Data from the load cell, confining pressure transducer, and 241 

LVDTs were gathered using a data acquisition system. The entire setup was housed within the UTM’s 242 

environmental chamber, enabling testing at temperatures ranging from -40°C to 100°C, as shown in 243 

Figure 4(b). This setup allows for observing of the evolution of applied shear force and relative 244 

displacement during fatigue tests. Fifty data points per loading/displacement cycle were used for detailed 245 

plotting. In this study, the traditional 50% stiffness reduction threshold was used to determine the 246 



interface shear fatigue life. Fatigue life is defined as the number of loading cycles correspond to 50% 247 

reduction in initial shear stiffness modulus. 248 

 Figure 4. Four-point shear test device: (a) schematic diagram; (b) The whole set up inside the UTM. 249 

2.1.4. Experimental design  250 

In the experimental design, a range of variables including temperatures, loading frequencies, shear stress 251 

amplitudes, and normal pressure levels were selected to assess and analyze the interface shear fatigue 252 

behavior, specifically focusing on interface shear stiffness (ISS) and interface fatigue life (IFL). 253 

During the fatigue testing, the shear stress amplitude ranged from 30% to 50% of the interface shear 254 

strength, as determined through monotonic shear testing. This testing was performed at a loading rate of 255 

2.54 mm/min, under conditions of zero normal stress. Six distinct shear stress levels—163, 180, 196, 212, 256 

294, and 359 kPa—were carefully selected. Correspondingly, six levels of normal load—0, 10, 20, 35, 45, 257 

and 55 kN, equivalent to compressive stress levels of 0, 28, 56, 98, 126, and 154 kPa—were chosen. This 258 

selection was chosen based on a previous study (D’Andrea and Tozzo 2016) and taking into account the 259 

dimensions of the specimen. 260 

(a)

(b)

UTM-100 control system



To evaluate the influence of temperature on interlayer shear fatigue, this study considered different 261 

temperature levels as -10, 0, 15, 25, 35, and 45 °C. In addition, five load frequency levels of 1, 4, 5, 8, and 262 

10 Hz were selected to represent the driving speeds of 4, 17, 21, 35, and 45km/h. To better simulate the 263 

cyclic nature of traffic loading, the tests were carried out under force-controlled mode with a continuous 264 

haversine waveform. While a contact load of 0.1kN was chosen and maintained during the testing 265 

process, the desired shear load was applied to the specimen to induce shear fatigue failure. 266 

To conclude, Table 4 summarizes the experimental parameters, which are utilized as input variables in the 267 

proposed prediction models, along with their specific levels. These parameters and their corresponding 268 

ranges were carefully selected to effectively mimic a range of field conditions. 269 

Table 4 Test factorial for prepared specimens. 270 

Parameter Settings Variables Levels 

Influential factors 

Normal stress (kPa) 0, 28, 56, 98, 126, 54 

Frequency (Hz) 1, 4, 5, 8, 10 

Temperature(°C) -10, 0, 15, 25, 35, 45  

Shear stress 163, 180, 196, 212, 294, 359 

 271 

2.2. Supervised machine learning techniques 272 

2.2.1. Artificial neural networks (ANNs) 273 

ANNs are supervised machine learning algorithms that are inspired by the neural architecture of the 274 

human brain, reflecting its extensive connectivity and ability to learn from inputs. Multi-layer forward 275 

feedback propagation ANN is one of the most popular algorithms that learns and improves processes by 276 

examining input data to produce accurate predictions (Ozturk and Kutay 2014) . It consists of 277 

interconnected artificial neurons or processing elements organized in layers. The layers include the input 278 

layer, representing an input vector; the output layer, responsible for generating the output; and the hidden 279 



layers situated between them. The hidden layers constitute the majority of the ANN structure, and each 280 

hidden layer consists of a set of neurons, as illustrated in Figure 5. In this algorithm, the inputs are 281 

multiplied by the weights of the links connecting the inputs and the hidden neurons. Next, the sum of 282 

previous values will pass through the activation function which will produce a value that is the input to 283 

the next layer. The output of any given layer will become the input of the next layer. This process is called 284 

feed forward. The relationship between inputs and outputs is expressed in Equation (1). 285 

                                    𝑌   ( )   (  ∑  𝑛 =1     )                                                                     (1) 286 

where    refers to the input,    refers to the weight, and   is the bias at each neuron.  287 

The difference between the target value and the network output is measured as the error. To improve the 288 

network performance, a training algorithm called Levenberg-Marquardt training backpropagation 289 

algorithm was utilized in this study. This algorithm facilitates the adjustment of connection weights within 290 

the network, starting at the output layer and progressing towards the input layer, by propagating the error 291 

backwards. This iterative process of forwarding and back-correcting (updating) of link weights continues 292 

until a satisfactory level of performance is achieved, indicating the completion of the training phase. Thus, 293 

the network uses the final weights obtained through training to make predictions (Basheer and Hajmeer 294 

2000). 295 

 296 
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                    Figure 5. Schematic structure for ANN algorithm. 306 

2.2.2. Gene expression programming (GEP)  307 

GEP, developed by Ferreira (Ferreira 2001), is one of the most effective supervised machine learning-308 

based prediction and estimation techniques. The basic principles of the GEP as a branch of genetic 309 

programming (GP), are based on the law of evolution from Darwin's theory of evolution and Mendel's 310 

genetic theory (Gao 2018). It consists of five main components: (1) function set, (2) terminal set, (3) 311 

fitness function, (4) control parameters, and (5) stop condition. In this study, a fixed-length character 312 

string approach was adopted to obtain solutions within the GEP algorithm. This stands in contrast to 313 

conventional GP, where a parse-tree representation is employed, and its length can dynamically vary 314 

during the program's execution. A computer model of these solutions is presented in the form of 315 

expression trees (ETs). In the GEP algorithm, the creation of the genetic variety is highly simplified 316 

because genetic operators work at the chromosome level. Moreover, GEP's multi-genic structure 317 

empowers it to develop complex, nonlinear programs composed of multiple subprograms.  318 

Each GEP gene comprises a fixed-length list of symbols, with each symbol drawn from a defined set of 319 

functions or terminals. In other words, each gene consists of two components: the head part, which 320 

encompasses both terminals such as (i, j, 3, 5) and functions like (+, -, / , *), and the tail, which only 321 

contains terminals.  322 

The GEP algorithm encodes the essential information for developing empirical relationships within 323 

chromosomes and employs the Karva language to facilitate this process (Kara 2013, Gandomi and Roke 324 

2015). Karva expression (K expression) allows both genotype and phenotype to be inferred from gene 325 

sequences. These genotypes and phenotypes are encoded separately in GEP. (see Figure 6 (a and b)). The 326 

transformation from Karva to ET begins at the leading ET position and proceeds along the string. 327 

Conversely, ETs can be converted into K expression by recording nodes from the root layer to the deepest 328 

layer. The size of ETs varies in the GEP algorithm, resulting in a certain number of redundant elements 329 

that are not utilized for genome mapping. Thus, GEP gene lengths and K expression may differ. 330 



Figure 6(c) illustrates the base structure of GEP algorithm, starting with the random creation of fixed-331 

length chromosomes for individuals. These chromosomes are then evaluated for fitness, and individuals 332 

are selected for reproduction based on their fitness scores. This selection process serves as the foundation 333 

for the subsequent application of genetic operations. The cycle iterates over multiple generations with 334 

newly generated individuals until a viable solution is achieved. In this technique, genetic operations, 335 

including mutation, rotation, and crossover are conducted to facilitate conversions within the population. 336 

 Figure 6. Schematic structure for GEP algorithm: (a) typical structure of a chromosome in GEP; (b) GEP 337 

model representing expression tree; (c) Basic working steps for the GEP model. 338 
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3. Performance measures 341 

The accuracy of the developed models was measured using three statistical indicators, namely coefficient 342 

of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). These indices 343 

were selected due to their diverse functions in measuring the accuracy, reliability, and precision of 344 

models. They enable a more objective assessment of the model’s performance in carrying out its 345 

designated tasks. RMSE represents the variation between the predicted and the measured values. RMSE is 346 

a common indicator employed in regression analysis to assess the accuracy of predictions in machine 347 

learning, and other applications. On the other hand, MAE measures the average size of estimating 348 

mistakes. The MAE indicates the average absolute difference between the predicted and true values of a 349 

sample. Typically, smaller values of RMSE and MAE indicate better performance and high accuracy. R2 350 

value indicates the degree to which a regression model’s independent variables explain the dependent 351 

variable’s output. R2 plays a crucial role in assessing the goodness-of-fit of a regression model and 352 

comparing different ML models. A higher R2 indicates a stronger degree of correlation between the model 353 

and the observed data, with a value close to 1 indicating better performance and higher accuracy. 354 

Equations used to calculate the value of these indices are listed in following equations: 355 

 𝑅𝑀𝑆𝐸  √1𝑛∑  𝑛 =1 (    ̂ )2                                                                                                                 (2) 356 

𝑀𝐴𝐸  1𝑛∑  𝑛 =1 |    ̂ |                                                                                                                         (3) 357 

𝑅2  1  ∑  𝑛𝑖=1 (�̂�𝑖−𝑦𝑖)2∑  𝑛𝑖=1 (�̅�𝑖−𝑦𝑖)2                                                                                                                             (4) 358 

where 𝑛 represent the total amount of data samples;  ̂ is the predicted value of the ith sample; and    is 359 

the actual value of the ith sample.  360 

4. Result and discussion 361 

4.1. Experimental Results 362 

This section presents the effects of each factor on interface bonding fatigue indices, quantified by 363 

interface shear stiffness (ISS) and interface fatigue life (IFL).  364 



4.1.1. Effect of normal stress  365 

To illustrate the influence of normal stress on interlayer fatigue properties, ISS and IFL were 366 

analyzed under a range of controlled testing conditions. Specifically, the experiments were 367 

conducted under distinct temperatures (15°C, 25°C, 35°C, and 45°C) to represent a wide range of 368 

thermal environments. Alongside, a constant shear stress of 196 Kpa and a fixed loading 369 

frequency of 10 Hz were maintained. Six different levels of normal stress were applied to 370 

comprehensively assess its impact. Figures 7 (a and b) display the results, effectively 371 

highlighting the correlation between varying levels of normal stress and their respective effects 372 

on ISS and IFL. 373 

374 

Figure 7. Effect of normal stress on: (a) ISS asphalt pavement; (b) IFL asphalt pavement. 375 

The figure clearly demonstrates substantial increases in both ISS and IFL with increasing normal 376 

stress at all temperatures tested. Specifically, Figure 7(a) shows that increasing the normal stress 377 

from 0 to 154 kPa resulted in notable ISS increases of 178.5%, 204.9%, 222.3%, and 112.6% at 378 

15°C, 25°C, 35°C, and 45°C, respectively. Similarly, Figure 7(b) shows that increasing the 379 

normal stress from 0 to 154 kPa led to substantial IFL increases of 69.9%, 75.1%, 66.8%, and 380 

84.1% at the same temperatures. However, it is observed that at elevated temperatures, the 381 
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impact of increasing normal stress beyond 56 kPa becomes minimal on both shear stiffness and 382 

fatigue life. This phenomenon could be attributed to the fact that at higher temperatures, an 383 

increase in normal pressure may enhance friction between asphalt layers, thus improving fatigue 384 

life up to a certain point, beyond which further increases in normal stress do not significantly 385 

affect ISS and IFL.  386 

To conclude, the application of normal stress, simulating tire contact pressure on the road 387 

surface, has a significant effect on interface shear stiffness and fatigue life. Neglecting this factor 388 

would underestimate the interlayer fatigue behavior between adjacent asphalt layers. 389 

4.1.2. Effect of shear stress  390 

To investigate the effect of shear stress on the interlayer fatigue performance in terms of ISS and 391 

IFL, various temperatures (15, 25, 35, and 45 °C), a constant normal stress of 126 kPa, and a 392 

consistent loading frequency of 10 Hz across six shear stress levels were examined, as displayed 393 

in Figure 8 (a and b).  394 

395 

Figure 8. Effect of shear stress on: (a) ISS asphalt pavement; (b) IFL asphalt pavement. 396 

Figure 8(a) reveals that increased shear stress leads to reduced shear stiffness. Notably, when 397 

shear stress rose from 163 kPa to 359 kPa, ISS values decreased by 65.4%, 61.2%, 57.2%, and 398 
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59.1% at temperatures of 15°C, 25°C, 35°C, and 45°C, respectively. It is clear that the difference 399 

in shear stiffness at different temperatures is more pronounced at lower shear stress levels than at 400 

higher stresses. This is likely due to decreased friction at the interface, leading to less resistance 401 

to shear movement at lower temperatures as shear stress rises, resulting in a significant decline in 402 

shear stiffness. Similarly, Figure 8(b) demonstrates that greater shear stress reduces the 403 

interface's fatigue life at all temperatures. This means that as shear stress increases from 163 kPa 404 

to 359 kPa, the fatigue life decreases by 17.0%, 18.9%, 35.1%, and 46.4% at temperatures of 405 

15°C, 25°C, 35°C, and 45°C, respectively. The test results show that the estimated fatigue and 406 

the relationship characterizing interface fatigue behavior at each temperature are well-represented 407 

by a linear regression (quadratic form) with high R2 values. As anticipated, higher shear stress 408 

correlates with poorer fatigue performance at the interface for each temperature. Notably, the 409 

decline in fatigue life due to shear stress at a higher temperature (45 °C) is more significant than 410 

at lower temperatures. 411 

4.1.3. Effect of loading frequency  412 

The study also examined the impact of loading frequency on interlayer fatigue behavior. Various 413 

temperatures (15, 25, 35, and 45 °C), a constant normal stress of 126 kPa, and a fixed shear stress 414 

of 196 kPa were evaluated across five different loading frequency levels to assess their influence 415 

on ISS and IFL, as depicted in Figures 9(a and b). Figure 9 (a) clearly demonstrates that an 416 

increase in loading frequency results in a rise in ISS at all temperatures. This means, when the 417 

loading frequency increased from 1 Hz to 10 Hz, ISS increased by 100.6%, 94.8%, 124.1%, and 418 

83.1% for temperatures of 15°C, 25°C, 35°C, and 45°C, respectively. Notably, at high 419 

temperature (45 °C), the variation in stiffness with frequency up to a loading frequency of 10 Hz 420 



is not considerable, while at lower to normal temperatures (15–35 °C), one can observe a 421 

significant change in shear stiffness. 422 

Figure 9 (b) illustrates a trending increase in fatigue life (IFL) with loading frequency. 423 

Specifically, the improvement in fatigue life from a loading frequency of 1 to 10 Hz accounts to 424 

an increase of 18.4%, 25.0%, 56.8%, and 58.3% for the respected temperatures of 15°C, 25°C, 425 

35°C, and 45 °C. This enhanced fatigue resistance likely stems from asphalt's viscoelastic 426 

properties. At higher frequencies, the asphalt has less time to deform during each loading cycle, 427 

causing it to stiffen and become more elastic. 428 

 429 

Figure 9. Effect of loading frequency on: (a) ISS asphalt pavement; (b) IFL asphalt pavement. 430 

4.1.4. Effect of temperature  431 

To study the effect of temperature on the interlayer fatigue properties, interface fatigue tests were 432 

conducted under given range of temperatures, a constant normal stress of 56 kPa, a constant shear stress 433 

of 196 kPa, and a fixed loading frequency of 10 Hz. Figure 10 presents the analysis results of temperature 434 

impacts on the ISS and the IFL. It is evident that temperature changes affect the ISS and IFL of asphalt 435 

pavement significantly. As the temperature increases from -10 to 45 °C, Figure demonstrates an 81.3% 436 

decline in ISS. Similarly, changing the test temperature from 0 to 45°C led to a 59.3% reduction in IFL. 437 

This phenomenon can be attributed to the viscoelastic nature of the interlayer bonding, where tack coat 438 
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material exhibits high sensitivity to temperature. As the temperature increases, asphalt binder softens 439 

continuously, leading to a gradual reduction to interface fatigue properties. 440 

 441 

Figure 10. Effect of temperature on ISS and IFL of asphalt pavement. 442 

4.2. Data Preparation  443 

Following laboratory experiments, obtained data were analyzed and prepared for developing ML 444 

prediction models. Table 5 provides a summary of the descriptive statistical analysis results, presenting 445 

the statistical characteristics of the main parameters considered in this study. The models were developed 446 

using a total of 84 dataset, randomly divided into training dataset and testing dataset. The training dataset, 447 

comprising 70% of the total data, was utilized to construct the models while the remaining 30% was 448 

designated as the testing dataset, employed explicitly to assess and validate the model’s capacity for 449 

generalization. To mitigate the impact of varying eigenvalue dimensions across samples on the models' 450 

predictive efficiency and accuracy, all input data underwent normalization before model training. This 451 

process utilized the min-max normalization method, as outlined by Tenpe and Patel (2020), ensuring 452 

uniformity across the dataset and enhancing the reliability of our predictions. 453 
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Table 5. Descriptive statistical analysis 454 
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 456 

 457 

 458 

4.3. Result of ANN application 459 

Using MATLAB 2019b, the appropriate feed-forward ANN models were built and trained to predict the 460 

ISS and IFL of asphalt pavement. Many networks are trained with different settings of hidden layers, 461 

hidden nodes, epochs, and types of activation functions to reach the optimal configurations with the 462 

highest accuracy. Table 6 summarizes the best hyperparameters used for the modeling of ANNs. 463 

Furthermore, Figure 11 shows the architecture of the proposed ANN models for both the ISS and IFL. 464 

This figure presents the optimized ANN model, achieved through an iterative process of trial and error, 465 

involving adjustments to the number of hidden neurons, layer activation functions, and bias connections 466 

to ensure optimal performance.  The optimal architecture of the ANNs, which yielded the most accurate 467 

predictions, incorporated a single hidden layer with 7 neurons for ISS and 10 neurons for IFL. The highest 468 

performance was achieved using the Levenberg-Marquardt training algorithm, after 20 epochs for ISS and 469 

13 epochs for IFL, respectively. Additionally, the networks utilized the hyperbolic tangent sigmoid 470 

(TANSIG) as the activation function in the hidden layer and the linear (purelin) function in the output 471 

layer, effectively enhancing the model's predictive capabilities. 472 

Table 6. The best ANN-model hyper-parameters 473 

ANN parameters 
Type / Best value 

ISS IFL 

Neural network model used Feed forward Feed forward 

Number of hidden layers 1 1 

Number of neurons of each hidden layer 7 10 

Network 4-7-1 4-10-1 

Variable N Unit Description Mean Standard deviation 

T 84 ℃ Temperature 27.74 13.72 

N 84 kPa Normal stress 95.56 46.75 

F 84 Hz Frequency 8.262 3.117 

SF 84 kPa Shear stress 243.0 76.30 



Learning algorithm 
The Levenberg-Marquardt 

backpropagation 

The Levenberg-Marquardt 

backpropagation 

Activation function for hidden layer TANSIG TANSIG 

Activation function for output layer PURELIN PURELIN 

Data division  Random basis Random basis 

Data division and number (training–testing) 70%-30% (59-25) 70%-30% (59-25) 

Applied epochs 20 13 

Learning rate 0.001 0.001 

 474 

Figure 11. ANN architecture of the predicted models for the ISS and IFL of asphalt pavement. 475 

The ANN regression plots comparing experimental and predicted values for ISS of pavement during both 476 

training and testing phases are shown in Figure 12 (a and b). The overall R2 values, exceeding 0.97 (0.980 477 

for training and 0.972 for testing), underscore the proposed ANN model's exceptional predictive accuracy. 478 

Figures 12 (c and d) visually represent the proposed ANN model's performance and error margin by 479 

comparing predictions against experimental results. These findings underscore the model's remarkable 480 

consistency with true values, highlighting its well-calibrated nature and robust generalization capabilities. 481 
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Such attributes signify the model's adeptness at handling new and unseen data effectively. Moreover, 482 

RMSE and MAE metrics were recorded at 0.8264 and 0.6363 for the training set, and 1.0607 and 0.8167 483 

for the testing set, respectively, indicating minimal discrepancy between the predicted and observed 484 

values. 485 

Figure 12. The proposed ANN model for ISS: (a) regression plot for training; (b) regression plot for 486 

testing; (c) performance of the model; (d) error range. 487 

Similarly, the relationships between actual and predicted IFL values by the ANN approach are shown in 488 

Figure 13 (a and b) during both the training and testing phases. It can be noted that R2 values in training 489 

and testing sets are 0.972 and 0.943, respectively. These results indicate that the developed ANN model 490 

for IFL can explain more than 94% of the measured data and can be used effectively to predict the IFL of 491 

asphalt pavement accurately. Figure 13 (c and d) graphically illustrate the performance and error range of 492 

the developed ANN model for IFL by comparing predictions with experimental results. As can be seen, 493 
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the developed ANN prediction model for the IFL is very consistent with the actual values, denoting that 494 

the developed ANN model for IFL has been well-trained and can be generalized well. In other words, the 495 

model has the potential to perform effectively on new and unseen data. Moreover, the RMSE and MAE 496 

values were computed to be 0.4987 and 0.3839 for the training dataset, and 0.7555 and 0.5817 for the 497 

testing dataset, respectively. These values indicate a relatively minor discrepancy between the predicted 498 

and measured values. 499 

Figure 13. The proposed ANN model for IFL: (a) regression plot for training; (b) regression plot for 500 

testing; (c) performance of the model; (d) error range 501 

4.4. Result of GEP application    502 

The GEP model, aimed at predicting the ISS and IFL, utilized the identical dataset as that for the ANN 503 

model training. Developed with GeneXproTools version 5.0 (Ferreira 2001, 2006), the GEP model 504 

underwent multiple iterations to identify the most effective parameter configuration. Parameters such as 505 

the number of chromosomes, genes, head size, mutation rate, and linking functions were thorougly 506 
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adjusted to refine the model's performance. The selection of the optimal GEP model was guided by a 507 

multi-objective strategy that balanced model simplicity against the precision of its predictions, both 508 

during training and validation stages. This method was in harmony with the empirical findings of this 509 

research, ensuring the GEP model's parameters were fine-tuned for accuracy. Details of the optimized 510 

GEP model parameters are presented in Table 7, showcasing the rigorous process behind its development. 511 

Table 7. The optimal GEP-model hyper-parameters 512 

GEP parameters 
Type / Settings 

ISS IFL 

Chromosome’s number 30 30 

Gene’s number 3 3 

Head’s size 8 8 

Linking functions Addition Addition 

Used function set +, - , * , /, Exp, Ln +, - , * , /, X2 

Fitness 1000 1000 

Inversion rate 0.00546 0.00546 

Mutation rate 0.00138 0.00138 

Gene recombination and transposition rate 0.00277 0.00277 

One-point and two-point recombination rate 0.00277 0.00277 

Data division and number (training–testing) 70%-30% (59-25) 70%-30% (59-25) 

 513 

The output of the GEP model to predict the ISS of asphalt pavement is demonstrated as an expression tree 514 

(ET) in Figure 13. The best performing GEP model for the ISS prediction is shown as the mathematical 515 

expression of Y1+Y2+Y3: 516 

                    𝑌1  [(𝑁𝑆𝐹  ( 3. 068  𝑁))  𝑁]  ( 𝐹6.9015)𝑒                                                           (5) 517 

                        𝑌   𝑇−2.6441+(−89.4741)𝑁−𝑆𝐹 )                                                                                         (6) 518 

                       Y3  ln (𝑆  (303.076  (𝑇2  𝑁2)))                                                          (7) 519 



Figures 14 (a and b) present the GEP regression plots, showcasing the correlation between experimental 520 

and predicted values for the ISS of asphalt pavement across both training and testing datasets. A notable 521 

R2 value of 0.921 for the training dataset reflects the GEP model's predictive accuracy for ISS, mirroring 522 

the experimental data closely. Similarly, for the testing dataset, an R2 value of 0.913 demonstrates a strong 523 

correlation between the predicted ISS values and the actual observations. Figures 14 (c and d) further 524 

illustrate the efficacy of the GEP model in predicting ISS, comparing its predictions with the empirical 525 

results and highlighting the error range. The alignment between the GEP model's predictions and real-526 

world data is evident, showcasing the model's effective training and generalization prowess. Furthermore, 527 

RMSE and MAE were calculated, yielding 1.4020 and 1.0795 for the training set, and 1.4911 and 1.1481 528 

for the testing set, respectively. These metrics indicate a relatively small discrepancy between the 529 

predicted and actual values, affirming the GEP model's capability to accurately predict ISS behavior with 530 

commendable precision. 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

Figure 13. The output of GEP model as Expression tree for the ISS. 546 
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  547 

Figure 14. The proposed GEP model for ISS: (a) regression plot for training; (b) regression plot for 548 

testing; (c) performance of the model; (d) error range. 549 

In a similar way, the output of the GEP model for predicting the IFL of asphalt pavement is shown in the 550 

form of an ET, as depicted in Figure 15. The figure illustrates that the most effective GEP model in 551 

predicting IFL can be represented as the mathematical expression of Y1+Y2+Y3: 552 

                           𝑌1  (𝑇+𝑁𝑆𝐹 × ( 5.675 ))  (7.8764  𝑇)                                                        (8) 553 

                          𝑌  𝑇  ( 𝑇2370.4507 4.7017)                                                                           (9) 554 

                         𝑌3  5.7034  𝑇𝐹21.9592+(𝐹+8.3517)                                                                         (10) 555 

Figure 16 (a and b) display the relationships between the actual and predicted IFL values generated using 556 

the GEP technique during both the training and testing stages, respectively. It can be seen that the R2 557 

values for training and testing datasets are 0.913 and 0.90, respectively. These outcomes signify that the 558 
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developed GEP model for IFL can account for over 90% of the observed data, demonstrating its efficacy 559 

in providing accurate predictions for the IFL. Figure 16 (c and d) further exhibits the performance of this 560 

GEP model, comparing its predictions with experimental results and the associated error range. Clearly, 561 

the GEP model's predictions for IFL closely align with the actual values, demonstrating a well-trained 562 

model with robust generalization capabilities. In addition, the RMSE and MAE values have been 563 

computed, resulting in 0.6231 and 0.4797 for the training dataset, and 0.6492 and 0.5107 for the testing 564 

dataset, respectively. These figures highlight a relatively minimal disparity between the model's 565 

predictions and the actual results, signifying the model’s high level of accuracy. 566 

 567 

                                  Figure 15. The output of GEP model as Expression tree for the IFL. 568 
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                          569 

Figure 16. The proposed GEP model for IFL: (a) regression plot for training; (b) regression plot for 570 

testing; (c) performance of the model; (d) error range 571 

To conclude, statistical performance indices for all proposed models are summarized in Table 8. These 572 

results clearly demonstrate the effective training of the models and the presence of a strong correlation 573 

between the predicted and experimental output, coupled with low error values.  In other words, no 574 

overfitting is apparent for all proposed models, indicating a higher generalization capacity and ability to 575 

predict reliable results for unseen data. 576 

Table 8. Comparative analysis for performance indices of the proposed models. 577 

ANN model Training Testing 

RMSE MAE R2  RMSE MAE R2 

Interface Shear Stiffness (ISS) 0.8264 0.6363 0.9801  1.0607 0.8167 0.9723 

Interface Fatigue Life (IFL) 0.4987 0.3839 0.9721  0.7555 0.5817 0.9432 

GEP model 
       

Interface Shear Stiffness (ISS) 1.4020 1.0795 0.9212  1.4911 1.1481 0.9127 
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Interface Fatigue Life (IFL) 0.6231 0.4797 0.9133  0.6492 0.5107 0.9003 

 578 

4.5. Sensitivity analysis  579 

To validate the comprehensiveness of the proposed prediction models, a sensitivity analysis was 580 

performed. This analysis assessed the impact of varying independent variables on the predicted interlayer 581 

bonding fatigue indices, within a defined framework of assumptions. Through this process, the 582 

significance and effect of each input parameter on the model outcomes were thoroughly evaluated, 583 

providing insights into their relative importance and contribution to the predictive accuracy of the models. 584 

4.5.1. Input parameter analysis based on proposed model 585 

Figure 17 (a, b, and c) presents the variation of ISS varies under diverse testing scenarios. Figure 17 (a) 586 

depicts the ISS changes across three temperature conditions (25, 35, and 45 °C) with a set shear stress of 587 

196 kPa and a loading frequency of 10 Hz, as normal stress levels are adjusted. The results clearly 588 

demonstrate a marked increase in ISS across all temperature ranges when normal stress rises from zero to 589 

higher levels. Furthermore, Figure 17 (b) exhibits ISS changing trend at varying shear stress levels while 590 

holding three temperature scenarios (25, 35, and 45 °C), a consistent normal stress of 126 kPa, and a fixed 591 

loading frequency of 10 Hz. The data presented clearly indicate that an increase in shear stress 592 

corresponds to a decline in shear stiffness across all temperature settings. Lastly, Figure 17 (c) examines 593 

the impact of altering loading frequency levels on ISS, under the same three temperatures (25, 35, and 45 594 

°C), maintaining a normal stress of 126 kPa and a constant shear stress of 196 kPa. The illustration 595 

distinctly shows that an increase in loading frequency results in a rise in ISS , applicable to all temperature 596 

conditions. 597 

A noteworthy finding from Figure 17 (a, b, and c) is the notable consistency observed between the 598 

predicted values produced by the proposed prediction models (ANN and GEP) for ISS and the 599 

corresponding experimental data. This harmonious alignment in ISS predictions, achieved through both 600 



ANN and GEP models, highlights the models' precision and dependability in reflecting real-world 601 

scenarios within the specified range. 602 

 603 

Figure 17. Analysis result of inputs parameter on the ISS under different condition based on the proposed 604 

ANN and GEP models: (a) normal stress; (b) shear stress; (c) loading frequency.  605 

Similarly, Figure 18 (a, b, and c) illustrates the variation in IFL under different test conditions. Figure 18 606 

(a) shows the IFL changes with different normal stress levels under three temperature environments (25, 607 

35, and 45 °C), paired with a shear stress of 196 kPa and a loading frequency of 10 Hz. It is clearly 608 
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observed that IFL increases under all temperature settings when normal stress levels are elevated. In 609 

Figure 18 (b), the impact of varying shear stress levels on IFL is presented, while temperatures remain 610 

stable (25, 35, and 45 °C), alongside a fixed normal stress of 126 kPa and a constant loading frequency of 611 

10 Hz. This segment of the figure demonstrates that an increase in shear stress is associated with a decline 612 

in IFL under all temperatures. Lastly, Figure 18 (c) explores the IFL response to different loading 613 

frequencies, set against the backdrop of the same temperature conditions (25, 35, and 45 °C), with a 614 

constant normal stress of 126 kPa and a fixed shear stress of 196 kPa. This illustration clearly shows that 615 

increasing the loading frequency results in an increase in IFL in all temperature scenarios. Moreover, it is 616 

evident that the predicted values for the IFL generated by the ANN and GEP models closely match the 617 

experimental data. This alignment in predictions underscores the accuracy and dependability of both 618 

models in mirroring real-world conditions within their defined parameters. 619 

In summary, the remarkable consistency between the model predictions and experimental data across 620 

diverse conditions, as demonstrated in Figures 17 and 18, affirms the effectiveness of the ANN and GEP 621 

models. Furthermore, these results offer crucial insights into the interface fatigue behavior under service 622 

loads. Through a detailed analysis, the models and experiments contribute significantly to comprehension 623 

of the impact of temperature and loading conditions on interlayer fatigue behavior, enhancing the ability 624 

to predict and mitigate potential pavement failures. 625 

This understanding is pivotal for creating durable pavement designs and implementing maintenance 626 

strategies that promote the durability and sustainability of road infrastructure. Quantifying the effects of 627 

environmental factors and loading conditions on interface bonding will pave the way for enhancing 628 

fatigue resistance through structural improvements, informed materials selection, and targeted interface 629 

modifications. Collectively, the comprehensive integration of modeling and experimental approaches 630 

drives the capability to precisely predict interface fatigue performance, thereby optimizing asphalt 631 

pavement constructions for prolonged service life and efficiency. 632 

 633 



634 

Figure 18. Analysis result of inputs parameter on the IFL under different condition based on the proposed 635 

ANN and GEP models: (a) normal stress; (b) shear stress; (c) loading frequency  636 

 637 

4.5.2.  Significance of variables 638 

The superior performance of the proposed ANN models for interface fatigue indices has led to their use in 639 

assessing the significance of input variables. These variables were examined based on their influence on 640 

the output variables (ISS and IFL), with the impact of each variable clearly determined. To quantify the 641 

importance of these input variables, the Error Method has been applied. This approach calculates the ratio 642 
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of the model's error with the exclusion of a specific (i-th) variable to the error recorded when all input 643 

variables are present. This ratio effectively highlights the importance of the i-th variable in the model's 644 

predictive accuracy, as outlined by Ehsani et al. 2023 and Mrzygłód et al. 2020. The following is the 645 

corresponding formula: 646 

                                                             𝑊  𝑀𝑆𝐸𝑖𝑀𝑆𝐸                                                                                    (11) 647 

where 𝑊  is the variable importance measure of the ith variable; 𝑀𝑆𝐸 is the error produced from the 648 

model when all variables are included; and 𝑀𝑆𝐸   is the error produced from the model when the i-th 649 

variable is excluded from the model.  650 

Figure 19 illustrates the variable importance as determined by the proposed ANN models, showcasing that 651 

temperature (T) significantly impacts both ISS and IFL. In the context of ISS, shear stress (SF) and 652 

normal stress (N) are identified as the second and third most influential factors, respectively. In contrast, 653 

for IFL, N and SF stand out as the second and third most crucial variables. Frequency (F) is highlighted as 654 

the least influential variable affecting both ISS and IFL. According to Mrzygłód et al. (2020), a variable is 655 

considered non-essential if its importance weight (Wi) is below 1. In this analysis, however, all input 656 

parameters recorded Wi values above 1, underscoring that the variables were accurately identified and 657 

validated for their significance. 658 
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   Figure 19. Variable importance for ISS and IFL. 660 

5. Summary and conclusions 661 

This study is a pioneering effort by introducing a novel integrated framework that combines two 662 

supervised ML techniques, namely artificial neural networks (ANNs) and gene expression programming 663 

(GEP) for the prediction and evaluation of interlayer fatigue properties in asphalt pavement. The 664 

assessment focused on two key indices, including interface shear stiffness (ISS) and interface fatigue life 665 

(IFL).  84 laboratory specimens were produced and tested using 4PST set-up under selected sets of testing 666 

conditions. R2, RMSE, and MAE were utilized as statistical indices to evaluate the overall performance of 667 

the developed models. Additionally, the models were tested for universality to provide a theoretical basis 668 

for assessing the interlayer fatigue behavior of asphalt pavement, and sensitivity analysis confirmed their 669 

reliability. Based on the findings presented in this paper, the following conclusions can be drawn: 670 

• The proposed ANN model achieved good results in predicting the ISS and IFL of asphalt pavement. It 671 

was found that the models developed using the ANN technique attained R2 values of 98.0% and 97.2% 672 

for the training and testing datasets, respectively, for ISS. Moreover, for IFL of the pavement, the ANN-673 

based models achieved R2 values of 97.2 % and 94.3% in the respective training and testing sets. For 674 

the ISS-ANN model, the RMSE values were computed to be 0.8264 for the training set and 1.0607 for 675 

the testing set. The MAE values for the same model were 0.6363 for training set  and 0.8167 for testing 676 

set. On the other hand, for the IFL-ANN model, the RMSE values  were 0.4987 for training set and 677 

0.7555 for testing set, while the MAE values were 0.3839 for training set  and 0.5817 for testing set. 678 

Hence, the developed ANN model for both ISS and IFL has been well-trained and demonstrates strong 679 

generalization capabilities. 680 

• The developed GEP model for ISS and IFL could explain more than 90% of the measured data. RMSE 681 

and MAE values were computed for the ISS-GEP model, resulting in 1.4020 for training and 1.4911 for 682 

testing for RMSE, and 1.0795 for training and 1.1481 for MAE. In the meantime, for the IFL-GEP 683 

model, the RMSE values were 0.6231 for training and 0.6492 for testing, and the MAE values were 684 



0.4797 for training and 0.5107 for testing. These results suggest that the proposed GEP model can be 685 

used effectively to predict ISS and IFL behavior with high accuracy.  686 

• The results of testing the models for universality revealed that the predicted values of ISS and IFL 687 

generated by both proposed prediction models demonstrated a comparable change trend and closely 688 

align with the experimental data. 689 

• With increasing normal stress from zero to higher values, a significant increase was observed in both 690 

the ISS and IFL. Specifically, elevation of the normal stress from zero to 154 kPa resulted in ISS 691 

increases of 178.5%, 204.9%, 222.3%, and 112.6% at respected temperatures of 15°C, 25°C, 35°C, and 692 

45°C. Meanwhile, IFL exhibited increases of 69.9%, 75.1%, 66.8%, and 84.1% for the same 693 

temperature levels when normal stress was increased in the specified range. 694 

• Higher shear stress levels resulted in lower shear stiffness and fatigue life of the interface at all 695 

temperatures. When the shear stress was increased from 163 kPa to 359 kPa, the ISS experienced 696 

declines of65.4%, 61.2%, 57.2%, and 59.1% at temperatures of 15°C, 25°C, 35°C, and 45°C, 697 

respectively. Moreover, the rate of IFL decreased by17.0% 18.9%, 35.1%, and 46.4% for the same 698 

temperature levels when the shear stress was raised in the specified range. 699 

• When loading frequency was elevated from 1 Hz to 10 Hz, the ISS raised by 100.6%, 94.8%, 124.1%, 700 

and 83.1%, at temperatures of 15°C, 25°C, 35°C, and 45°C, respectively. Concurrently, the rate of 701 

fatigue life (IFL) increased by 18.4%, 25.0%, 56.8%, and 58.3% for the same temperature levels when 702 

the loading frequency increased in the specified range. 703 

• Temperature changes had a substantial effect on both the ISS and IFL in asphalt pavement. Specifically, 704 

as the temperature increased from -10 to 45 °C, the ISS declined by 81.3%. Similarly, changing the test 705 

temperature from 0 to 45°C resulted in a reduction in IFL by 59.3%. 706 

In summary, the findings of this research could make a pivotal contribution to interlayer bonding 707 

designs in asphalt pavements. However, it is acknowledged that broadening the experimental dataset 708 

will further refine the predictive accuracy of the models developed using hybrid machine learning 709 



approaches. Furthermore, this study was limited to using a single tack coat type and application rate. 710 

Therefore, future research will aim to explore a more diverse range of tack coat types and application 711 

rates. This expansion will also include an examination of other critical factors such as aging and 712 

moisture effects, offering a deeper and more comprehensive understanding of interface fatigue behavior.  713 
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