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Abstract

Electron Bernstein waves (EBWs) are theorised to efficiently drive current in
spherical tokamak power plants, e.g. Spherical Tokamak for Energy Production
(STEP). At high temperatures (Te ≳ 4 keV), relativistic effects can significantly
impact wave propagation. This work presents relativistic calculations of EBW
wave propagation, damping, and current drive (CD) in a conceptual STEP plasma.
Kramers-Kronig relations are exploited to efficiently evaluate the fully-relativistic
dispersion relation for arbitrary wave-vectors, leading to a >50x speed-up compared
to previous efforts. Current drive efficiency is calculated using both linear and quasi-
linear codes. Thus, for the first time, large parametric scans of fully-relativistic EBW
CD simulations are performed through ray-tracing. In STEP, three main classes of
rays are identified. The first class propagate deep into the core (ρ < 0.5), but exist
only if relativistic effects are accounted for. They damp strongly at the fundamen-
tal harmonic on nearly-thermal electrons and thus drive little current. A second
class of rays propagate to intermediate depths (ρ ≈ 0.3 − 0.7) before damping at
the 2nd harmonic. Their CD efficiencies are significantly altered due to relativistic
changes to trajectory and polarisation. The third class of rays damp strongly far
off-axis (ρ > 0.7), predominantly at the second harmonic. These ray trajectories
are sufficiently short and “cold” that relativistic effects are unimportant. In linear
CD simulations, the optimal launch point corresponds to this third class of rays,
suggesting that non-relativistic simulations are adequate. However, quasilinear cal-
culations indicate that, at reactor relevant powers, current drive is maximised at
ρ ≈ 0.6. This quasilinear optimal point corresponds to the second class of rays, for
which relativistic propagation does matter.

1 Introduction

Electron Bernstein waves (EBWs) can drive toroidal current in tokamaks by asymmet-
rically damping on a resonant electron population. EBWs do not have a density cutoff,
making them attractive as a current drive actuator in overdense plasmas (ωpe > Ωe, where
ωpe and Ωe are the electron plasma and electron cyclotron frequency, respectively) [1]. For
example, off-axis EBW current drive (EBCD) is expected to be three times as efficient as
electron cyclotron current drive during steady-state operation in STEP [2ś4]. It is there-
fore being strongly considered as a current-drive actuator for STEP, where >100MW of
microwave power (delivered by hundreds of 1MW class gyrotrons) will be used to deliver
∼ 4MA of auxiliary steady-state current. The resulting current-drive system requires
signiőcant recirculating power. Its efficiency is a critical factor in optimising Qeng.

∗Corresponding author: bodhi.biswas@york.ac.uk
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EBCD performance can be sensitive to plasma and launch conditions, and so accurate
modelling of wave propagation, damping, and electron response is necessary. Propagation
is typically modelled using ray-tracing, while Fokker-Planck codes model damping and
the electron response [5,6]. Relativistic effects can signiőcantly impact wave damping and
the electron current response. Relativistic fast electrons shift and broaden the cyclotron
resonance, and it is standard practice to model these effects. A relativistic population
also impacts current drive (CD) efficiency through the modiőcation of collisionality, and is
therefore routinely modelled in linear and quasilinear CD codes. In both cases, the direct,
relativistic interaction between the EBW and the electrons is limited to the cyclotron
resonance curve in momentum-space.

Relativistic propagation may also be important at reactor-relevant temperatures. Mod-
iőcations to the wave trajectory in (r,k)-space and its polarisation will affect CD perfor-
mance. In addition, relativistic effects cause a narrowing of the low-őeld-side cyclotron
resonance [7]. In simulations that employ relativistic damping but non-relativistic ray
trajectories, this narrowing can cause the weak-damping approximation to break (making
ray-tracing invalid) prior to the complete depletion of ray power. This problem is fre-
quently encountered in STEP simulations for rays that propagate sufficiently far into the
core (ρ < 0.4) and approach the fundamental harmonic. To model this parameter regime,
and to ensure accuracy elsewhere, requires simulating relativistic propagation.

This is challenging. Unlike the resonant damping, propagation requires evaluating
the Hermitian contribution to the dielectric tensor. Doing so for the fully-relativistic,
kinetic dispersion is numerically cumbersome. Trubnikov őrst derived the fully-relativistic
dispersion by linearising the Vlasov equation and applying the method of unperturbed
orbits [8]. Treating the time integral analytically produces a 2D velocity integral (v⊥, v||)
that must be evaluated numerically. This is Trubnikov’s ł1st Formž. The integrand
quickly decays with |v|, but numerical challenges persist due to poles along resonance
curves. Weiss developed a numeric technique for this integral [9], but it is still slow
because it is 2D. Trubnikov’s ł2nd Form" treats the velocity integral analytically, leaving
a 1D time integral that must be evaluated numerically. This is typically faster to evaluate
than the 1st Form. However, the integrand is highly oscillatory in time and roughly decays
as exp

(

−|N∥|t
)

, where N|| is the parallel refractive index. In a toroidal geometry, N|| is
not conserved and can become arbitrarily small, leading to signiőcant slowing down of the
ray-tracer. Previous efforts to simulate relativistic EBW propagation and damping use
approximate slab-geometries such that the ray-tracing equations are not needed [7, 10].
One notable exception is ray-tracing studies in ARIES-ST by Nelson-Melby et al. [11].
They report that each ray simulation requires several wall-clock hours (as opposed to
several seconds for a non-relativistic ray). Such numerical expense has made difficult a
thorough investigation of the effects of relativistic propagation on current drive.

Numerous efforts have been made at approximating the fully-relativistic dispersion
[12ś16]. These are commonly referred to as łweakly-ž or łmoderately-žrelativistic treat-
ments since they take the limit µe ≡ c2/v2te ≫ 1, where c is the speed of light and
vte =

√

Te/me is the thermal electron velocity. These formulations are often also con-
strained to small N|| and either the small or large λ limit (where λ = µ−1

e (N⊥/Y )2 is the
Larmor-radius parameter and Y ≡ Ωe/ω). A helpful review of various weakly relativistic
dispersions can be found in Volpe et al. and references therein [16]. Constraints on Larmor
radius are particularly limiting for EBWs, as λ can span from ≪ 1 prior to X-B mode-
conversion, to ≳ 1 afterwards. Constraints on λ aside, the validity of weakly-relativistic
models is questionable for reactor-relevant temperatures (Te ∼ 20 keV or equivalently
µ−1

e ∼ 0.04).
This work applies a fully-relativistic kinetic dispersion to the problem of O-X-B launch,
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both in a slab and toroidal geometry. (Here, łOž, łXž, and łBž denote the cold ordinary and
extra-ordinary modes, and the EBW, respectively.) Following Pavlov and Castejon [17],
the Kramers-Kronig relations are exploited to efficiently evaluate the Hermitian part of
the fully-relativistic dielectric tensor. (It is relatively easy to evaluate the anti-Hermitian
part of the fully-relativistic dielectric tensor.) At low N||, the result is a numeric scheme
that is ∼100x faster than direct evaluation of Trubnikov’s 2nd form. Its accuracy is exact,
and its efficiency is independent of N||. (Consequently, it is also applicable to the study
of direct X-B launch at low N||.)

A ray-tracer is developed to solve fully-relativistic EBW trajectories in a toroidal
geometry. It is coupled to a linear adjoint model [18] to provide quick estimates of current
drive at low microwave power. The ray-tracer is also coupled to CQL3D [19] to account
for quasilinear effects at high powers. In doing so, the impact of relativistic propagation
on CD efficiency is modelled for the őrst time. This modelling workŕow is applied to a
conceptual STEP plasma to demonstrate important relativistic effects that are presently
neglected in non-relativistic simulations. We highlight a particular class of relativistic
rays that propagate deep into the STEP plasma (ρ < 0.5) and strongly damp at the
fundamental harmonic. These rays cannot be modelled with a non-relativistic dispersion
without the weak-damping approximation breaking.

Section 2 formulates the numeric scheme for evaluating the fully-relativistic dispersion
using Kramers-Kronig relations. Section 3 tests this dispersion against others by evolving
the ray-tracing equations in a slab geometry. Section 4 applies this model to a toroidal ray-
tracer with STEP plasma parameters. The impact of relativistic effects on CD efficiency
is discussed, both in the linear (low-power) and quasilinear (high-power) regime. Section 5
summarises these őndings, and conclude that relativistic propagation is indeed important
to model in STEP.

2 Fast evaluation of relativistic dispersion

We seek to construct a fast, numerically robust method to evaluate the fully-relativistic
EBW dispersion relation. We start with Trubnikov’s 1st Form [8,20]. It is assumed that
the wave frequency is much larger than the ion cyclotron and ion plasma frequencies
(ω ≫ Ωi, ωpi) and so ion dynamics can be ignored. The susceptibility tensor in Stix
coordinates [21] is

χij =
∞
∑

n=−∞

χn
ij (1a)

χn
ij = −X

2

µ2
e

K2(µe)
F n
ij (1b)

F n
ij =

∫ ∞

−∞

dp̄∥

∫ ∞

0

dp̄⊥p̄⊥
e−µeγe

γe

P n
ij

γe −N∥ p̄∥ − nY
(1c)

where X ≡ ω2
pe/ω

2, K2 is the MacDonald function of 2nd type, p̄ ≡ p/(mec) is normalised

particle momentum, γe =
√

1 + p̄2 is the Lorentz factor, and n is the cyclotron harmonic.
The subscripts ł||ž and ł⊥ž denote the parallel and perpendicular component with respect
to the background magnetic őeld. The dyadic elements P n

ij are functions of p̄∥, p̄⊥, ν∥,
and ν⊥, where ν ≡ N/Y . These elements are

P n
11 =

n2

ν2⊥
J2
n (2a)
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P n
12 = −P n

21 =
ip̄⊥n

ν⊥
JnJ

′
n (2b)

P n
13 = P n

31 = − p̄∥n
ν⊥

J2
n (2c)

P n
22 = p̄2⊥J

′2
n (2d)

P n
23 = −P n

32 = ip̄∥p̄⊥JnJ
′
n (2e)

P n
33 = p̄2∥J

2
n (2f)

where Jn = Jn(ν⊥p̄⊥) is the Bessel function of the 1st kind, and J ′
n is its őrst derivative.

The variable change p̄⊥ → γe is taken, resulting in

F n
ij =

∫ ∞

−∞

dp̄∥I
n
ij(p̄∥) (3a)

Inij(p̄∥) =

∫ ∞

1

dγee
−µeγe

P n
ij

γe −N∥ p̄∥ − nY
(3b)

The integrand in eq. 3b has a pole at

γe = N∥ p̄∥ + nY ≡ γne (4)

This pole represents the wave-particle resonance, and therefore contributes to the anti-
Hermitian (AH) component of the susceptibility χ. We rewrite:

Inij(p̄∥) = In,Hij + iIn,AH
ij (5a)

In,Hij = P
∫ ∞

1

dγee
−µeγe

P n
ij

γe − γne
(5b)

In,AH
ij = ±πe−µeγ

n

e P n
ij(p̄⊥(p̄∥, γ

n
e )) (5c)

where H denotes the Hermitian part, and P denotes the principal value. In eq. 5c, p̄⊥ is
evaluated at the pole and is therefore a function of p̄∥ and γne , in accordance with eq. 4.
The Sokhotski-Plemelj theorem has been used. The ambiguity regarding the ±-sign in
eq. 5c is resolved by following the Landau prescription. Expanding around the pole in ωi

reveals γne ≈ (ck∥p̄∥ + nΩe)(ωr − iωi)/ω
2
r . Next, for a wave with positive real frequency,

ck∥p̄∥ + nΩe > 0 must hold for the wave-particle resonance to exist. With these two
considerations, it follows that the pole must be kept below the integration contour in
complex γe-space. Accordingly, the minus-sign should be used.

The AH component of F n
ij is simply

F n,AH
ij = −π

∫ ∞

−∞

dp̄∥e
−µeγ

n

e P n
ij(p̄⊥(p̄∥, γ

n
e )) (6)

Equation 6 is a 1D integral along the resonance curve in momentum-space. The integra-
tion domain is bounded for |N∥| < 1. Even for |N∥| ≥ 1, the integrand quickly decays as
γne grows. Substitution into eq. 1b then provides

χn,AH
ij = −X

2

µ2
e

K2(µe)
F n,AH
ij (7)

Kramers-Kronig (KK) relations [22, 23] can be exploited to quickly evaluate χn,H
ij . Their

application to linear plasma waves is reported in Brambilla’s textbook [24]. Pavlov and
Castejon [17] have recently applied such a strategy to evaluating the fully-relativistic
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EBW dispersion relation. This paper applies a slightly different formulation which is
quantitatively identical.

Suppose one wishes to evaluate F(ω,k) = G(ω,k)+ iQ(ω,k), where G and Q are real.
Assume F is analytic in the upper-half plane in complex ω-space and decays such that
limω→±∞ |F| → 0. Then the following KK relations apply:

G(ω,k) = 1

π
P
∫ +∞

−∞

Q(ω′,k)

ω′ − ω
dω′ (8a)

Q(ω,k) = − 1

π
P
∫ +∞

−∞

G(ω′,k)

ω′ − ω
dω′ (8b)

We limit the integration to positive ω by taking eqs. 8 and multiplying the numerator
and denominator by (ω′ + ω). This results in

G(ω,k) =















2

π
P
∫ +∞

0

ω′Q(ω′,k)

ω′2 − ω2
dω′ if Q(ω) is even.

2ω

π
P
∫ +∞

0

Q(ω′,k)

ω′2 − ω2
dω′ if Q(ω) is odd.

(9)

and a similar relation for Q(ω,k). Thus, eqs. 9 can be used to evaluate

χn,H
ij (ω,k) =















2

π
P
∫ +∞

0

ω′χn,AH
ij (ω′,k)

ω′2 − ω2
dω′ (i, j) = (1,1), (1,3), (2,2), (3,3)

2ω

π
P
∫ +∞

0

χn,AH
ij (ω′,k)

ω′2 − ω2
dω′ (i, j) = (1,2), (2,3)

(10)

Note that χn,H
ij and χn,AH

ij are not restricted to purely real functions. This can be shown

by separating χn,H
ij , χn,AH

ij into real and imaginary parts and applying the KK relations

to each. Evaluating χn,H
ij requires a single 1D integration along ω′ in the łouter loopž,

and 1D integrations along γe in the łinner loopž to evaluate χn,AH
ij (ω′)(see eq. (6-7)).

The integration domain of the outer loop can be further bounded by realising that the
resonance curve exists only for n2Y 2 + N2

|| > 1. Accordingly, the upper-bound of the

integration in eq. 10 is truncated to ω′ < Ωe

√

n2 +N2
||/Y

2. In this domain, the integrand

is smooth, allowing for an efficient Gaussian-quadrature scheme. The singularity at ω′ = ω
is handled using techniques similar to those described in Section 3 of Weiss [9].

Through the KK relations, χn,H
ij is roughly proportional to χn,AH

ij . Therefore, only the
the cyclotron harmonic minimising |1 − nY | - and its neighbouring harmonics - will be
non-negligible. Correspondingly, only a few terms in the series are needed for convergence.
More terms are needed in the presence of strong harmonic overlap (i.e. if Te and |N||| are
sufficiently large).

Figure 1 plots the speed at which the fully-relativistic dispersion is evaluated using
the KK method. It is compared against an optimised evaluation of Trubnikov’s 2nd
formula using numeric techniques borrowed from the code R2D2 [7]. (A direct evaluation
of Trubnikov’s 1st formula, without the use of KK relations, is not plotted. It is much too
slow.) Trubnikov’s 2nd form is faster at high N||. However, as N|| drops, the dispersion
relation becomes increasingly slow to converge. This can be particularly problematic in
toroidal geometries, where N|| along a ray is not conserved and can become small. In
some cases, a single ray trajectory can take several hours as it approaches very small N||.
In contrast, the speed of convergence for the KK-formula is independent of N||, making
it clearly favorable in situations where N|| ≲ 0.65. (This N∥, at which both methods
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perform equally well, is weakly sensitive to other wave parameters.) In toroidal geometry
(see Section 4), an optimised ray-tracing scheme will be employed to switch between the
two dispersions depending on N||.

Figure 1: Benchmark of speed at which the fully-relativistic dispersion re-
lation in numerically evaluated. A relative error tolerance of 10−7 is used.
Speed of evaluating Trubnikov’s 2nd Form is strongly dependent on N∥. Wave-
parameters: N⊥ = 5, X = 1.3, Y = 0.66, µ−1

e = 0.02. Test conducted with
the Julia bench-marking tool BenchmarkTools.jl and using a AMD Ryzen 7
3700X 4.05GHz CPU.
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3 Relativisitic effects in slab geometry

Calculation of the fully relativistic dispersion using the KK relations is veriőed in a ray-
tracing simulation of O-X-B launch in slab geometry. Details of the ray-tracer can be
found in Appendix A. The magnetic őeld is directed along the z-direction, while density
varies in the x-direction. A hyperbolic tangent function is used for the density proőle, as
shown in Figure 2. The density gradient at the cutoff is set to k0Ln = 10, with k0 being
the vacuum wave-number and Ln ≡ ne/|∂xne| being the density scale-length.

Figure 2: Density proőle in slab geometry. Dashed vertical line denotes O-
mode density cutoff (X = 1). Dash-dotted vertical line denotes the upper
hybrid resonance (UHR), which corresponds to X + Y 2 = 1.

An O-mode is launched into the high-density region at the optimal angle for O-X
mode-conversion (N|| ≡ Nz =

√

Y/(1 + Y )). In these runs, the magnetic őeld is uniform
and Y = 0.77 everywhere. Electron temperature is 1keV. Figure 3 shows the ray tra-
jectory in real-space (left) and phase-space (right) as a function of x. Three dispersion
relations are plotted: (1) the non-relativistic, warm dispersion, (2) the fully-relativistic
KK formula, and (3) the fully-relativistic Trubnikov 2nd form. The latter two should be
quantitatively identical, which enables the benchmarking of our code. The three disper-
sions show excellent agreement until the X-mode begins converting to the EBW, at which
point the non-relativistic dispersion slightly over-estimates N⊥. In addition, the non-
relativistic ray travels slightly more obliquely (in the z direction). These results indicate
a slight disagreement between the non-relativistic and relativistic Bernstein modes.

Figure 3: Ray trajectories in slab geometry (see Fig. 2) with Te = 1keV. Blue:
non-relativistic. Red: KK. Green dashed: Trubnikov 2nd Form. Dashed line
denotes the O-Mode cutoff. Dash-dotted line denotes the UHR.

Figure 4 repeats the previous exercise at Te = 4keV. The disagreement in ray tra-
jectories following the X-B mode-conversion is now signiőcantly larger. Note that STEP
operates with a pedestal temperature of ∼ 4keV, which coincides with the UHR. This
suggests that relativistic propagation may signiőcantly impact EBCD.
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Figure 4: Ray trajectories in slab geometry (see Fig. 2) with Te = 4keV. Blue:
non-relativistic. Red: KK. Green dashed: Trubnikov 2nd Form. Dashed line
denotes the O-Mode cutoff. Dash-dotted line denotes the UHR.

This exercise is repeated for Te = 15keV, which is more representative of core temper-
atures in a fusion power plant. Since ray-tracing is being employed, we must check that
the weak-damping condition remains valid along the trajectory (| Im (N⊥) | ≪ Re (N⊥)).
This requires keeping Te ≈ 3keV near the UHR, and then ramping up Te sufficiently far
away from this region. One such temperature proőle is shown in Figure 5. The result-
ing dispersion relation and ray trajectories are shown in Figure 6. The non-relativistic
ray strongly diverges in both real and phase-space at Te ≳ 10keV. The reason for this
disagreement can be gleaned from plotting | Im (N⊥) |/Re (N⊥) along the rays. As Te in-
creases, the non-relativistic ray strongly damps at the Doppler-broadened 1st harmonic.
The ratio Im (N⊥) /Re (N⊥) ≈ 0.15 (see Fig. 7). The weak-damping condition is violated,
and the ray trajectory is no longer physical. If Y is increased (or equivalently, if ω/Ωe

is decreased) such that the ray trajectory moves closer to the 1st harmonic resonance,
this problem becomes more severe. Figure 8 demonstrates how the non-relativistic ray
can acquire a group velocity faster than light for Y > 0.82 (equivalently, ω/Ωe < 1.22).
In contrast, with relativistic effects included, the 1st harmonic resonance is weakened.
The relativistic ray can therefore penetrate further into the plasma without breaking the
weak-damping approximation. As will be shown in Section 3, this effect can preclude ray-
tracing simulations of non-relativistic EBWs as they approach the low-őeld-side harmonic
in STEP.

Figure 5: Modiőed slab geometry with tapered Te proőle. Solid vertical line
denotes O-mode density cutoff. Dash-dotted vertical line denotes the UHR.

So far, the impact of relativistic effects on wave polarisation has not been commented
on. Figure 9 plots the electric őeld components for the Te = 15keV case. There is an
small impact on E∥ and negligible impact on E−. A study of this effect by Nelson-Melby
et al. [11] found this effect to be much larger. However, in that study, rays were evolved
in a toroidal geometry and thus N∥ was not kept constant. This indicates that the direct
impact of relativistic effects on wave polarisation is small. The indirect impact, via a
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Figure 6: Ray trajectories in modiőed slab geometry (see Figs. 2 and 5). Blue:
non-relativistic. Red: KK. Green dashed: Trubnikov 2nd Form. Dashed line
denotes the O-Mode cutoff. Dash-dotted line denotes the UHR.

Figure 7: Imaginary perpendicular refractive index, normalised to real com-
ponent, along rays in a modiőed slab geometry (see Figs. 2 and 5). Blue:
non-relativistic. Red: KK. Green dashed: Trubnikov 2nd Form.

Figure 8: Group velocity versus distance along the ray trajectory (S) for ω/Ωe

= 1.21 (blue), 1.22 (orange), and 1.3 (black). Solid and dashed lines denote
relativistic and non-relativistic rays, respectively. Using the modiőed slab
geometry (see Figs. 2 and 5).

modiőed phase-space trajectory, can be much larger.
It should also be noted that the choice of dispersion shifts the O-mode cutoff density

away from ω = ωpe. This effect grows with Te. The new cutoff can be approximated by
evaluating ω = ωpe with a relativistic mass correction me → γme, where γ is evaluated

at vte =
√

Te/me. For the temperatures under consideration, these shifts are at sub-
millimetre scales. For example, they are only perceptible in the slab ray trajectories
plotted in this section if zoomed in at the cutoff. This should have negligible impact on
O-X mode-conversion in STEP.
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Figure 9: Wave polarisation along rays in a modiőed slab geometry (see Figs.
2 and 5). The component E∥ = Ez and E− is the right-hand polarisation.
Blue: non-relativistic. Red: KK. Green dashed: Trubnikov 2nd Form.
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4 EBCD modelling in STEP geometry

Electron Bernstein wave current drive performance - between the 1st and 2nd cyclotron
harmonics - is scoped for a conceptual STEP operation point. (Note that this plasma
is different from the one modelled in our earlier analysis [18].) It is similar to the
EBCD+ECCD łconservative conőnementž steady-state operating point (a.k.a. EB-CC)
detailed in Tholerus et al. [4] With a bootstrap fraction of ∼ 81%, roughly 4 MA must
be driven externally. (Please refer to Table 5 and Fig. 16 in [4] for the target current
drive requirements.) Figures 10 and 11 summarise the parameters and geometry of this
plasma. A Zeff of 2.5 is assumed everywhere. For the assumed microwave frequencies, the
1st harmonic resonance occurs on the inboard side, but can be accessed at larger R due
to Doppler broadening. Likewise, the Doppler broadened 2nd harmonic can be accessed
as the EBW passes through the magnetic well near the outer mid-plane (visible in Fig.
10b). The 2nd harmonic is easier to access at higher microwave frequencies.

We have conducted a ray-tracing scan over launch parameters to őnd the optimal
point(s) that maximise CD efficiency. In the case of optimal O-X-B mode conversion,
the wave |N||| at the O-mode cutoff (ω = ωpe) is already constrained: it should approach

N||,opt =
√

Y/(1 + Y ) [1]. This constraint results in two free parameters for the microwave
ray trajectory: frequency and poloidal launch height. We limit ourselves to considering
microwave launch between 85 and 105 GHz. As seen in Fig. 10, frequencies above 105
GHz will move the O-mode cutoff well into the plasma, past the pedestal, where a high Ln

will degrade the O-X mode-conversion efficiency. Likewise, frequencies below 90GHz will
move the upper-hybrid frequency (UHR) into the SOL, especially farther from the mid-
plane. This should be avoided, given uncertainties in the SOL proőle and the possibility
of parasitic edge losses (i.e. collisional damping and parametric decay [25, 26]). For the
purposes of exploring relativistic effects, we have extended the scan down to 85 GHz to
capture an interesting class of rays that damp near-axis, further discussed in Section 4.1.

The poloidal launch height is scanned via prescribing ZOX , which is the Z coordinate
(in R, φ, Z cylindrical coordinates) where the O-X mode-conversion takes place at the
O-mode cutoff. At this point, N|| is set to N||,opt and N⊥ is simply zero. From this
location the X-mode is evolved forward in time; it will initially travel into the plasma,
then travel out towards the UHR, before mode-converting to the EBW and propagating
into the core. In contrast, the O-mode is evolved backwards in time to determine the
position and orientation of the external launcher. In this way, optimal O-X-B launch is
forced in the simulation. From Fig. 10, it is evident that the upper hybrid resonance can
be signiőcantly outside the last closed ŕux surface (LCFS) for values of ZOX far from the
mid-plane. Thus, the scan is limited to values of ZOX in the range -3.2 and +3.2m.

The 2D scan (f, ZOX) determines all ray trajectories of interest for outboard O-X-B
launch. An adjoint model [18] is used to provide a rough estimate for CD efficiency. It
captures both Fisch-Boozer [27] and Ohkawa [28] current-drive mechanisms, the latter
of which is expected to be dominant far off-axis. The adjoint model is expected to fail
for experimentally-relevant power levels, at which point quasilinear effects will impact
CD location and efficiency. The quasilinear power threshold in STEP is expected to be
∼ 1MW launched microwave power [18], far below what is required for fully non-inductive
operation. Section 4.2 brieŕy discusses quasilinear effects in STEP.

Figure 12 plots relativistic ray trajectories at three separate frequencies. The rays
terminate when they have damped 99.9% of their initial power. While most rays terminate
far off-axis (ρ > 0.7), some rays above the mid-plane can propagate as deep as ρ ≈ 0.3.
It should be noted that at each OX mode-conversion point, there are two optimal wave-
vector orientations. They correspond to N∥ = ±N∥,opt where N∥,opt =

√

Y/(1 + Y ) > 0.

11

Page 11 of 26 AUTHOR SUBMITTED MANUSCRIPT - NF-107250.R2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



(a) f=85GHz (b) f=105GHz

Figure 10: Poloidal cross-section of STEP plasma. Area in dashed green (red)
contour denotes region of strong Doppler-broadened őrst (second) harmonic
resonance, as determined by ω = nΩe ± 3vTek∥ for N∥ = 0.5. Resonance
contours correspond to microwave frequencies of 85GHz (left) and 105GHz
(right). Black dashed contour denotes O-mode cutoff. Solid blue line denotes
UHR. Solid black contours denote ŕux surfaces in increments of 0.2ρ. Colorbar
shows contours of total magnetic őeld. Toroidal magnetic őeld and plasma
current are oriented counter-clockwise when viewed top-down.

The scans shown use N∥ = +N∥,opt. The STEP equilibrium is top-down symmetric with
respect to the mid-plane (Z = 0). As a result, a scan using N∥ = −N∥,opt results in a
variant of Figure 12 where the rays are ŕipped along the mid-plane. They also travel in
the opposite toroidal direction and therefore drive current in the reverse direction.

Figure 13 plots the radial location of peak power deposition and the total current
driven - both as functions of f and ZOX . Rays are shown to most commonly damp far
off-axis. The exception is a group of rays launched above the mid-plane. This can be
attributed to an initial downshift of |N||| following O-X mode-conversion, which narrows
the Doppler broadened 2nd harmonic and therefore weakens strong resonant damping at
the edge. In some cases, the ray may propagate far enough to damp near axis at the
1st harmonic. In contrast, rays launched below the mid-plane undergo an |N||| upshift,
leading to swift resonant damping at the edge. This is explored in more detail in Section
4.1.
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Figure 11: Radial equilibrium proőles in the plasma, where ρ ∝
√
ψtor.

(a) 91 GHz (b) 99 GHz (c) 105 GHz

Figure 12: Poloidal projection of ray trajectories in real-space. Colours rep-
resent different ZOX . Black dashed line denotes UHR. Cyan contour denotes
the O-mode cutoff.

Current-drive is maximised for rays with f≈ 98GHz and ZOX ≈ −1m. Figure 14 reveal
that these below mid-plane launch parameters predominantly lead to strong damping
on the 2nd harmonic, and therefore drive current predominantly through the Ohkawa
mechanism. At lower frequencies, the damping mechanism smoothly transitions to far
off-axis 1st harmonic damping, which can be either Ohkawa or Fisch-Boozer dominant.
Concurrent 1st and 2nd harmonic damping is possible due to a large Doppler broadening
of both resonances. It is found that off-axis 1st harmonic damping is not particularly
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Figure 13: Left: Radial location of peak power deposition. Right: Total
current driven assuming 1MW of launched microwave power. ICD > (<)0
denotes co- (counter-) current drive.

attractive for this STEP operating point.

Figure 14: Fraction of launched power damped at the 2nd harmonic. Remain-
ing power is damped at the 1st harmonic.

4.1 Importance of relativistic ray trajectories

It is worthwhile to inspect a few exemplar rays to better understand their phase-space
evolution and other factors impacting CD location and efficiency. It would also be helpful
to determine when relativistic propagation effects matter. Hence, the previous linear scan
is repeated but with non-relativistic ray trajectories. In the non-relativistic simulations,
resonant damping is still calculated relativistically. For details, see Appendix B. This
łmixedž approach is taken for two reasons. (1) Relativistic effects are known to strongly
impact damping, even in present-day devices. Thus, this mixed approach is the standard
method in existing EBW ray-tracers. (2) In comparing against the mixed approach, the
impact of relativistic propagation is isolated.
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These studies reveal three notable classes of rays.
Near axis (NA) rays: The őrst class of rays are categorised as łNear Axisž damping,

or NA, rays. See Figs. 15 and 16 for examples of such rays at 87GHz. These rays are
launched above the mid-plane such that they initially undergo an |N||| downshift following
O-X mode-conversion. Eventually, they pass through N|| = 0 at ρ < 0.4. Next, |N⊥|
increases as the ray approaches the 1st harmonic. Sufficiently close to the 1st harmonic,
the ray will strongly damp the remainder of its power.

Figures 15 and 16 reveal signiőcant differences between the non-relativistic and rela-
tivistic ray trajectories, in both real and phase-space. The disagreements begin near the
UHR, as expected from slab modelling, and continue to grow as the EBW propagates
further into core.

Of particular interest is the power deposition proőle, as shown in Fig. 17. Both
relativistic and non-relativistic simulations capture the partial ray damping far off-axis
at the 2nd harmonic. Only the relativisitc simulation captures the strong 1st harmonic
damping near ρ = 0.3; the non-relativisitic rays terminate prematurely due to numeric
errors.

Figure 15: Near axis (NA) rays at 87GHz. Poloidal (a) and top-down (b)
projection of ray trajectories. Solid: relativistic. Dashed: non-relativistic. In
(a), black dashed curves show ŕux surfaces and the black solid curve shows the
LCFS. The propagation directions in the poloidal plane of O, X and B waves
are indicated by arrows. In (b), the solid red curve indicates the magnetic axis
and the solid black curves indicates where the LCFS intercepts the mid-plane.

This numeric issue is related to that discussed in Section 3. The relativistic rays make
a low-őeld-side approach to the 1st harmonic and promptly damp all remaining power
according to the relativistic damping model. The non-relativistic rays also approach the
1st harmonic but do not fully damp, at least according to the mixed damping model.
They instead terminate prematurely with ∼ 75% of power un-damped. This is because
the non-relativistic rays violate the weak-damping approximation well before the mixed-
relativistic damping becomes signiőcant. As a result, the rays begin propagating faster
than light, causing the ray-tracer to terminate with an error.

The numeric issue discussed above prevents the non-relativistic ray-tracing of NA
rays. These are also particularly interesting rays because they propagate so far into the
plasma. Naturally, one hopes that relativistic ray-tracing will reveal high CD efficiencies
close to the magnetic axis. This is unfortunately not the case, as small CD efficiencies
of η ≈ 0.001A/W are realised near-axis. In normalised units [29], this corresponds to
ζCD ≡ 32n20RηA/WTkeV ≈ 0.08. These rays are strongly damped near the łpinch-point,ž
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Figure 16: NA rays: Ray trajectories in phase-space. Solid: relativistic.
Dashed: non-relativistic

(a) Non-relativistic (b) Relativistic

Figure 17: NA rays: Power deposition proőles for 1MW ray. f=87GHz. Near-
axis power deposition (at ρ ≈ 0.3) is expected in both the non-relativistic and
relativistic simulations. However, the non-relativistic rays terminate prema-
turely due to numeric errors.

the point at which the low-őeld-side resonance őrst becomes accessible (and then only for
electrons with zero pitch angle). This point corresponds to:

n2
−Y

2 +N2
|| = 1 (11)

where n− is the low-őeld-side harmonic (i.e. n− = 1). Substituting this into the wave-
particle resonance condition reveals that the pinch-point corresponds to resonant particles
with v/vte = c|N|||nY/(vte(1−N2

||)), where vte =
√

Te/me. Thus, resonant particle speed

at the pinch-point is linearly proportional to |N|||. Given |N||| ≈ 0.2 at the pinch-point
(see Fig. 16), this corresponds to electron velocities of v/vte ≈ 1.5. These electrons are
practically thermal, and therefore highly collisional and not attractive for driving current.
One could therefore consider this an electron heating scheme.

Off-Axis (OA) rays: The 2nd class of rays are labelled Off-Axis (OA) rays because
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they deposit power in the region of 0.4 < ρ < 0.7 at the 2nd harmonic. Since these rays
make a high-őeld-side approach to the cyclotron resonance, they are not susceptible to
the same numeric issues plaguing NA rays in non-relativistic simulations. Nevertheless,
there is a signiőcant difference in ray trajectories between the non-relativistic and rela-
tivistic cases, as seen for launch above the mid-plane at 91GHz (see Fig. 18). Again, the
discrepancy starts to become noticeable at the X-B mode-conversion near the UHR.

Figure 18: Off-axis (OA) rays at 91GHz. Poloidal (left) and top-down (middle)
projection of ray-trajectories. Right plot shows trajectories in phase-space.
Solid: relativistic. Dashed: non-relativistic.

At 91GHz, both the relativistic and non-relativistic simulations predict a decrease in
CD efficiency as ZOX increases (see Fig. 19). There is, however, a quantitative mismatch
in driven current. This mismatch grows as ZOX increases and the power-deposition peak
moves inwards. At ZOX ≈ +1.2m, the relativistic case predicts ∼ 200% higher CD
efficiency (0.014 A/W versus 0.0045 A/W).

Far Off-axis (FOA) rays: The 3rd class of rays are labeled Far Off-Axis (FOA)
rays because they damp near the plasma edge (ρ > 0.7). Figure 20 plots example ray
trajectories for below mid-plane launch at f=101GHz. Once again, discrepancies between
the relativistic and non-relativistic cases start to become noticeable at the X-B mode
conversion. Concurrently, these rays undergo a large |N|||-upshift. Hence, they very
quickly damp in the edge. Given that these trajectories are relatively short, there is little
cumulative disagreement between the relativistic and non-relativistic trajectories. In turn,
there is little disagreement in the current drive proőles (see Fig. 21). In other words,

(a) Non-relativistic (b) Relativistic

Figure 19: OA rays: Cumulative driven current proőle for 1MW ray. Linear
CD model used. f=91GHz.
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toroidal effects and Doppler broadening seem to overshadow the impact of relativistic
propagation. Furthermore, these launch parameters predict a robust, high CD efficiency
of ∼ 0.03A/W localised to ρ ≈ 0.8.

Figure 20: Far off-axis (FOA) rays at 101GHz. Poloidal (left) and top-down
(middle) projection of ray-trajectories. Right plot shows trajectories in phase-
space. Solid: relativistic. Dashed: non-relativistic.

(a) Non-relativistic (b) Relativistic

Figure 21: FOA rays: Cumulative driven current proőle for 1MW ray. Linear
CD model used. f=101GHz.
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4.2 Quasilinear effects at high EBW power

The linear current drive model predicts maximum efficiency at f≈ 98GHz and ZOX ≈
−1m. This corresponds to the FOA ray class, which suggests non-relativistic simulations
are adequate. However, we have so far neglected quasilinear effects.

Quasilinearlity here refers to how CD efficiency is a function of power at sufficiently
high power. This is caused by the EBW modifying the electron distribution away from
a Maxwellian. Veriőcation of the EBW linear current drive model against CQL3D [19]
reveals that quasilinear effects become important when ⟨E⟩/

√

n19 ln Λ/16 ≳ 50V/cm,
where ⟨E⟩ is the ŕux-surface averaged RF electric őeld amplitude, n19 ≡ ne/10

19m−3,
and ln Λ is the Coulomb logarithm [18]. This roughly translates to ≳ 1MW of launched
EBW power in STEP. On the other hand, ≳ 100MW of EBW power is required for fully
non-inductive steady state operation. It is therefore prudent to check how the conclusions
above are impacted by quasilinearity.

A ray-tracing scan in (f, ZOX) is conducted around the linear optimal point. Then
the ray trajectories are coupled to CQL3D for another scan in launched ray power. The
power-scan is done for 1kW, 1MW, 10MW, and 100MW. Quasilinear effects are only
noticable at >1MW. The result of this scan is presented in Figs. 22 and 23.

Figure 22 plots global CD efficiency (η) as a function of f, ZOX , and launched EBW
power. At lower power (≤ 1MW), there is good agreement with the linear adjoint model.
With increasing power (> 1MW), the optimal launch point is shifted to lower frequencies
and larger ZOX . Assuming a 100MW beam, the new optimal launch point is moved to
91GHz and ZOX ≈ −0.25m. Furthermore, at 100MW, the linear optimal launch point
sees a ∼ 27% decrease in η.

(a) PEBW =1MW (b) PEBW =10MW (c) PEBW =100MW

Figure 22: Global current drive efficiency η = ICD/PEBW [A/W] as a function
of frequency (f), launch height (ZOX), and launched microwave power (PEBW).
Black cross indicates the optimal launch point at which η is maximised.

Figure 23 plots the radial location for maximum |jtor| deposition. The general trend
is for a radial shift inward as power increases. This is as expected, because the wave-
particle interaction is a diffusive term that decreases |∇

v
fe| at the resonance. In turn,

wave damping will saturate at high powers, allowing for deeper penetration of the beam
into the plasma. This effect is most noticeable for above mid-plane launch at 90-95GHz,
where the peak ρ shifts by −0.05 between the 1MW and 100MW case. Notably, the new
optimal launch point corresponds to a peak deposition at ρ ≈ 0.6. This is safely in the
OA class of rays, indicating that relativistic effects are important.

It should be emphasised that quasilinearity only impacts ray damping and the current
response; it does not impact the ray trajectory. However, in taking account for quasilinear
effects, the optimal launch point (that which maximised η) is shifted from the FOA ray
class to the OA ray class.
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(a) PEBW =1MW (b) PEBW =10MW (c) PEBW =100MW

Figure 23: Radial location of peak current deposition as a function of frequency
(f), launch height (ZOX), and launched microwave power (PEBW). White cross
indicates the optimal launch point at which η is maximised.
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5 Summary

Efficient evaluation of the fully-relativistic hot dispersion, via the KK relations, enables
fast EBW ray-tracing simulations in reactor-relevant plasmas. Such a ray-tracer is being
applied to the optimisation of the EBCD launcher in STEP.

Ray-traces of O-X-B mode-coupling in slab geometry verify that the KK dispersion
exactly matches Trubnikov’s 2nd Form, as it should. Slab runs indicate that relativistic
modiőcation to the ray trajectory becomes noticeable at the X-B mode-conversion and
beyond. This effect grows with temperature. At Te ≳ 4keV, one expects signiőcant
modiőcation to the Bernstein wave. This is comparable to the pedestal temperature in
STEP, and so further motivates the modelling of relativistic wave propagation in EBCD
calculations.

Fully relativistic simulations of EBW ray propagation, damping, and current-drive
have been conducted for a conceptual STEP steady-state operating point. To őnd all
possible beam trajectories of interest, a 2D scan in frequency and poloidal launch height
has been conducted. The parameter scan was restricted to outboard launch, and frequen-
cies between 90 to 105 GHz to ensure efficient O-X-B coupling.

The relativistic EBCD simulations are compared against simulations in which ray-
propagation is modelled in the non-relativistic limit. In both cases, damping is modelled
relativistically (see Appendix B). Three particularly interesting classes of rays are iden-
tiőed. (1) Near-axis, or NA rays, propagate deep into the core and fully damp following
a low-őeld-side approach of the 1st cyclotron harmonic. Relativistic effects weaken the
low-őeld-side cyclotron resonance. In turn, non-relativistic ray trajectories become un-
physical prior to fully damping because the weak-damping approximation breaks down.
Thus, these rays reveal a parameter regime in which relativistic simulations are essential.
NA rays are only possible for above mid-plane launch because this corresponds to an
initial |N||| down-shift. In turn, these rays avoid fully damping at the Doppler-broadened
2nd harmonic at larger ρ. Unfortunately, this |N||| downshift also results in poor CD effi-
ciency at the 1st harmonic. (2) Off-axis, or OA rays, propagate to mid-radius before fully
damping at the 2nd harmonic through a high-őeld-side approach. This coincides with a
weak evolution in N||. The high-őeld-side cyclotron resonance is strengthened through rel-
ativistic effects. Thus, issues with the weak-damping approximation in the non-relativistic
limit are avoided. Nevertheless, signiőcant disagreement in the ray trajectories and CD
proőles persist. Thus, relativistic simulations are necessary for accurate predictions. (3)
Far-off-axis, or FOA rays, refer to those with short trajectories that strongly damp at
ρ > 0.7 following a strong |N||| upshift. While the relativistic and non-relativistic tra-
jectories start to diverge following the X-B conversion, the rays are too short for this to
matter. A subset of these rays also exhibit high current drive efficiency.

Linear parametric scans suggest that global CD efficiency is maximised near 98GHz
and ZOX = −1m, resulting in η ≈ 0.03A/W, or ζCD ≈ 0.6 in normalised units. Current-
drive would be localised to ρ ≈ 0.75. This corresponds to the FOA class of rays, indicating
relativistic propagation is not important at the optimal launch point. However, prelim-
inary quasilinear modelling at reactor-relevant microwave powers indicate the optimal
launch point will be shifted to lower frequencies and higher ZOX . In turn, the current
peak is pushed inwards to ρ ≈ 0.6. This corresponds to the OA class of rays, for which
relativistic effects can signiőcantly modify CD performance. We also note that, at this
particular operating point with 100MW of EBW power, the new optimal launch point
also results in η ≈ 0.03A/W, but a slightly lower ζCD ≈ 0.55. This would enable the non-
inductive drive of 4MA with around 130MW of injected power. Quasilinear predictions
will be further explored in a future paper.
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At low powers, the optimal region in (f, ZOX)-space is fairly broad (see Fig.23a), which
indicates it is insensitive to small changes in launcher design and plasma parameters. At
high powers (see Fig.23c), the optimal region shrinks, indicating that CD performance is
relatively less robust. Strictly speaking, the O-X coupling window must also be taken into
account. That is a separate - albeit important - consideration and is outside the scope of
this work.

Three large caveats must be explicitly stated about the conclusions drawn above.
First, these simulations assume perfect O-X-B mode-conversion by virtue of enforcing
the optimal N|| at the O-mode cutoff. In reality, full-wave effects, including őnite beam
width, will result in a mode-conversion efficiency that is less than unity. Thus, full-wave
calculations of the mode-conversion window are required to understand how practical each
launch point really is. Second, the plasma parameters have been kept őxed. It would be
prudent to determine how CD performance changes as a result of small variations to the
plasma equilibrium. The work herein has developed a method for solving fully-relativistic
ray trajectories in minutes, as opposed to hours. This speed-up will further facilitate
these parametric scans. Lastly, it is worthwhile to consider that the quasilinear treatment
of the wave-particle resonance may be invalid, especially for high-power, highly localized
microwave beams [30]. This consideration is outside the scope of this paper, but important
to address in future work.

Lastly, one must comment on the necessity of relativistic ray-tracing in present-day
devices. The model described in this paper was applied to a typical MAST-U discharge
(Te0 ≈ 2kev) for near-axis current-drive. The error in non-relativistic rays was negligible.
High temperature (Te ≳ 4keV) is necessary, but not sufficient, for a large relativistic
impact. As demonstrated in this paper, ray length is also a factor.
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A Details of ray propagation

Propagation is modelled via the well-known geometrical optics equations [21]:

dr

dt
= − ∂DH(r,k, ω)/∂k

∂DH(r,k, ω)/∂ω
(A.1a)

dk

dt
=
∂DH(r,k, ω)/∂r

∂DH(r,k, ω)/∂ω
(A.1b)

where DH is the Hermitian component of the dispersion relation (a.k.a. the ray Hamilto-
nian). Heuristically, ray-tracing is valid as long as the wavelength is much shorter than
the characteristic length scale of the plasma. The weak-damping condition (|Im (k⊥) | ≪
Re (k⊥)) must also be satisőed. The above equations are solved using a 4th order Runge-
Kutta scheme.

In the slab geometry of Section 3, the ray-tracing equations are solved in Cartesian
coordinates (x, y, z) and (kx, ky, kz). Since the plasma is homogeneous in the y and z
direction, it follows that ky and kz are constant.

In the toroidal geometry of Section 4, the ray-tracing equations are solved in cylin-
drical coordinates (R, φ, Z) and (kR, kφ, kZ). Since the plasma is assumed axisymmetric
(homogeneous along φ), it follows that Rkφ is constant.

B Details of ray damping

The perpendicular damping coefficient along a ray is proportional to Im(k⊥), which is
calculated via the weak-damping approximation

Im(k⊥) ≈ − DAH

∂DH/∂k⊥

∣

∣

∣

∣

k⊥=Re(k⊥)

(A.2)

where DH is the Hermitian part of the Hamiltonian, and DAH is the anti-Hermitian part.
One advantage of the above approximation is that the Hermitian and anti-Hermitian
terms are un-coupled. The denominator in the right-hand side of eq. A.2 is sensitive to
how close Re(k⊥) is to the root of DH . Since the ray-tracing equations provide Re(k⊥),
the choice of DH in eq. A.2 should match eqs. A.1. The choice of DAH is usually less
critical. In this paper, relativistic simulations refer to the use of the relativistic dispersion
in both the numerator and denominator. This is self-consistent. For non-relativistic
ray trajectories, one can either use the non-relativistic dispersion everywhere, or take
a łmixedž approach. In the mixed approach, one uses the non-relativistic DH and the
relativistic DAH . This allows one to account for relativistic damping along non-relativistic
trajectories. This is computationally efficient and therefore a common technique in other
codes, like GENRAY [31]. However, this approach has serious shortcomings as the ray
approaches the low-őeld side harmonic resonance in hot plasmas, as discussed in Sections
3 and 4.
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