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Oriented Temperley–Lieb algebras and
combinatorial Kazhdan–Lusztig theory

Chris Bowman , Maud deVisscher, Niamh Farrell, Amit Hazi , and
Emily Norton

Abstract. We define oriented Temperley–Lieb algebras for Hermitian symmetric spaces.This allows

us to explain the existence of closed combinatorial formulae for the Kazhdan–Lusztig polynomials

for these spaces.

1 Introduction

To each parabolic Coxeter system, (W , P), we have an associated family of “anti-
spherical Kazhdan–Lusztig polynomials”, nλ ,ν(q), indexed by pairs of cosets for P ≤
W . These polynomials are some of the most important combinatorial objects in Lie
theory and representation theory and they can be computed (at least in theory) via a
recursive, non-positive formula. Deodhar proposed a (non-recursive!) combinatorial
approach to studying these polynomials in [Deo90].

Libedinsky–Williamson categorified the anti-spherical Kazhdan–Lusztig polyno-
mials by interpreting them as composition factor multiplicities of simple modules
within standard modules for the anti-spherical Hecke category,H(W ,P) [LW]. In more

detail: we first fix a reduced word μ for each μ ∈ PW , for λ ∈ PW the standardH(W ,P)-

module Δ(λ) has light leaves basis enumerated by ∪μ∈PWPath(λ, μ) the set of all paths
(or “Bruhat strolls”) in the coset graph for (W , P) which terminate at λ such that the
steps in these paths are “coloured by” μ. This basis is graded according to the degree
statistic for the underlying paths, we record this in the matrix

Δ(W ,P) ∶= (Δλ ,μ(q))λ ,μ∈PW Δλ ,μ(q) = ∑
S∈Path(λ ,μ)

qdeg(S)

which is a (square) lower uni-triangularmatrix.Thismatrix can be factorized uniquely
as a product of lower uni-triangular matrices

N(W ,P) ∶= (nλ ,ν(q))λ ,ν∈PW B(W ,P) ∶= (bν ,μ(q))ν ,μ∈PW
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2 C. Bowman et al.

Figure 1: Enumeration of nodes in the parabolic Dynkin diagram of the Hermitian sym-

metric pairs. Namely, types (An , Ak−1 × An−k), (Cn , An−1) and (Bn , Bn−1), (Dn+1 , An) and
(Dn+1 ,Dn) and (E6 ,D5) and (E7 , E6), respectively. The single node not belonging to the

parabolic is highlighted in pink in each case.

such that nλ ,ν(q) ∈ qZ[q] for λ ≠ ν and bν ,μ(q) ∈ Z[q + q−1].The polynomial nλ ,ν(q)
is the anti-spherical Kazhdan–Lusztig polynomial for λ ≤ ν ∈ PW . Over the complex
field, the polynomial nλ ,ν(q) counts the graded composition factor multiplicity[Δ(λ) ∶ L(ν)] and the polynomials bν ,μ(q)describe the graded character of the simple

module L(ν) [EW14, LW]. This provides an innately positive interpretation of the
coefficients of the polynomial nλ ,ν(q) and thus proves the famous Kazhdan–Lusztig
positivity conjecture [EW14] and its anti-spherical counterpart [LW].

Libedinsky–Williamson proposed that this extraH(W ,P)-structure should provide
new insight toward Deodhar’s goal of a counting formula for the Kazhdan–Lusztig
polynomials. They ask in [LW21, Problem 1.2] whether it is possible to construct an
explicit basis of “canonical light leaves” for a Z-module Nλ ,ν whose graded rank is
equal to nλ ,ν(q). Each canonical light leaf basis element of degree k would then be a
generator of some composition factor of Δ(λ) isomorphic to L(ν)⟨k⟩. We solve this
problem in the case of Hermitian symmetric pairs (see Figure 1) by introducing an
oriented Temperley–Lieb algebra of type (W , P) for all Hermitian symmetric pairs(W , P).
Theorem A Let (W , P) be a Hermitian symmetric pair. For all λ, ν ∈ PW, the space
Nλ ,ν has basis indexed by the set of “standard” basis elements in the anti-spherical
module for the oriented Temperley–Lieb algebra of type (W , P). These elements can be
described in a closed combinatorial (non-iterative) fashion. Moreover, this construction
is entirely independent of the choice of a reduced word ν.

The use of Temperley–Lieb style combinatorics for calculating Kazhdan–Lusztig
polynomials goes back to work of Brundan and Stroppel in type (An ,Ak × An−k−1)
[BS10, BS11a, BS11b, BS12] and Cox andDeVisscher in type (Dn ,An−1) [CD11]. In this
paper, we generalize these ideas to all Hermitian symmetric pairs and lift the combi-
natorics to a higher structural level; we do this by interpreting these polynomials as
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Oriented Temperley–Lieb algebras and combinatorial Kazhdan–Lusztig theory 3

graded-dimensions of “anti-spherical modules” for oriented Temperley–Lieb algebras
of type (W , P). The definition of these algebras and their anti-spherical modules is
simple and uniformly given in terms of the underlying root system, see Definitions 3.3
and 3.9. We also relate these newly defined oriented Temperley–Lieb algebras of type(W , P) to the generalized Temperley–Lieb algebras of typeW introduced by Fan and
Graham. In Section 4, we give a proof ofTheorem A for types (Dn ,Dn−1), (Bn , Bn−1)
and the exceptional types (E6 ,D5) and (E7 , E6). From Section 5 onwards we focus
solely on the remaining types, namely,(W , P) = (An ,Ak × An−k−1), (Dn ,An−1), and(Cn ,An−1). In Section 6, we prove that the oriented Temperley–Lieb algebras admit
a diagrammatic visualization, and use this in Section 7 to understand the graded
structure of the algebra by way of closed combinatorial formulas. In Section 8, we apply
these ideas to the anti-sphericalmodule and hence proveTheoremA for the remaining
types.

Further rewards of our approach will be harvested in the companion paper
[BDHN]. In [BDHN], we establish isomorphisms interrelating Hecke categories and
use these isomorphisms in order to construct the basic algebras of these Hecke
categories and prove that they are standard Koszul (this uses the results of this paper
in order to deduce the required graded vector space dimension counts) and to prove
that the p-Kazhdan–Lusztig polynomials are entirely independent of the prime p ≥ 0.

2 Kazhdan–Lusztig polynomials and Deodhar’s defect

Let (W , SW) be a Coxeter system: W is the group generated by the finite set SW
subject to the relations (st)mst = 1 for s, t ∈ SW , mst ∈ N ∪ {∞} satisfying mst = mts ,
and mst = 1 if and only if s = t. Let ℓ ∶W → N be the corresponding length function.
Consider SP ⊆ SW a subset and (P, SP) its corresponding Coxeter system.We say that
P is the parabolic subgroup corresponding to SP ⊆ SW . Let PW ⊆W denote a set of
minimal length coset representatives in P/W . Forw = s i1 s i2 ⋅ ⋅ ⋅ s iℓ an expression in the
generators s i j ∈ SW for 0 ≤ j ≤ ℓ, we define a subexpression ofw to be an expression of

the form wk ∶= sk1i1 sk2i2 ⋅ ⋅ ⋅ skℓiℓ where k = (k1 , k2 , . . . , kℓ) ∈ {0, 1}ℓ. We let ≤ denote the
(strong) Bruhat order on PW : namely y ≤ w if for some reduced expression w for w,
there exists a reduced expression y for y such that y is a subexpression of w.

We define a directed graphG(W ,P) with vertex set
PW and edges defined as follows.

For λ, μ ∈ PW we have an edge λ → μ if μ = λs i > λ for some s i ∈ SW . (Note that this
is the Hasse diagram of the poset (PW , ≤r) where ≤r denotes the (weak) right Bruhat
order.) Examples are given in Figures 2 and 3.

The identity element 1 ∈W is the minimal coset representative of the identity
coset P, and for convenience, we will denote it by ∅ instead (the empty word in the
generators).

We now define Ĝ(W ,P) to be the directed graph having the same set of vertices
as G(W ,P) but replacing each edge in G(W ,P) between λ and λs i by four directed
edges

λ
s i�→ λ, λs i

s i�→ λs i , λ
s i�→ λs i , λs i

s i�→ λ

https://doi.org/10.4153/S0008414X24001032 Published online by Cambridge University Press



4 C. Bowman et al.

Figure 2: The graph G(W ,P) for (W , P) = (A3 , A1 × A1) and (A4 , A1 × A2) respectively. (We

haven’t drawn the direction on the edges but all arrows are pointing upward.)

Figure 3: The graph G(W ,P) for types (W , P) = (D5 ,D4) and (B4 , B3). The general case

(Dn+1 ,Dn) and (Bn , Bn−1) is no more difficult (see [BDHN, Section 1]) – merely extend the

top and bottom vertical chains of the graph.

https://doi.org/10.4153/S0008414X24001032 Published online by Cambridge University Press



Oriented Temperley–Lieb algebras and combinatorial Kazhdan–Lusztig theory 5

Figure 4: On the left we depict the unique path in Path(α, α) corresponding with a choice of

reducedword α and on the rightwe depict the unique element of Path(β, α) for α = s2s3s4s1s2s3
and β = s2s1 .These are paths on Ĝ(A4 ,A1×A2) (also known as “Bruhat strolls”) but we depict only

the edges in G(A4 ,A1×A2) (for readability).

and, in order to keep the notation to a minimum, we will simply label the edge by the
subscript of the reflection (not the reflection itself). We assign a degree to each edge
in Ĝ(W ,P) by setting

deg(λ i�→ λs i) = deg(λs i i�→ λ) = 0 deg(λ i�→ λ) = { 1 if λs i > λ−1 if λs i < λ.
Given a path (or “Bruhat stroll”) on Ĝ(W ,P)

T ∶ λ1 i1�→ λ2
i2�→ λ3

i3�→ . . .
ik−1��→ λk ,

we say that the degree deg(T) is the sum of the degrees of each edge inT. (The degree
is also sometimes known as the “Deodhar defect”.) We also define the weight of T,
denoted by ω(T) to be the expression

ω(T) ∶= s i1 s i2 s i3 . . . s ik−1 .
We write Path(W ,P) for the set of all paths on Ĝ(W ,P). For λ, ν ∈ PW , we let

Path(λ → ν) denote the set of all paths in Path(W ,P) beginning at λ and ending at ν.
When λ = ∅, we set Path(ν) ∶= Path(∅ → ν). Letw be an expression in the generators
SW . We set Path(λ → ν,w) to be the set of paths T ∈ Path(λ → ν) with ω(T) = w.
When λ = ∅, we set Path(ν,w) ∶= Path(∅ → ν,w).

Throughout the paper, we fix one reduced expression μ for each μ ∈ PW . The set

of paths Path(λ, μ) for λ, μ ∈ PW will play a crucial role. Examples of such paths are
given in Figure 4. We will see in particular that, for Hermitian symmetric pairs, the
set Path(λ, μ) consists of either 0 or 1 elements.

https://doi.org/10.4153/S0008414X24001032 Published online by Cambridge University Press



6 C. Bowman et al.

The following path theoretic definition of Kazhdan–Lusztig polynomials was for
a long time talked about implicitly in the literature, see for example [Deo90] (in
particular Proposition 3.5 and Section 4, and also Section 5 for the parabolic setting).
It is explicitly proven to be equivalent to the classical definition of these polynomials
in [Soe97, Proposition 3.3].

Definition 2.1 Let λ, μ ∈ PW .We set bλ ,λ(q) = 1 = nλ ,λ(q). For λ ≠ μ, we recursively
define the polynomials

bλ ,μ(q) ∈ Z[q + q−1] nλ ,μ(q) ∈ qZ[q]
by induction on the Bruhat order ≤ as follows

bλ ,μ(q) + nλ ,μ(q) = ∑
S∈Path(λ ,μ)

qdeg(S) − ∑
λ<ν<μ

nλ ,ν(q)bν ,μ(q).(2.1)

The polynomials nλ ,μ(q) are called the anti-spherical Kazhdan–Lusztig polynomials
associated to λ, μ ∈ PW .

We can reformulate the above in terms of matrix multiplication. We define the
matrix of light leaves polynomials

Δ(W ,P) ∶= (Δλ ,μ(q))λ ,μ∈PW Δλ ,μ(q) = ∑
S∈Path(λ ,μ)

qdeg(S)

to be the (square) lower uni-triangular matrix whose entries record the degrees of
paths in Path(λ, μ). This matrix can be factorized uniquely as a product Δ(W ,P) =
N(W ,P) × B(W ,P) of lower uni-triangular matrices

N(W ,P) ∶= (nλ ,ν(q))λ ,μ∈PW B(W ,P) ∶= (bν ,μ(q))ν ,μ∈PW ,

such that nλ ,ν(q) ∈ qZ[q] for λ ≠ ν and bν ,μ(q) ∈ Z[q + q−1].
Example 2.2 Thematrix Δ in type (A3 ,A1 × A1) is depicted below.

Δ s2s1s3s2 s2s1s3 s2s1 s2s3 s2 ∅
s2s1s3s2 1 ⋅ ⋅ ⋅ ⋅ ⋅
s2s1s3 q 1 ⋅ ⋅ ⋅ ⋅
s2s1 ⋅ q 1 ⋅ ⋅ ⋅
s2s3 ⋅ q ⋅ 1 ⋅ ⋅
s2 q q2 q q 1 ⋅∅ q2 ⋅ ⋅ ⋅ q 1

The factorization of thismatrix is trivial, withN = Δ and B = Id6×6 the identitymatrix.

https://doi.org/10.4153/S0008414X24001032 Published online by Cambridge University Press



Oriented Temperley–Lieb algebras and combinatorial Kazhdan–Lusztig theory 7

Example 2.3 For (C3 ,A2) the factorization Δ = N × B is given below. The rows of
the matrix can be taken to be ordered with respect to any total refinement of the
Bruhat order (there are two such total orders), see Figure 9 for the corresponding
graph G(W ,P).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 q 1 ⋅ ⋅ ⋅ ⋅ ⋅

q ⋅ q 1 ⋅ ⋅ ⋅ ⋅

q ⋅ q ⋅ 1 ⋅ ⋅ ⋅

q2 q q2 q q 1 ⋅ ⋅

q q2 ⋅ ⋅ 1 q 1 ⋅

q2 ⋅ ⋅ ⋅ q ⋅ q 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ q ⋅ 1 ⋅ ⋅ ⋅

⋅ q q2 q q 1 ⋅ ⋅

q q2 ⋅ ⋅ ⋅ q 1 ⋅

q2 ⋅ ⋅ ⋅ ⋅ ⋅ q 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 2.4 Thematrices Δ for exceptional types of Hermitian symmetric pairs are
given in Section 4. Again, we have that B is the identity matrix in these cases.

The paths S ∈ Path(λ, μ) enumerate a “light leaf basis” of the Hecke category.
We refer to [BDHN] for an algorithmic construction of these basis elements in
the language of this paper, see also [LW]. We are now able to restate Libedinsky–
Williamson’s goal (from the introduction) more precisely using the language of paths.
They ask if it is possible to produce (via a closed combinatorial algorithm) a set
NPath(λ, ν) ⊆ Path(λ, ν) and a canonical basis for a space

⊕
s∈NPath(λ ,ν)

Rs
∼�→ Nλ ,ν

so that, upon taking graded dimensions, we get

nλ ,ν = ∑
s∈NPath(λ ,ν)

qdeg(s).

In this paper, we answer this question for (W , P) a Hermitian symmetric pair (see
Figure 1 for a list of such pairs). In fact, we go further andproduce closed combinatorial
descriptions of canonical bases for spaces

⊕
s∈NPath(λ ,ν)

Rs
∼�→ Nλ ,ν ⊕

s∈BPath(λ ,ν)

Rs
∼�→ Bλ ,ν

so that, upon taking graded dimensions, we get

nλ ,ν = ∑
s∈NPath(λ ,ν)

qdeg(s) bν ,μ = ∑
s∈BPath(ν ,μ)

qdeg(s)

for subsets NPath(λ, ν) ⊆ Path(λ, ν) and BPath(ν, μ) ⊆ Path(ν, μ).
We note further that, for Hermitian symmetric pairs, the subsets NPath(λ, ν) and

BPath(ν, μ) are independent of the choice of reduced expressions for μ and ν. This

follows from the fact that the elements of PW are fully commutative (see Section 3.1
below).

https://doi.org/10.4153/S0008414X24001032 Published online by Cambridge University Press



8 C. Bowman et al.

3 The oriented Temperley–Lieb algebras

We will assume from now on that (W , P) is aHermitian symmetric pair, that is it is
one of the following infinite families (An ,Ak−1 × An−k) with 1 ≤ k ≤ n, (Dn ,An−1),(Dn ,Dn−1), (Bn , Bn−1), (Cn ,An−1) for n ≥ 2 or is one of the exceptional cases(E6 ,D5), (E7 , E6). The corresponding Coxeter graphs of these pairs are recorded in
Figure 1.

3.1 The oriented Temperley–Lieb algebras and strong full commutativity

For w ,w′ two expressions in the generators s i ∈ SW , we say that w′ is a subword of
w if there are expressions u and v such that w = uw′ v. One of the crucial property
of Hermitian symmetric pairs for this paper is that the elements of PW are fully
commutative (as defined by Stembridge [Ste96, Introduction]). We recall that an
element w ∈W is called fully commutative if and only if any two reduced expression
of w are related by applying only the commutation relations in W. Equivalently, no
reduced expressions of w contains s i s js i as a subword for m i , j = 3 or s i s js i s j as a
subword form i , j = 4. In fact, the elements of PW satisfy the following slightly stronger
property.

Definition 3.1 We say that an element w ∈W is strongly fully commutative if no
reduced expression of w contains s i s js i as a subword for any s i , s j ∈ SW with either
m i , j = 3 or m i , j = 4 when α i is a short root. We denote byWs f c the set of all strongly
fully commutative elements ofW.

Lemma 3.2 Let (W , P) be a Hermitian symmetric pair. Then every element of PW is
strongly fully commutative.

Proof This is well-known and can be seen for example from the explicit description
of the elements of PW in terms of tilings given in [EHP14, Appendix: Diagrams of
Hermitian types]. ∎
Definition 3.3 Let (W , P) be aHermitian symmetric pair.Theoriented Temperley–
Lieb algebra of type (W , P), TL(W ,P)(q), is defined to be the unital associative
Z[q, q−1]-algebra generated by elements

{1λ ∣ λ ∈ PW} ∪ {E i ∣ s i ∈ SW}
subject to the following relations. The idempotent relations,

1 = ∑λ∈PW 1λ , 1λE i1λ = 0 if λs i ∉ PW ,

1λ1μ = δλ ,μ1λ , 1λE i1μ = 0 if μ /∈ {λ, λs i}(3.1)

for all λ, μ ∈ PW . For all s i ∈ SW , any λ ∈ PW with λs i ∈ PW and μ, ν ∈ {λ, λs i} we
have

1μE i1λE i1ν = qℓ(λs i)−ℓ(λ)1μE i1ν .(3.2)

If m i , j = 2 or 3, then
E iE j = E jE i , E iE jE i = E i ,(3.3)

https://doi.org/10.4153/S0008414X24001032 Published online by Cambridge University Press



Oriented Temperley–Lieb algebras and combinatorial Kazhdan–Lusztig theory 9

respectively. If m i , j = 4 and α i is a short root then we have that

1μE i1λE j1λE i1ν = 1μE i1ν ,(3.4)

for any λ ∈ PW with λs i , λs j ∈ PW and μ, ν ∈ {λ, λs i}.
Remark 3.4 It follows from the relations (3.1) that TL(W ,P)(q) is generated by the

elements 1λ for λ ∈ PW and 1λE i1μ for all λ ∈ PW with λs i ∈ PW and μ ∈ {λ, λs i}.
Remark 3.5 Note that form i , j = 2 we have 1λE i1μE j1ν ≠ 0 if and only if λ, λs i , λs j ∈
PW and either μ = λ and ν ∈ {λ, λs j}, or μ = λs i and ν ∈ {λs i , λs i s j}. So we have that
the first relation in (3.3) is equivalent to

1λE i1λE j1ν = 1λE j1νE i1ν , and 1λE i1λs iE j1ν = 1λE j1νs iE i1ν

for ν ∈ {λ, λs j} and ν ∈ {λs i , λs i s j}, respectively, and every λ ∈ PW .

Remark 3.6 Note that for m i , j = 3, using Lemma 3.2, we have E i1μE j1νE i ≠ 0
implies ν = μ and μs i , μs j ∈ PW . Now the second relation in (3.3) is equivalent to

1λE iE jE i1η = 1λE i1η

for all λ, η ∈ PW with λs i , ηs i ∈ PW . Note that for each such λ, using Lemma 3.2, we
have either λs j ∈ PW or λs i s j ∈ PW but not both. Thus the second relation in (3.3) is
also equivalent to

1λE i1λE j1λE i1η = 1λE i1η

for all λ ∈ PW with λs i , λs j ∈ PW and η = {λ, λs i}, and
1λE i1λs iE j1λs iE i1η = 1λE i1η

for all λ ∈ PW with λs i , λs i s j ∈ PW and η = {λ, λs i}.
Remark 3.7 Note that for m i , j = 4 with α i being a short root, we have

1λE iE jE i1μ = 1λE i1λE j1λE i1μ + 1λE i1λs iE j1λs iE i1μ = 2(1λE i1μ)
for λ, λs i , λs j , λs i s j ∈ PW and μ ∈ {λ, λs i}. This implies that E iE jE i = 2E i and so
E iE jE iE j = 2E iE j and E jE iE jE i = 2E jE i .

3.2 Path basis and the anti-spherical module

For any path

T ∶ λ1 i1�→ λ2
i2�→ λ3

i3�→ . . .
ik−1��→ λk

on Ĝ(W ,P), we write

ET ∶= 1λ1E i11λ2E i21λ3 . . . 1λk−1
E ik−11λ ik

to be the corresponding element in TL(W ,P)(q).
Recall that we denote byWs f c the set of all strongly fully commutative elements of

W. We now fix one reduced expression w for each w ∈Ws f c .

https://doi.org/10.4153/S0008414X24001032 Published online by Cambridge University Press



10 C. Bowman et al.

Theorem 3.8 The algebra TL(W ,P)(q) has a Z[q, q−1]-basis given by the set

{ET ∶ T ∈ Path(W ,P) with ω(T) = w for some w ∈Ws f c}.
Proof It is clear from relations (3.1) that

1λ1E i11λ2E i21λ3 . . . 1λk−1
E ik−11λk

≠ 0
implies that

T ∶ λ1 i1�→ λ2
i2�→ λ3

i3�→ . . .
ik−1��→ λk

is a path on Ĝ(W ,P). Thus we have that TL(W ,P)(q) is spanned by elements of the
form ET where T ∈ Path(W ,P). Now it follows from relations (3.2)–(3.4) that any such
ET = qxES for some x ∈ Z and some path S such that ω(S) = w for some w ∈Ws f c .

Set Path
s f c

(W ,P)
to be the set of allT ∈ Path(W ,P) such that ω(T) = w for somew ∈Ws f c .

It remains to show that the set {ET ∶ ω(T) ∈ Paths f c(W ,P)
} is linearly independent. We

do this by constructing a formal TL(W ,P)(q)-moduleM with Z[q, q−1]-basis labeled
by [T] forT ∈ Paths f c

(W ,P)
. To define the action on this module, we will need to ‘reduce’

any path on Ĝ(W ,P) using the following local operations.

• If m i j = 2 then for ν ∈ {λ, λs j}, we set
[λ i�→ λ

j�→ ν]  ⇒ [λ j�→ ν
i�→ λ]

and for ν ∈ {λs i , λs i s j} we set
[λ i�→ λs i

j�→ ν]  ⇒ [λ j�→ νs i
i�→ ν].

• If m i j = 3 or m i j = 4 and α i is a short root then for η ∈ {λ, λs i}, we set
[λ i�→ λ

j�→ λ
i�→ η]  ⇒ [λ i�→ η]

and

[λ i�→ λs i
j�→ λs i

i�→ η]  ⇒ [λ i�→ η].
• For for μ, ν ∈ {λ, λs i}, we set

[μ i�→ λ
i�→ ν]  ⇒ qℓ(λs i)−ℓ(λ)[μ i�→ ν].

(Note that these follow exactly the relations given in Definition 3.3, see also Remark
3.5, Remark 3.6 and Remark 3.7.) It is clear that starting with any path T ∈ Path(W ,P),

applying these operations repeatedly, we obtain a uniquely defined power qx(T) and a

unique path rex(T) ∈ Paths f c
(W ,P)

. Now, for any T ∈ Paths f c
(W ,P)

with

T ∶ λ1 i1�→ λ2
i2�→ λ3

i3�→ . . .
ik−1��→ λk = μ

we set

[T]1ν = δμν[T] and [T]1μE i1ν = qx(T′)[rex(T′)]
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Oriented Temperley–Lieb algebras and combinatorial Kazhdan–Lusztig theory 11

for ν ∈ {μ, μs i} and μ, μs i ∈ PW , where

T
′ = λ1 i1�→ λ2

i2�→ λ3
i3�→ . . .

ik−1��→ λk = μ i�→ ν.

As the relations used to reduce the path correspond precisely to the relations defining
the oriented Temperley–Lieb algebra, it is clear that this turnsM into a TL(W ,P)(q)-
module.

We are now ready to prove that the set {ET ∶ T ∈ Paths f c(W ,P)
} is linearly indepen-

dent. Assume that

∑
T

aTET = 0 for some aT ∈ Z[q, q−1].
We need to show that aT = 0 for all T. Fix λ ∈ PW and consider the trivial path [λ] ∈
M. Then we have

[λ] (∑
T

aTET) = ∑
ν∈PW

T∈Path(λ→ν)

aT[T] = 0.

As {[T] ∶ T ∈ Path(λ → ν), ν ∈ PW} is linearly independent in M, we deduce that
aT = 0 for all T ∈ Path(λ → ν), all ν ∈ PW . But this holds for all λ ∈ PW so we are
done. ∎
Definition 3.9 We define the anti-spherical TL(W ,P)(q)-module to be the right
module 1∅TL(W ,P)(q).
Corollary 3.10 The anti-spherical module 1∅TL(W ,P)(q) has a Z[q, q−1]-basis given
by

{ET ∣ T ∈ Path(λ, μ) ∶ λ, μ ∈ PW}.
Proof By Theorem 3.8 we have that the anti-spherical module has a basis given by
all ET where T is a path on Ĝ(W ,P) starting at ∅ with ω(T) = w some strongly fully
commutative elementw ∈W . Note thatwmust start with the unique s ∉ SP , asT starts
at ∅. Moreover, as w is fully commutative, any other reduced expression w′ for w is
obtained from w by applying only the commutation relations and so w′ is also the
weight of a path on Ĝ(W ,P) starting at ∅. In particular, w′ also starts with the unique

s ∉ SP . This implies that w = μ ∈ PW . ∎
3.3 Grading

We can view TL(W ,P)(q) as a Z-algebra in the usual way, by considering q and q−1 as
additional central generators. The next proposition shows that, as such, TL(W ,P)(q)
is a Z-graded algebra.

Proposition 3.11 Set deg(1λ) = 0 for all λ ∈ PW,

deg(1λE i1λs i ) = 0, deg(1λE i1λ) = { 1 if λs i > λ−1 if λs i < λ
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12 C. Bowman et al.

for all λ ∈ PW, s i ∈ SW with λs i ∈ PW, deg(q) = 1 and deg(q−1) = −1. This defines a
Z-grading on the Z-algebra TL(W ,P)(q). In particular, we have deg(ET) = deg(T) for
all T ∈ Path(W ,P).

Proof We need to check that the defining relations (3.1)–(3.4) are (equivalent to)
homogeneous relations. For relations (3.1), there is nothing to prove.We now consider
relation (3.2). We need to show that for any μ, ν ∈ {λ, λs i}, we have

deg(1μE i1λE i1ν) = (ℓ(λs i) − ℓ(λ)) + deg(1μE i1ν).
If μ = ν = λ we have

deg(1λE i1λE i1λ) = 2(ℓ(λs i) − ℓ(λ)), and deg(1λE i1λ) = ℓ(λs i) − ℓ(λ)
as required. If μ = ν = λs i we have

deg(1λs iE i1λE i1λs i ) = 0, and deg(1λs iE i1λs i ) = ℓ(λ) − ℓ(λs i)
as required. Finally if μ ≠ ν, then we have

deg(1μE i1λE i1ν) = ℓ(λs i) − ℓ(λ), and deg(1μE i1ν) = 0
as required. Next consider the leftmost relation in (3.3). By Remark 3.5, we need to
show that the relations

1λE i1λE j1ν = 1λE j1νE i1ν for ν ∈ {λ, λs j}, and

1λE i1λs iE j1ν = 1λE j1νs iE i1ν for ν ∈ {λs i , λs i s j}
are homogeneous.The former is trivial for ν = λ and follows from the fact that λs js i >
λs j if and only if λs i > λ for ν = λs j . The latter is trivial for ν = λs i s j and follows from
the fact that λs i s j > λs i if and only if λs j > λ for ν = λs i .

We now consider the rightmost relation in (3.3). By Remark 3.6, this relation is
equivalent to

1λE i1λE j1λE i1η = 1λE i1η

for all λ ∈ PW with λs i , λs j ∈ PW and η = {λ, λs i}, and
1λE i1λs iE j1λs iE i1η = 1λE i1η

for all λ ∈ PW with λs i , λs i s j ∈ PW and η = {λ, λs i}. The former is homogeneous as
λs i > λ if and only if λs j < λ and so

deg(1λE i1λE j1λ) = 0.
To see that the latter is also homogeneous, observe that λs i s j > λs i if and only if λs i > λ
and so

deg(1λs iE j1λs i ) = deg(1λE i1λ) and deg(1λs iE j1λs iE i1λs i ) = 0.
Finally, consider relation (3.4). For μ = λ and ν ∈ {λ, λs i}, we have to show that

1λE i1λE j1λE i1ν = 1λE i1ν
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is homogeneous, and for μ = λs i and ν ∈ {λ, λs i} we need to show that

1λs iE i1λE j1λE i1ν = 1λs iE i1ν

is homogeneous. These look exactly the same as the relations for m i , j = 3 above
(replacing λs i with λ for the second equation) and the same arguments apply here. ∎

We immediately obtain the following result.

Corollary 3.12

(1) The anti-spherical module 1∅TL(W ,P)(q) is a graded TL(W ,P)(q)-module with

homogeneous basis {ET ∶ T ∈ Path(λ, μ), λ, μ ∈ PW} satisfying
degET = degT.

(2) The light leaves matrix can be computed follows. For any λ, μ ∈ PW we have

Δλ ,μ = {∑T∈Path(λ ,μ) q
deg(ET) if Path(λ, μ) ≠ ∅

0 otherwise.

Thus the anti-spherical module for the oriented Temperley–Lieb algebra gives us a
model to study the light leavesmatrix and its factorization for allHermitian symmetric
pairs. This will be done in details in each type (W , P) in the next few sections but
first we take a short detour to relate our oriented Temperley–Lieb algebras to the
generalized Temperley–Lieb algebras associated toW.

3.4 Relationship with Fan–Graham’s Temperley–Lieb algebras

Wenow relate our (W , P)-Temperley–Lieb algebra to the generalizedTemperley–Lieb
algebra associated toW introduced by Fan (in the simply-laced type) and Graham (in
the non-simply laced type).

Definition 3.13 The generalized Temperley–Lieb algebra TLW(q) is defined as the
Z[q, q−1]-algebra generated by

{U i ∣ s i ∈ SW}
subject to the following relations: For all s i ∈ SW we have

U2
i = (q + q−1)U i .(3.5)

Furthermore, we have that

U iU j = U jU i , U iU jU i = U i , U iU jU iU j = 2U iU j(3.6)

for m i , j = 2, 3 or 4, respectively.
Proposition 3.14 There is a Z[q, q−1]-algebra homomorphism from TLW(q) to
TL(W ,P)(q) defined by U i ↦ E i for all si ∈ SW .

Proof Weneed to check that the E i ’s satisfy the relations (3.5) and (3.6).The leftmost
two relations of (3.6) are given by (3.3). The rightmost relation in (3.6) follows from
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Remark 3.7. It remains to show (3.5). We have

E i = ∑
λ

1λE i(1λ + 1λs i ),

where the sum is taken over all λ ∈ PW such that λs i ∈ PW . Now we have

E2
i = ∑λ 1λE i(1λ + 1λs i )E i(1λ + 1λs i ) = (q + q−1)∑λ 1λE i(1λ + 1λs i ) = (q + q−1)E i

as required. Here the first equality follows by (3.1) and the second by (3.2), the third is
trivial. ∎
Remark 3.15 Note that this homomorphism is not injective in general. To see this,
take for exampleW of type A3 and P of type A2, then

PW = {1, s3 , s3s2 , s3s2s1}. Then
we claim that E1E3 = 0. To see this, note that E11λ ≠ 0 implies that λ = s3s2 or s3s2s1
but 1λE3 ≠ 0 implies λ = 1 or s3. However, U1U3 ≠ 0 in TLW(q).

4 Light leaves matrix factorization for the trivial and exceptional
types

Corollary 3.12 provides a way of studying the light leaves matrix using the oriented
Temperley–Lieb algebra and its anti-spherical module for all Hermitian symmet-
ric pairs (W , P). In Sections 5 to 8, we will construct a diagrammatic version
of the oriented Temperley–Lieb algebras in types (An ,Ak × An−k−1), (Dn ,An−1),
and (Cn ,An−1) which will provide closed combinatorial formulas for the light
leaves matrix and its factorization. This could also be done in types (Bn , Bn−1) and(Dn ,Dn−1) but the extra effort is unwarranted as the light leaves matrices and their
factorization can be easily described without them. This will be done in this section,
together with the exceptional types (E6 ,D5) and (E7 , E6), which are best tackled with
a computer (although (E6 , E5) is manageable by hand as well). This provides a proof
of Theorem A in these trivial and exceptional types.

4.1 Exceptional types

We first consider the exceptional Hermitian symmetric pairs. One can calculate the
Δ matrix for type (E6 ,D5) easily by hand. For type (E7 , E6) this is a much larger
calculation, but can be readily done using the Coxeter 3 package in SAGEwhichwraps
Folko Ducloux’s original work in C++.Thematrices Δ are recorded in Figures 5 and 6.
In both cases, note that all off-diagonal entries belong to qN0[q] and so Δ = N and
B = Id. This gives a proof of Theorem A in these cases by setting every basis element
ET ∈ 1∅TL(W ,P)(q) to be standard.

4.2 Type (Dn ,Dn−1).
In this case, there is precisely one element in PW of each length 0 ≤ ℓ ≤ 2(n − 1), ℓ ≠
n − 1 and precisely two elements of length n − 1. Ordering the rows and columns of
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0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 2 1 ⋅ ⋅ 1 ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ 1 0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ 1 0 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0

Figure 5: The light leaves matrix Δλ ,μ of type (E6 ,D5). For purposes of space, we record

q i simply as i, and we record each zero polynomials as a dot. For example, the matrix

is uni-triangular with diagonal entries q0 = 1. The rows and columns are ordered by a

total refinement of the Bruhat order in which we prefer to add the reflection with largest

possible subscript. More specifically, the order is as follows ∅, s1 , s1s2 , s1s2s3 , s1s2s3s6 ,
s1s2s3s4 , s1s2s3s6s4 , s1s2s3s4s5 , s1s2s3s6s4s5 , s1s2s3s6s4s3 , s1s2s3s6s4s5s3 , s1s2s3s6s4s5s3s4 ,

s1s2s3s6s4s3s2 , s1s2s3s6s4s5s3s2 , s1s2s3s6s4s5s3s4s2 , s1s2s3s6s4s5s3s4s2s3 ,

s1s2s3s6s4s5s3s4s2s3s6 , s1s2s3s6s4s3s2s1 , s1s2s3s6s4s5s3s2s1 , s1s2s3s6s4s5s3s4s2s1 ,

s1s2s3s6s4s5s3s4s2s3s1 , s1s2s3s6s4s5s3s4s2s3s6s1 , s1s2s3s6s4s5s3s4s2s3s1s2 ,

s1s2s3s6s4s5s3s4s2s3s6s1s2 , s1s2s3s6s4s5s3s4s2s3s6s1s2s3 , s1s2s3s6s4s5s3s4s2s3s6s1s2s3s4 ,

s1s2s3s6s4s5s3s4s2s3s6s1s2s3s4s5 .

the matrix Δ by decreasing length we have

Δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ q ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ q q2 q q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ q2 ⋅ ⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅

⋮ . .
.

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

q q2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

q2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ q 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 2 1 ⋅ ⋅ 1 ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3 2 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ 1 ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 3 2 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 1 0 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 3 2 ⋅ ⋅ 2 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅

⋅ ⋅ 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅

⋅ 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅

3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0

Figure 6: The light leaves matrix Δ of type (E7 , E6). For purposes of space, we record q
i simply

as i, and we record each zero polynomials as a dot. For example. the matrix is uni-triangular

with diagonal entries q0 = 1. The rows and columns are ordered by a total refinement of the

Bruhat order in which add the reflection with largest possible subscript.

that is, the top left and bottom right (n − 1) × (n − 1)-matrices have non-zero entries
on the diagonal and sub-diagonal only; the bottom left (n − 1) × (n − 1)-matrix has
non-zero entries on the anti-diagonal and sup-anti-diagonal only. In this case the
matrix factorization is trivial, with B = Id and N = Δ. This gives a proof of Theorem
A in type (Dn ,Dn−1) by setting every basis elements in the anti-spherical module for
TL(Dn ,Dn−1)(q) to be standard.
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Oriented Temperley–Lieb algebras and combinatorial Kazhdan–Lusztig theory 17

4.3 Type (Bn , Bn−1)
In this type, there is precisely one element λ ∈ PW of each length. Ordering the rows
and columns of the matrix Δ by decreasing length it is easy to see that

Δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1 q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ q ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅

⋮ . .
.

⋮ ⋮ ⋱ ⋮

1 q ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

q ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ q 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
that is, the top left and bottom right n × n-matrices have non-zero entries on the
diagonal and sub-diagonal only; the bottom left n × n-matrix has non-zero entries
on the anti-diagonal and sub-anti-diagonal only. We then immediately deduce that
the matrix factorization is as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ q 1 ⋅ ⋅ ⋅ ⋅ ⋅

⋮ . .
.

⋮ ⋮ ⋱ ⋮

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ q 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅

⋮ . .
.

⋮ ⋮ ⋱ ⋮

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

where we note that thematrix on the left is the same as thematrix of Kazhdan–Lusztig
polynomials of type (A2n−1 ,A2n−2), this will be explained in our companion paper
[BDHN]. This gives a proof of Theorem A in type (Bn , Bn−1) by setting every basis
element ET corresponding to non-zero entries in the matrix N (on the left) to be
standard.

From now, until the end of Section 8, we focus solely on the remaining cases,
namely, (W , P) = (An ,Ak−1 × An−k), (Cn ,An−1), and (Dn ,An−1).

5 Bruhat graphs in classical type

We now introduce an elementary way of visualizing the graphs G(W ,P) for
classical Hermitian symmetric pairs (W , P) = (An ,Ak−1 × An−k), (Cn ,An−1), and
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(Dn ,An−1). We will use these in the next section to define a diagrammatic visual-
ization of the oriented Temperley–Lieb algebra in these types.

We start by recalling the description of the Coxeter groups of type An ,Cn , and Dn

as groups of (signed) permutations. The Coxeter group of type An is the symmetric
group consisting of all permutations of {1, 2, . . . , n + 1}. The simple reflections s i , for
1 ≤ i ≤ n are given by

s i = (i , i + 1).
The Coxeter group of type Cn is the signed permutation group, namely the group of
all permutations w of {±2,±3, . . . ,±(n + 1)} such that w(−i) = −w(i) for all 2 ≤ i ≤
n + 1. The simple reflections s i for i = 1′ , 2, . . . , n are given by

s1′ = (2,−2) and s i = (i , i + 1)(−i ,−(i + 1)) for 2 ≤ i ≤ n.
The Coxeter group of type Dn is the even signed permutation group, that is the
subgroup of the group of all signed permutations on {±1,±2, . . . ,±n} consisting
of all elements flipping an even number of signs. The simple reflections s i for i =
1′′ , 1, 2, . . . , n − 1 are given by

s1′′ = (1,−2)(−1, 2) and s i = (i , i + 1)(−i ,−(i + 1)) for 1 ≤ i ≤ n − 1.
Remark 5.1 The choice of labelling in type Cn might seem slightly unnatural at this
point but (apart from giving a uniform definition of the generators s i for 2 ≤ i ≤ n − 1
in all types) it is required for compatibility with the diagrammatic Temperley–Lieb
algebra of type C given in Section 6.

Given this description of the Coxeter groups as (signed) permutation groups, we
have the following natural visualization of the cosets PW . We will represent elements
of PW as horizontal lines with n(+1) points in positions 1, 2, . . . , n(, n + 1) labeled
with the symbols {∧,∨, ○}. The generators ofW will act on these as follows: For i ≥ 1,
s i swaps the labels in positions i and i + 1, the generator s1′ flips (through the horizontal
axis) the label in second position, and s1′′ swaps and flips (through the horizontal line)
the labels in first and secondpositions.Now,we start by representing the identity coset,
which we denote by ∅ (for the empty word in the generators), as follows:

• If (W , P) = (An ,Ak−1 × An−k), draw ∅ as the horizontal line containing n + 1
points with the first k points labeled by ∧ and the last n − k + 1 points labeled by ∨.

• If (W , P) = (Cn ,An−1) draw∅ as the horizontal line with n + 1 points with the first
point labeled by ○ and the last n points labeled by ∨.

• If (W , P) = (Dn ,An−1) draw∅ as the horizontal line with n points all labeled by ∨.
The elements of PW are then obtained as the elements of the orbit of ∅ under the
action ofW.

Moreover, we can construct the graph G(W ,P) starting from ∅ as follows.

• Start by drawing ∅ at the bottom.
• If applying a simple reflection does result in a new coset, then record this in the next
level up in the diagram. We record the colour of the reflection as an edge relating
the two points in the graph.

We repeat the above until the process terminates. This is best illustrated via the
examples in Figures 8 and 9.
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Oriented Temperley–Lieb algebras and combinatorial Kazhdan–Lusztig theory 19

Figure 7: We depict the identity coset∅ along the bottom of the diagram, the coset λ along the

top of the diagram, and its corresponding reduced expression s5s4s3s2s1s6s5s4s3s7s6s8s7 .

The Bruhat order on PW can also easily be visualized in this setting, namely λ < μ
if either λ contains strictly fewer ∧ arrows than μ or if λ has the same number of ∧
arrows as μ and μ is obtained from λ by moving ∧ arrows to the right.
Remark 5.2 It is worth taking a moment to consider which diagrams can appear
elements of PW . It is clear that there are (n+1

k
) cosets for (An ,Ak−1 × An−k) and that

these are given by all possible diagrams with k∧-arrows and n − k + 1∨-arrows. There
are 2n cosets for (Cn ,An−1) and these are given by freely choosing the ∧ versus ∨
decorations on the vertices {2, . . . , n + 1} (the decoration on vertex 1 is always a ○).
There are 2n−1 cosets for (Dn ,An−1) and these are given by freely choosing the ∧
versus ∨ decorations on the vertices {1, 2, . . . , n} subject to the condition that the total
number of ∧-arrows is even.

For the remainder of the paper, we will freely identify cosets with their diagrams
without further mention.

Remark 5.3 In type (Dn ,An−1), the description we gave of the cosets (and graph
G(W ,P)) uses the parabolic subgroup of type An−1 as the subgroup generated by{s1 , s2 , . . . , sn−1}. We could have used instead the parabolic subgroup of type An−1

generated by {s1′′ , s2 , . . . , sn−1}. This gives an alternative construction of G(W ,P) in
type (Dn ,An−1), starting by defining the coset ∅ as the horizontal line with n points
where the first one is labeled by ∧ and all others are labeled by ∨. So the cosets now
must have an odd number of ∧-arrows.
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Figure 8: The graph G(W ,P) for (W , P) = (A4 , A1 × A2).

Figure 9: The graphs G(W ,P) for (W , P) = (D4 , A3) and (C3 , A2).
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6 Diagrammatic oriented Temperley–Lieb algebras in classical
type

We now introduce a visualization of oriented Temperley–Lieb algebras for (W , P) of
classical type, namely, (An ,Ak × An−k−1), (Dn ,An−1), and (Cn ,An−1).

6.1 Green’s diagrammatic Temperley–Lieb algebras

We first recall Green’s diagrammatic realisation of the generalized Temperley–Lieb
algebras of typeW (see [Gre98]).

Definition 6.1

(1) An n-tangle is a rectangular frame with n vertices on the northern and southern
boundaries which are paired-off by n non-crossing strands and a finite number of
non-crossing closed loops. Strands and loops can be decorated by a finite number
of beads if they are left exposed (i.e., can be deformed to touch the left boundary
of the frame).We refer to a strand connecting a northern and southern vertex as a
propagating strand. We refer to any strand connecting two northern vertices (or
two southern vertices) to each other as an arc. Two n-tangles are equal if there
exists an isotopy of the plane fixing the boundaries of the frame carrying one
n-tangle to the other. We denote the set of all such n-tangles by DTn .

(2) We call ann-tangle d ∈ DTn undecorated if it has no beads on its strands or loops.
(3) For R any commutative ring, we have that RDTn has the structure of an

R-algebra where the multiplication is given by the vertical concatenation of
n-tangles. Specifically, for d , d′ ∈ DTn , we define the product dd′ simply by
placing d′ above d.

We define ei for i ≥ 1 to be the undecorated n-tangle with a single pair of arcs
connecting the ith and (i + 1)th northern (respectively southern) vertices, and with(n − 2) vertical strands. We set e1′ = e1′′ to be the n-tangle which has a single pair

Figure 10: Examples of undecorated tangles.

Figure 11: Examples of tangles. In the first and third diagrams we decorate every left-exposed

strand.
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Figure 12: The n-tangle e1′ = e1′′ , e1 , e2 , and e3 for n = 5.

of arcs connecting the 1st and 2nd northern (respectively southern) vertices, both of
which carry a single bead, and with (n − 2) vertical undecorated strands. We use the
distinct subscripts 1′ and 1′′ to remind the reader of the corresponding Coxeter labels
in Figure 1 for what follows. Examples of these elements are depicted in Figure 12.

We now recall the diagrammatic visualization of the generalied Temperley–Lieb
algebras TLW(q) given in Definition 3.13. From now on, we take R = Z[q, q−1].
Theorem 6.2 (Kauffman [Kau87]) The Temperley–Lieb algebra TLAn

(q) of type An ,
is isomorphic to the subquotient of the algebra RDTn+1 generated by e1 , . . . , en subject
to the relation

= q + q−1

It has a basis given by the set of all undecorated (n + 1)-tangles with no loops, which we
denote by DT[An].
Theorem 6.3 (Green [Gre98]) The generalized Temperley–Lieb algebra TLCn

(q)
of type Cn is isomorphic to the subquotient of the algebra RDTn+1 generated by
e1′ , e2 , . . . , en subject to the relations

= = = q + q−1

It has a basis given by the set of all (n + 1)-tangles with no loops and at most one
decoration on each strand and satisfying one of the following (mutually exclusive)
conditions.

(1) The leftmost northern vertex is connected to the leftmost southern vertex by an
undecorated strand.

(2) The leftmost northern vertex is connected to the leftmost southern vertex by a
decorated strand and there is at least one northern and one southern arc.

(3) The strands emerging from the leftmost northern and southern vertices are distinct
and both decorated.

We denote the set of all such (n + 1)-tangles by DT[Cn].
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Theorem 6.4 (Green [Gre98]) The generalized Temperley–Lieb algebra TLDn
(q)

of type Dn is isomorphic to the subquotient of the algebra RDTn generated by
e1′′ , e1 , e2 , . . . en−1 subject to relations

= = q + q−1 = .

It has a basis given by the set of all n-tangles with at most one decoration on each strand
or loop, and which satisfy one of the following (mutually exclusive) conditions.

(1) It contains one decorated loop and no other loops or decorations, and there is at least
one northern and one southern arc.

(2) It contains no loops and the number of decorations is even.

We denote the set of all such n-tangles by DT[Dn].
6.2 Diagrammatic oriented Temperley–Lieb algebras

Recall from Section 5 that we can represent each coset representative λ ∈ PW by its
coset diagram, which we also denote by λ. For W ∈ {An ,Cn ,Dn}, we let DT[W]
be the set of tangles defined in Theorems 6.2 to 6.4. Now starting with any tangle
in DT[W], we will form so-called oriented tangles by considering elements of the
form λdμ for λ, μ ∈ PW by placing λ, respectively, μ on the southern, respectively,
northern, boundary of d. Each strand of d in λdμ now connects two symbols from
the set {∧,∨, ○} from the boundaries. A strand connecting two symbols from the set{∧,∨} is said to be oriented if one arrow points into the strand and the other arrow
point out of the strand. We say that a strand connecting two symbols from the set{∧,∨} is flip-oriented if either both arrows point into the strand or both arrows point
out of the strand. A strand connecting ○ with one symbol from the set {∧,∨} is said
to be both oriented and flip-oriented.

Definition 6.5 For d ∈ DT[W] and λ, μ ∈ PW , we say that λdμ is an oriented tangle
of type (W , P) if the following conditions holds.
• Every undecorated strand is oriented.

Moreover, if (W , P) = (Dn ,An−1) then
• every decorated strand is flip-oriented, and
• there are no loops.

If (W , P) = (Cn ,An−1) then
• there are no decorations on the strand connecting ○ to ○.
We denote by ODT[W , P] the set of all oriented tangles of type (W , P) and refer to
these as oriented Temperley–Lieb diagrams of type (W , P).

Examples of oriented tangles are given in Figures 13 and 14.

Remark 6.6 Note that, by definition, we have that λeiμ ∈ ODT[W , P] if and only if
λ

i�→ μ is an edge in the graph Ĝ(W ,P).

The following proposition follows directly from Remark 5.2.
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∨ ∨ ∧ ∧ ∧ ∧ ∨ ∨ ∧

∧ ∧ ∧ ∧ ∧ ∨ ∨ ∨ ∨

∨ ∨∧ ∧ ∧ ∧ ∨ ∨ ∧

∧ ∧ ∧ ∧ ∧ ∨ ∨ ∨ ∨

∨∧ ∧ ∨∨∧ ∨ ∧∧
∨ ∧ ∧ ∨∨∧ ∨ ∧∧

Figure 13: Oriented tangles of type (A8 , A4 × A3) obtained from the diagrams of Figure 10.

∨ ∧ ∧ ∨ ∨ ∧ ∨ ∨ ∧
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∨∧ ∨ ∨ ∧ ∨ ∨ ∧

∧ ∧ ∧ ∧ ∨ ∨ ∨ ∨

Figure 14: Oriented tangles of type (C9 , A8), (D10 , A9), and (C8 , A7), respectively, obtained
by orienting the diagrams from Figure 11.

Proposition 6.7 Let d ∈ DT[W]. Then there exists λ, μ ∈ PW such that λdμ ∈
ODT[W , P] if and only if
• (W , P) = (An ,Ak × An−k−1) and d has at most min{k + 1, n − k}
northern/southern arcs.

• (W , P) = (Cn ,An−1) and d contains no decoration on a strand connecting ○ to ○ (i.e.,
d satisfies condition (1) or (3) fromTheorem 6.3).

• (W , P) = (Dn ,An−1) and d contains no loops (i.e., d satisfies condition (2) from
Theorem 6.4).

We denote the set of all tangles described above by DT[W , P].
Definition 6.8 The diagrammatic oriented Temperley–Lieb algebra of type(W , P), denoted by TL∧∨(W ,P)(q), is the Z[q, q−1]-algebra with basisODT[W , P] and
multiplication defined as follows. For λdμ, λ′d′μ′ ∈ ODT[W , P] we have

(λdμ)(λ′d′μ′) = 0 if μ ≠ λ′(6.1)

and vertical concatenation, denoted by λdμd′μ′, if μ = λ′, subject to the following
relations.

(1) Closed loop relation. Remove any closed loop and replace it by q if its rightmost
vertex is labeled by ∨, and by q−1 if its rightmost vertex is labeled by ∧.

x = x = x = ⎧⎪⎪⎨⎪⎪⎩
q if x = ∨
q−1 if x = ∧.

Once all closed loops have been removed, delete all remaining symbols coming
from μ = λ′ and apply the following relations.
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(2) Double bead relation.We have that

= =

in types Cn and Dn , respectively.
(3) Non-simply laced bead relation. In type Cn , we have that

=
.

Remark 6.9 Note that themultiplication is associative. Indeed, consider the product
of three oriented tangles forming a closed loop as pictured below. Then we have that
the red zigzag-strand is not left-exposed and somust be oriented.This implies that the
symbols at x and y are either both ∧ or both ∨ and hence we will get the same result
whichever way we apply the two multiplications.

x

y

.

Therefore TL∧∨(W ,P)(q) is a unital associative algebra with identity∑λ∈PW λ1λ where 1

is the tangle inDT(W) containing only undecorated propagating strands (that is, the
identity element in TLW(q)).
Definition 6.10 We define the parity specialization map

An−1Cn → AnDn+1 ∶ λ ↦ λ

by replacing the ○ in λ by either an ∧ or ∨ arrow in such a way that the resulting total
number of ∧ arrows is even.

We note that the parity specializationmap is a bijection between our diagrammatic
coset representatives, by definition.

In Section 8, we will see that whilst thematrices of light leaves polynomials of types(Dn+1 ,An) and (Cn ,An−1) are genuinely distinct, the underlying Kazhdan–Lusztig
polynomials are the same (see also [Boe88, ES16a]). The key to understanding this
phenomenon will be the following.

Proposition 6.11 There is a surjective algebra homomorphism

φ ∶ TL∧∨(Cn ,An−1)
(q) → TL∧∨(Dn+1 ,An)

(q)
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by setting φ(λdμ) to be the oriented tangle obtained from λdμ by removing the beads
from all decorated oriented strands.

Proof Clearly themap is surjective.We now verify that φ preserves the relations.The
closed loops relation is trivially preserved as it only involves the rightmost decoration
on the loop, which is unchanged by the parity specialization map. (6.1) is also trivially
preserved. We now verify the bead relations of Definition 6.8. We slightly abuse
notation by setting d to be the tangle consisting of a single decorated propagating
strand and by setting u to be the tangle consisting of a single undecorated propagating
strand. We check that

φ(λdμdν) = φ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ

μ

ν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= φ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ

μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ

ν

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= φ(λdμ)φ(μdν)

by breaking this up into three cases depending on λ, μ, ν ∈ {○,∧,∨}. Note that λ, μ, ν
depend on the entirety of the coset diagram, not just the label of the strand that we
are considering (as they are calculated by the overall parity). The three cases are as
follows:

(i) If λ = μ = ν then λdμ, μdν, and λdν are oriented strands and so

φ(λdμdν) = φ(λdν) = λuν = (λuμ)(μuν) = φ(λdμ)φ(μdν).
(ii) If λ = μ ≠ ν then λdμ is oriented and λdν, μdν are unoriented strands and so

φ(λdμdν) = φ(λdν) = λdν = (λuμ)(μdν) = φ(λdμ)φ(μdν).
(iii) If λ ≠ μ ≠ ν then λdν is oriented and λdμ, μdν are unoriented strands and so

φ(λdμdν) = φ(λdν) = λuν = (λdμ)(μdν) = φ(λdμ)φ(μdν).
The result follows. ∎

Wenow state themain result of this section, which establishes that the abstract and
diagrammatically defined algebras are, in fact, isomorphic. Recall, from Remark 6.6

that for any edge λ
i�→ μ in the graph Ĝ(W ,P) we have an element λeiμ ∈ TL∧∨(W ,P)(q).

More generally, for any path T = λ1 i1�→ λ2
i2�→ . . . λ ik−1

ik−1��→ λk on the graph Ĝ(W ,P),
we can form the product

eT ∶= λ1ei1 λ2ei2 . . . λ ik−1eik−1 λk ∈ TL∧∨(W ,P)(q).
Theorem 6.12 Let (W , P) = (An ,Ak × An−k−1), (Cn ,An−1), or (Dn ,An−1). There is
an isomorphism of Z[q, q−1]-algebras

ϑ ∶ TL(W ,P)(q) �→ TL∧∨(W ,P)(q)
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Figure 15: The Temperley–Lieb algebra tiling pictures for types A9 , D10 , and C9 , respectively.

defined by ϑ(1λ) = λ1λ, and ϑ(1λE i1μ) = λeiμ. In particular, for any T ∈ Path(W ,P)

we have ϑ(ET) = eT.
Remark 6.13 Note that we have ϑ(E i) = ϑ(∑λ(1λE i1λ + λE i(1λs i ))) = ∑λ(λeiλ +
λei(λs i)) where the sum is over all λ ∈ PW with λs i ∈ PW .

We will prove this theorem in the rest of this section.

Proposition 6.14 The map ϑ is a Z[q, q−1]-algebra homomorphism.

Proof Weneed to check that the relations (3.1)–(3.4) are preserved under ϑ.The two
leftmost relations in (3.1) are clear by definition of the multiplication in TL∧∨(W ,P)(q).
The two rightmost ones follow from the description of the graph G(W ,P) given in
Section 5. Relation (3.2) is satisfied by the closed loop relation noting that∨∨ < ∧∧ and∧∨ < ∨∧. The leftmost relation in (3.3) holds as the corresponding tangles are isotopic
for {i , j} ≠ {1, 1′′}. Note that when {i , j} = {1, 1′′} in type (Dn ,An−1), we have that
E11λE1′′ = E1′′1λE1 = 0 for all λ ∈ PW , so E1E1′′ = E1′′E1 = 0 and there is nothing to
check. The rightmost relation in (3.3) is also satisfied using the fact that the corre-
sponding tangles are isotopic and the double bead relation when {i , j} = {1′′ , 2} in
type (Dn ,An−1). Relation (3.4) only applies when i = 2 and j = 1′ in type (Cn ,An−1).
Now, it is easy to see that it holds in the diagrammatic algebra using isotopy, the double
bead relations in type Cn and the non-simply laced bead relation. ∎

To show that ϑ is an isomorphism, we will need to show that every oriented
Temperley–Lieb diagram can be written as a product of generators. We start with the
non-oriented diagrams.

6.3 Closed and iterative constructions of Temperley–Lieb diagrams

For W = An−1 ,Cn−1 or Dn , we consider a tiling of a vertical strip of the plane with
square tiles labeled by the simple reflections s ∈ SW as illustrated in Figure 15.

Now, for (W , P) = (An−1 ,Ak−1 × An−k−1), (Cn−1 ,An−2) or (Dn ,An−1) and d ∈
DT[W , P] we have that d has n vertices on the northern edge, labeled by 1, . . . , n
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Figure 16: The tilings of the diagrams from Figure 13. In each case the path begins at the

western-most point, which is denoted with a circle; the path then follows the orientation

depicted on the diagram. An example of the associated ew for the rightmost diagram is ew =
e7e4e6e8e1e3e5e7e2e4 .

(from left to right) and n vertices on the southern edge, labeled by 1′ , . . . , n′ (from
left to right). We write i′ ≥ j′ whenever i ≥ j. Each such diagram d will correspond to
a finite region on our tiling with boundary given by the path

π(d) = (π(1), π(2), . . . , π(n), π(n′), π((n − 1)′), . . . , π(2′), π(1′))
defined as follows: Start at the leftmost corner of a tile labeled by 1, or 1′ ifW = Cn−1,
then for 1 ≤ k ≤ n we have

π(k) = { NE if k is connected to a vertex l > korl ′ ≥ k′ by an undecorated strand
SE otherwise.

π(k′) = {NW if k′ is connected to a vertex l > korl ′ > k′ by an undecorated strand
SW otherwise.

Examples are given in Figures 16 and 17. We have drawn vertical lines through all tiles
not included in R(d). We see that the vertical line starting at vertex i, respectively i′

meets the path π at π(i), respectively π(i′) for each 1 ≤ i ≤ n.
Given a subset X ⊆ {1, . . . , n, n′ . . . , 1′} we set

Nπ(X) = {k ∈ X ∣ π(k) = NE} ⊔ {k′ ∈ X ∣ π(k′) = NW}
Sπ(X) = {k ∈ X ∣ π(k) = SE} ⊔ {k′ ∈ X ∣ π(k′) = SW}.

First note that the path π(d) takes n steps to the East and n steps to the West. So the
path starts and finishes on the left boundary of the tiling. Moreover, the number of
steps to the North is precisely the number of undecorated strands in d. So if d is an
undecorated n-tangle, then the path starts and ends at the same point; this is because

∣Nπ{1, . . . , n, n′ , . . . 1′}∣ = n ∣Sπ{1, . . . , n, n′ , . . . 1′}∣ = 2n − n = n.
But if d has at least one bead, then the path will end strictly below where it started, this
is because in this case

∣Nπ{1, . . . , n, n′ , . . . 1′}∣ < n ∣Sπ{1, . . . , n, n′ , . . . 1′}∣ > 2n − n = n.
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Figure 17: The tiling of the two leftmost diagrams from Figure 14 and an additional one in

type (C9 , A8). The path begins at the northerly western-most point; the path then follows the

orientation depicted on the diagram until terminating at the southernly western-most point

(both of which are denoted with circles). Some of the strands in type C carry two dots which

can be simplified to one dot.

More generally, the second half of the path (goingWest) is always weakly to the South
of the first half of the path (going East). To see this, observe that for 1 ≤ k ≤ n, the
difference in height in the path after k steps and after 2n − k steps is equal to

∣Sπ{k + 1, . . . , n, n′ , . . . (k + 1)′}∣ − ∣Nπ{k + 1, . . . , n, n′ , . . . (k + 1)′}∣ ≥ 0
where the inequality follows by definition as every l (or l ′) in Nπ{k +
1, . . . , n, n′ , . . . (k + 1)′} is connected to a vertex in Sπ{k + 1, . . . , n, n′ , . . . (k + 1)′}.
Thus π(d) defines a region R(d) in the tiling which contains a finite set of tiles
t1 , . . . , tr (which are labeled by simple reflections in SW ).

We now explain how the region R(d) defines a reduced word of a strongly fully
commutative element of W. Enumerate the tiles in R(d), t i1 , . . . , t ir , in such a way
that for each j, the tiles in R(d) to the SW and SE of t i j appear before t i j . Taking
the corresponding ordered product of simple reflections gives a word w = w(d) in
the elements of SW . There is, of course, more than one way of enumerating the tiles
in R(d) in this fashion and these give (all the) different reduced expressions for the
same element ofW (as they differ only by commutation relations).

Conversely, any expression w = s i1 s i2 . . . s ik with s i j ∈ SW defines a region R(w) in
the tiling by picking any horizontal line in the tiling and stacking the boxes in order,
starting from s i1 , then s i2 , . . ., and finally s ik . (This is an alternative description of the
‘heaps’ introduced by Stembridge [Ste96]).

Proposition 6.15

(1) Letw is a reduced expression for a strongly fully commutative element ofW such that
w = ω(T) for some T ∈ Path(W ,P).Then R(w) does not have a boundary containing
an inadmissible section of the form depicted in Figure 18.
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Figure 18: We emphasise the inadmissible section of the border-region by drawing it thickly.

In type An−1 , we require that there is no such region for any i , j ∈ {1, 2, . . . , n − 1}. In type Dn ,

we require that there is no such region for any i ∈ {2, . . . , n − 1} or j ∈ {2, . . . , n − 1}. In type

Cn−1, we require that there is no such region for any i ∈ {1′ , 2, . . . , n − 1} or j ∈ {2, . . . , n − 1}.
We note that the latter two regions (involving a 1 and a 1′′ tile) occur only in type Dn−1 .

(2) For any d ∈ DT[W , P], the region R(d) does not have a boundary containing an
inadmissible section of the form depicted in Figure 18. In particular, w(d) is a
reduced expression for a strongly fully commutative element of W.

(3) For any d ∈ DT[W , P], if w(d) = w = s i1 s i2 . . . s ik then we have

d = ew ∶= ei1ei2 . . . eik .
Moreover, if w′ is another reduced expression for the same strongly fully commu-

tative element of W then ew′ = ew .
Proof

(1) The conditions on i , j follow from Definition 3.1 and the definition of a reduced
expression (see Section 2). For the conditions involving 1 and 1′′, we note that any
path on Ĝ(Dn ,An−1) containing an s1-step and an s1′′-step must contain an s2-step
in between.

(2) Note that the path π(d) takes all steps to the East first, followed by all steps to
the West, this implies that boundary of R(d) does not contain any inadmissible
sections and hencew(d) is a reduced expression for a fully commutative element
ofW.

(3) Now recall that for each simple reflection s i ∈ SW , we have a generator ei ∈
TLW(q), and so any reduced expression w = s i1 s i2 . . . s ik for a strongly fully
commutative element ofW define a product of the generators, ew = ei1ei2 . . . eik ∈
TLW(q). These are pictured in Figures 16 and 17 for w = w(d). Again, it is clear
that for a different choice of reducedwordw′ wehave ew′ = ew (as these differ only
by commutation relations). We claim that ew = d. To see this, we first partition
the region R(d) by splitting it along the horizontal lines through the vertices of
the tiles. This gives a partition of R(d) into horizontal strips. If a strip intersects
the left boundary in more than one point, merge it with the strip above or below
so that the new wider strip now contains precisely two vertices of tiles on the left
boundary. These strips are shown in Figures 16 and 17 (by alternating between
grey and white shading). It is clear that the strands in ew are in one-to-one
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Figure 19: On the left is the tile configuration for a closed loop. On the right the tile config-

uration of a propagating strand connecting the first northern and southern vertices in type

(Cn−1 , An−2). The orientation of the closed loop is not determined by the orientation at the

northern and southern edges of the diagram (obviously). The orientation of strand segment

between the two decorations is also not determined by the orientation at the northern and

southern edges of the diagram.The colouring of tiles should be comparedwith that of Figure 18.

correspondence with the strips of R(d). Each strip contains precisely two edges
of the path π(d) and joins the corresponding vertices in d; one thus recovers the
(decorated) n-tangle d.

∎
Proposition 6.16 Let w be a reduced expression for a strongly fully commutative
element of W. Suppose that we have λ, μ ∈ PW with λewμ ∈ ODT[W , P]. Then there

is a unique path T on Ĝ(W ,P) starting at λ and ending at μ with w(T) = w. Moreover,
we have λewμ = eT.
Proof Having fixed the orientation at the top and bottom of the product of genera-
tors ew , there are only two situations inwhichwehave a choice of orientation for strand
segments in this product. The first one is when the diagram contains a closed loop.
These are formed by a tile configuration of the form depicted on the left of Figure 19.
The second one is when (W , P) = (Cn−1 ,An−2) and we have a tile configuration of
the form depicted on the right of Figure 19. By Proposition 6.15, neither of these can
happen.Therefore the top andbottomorientations uniquely determine the orientation
of every strand segment in the diagram, proving the result. ∎
Corollary 6.17 The map ϑ is a Z[q, q−1]-module isomorphism.

Proof Using Propositions 6.15 and 6.16, we have that every oriented Temperley–Lieb
diagram λdμ = λewμ = eT = ϑ(ET) and so the map ϑ is surjective. To show that it is
injective, note that the basis elements ET for TL(W ,P)(q) given in Theorem 3.8 are
mapped to distinct basis elements in TL∧∨(W ,P)(q). ∎

This completes the proof ofTheorem 6.12. From now on, we identify TL(W ,P)(q) =
TL∧∨(W ,P)(q) and use the diagrammatic notation for its elements.

As noted earlier, if w and w′ are two reduced expressions for the same strongly
fully commutative element w, then we have ew = ew′ . So we will denote this element

by ew . In particular, for each μ ∈ PW wehave the corresponding element eμ ∈ TLW(q).
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(We will give a closed combinatorial description of this element in Section 8.) Now,
restricting our attention to the anti-spherical module and using Corollary 3.10 gives
the following.

Corollary 6.18 The anti-spherical module ∅TL(W ,P)(q) has basis given by

{eT = ∅eμλ ∣ T ∈ Path(λ, μ), λ, μ ∈ PW}.
In particular we have

∣Path(λ, μ)∣ ≤ 1 for all λ, μ ∈ PW .

Thus, the diagrammatic oriented Temperley–Lieb algebra setting (and its anti-
spherical module in particular) provides a diagrammatic model for studying the
matrix Δλμ . More precisely, we have shown that

Δλ ,μ = { qdeg(∅eµ λ) if ∅eμλ ∈ ODT[W , P]
0 otherwise.

In the next section, we investigate the degree of oriented Temperley–Lieb diagrams.

7 A closed combinatorial interpretation of the grading

The isomorphism ϑ given in Theorem 6.12 gives a grading on the diagrammatic
oriented Temperley–Lieb algebra. Explicitly, we have that the degree of any oriented
Temperley–Lieb diagram λdμ = λewμ = eT is equal to deg(T).This is computed as the
sum of the degree of each step in the path T. We now provide a closed combinatorial
description of this degree in terms of the diagram λdμ itself.

Theorem 7.1 We define the degree of an oriented Temperley–Lieb diagram by assign-
ing a degree to each of its strands and then summing over all strands.We define the degree
of a northern arc whose rightmost vertex is labeled by ∨ to be +1, and the degree of a
southern arc whose rightmost vertex is labeled by∧ to be−1. All other strands are defined
to have degree 0 (in particular, all propagating strands have degree 0). Diagrammatically,
we record the degree of an oriented Temperley–Lieb diagram as follows

♯{ ∧ ∨

,
∨ } − ♯{

∧
∨ ,

∧

}
where the dots are to emphasise that the lefthand-side of the arc does not contribute to the
degree. Then for any oriented Temperley–Lieb diagram λdμ = eT we have deg(λdμ) =
deg(T).
Proof We first check that the degree of the generators λeiμ (for μ = λ or λs i) are
correct. Note that we have λ < λs i ∈ PW precisely when λ = . . . ∧ ∨ . . . and λs i = . . . ∨∧ . . . for i ∈ {1, . . . n − 1}, or λ = ∨ ∨ . . . and λs1′′ = ∧ ∧ . . ., or λ = ○ ∨ . . . and λs1′ =○ ∧ . . .. So the degrees of the generators are given by

λeiλ =
⎧⎪⎪⎨⎪⎪⎩
1 + 0 = 1 if λ < λs i
0 − 1 = −1 if λ > λs i λei(λs i) =

⎧⎪⎪⎨⎪⎪⎩
0 + 0 = 0 if λ < λs i
1 − 1 = 0 if λ > λs i .
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+

○

○

−

○

○ −

+

Figure 20: The four generators λei μ for i ∈ {1, . . . n − 1} of degree 1 = 1 + 0, −1 = 0 − 1, 0 = 0 +
0, and 0 = 1 − 1, respectively. We record the degrees of the strand segments within the tile (with

+ = 1, − = −1 and ○ = 0).

Figure 21: The undecorated northern arcs.

These are illustrated in Figure 20 for i ∈ {1, . . . , n − 1}. Comparing these with Propo-
sition 3.11 proves the result for the generators.

Now as explained in Subsection 6.3, we can write any oriented Temperley–Lieb
diagram as a product of generators eT with ω(T) a reduced word for a strongly fully
commutative element ofW using a region in the tiling forW. Moreover, we have seen
how each strand of the diagram corresponds to a horizontal strip in the tiling. We can
then obtain the degree of strand in the product by adding the degree of each small arc
coming from the generators. We now run through the various types of strands and
check that the result holds in each case.

First observe that any northern or southern arc passes through an odd number
of tiles and any propagating strand passes through an even number of tiles. The
undecorated northern arcs are illustrated in Figure 21.

In Figures 21-25, we highlight the tiles through which the strand “wiggles” and the
degree of the strand within a given tile (which we have already calculated in terms of
the generators. Note that, reading from left to right, the strand oscillates between being
either the “top” or “bottom” of a given generator tile. Assume the arc is undecorated,
northern, and clockwise-oriented. The degree contribution as the arc passes through
these tiles is given by

+1 − 1 + 1 − 1 + 1 − 1 ⋅ ⋅ ⋅ + 1 = 1
(notice that the strand is locally either a clockwise northern arc or an anticlockwise
southern arc at each step). If an undecorated northern arc is anti-clockwise oriented
then it has degree

0 + ⋅ ⋅ ⋅ + 0 = 0.
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Figure 22: Degree 1 decorated northern strands. The pink highlights an odd number of boxes,

the blue highlights an even number. In this way, note that the blue section of the strand never

contributes to the degree, regardless of the orientation.

Figure 23: Degree zero decorated northern strands.

Figure 24: The undecorated propagating strands, all of which are of degree 0.

Figure 25: The decorated propagating strands, all of which are of degree 0.

Thus the degreesmatch up.Thedegrees of undecorated southern arcs can be computed
similarly.The degree of undecorated propagating strands can easily be seen to be zero
as illustrated in Figure 24.

The decorated northern arcs of degree 1 in type (Cn−1 ,An−2) are illustrated in
Figures 22–25. Swapping the orientation of the rightmost vertex from ∨ to ∧, we see
that the pink strip now doesn’t contribute to the degree either, and so these northern
arc have degree zero. The decorated southern arcs can be dealt with in a similar way.

It is easy to see that any (decorated) propagating strand also has degree zero as it
goes through an even number of tiles.

Finally, the strands in a diagram of type (Dn ,An−1) are the same as those in type(Cn−1 ,An−2) except that they contain at most one decoration and we only need to
consider arcs which are flip-oriented. So the result holds for these as well. ∎
Corollary 7.2 Theanti-sphericalmodule forTL(W ,P)(q) is non-negatively graded, that
is

deg(∅eμλ) ≥ 0 for all λ, μ ∈ PW .
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Thus, the non-zero entries in the light leaves matrix Δλ ,μ are non-negative powers of q.

Proof Any northern arc or propagating strand is non-negatively graded, thus it
suffices to consider the southern arcs (which can be negatively graded). Now recall
the coset diagram for∅ in types (W , P) = (An ,Ak × An−k−1), (Cn ,An−1), (Dn ,An−1)
from Section 5.We see that any southern arc must have rightmost vertex labeled by ∨.
So the southern arcs all have degree zero. This proves the result. ∎

8 Factorization of the light leaves matrix

Wenow explain how to construct the element eμ ∈ TLW(q) for μ ∈ PW via an efficient
closed combinatorial algorithm, which has its origins in [BS12, CD11, ES16b, Mar15].
This allows us to enumerate the elements ∅eμλ and hence the paths NPath(λ, μ) ⊆
Path(λ, μ) and BPath(ν, μ) ⊆ Path(ν, μ) corresponding to decomposition numbers
and bases of simple modules for the Hecke category respectively (in other words,
solving Libedinsky–Williamson’s question for Hermitian symmetric pairs).

We have seen that every strongly fully commutative elementw inW withw = ω(T)
for some T ∈ Path(W ,P) corresponds to a region R(w) in the tiling ofW. That region
is determined by the path π(w)walking along its boundary, starting with its northern
boundary going East and coming back along its southern boundary goingWest.When
w = μ ∈ PW , the region R(μ) has a particularly simple shape.

Lemma 8.1 We have that w ∈ PW if and only if the region R(w) has the following
property. In type (An−1 ,Ak−1 × An−k−1), the last n steps of the path π(w) are given by((SW)n−k , (NW)k). In types (Cn−1 ,An−2) and (Dn ,An−1), the last n steps of the path
π(w) are given by ((SW)n).
Proof Note that the minimal length coset representatives μ ∈ PW are characterised
by the fact that every reduced expression for μ starts with s ∉ P. From that characteri-
sation, it is clear that if π(w) has the stated form then w ∈ PW . Examples of π(μ) for
μ ∈ PW are given in the first two pictures in Figures 16 and 17. Now suppose that π(w)
does not have the stated form then π(w) would have two consecutive steps π((n −
i)′) = SW and π((n − i − 1)′) = NW (with i ≠ k in type (An−1 ,Ak−1 × An−k−1)). But
this would imply that there is a reduced expression for w starting with some s ∈ P and
so w ∉ PW . This is illustrated in the rightmost picture of Figures 16 and 17 where we
indeed observe that there is a reduced word for w starting with s ∈ P in each case. ∎

Therefore for μ ∈ PW , the region R(μ) is completely determined by its northern
boundary. In fact, we have the following natural correspondence between the northern
boundary of R(μ) and the coset diagram of μ.

Lemma 8.2 Let μ ∈ PW. The i-th vertex of the coset diagram of μ is labeled by ∧,
respectively ∨, if and only if the i-th step in π(μ) is given by SE, respectively, NE. In
type (Cn−1 ,An−2), the first vertex is always labeled by ○ and the first step is always SE.
Proof We proceed by induction on ℓ(μ). For ℓ(μ) = 0, we have μ = ∅ and the
result is clear from the description of the coset diagram for ∅ given in Section 5.
Now assume that the result holds for λ ∈ PW and let μ = λs i > λ. If i = 1, . . . , n − 1
then the coset diagrams for λ and λs i only differ in position i and i + 1 and we have
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Figure 26: The effect of applying a reflection s i for 1 ≤ i ≤ n − 1; the reflection s i=s1′ (in typeC);
and the reflection s i=s1′′ (in type D) respectively. In each case, we depict the pair of weights λ

and λs i and the corresponding northern edges of the paths π(λ) and π(λs i). We highlight in

blue and pink the difference between λ and λs i (both on the level of tiles and coset diagrams).

λ = . . . ∧ ∨ . . . and λs i = . . . ∨ ∧ . . .. The corresponding paths π(λ) and π(λs i) are
depicted in Figure 26. We see that the i-th and (i + 1)-th steps in λ, respectively λs i ,
are given by SE ,NE, respectively, NE , SE and so the result follows by induction. For
i = 1′, the coset diagrams of λ and λs1′ only differ in the second position and we have
λ = ○ ∨ . . . and λs1′ = ○ ∧ . . .. The corresponding paths π(λ) and π(λs1′) are depicted
in Figure 26. We see that the second step in λ is given by NE while the second step
in λs1′ is given by SE, and so the result follows by induction. Finally, if i = 1′′ then
the coset diagrams for λ and λs1′′ only different in the first two positions and we have
λ = ∨ ∨ . . . and λs1′′ = ∧ ∧ . . ..The corresponding paths π(λ) and π(λs1′′) are depicted
in Figure 26.We see that the first two steps in λ, respectively λs1′′ , are given byNE ,NE,
respectively SE , SE, and so the result follows by induction. ∎

Using this correspondence, we easily obtain the following closed combinatorial
algorithm to construct eμ .

Proposition 8.3 For each μ ∈ PW, the diagram eμ ∈ TLW(q) can be constructed as
follows. Place the coset diagram μ on the northern boundary and ∅ on the southern
boundary. Then

(1) Repeatedly connect neighbouring northern vertices (in the sense that they are next to
each other or only have vertices already connected by an arc between them) labeled
by ∨ and ∧ by a northern anti-clockwise arc.

We are left with (in type (Cn−1 ,An−2) one vertex labeled by ○ followed by) some
vertices labeled by ∧ followed by some vertices labeled by ∨.

(2) (a) In type (An−1 ,Ak−1 × An−k−1), draw undecorated propagating strands on all
remaining vertices.

(b) In type (Dn ,An−1), starting from the left, connect neighbouring vertices labeled
with ∧’s with decorated northern arcs. Then draw a decorated propagating
strand from the remaining vertex labeled by ∧ (if it exists), and undecorated
propagating strands on all remaining vertices labeled by ∨.
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∨ ∨∧ ∧ ∧ ∧∨ ∨ ∧ ∨∨ ∧∧∧∨ ∧∧

Figure 27: Two examples of the construction of eμ , the former is of type (A8 , A4 × A3) and the
latter is of type (C8 , A7).

∨∨ ∨ ∧∧ ∧ ∧ ∧ ∧ ∧ ∧∨ ∨∨∧∨ ∧∧∧

Figure 28: An example of the construction of eμ in type (D19 , A18).

(c) In type (Cn−1 ,An−2), if μ = ∅, then draw an undecorated propagating strand
from each northern vertex. Otherwise, view the first label ○ of μ as a ∧, then
follow exactly the same procedure as in type (Dn ,An−1).

Now there is a unique way of completing the diagram eμ such that∅eμμ ∈ ODT[W , P].
Example 8.4 A couple of illustrative large examples of the construction in Propo-
sition 8.3 are given in Figures 27 and 28. The complete set of all eμ for μ ∈ PW for(W , P) of type (D4 ,A3) and (C3 ,A2) are given in Figure 29. In all examples, we will
only picture the top of the diagram as this completely determines eμ .

Proposition 8.3 gives us an efficient way of finding the degree of ∅eμλ as the
number of northern arcs whose rightmost vertex is labeled by ∨. As this does not
depend on the bottom of the diagram (as all southern arcs have degree zero), we will
only depict the top of ∅eμλ. Examples are given in Figures 30 and 31.

We have already seen in Corollary 7.2 that the entries in the light leaves matrix Δλμ

are either zero or non-negative powers of q. In the simply-laced cases, we can saymore.

Theorem 8.5 Assume (W , P) = (An−1 ,An−2) or (Dn ,An−1). Then for any λ, μ ∈ PW
with ∅eμλ ∈ ODT[W , P], we have deg(∅eμλ) = 0 if and only if λ = μ. In particular,
we have Δλμ = 1 if and only if λ = μ and so the matrix of light leaves has a trivial
factorization

B = Id and Δ = N .

Proof Fix μ ∈ PW and consider all λ ∈ PW with ∅eμλ ∈ ODT[W , P] and
deg(∅eμλ) = 0. Note that this forces all undecorated northern arcs to be anti-
clockwise, all undecorated propagating strands to be oriented, all northern decorated
arcs to be labeled by two ∧’s and all decorated propagating strands to be flip-oriented.
This gives only one choice for λ, namely λ = μ. ∎
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Figure 29: The construction of eμ for all μ ∈
PW in types (D4 , A3) and (C3 , A2).

∨ ∨ ∧ ∧ ∨ ∨∧ ∧ ∨∨ ∧∧ ∨∨∧∧

Figure 30: The elements ∅eμλ from the first column of Figure 31 in order.

Thus, setting every basis element∅eμλ for the anti-sphericalmodule to be standard
proves Theorem A in type (W , P) = (An−1 ,An−2) and (Dn ,An−1). We now state and
proof Theorem A in the only remaining type of Hermitian symmetric pair, namely(Cn ,An−1).
Theorem 8.6 Let λ, μ ∈ An−1Cn . We say that ∅eμλ ∈ ODT[Cn ,An−1] is standard if
every decorated strand if flip-oriented.

We define the matrices N and B in type (W , P) = (Cn ,An−1) as follows:
Nλ ,μ = { qdeg(∅eµ λ) if ∅eμλ ∈ ODT[Cn ,An−1] is standard

0 otherwise
(8.1)

Bλ ,μ = { 1 if ∅eμλ ∈ ODT[Cn ,An−1]anddeg(∅eμλ) = 0
0 otherwise.

(8.2)

Then the matrix of light leaves in type (Cn ,An−1) factorizes as
Δ = NB.
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Proof Fix μ ∈ An−1Cn and consider

Cμ = {λ ∈ An−1Cn ∶ ∅eμλ ∈ ODT[Cn ,An−1]}.
Define an equivalence relation on Cμ by setting λ ∼μ η for λ, η ∈ Cμ if∅eμλ and∅eμη
differ only in one northern arc where the differing arcs are given by

{ ∧ ∨ , ∧
∨ } or { ∧ ∨

, ∧
∨ } or { ∨

∧∧ ,
∨ ∨} or { ∨

∧
○

,
○ ∨} .

(8.3)

We extend ∼μ by transitivity. Note that, under this relation, each equivalence class
contains a unique element ν satisfying deg(∅eμν) = 0 (obtained by orienting all
northern arcs with rightmost vertex labeled by ∧).

Now, let λ, μ ∈ An−1Cn . We claim that

Δλ ,μ = ∑
η∈An−1Cn

Nλ ,ηBη ,μ = { Nλ ,νBν ,μ if∅eμλ ∈ ODT[Cn ,An−1]
0 otherwise

where ν is the unique element satisfying λ ∼μ ν and deg(∅eμν) = 0. Suppose that
Nλ ,η ≠ 0 and Bη ,μ ≠ 0 for some η. This implies that ∅eμη ∈ ODT[Cn ,An−1] with
deg(∅eμη) = 0, that is all northern arcs in ∅eμη have rightmost vertex labeled by ∧.
Thus we have that eη has the same arcs as eμ but with beads corresponding to
oriented decorated northern arcs not connected to the symbol ○ in ∅eμη removed.
Now, Nλ ,η ≠ 0 means that ∅eηλ ∈ ODT[Cn ,An−1] is standard. This implies that we
also have ∅eμλ ∈ ODT[Cn ,An−1]. Now we claim, we have λ ∼μ η. The fact that the
northern arcs are related as in (8.3) follows by definition. That the orientation of the

∨∨∧∧
∨ ∨∧ ∧
∨∨∧ ∧
∨ ∨∧∧
∨ ∨∧ ∧
∨∨∧∧

1 ⋅ ⋅ ⋅ ⋅ ⋅
q 1 ⋅ ⋅ ⋅ ⋅
⋅ q 1 ⋅ ⋅ ⋅
⋅ q ⋅ 1 ⋅ ⋅
q q2 q q 1 ⋅
q2 ⋅ ⋅ ⋅ q 1

Figure 31: The qdeg(∅eµ λ) for λ, μ ∈ PW for (W , P) = (A3 , A1 × A1).
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∧ ∨ ∨

∨ ∨∨

∨ ∨ ∨

∨ ∨∨
∧ ∧∨

∨ ∨∨
∧ ∧ ∨

∨ ∨∨

∨ ∧∨

∨ ∨∨

∨ ∧ ∨

∨ ∨∨

Figure 32: The six non-standard diagrams of type (C3 , A2).Thefirst and third of these diagrams

have degree zero.

propagating lines of∅eμλ and∅eμη coincide follows from the fact that the orientation
on the southern boundary is given by ∅ in both cases and if eμ contains a decorated
propagating line then its northern label is given by the parity condition. Now as η ∼μ λ
and deg(∅eμη) = 0 implies that η = ν. Thus we have shown that

∑
η∈An−1Cn

Nλ ,ηBη ,μ = Nλ ,νBν ,μ .

Finally note that, as ν ∼μ λ, a decorated arc in eμ is oriented in ∅eμλ if and only if
it is oriented in ∅eμν. Now, as noted above, eν is obtained from eμ by removing all
beads on these oriented decorated arcs but the position of the arcs are the same and
so deg(∅eμλ) = deg(∅eνλ). Thus we get

Δλ ,μ = qdeg(∅eµ λ) = qdeg(∅eν λ) = Nλ ,νBν ,μ .

as required. ∎
Remark 8.7 Note that the unique element ν described in the proof above is precisely

the element satisfying φ(∅eμλ) = ∅eνλwhere φ ∶ TL(Cn ,An−1)(q) → TL(Dn+1 ,An)(q) is
the homomorphism defined in Proposition 6.11.

Example 8.8 There are 6 non-standard basis elements ∅eμλ in the anti-spherical
module of type (C3 ,A2) (this can be deduced from Example 2.3 and Theorem 8.6),
these are depicted in Figure 32.

Corollary 8.9 Under the parity specialisationmap An−1Cn → AnDn+1 ∶ λ ↦ λ given in
Definition 6.10 we have that

N
(Cn ,An−1)
λ ,μ

= N(Dn+1 ,An)

λ ,μ
.

Proof We need to show that ∅eμλ ∈ ODT[Cn ,An−1] is standard if and only if

∅eμλ ∈ ODT[Dn+1 ,An]. First note that if ∅eμλ ∈ ODT[Cn ,An−1] is not standard
then ∅eμλ ∉ ODT[Dn+1 ,An]. Now assume that ∅eμλ ∈ ODT[Cn ,An−1] is standard.
The result is trivial for μ = ∅ so we assume that μ ≠ ∅. This implies that the strand
coming out of the first northern vertex in eμ , call it S, is decorated. By definition, eμ is
equal to eμ if S is flip-oriented in ∅eμμ, and eμ is obtained from eμ by removing the
bead on S if it is oriented.Now, except possibly for S the orientations of the propagating

strands in ∅eμμ and in ∅eμλ coincide and each northern arc is oriented, respectively

flip-oriented, in the former if and only if it is in the latter. As λ and μ both have an
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evennumber of∧ arrow, this implies that S is oriented, respectively flip-oriented, in the

former, if and only if it is in the latter. Hencewe have that∅eμλ ∈ ODT[Dn+1 ,An]. ∎
A Singular Kazhdan–Lusztig theory

In this section, for any τ ∈ SW , we calculate the singular Kazhdan–Lusztig polynomials
“lying on a τ-hyperplane” for simply-laced Hermitian symmetric pairs (W , P). This
is a technical result that we will need in [BDHN] and we therefore adopt the following
notation from that paper. We set P(W ,P) = PW and we let

P
τ
(W ,P) ∶= {μ ∈ PW ∣ μτ < μ} ⊂P(W ,P).

We believe the following proposition was first proven by Enright–Shelton, where any
singular categoryO for a Hermitian symmetric pair is proven to be Morita equivalent
to a regular category O for a Hermitian symmetric pair of smaller rank. It is explicitly
stated as [BDHN, Proposition 5.4] in our companion paper, however we note that the
proof offered there is simply given by inspection and follows from the combinatorial
description of the cosets (this combinatorics can be found explicitly recorded in
many other places too, even if the bijection itself cannot, see for instance [EHP14,
Appendix]). Thus while the following is a reference to a paper whose results depend
on the current work, this is not a circular argument.

Proposition A.1 Let (W , P) be a simply laced Hermitian symmetric pair and let τ ∈
SW . There is an order preserving bijection

ψτ ∶P τ
(W ,P) →P(W ,P)τ ,

where (W , P)τ = (W τ , Pτ) is defined by
• (An ,Ak × An−k−1)τ = (An−2 ,Ak−1 × An−k−2);
• (Dn ,An−1)τ = (Dn−2 ,An−3);
• (Dn ,Dn−1)τ = (A1 ,A0);
• (E6 ,D5)τ = (A5 ,A4);
• (E7 , E6)τ = (D6 ,D5).
For τ = s i in types (W , P) = (An ,Ak × An−k) and (Dn ,An−1), this map is given by
deleting the pair of symbols in the ith and (i + 1)th positions in the coset diagram (for
τ = s1′′ , delete the pair of symbols in position 1 and 2).

The explicit element ψτ(λ) in type (Dn ,Dn−1) and exceptional types can be
described in terms of tilings (see [BDHN, Proposition 5.4]) or deduced directly from
the Bruhat graphs without much effort.

Theorem A.2 Let (W , P) be a simply-laced Hermitian symmetric pair, τ ∈ SW and
λ, μ ∈P

τ
(W ,P). Then we have a degree-preserving bijection

Path(λ, μ) → Path(ψτ(λ),ψτ(μ)).
Proof For types (Dn ,Dn−1)τ = (A1 ,A0), (E6 ,D5)τ = (A5 ,A4), and (E7 , E6)τ =(D6 ,D5) the result can be checked directly by examining the light leaves matrices
given in Section 4. In types (An ,Ak × An−k−1) with τ = s i ∈ SW arbitrary and in type
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Figure A1: The element λ from Figure 7 (with the vertices we will remove under the map ψτ

highlighted in blue) and its imageψτ(λ).The tri-colouring of the rightmost node of theCoxeter

graph on the righthand-side is explained in [BDHN] but is not important here.

Figure A2: The element μ from Figures 7 and A1 with its associated diagram eμ and their image

under ψτ .

(Dn ,An−1) and for any τ = s i /= s1′′ , note that λ, μ ∈P
τ
(W ,P) if and only if the i-th and(i + 1)-th vertex in their coset diagram are labeled by ∨∧. This implies that the dia-

grams eT = ∅eμλ for T ∈ Path(λ, μ) are precisely those which have an anti-clockwise

oriented northern arc connecting i and i + 1. In type (Dn ,An−1) with τ = s1′′ , note
that λ, μ ∈P

τ
(W ,P) if and only if the first and second vertex of their coset diagram

are labeled by ∧∧. This implies that the diagrams eT = ∅eμλ for T ∈ Path(λ, μ) are
precisely those which have flip-oriented decorated northern arc connecting the first
and second vertex, both labeled by ∧. For the purposes of this proof, we will only
consider the top half of the diagram ∅eμλ, for ease of exposition (the bottom half
plays no significant role, see Proposition 8.3).

In all cases, the northern arc identified above joins two adjacent vertices and has
degree 0. Now, if (W , P) = (An ,Ak × An−k−1), then removing this oriented arc pro-
duces an orientedTemperley–Lieb diagramof type (An−2 ,Ak−1 × An−k−2) of the same
degree. If (W , P) = (Dn ,An−1) and τ = s1′′ then removing this flip-oriented decorated
northern arc produces an oriented Temperley–Lieb diagram of type (Dn−2 ,An−3) of
the same degree. Finally, if (W , P) = (Dn ,An−1) and τ = s i for i ∈ {1, . . . , n − 1} then
removing this oriented (undecorated) northern arc produces an oriented Temperley–
Lieb diagram of the same degree for the isomorphic copy of TL(Dn−2 ,An−3)(q) where
each coset diagram has an odd number of ∧ arrows (as discussed in Remark 5.3).

This map is clearly a bijection, as starting from any oriented Temperley–Lieb
diagram for the anti-spherical module in rank n − 2, we can insert the degree zero
arc in the position corresponding to τ to obtain an oriented Temperley–Lieb diagram
for the anti-spherical module in rank n and these maps are clearly inverse to each
other. ∎
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