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SMALL BUT UNWIELDY: A LOWER BOUND ON ADJACENCY
LABELS FOR SMALL CLASSES*

EDOUARD BONNETT, JULIEN DURON#, JOHN SYLVESTERS, VIKTOR ZAMARAEVY,
AND MAKSIM ZHUKOVSKII/

Abstract. We show that for any natural number s, there is a constant v and a subgraph-closed
class having, for any natural n, at most 4™ graphs on n vertices up to isomorphism, but no adjacency
labeling scheme with labels of size at most slogn. In other words, for every s, there is a small —even
tiny— monotone class without universal graphs of size n®. Prior to this result, it was not excluded
that every small class has an almost linear universal graph, or equivalently a labeling scheme with
labels of size (1 4 o(1))logn. The existence of such a labeling scheme, a scaled-down version of
the recently disproved Implicit Graph Conjecture, was repeatedly raised [Gavoille and Labourel,
ESA ’07; Dujmovié¢ et al., JACM ’21; Bonamy et al., SIDMA ’22; Bonnet et al., Comb. Theory
’22].  Furthermore, our small monotone classes have unbounded twin-width, thus simultaneously
disprove the already-refuted Small conjecture; but this time with a self-contained proof, not relying
on elaborate group-theoretic constructions.

As our main ingredient, we show that with high probability an Erdés—Rényi random graph G(n, p)
with p = O(1/n) has, for every k < n, at most 20(k) subgraphs on k vertices, up to isomorphism.
As a barrier to our general method of producing even more complex tiny classes, we show that when
p = w(1/n), the latter no longer holds. More concretely, we provide an explicit lower bound on the
number of unlabeled k-vertex induced subgraphs of G(n,p) when 1/n < p < 1 — 1/n. We thereby
obtain a threshold for the property of having exponentially many unlabeled induced subgraphs: if
min{p,1 — p} < ¢/n with 0 < ¢ < 1, then with high probability even the number of all unlabeled
(not necessarily induced) subgraphs is 20(n) | whereas if C/n < p < 1— C/n for sufficiently large
C, then with high probability the number of unlabeled induced subgraphs is 2©(™). This result
supplements the study of counting unlabeled induced subgraphs that was initiated by Erdds and
Rényi with a question on the number of unlabeled induced subgraphs of Ramsey graphs, eventually
answered by Shelah.

Key words. labeling schemes, implicit graph conjecture, universal graphs, random graph,
subgraphs, small classes

MSC codes. 68R01, 68R05, 05C80

1. Introduction. A class of graphs is a set of graphs which is closed under
isomorphism. Let C be a class of graphs and f : N — N be a function. An f(n)-bit
adjacency labeling scheme or simply f(n)-bit labeling scheme for C is a pair (encoder,
decoder) of algorithms where for any n-vertex graph G € C the encoder assigns to
the vertices of G pairwise distinct® f(n)-bit binary strings, called labels, such that the

*A conference version of this paper appeared at SODA 2024 [12]
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IThis assumption is without loss of generality as the classes we are interested in, namely hered-
itary classes with 20(nlogn) Jgheled n-vertex graphs, are known to always contain arbitrarily large
graphs whose vertices all have pairwise distinct neighborhoods [2] and therefore all of them should
be assigned distinct labels in any adjacency labeling scheme. On the other hand, the assumption is
convenient when considering the correspondence between labeling schemes and universal graphs.
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adjacency between any pair of vertices can be inferred by the decoder only from their
labels. We note that the decoder depends on the class C, but not on the graph G.
The function f is the size of the labeling scheme. Adjacency labeling schemes were
introduced by Kannan, Naor, and Rudich [30, 31], and independently by Muller [32]
in the late 1980s and have been actively studied since then.?

For a function u : N — N, a universal graph sequence or simply universal graph of
size u(n) is a sequence of graphs (U, )nen such that for every n € N the graph U,, has
at most u(n) vertices and every n-vertex graph in C is an induced subgraph of U,.
It was observed in [31] that for a class of graphs the existence an f(n)-bit labeling
scheme is equivalent to the existence of a universal graph of size 2/(").

One line of research in the area of labeling schemes is to describe graph classes
that admit an implicit representation, i.e., an O(logn)-bit labeling scheme. Since
labels assigned by a labeling scheme are assumed to be pairwise distinct!, [logn] is
a lower bound on the size of any labeling scheme (where, and throughout the paper,
log is in base 2). Thus, understanding the expressive power of the labeling schemes
of size of order logn is a natural question. A simple counting argument shows that a
necessary condition for the existence of such a labeling scheme is that the graph class
must have at most factorial speed, i.e., the number of n-vertex graphs in the class
should be at most 29("1°8") ~ This condition alone is not sufficient, as witnessed by
Muller’s construction [32] of a factorial graph class that does not admit an implicit
representation. The crucial property used in that construction is that the class is
not hereditary, i.e., not closed under removing vertices. Kannan, Naor, and Rudich
[30] asked whether factorial speed and the property of being hereditary are sufficient
conditions for an implicit representation. This question was later reiterated by Spinrad
[37] in the form of a conjecture, that became known as the Implicit Graph Conjecture,

(IGC): Any hereditary class of at most factorial speed admits an O(log n)-bit labeling
scheme.

The question remained open for three decades until the recent development of
a connection between randomized communication complexity and adjacency labeling
schemes [26, 27, 25] led to the beautiful and striking refutation of the conjecture by
Hatami and Hatami [28]. In particular, Hatami and Hatami showed that for any ¢ > 0
there exists a hereditary factorial class that does not admit an (n'/?~9)-bit labeling
scheme. This refutation leaves wide open the question of characterizing hereditary
graph classes that admit O(logn)-bit labeling schemes, and no plausible conjecture is
available at the moment.

A large and important body of work within labeling schemes focuses on the design
of labeling schemes of asymptotically optimal size. Such labeling schemes are known
for various graph classes. For example, trees admit a (logn 4+ O(1))-bit labeling
scheme [6], planar graphs admit a (1 + o(1)) log n-bit labeling scheme [18], all classes
of bounded treewidth admit a (1 + o(1))logn-bit labeling scheme [23]. The latter
example deals with an infinite family of graph classes rather than a single class.
The classes in this family are parameterized by the value of their treewidth, and the
bound means that for any natural k the class of graphs of treewidth at most k& admits
a labeling scheme of size (1+ 0(1))log n, where o(1) refers to a function that depends
on n and k, and tends to 0 as n goes to infinity.

We say that a family F of graph classes has uniformly bounded labeling schemes, if

2It would be hard to give a short but comprehensive list of references, so we refer the interested
reader to the list of hundreds of papers citing [31].
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there exists a natural number s such that every class in F admits an (s+o(1)) logn-
bit labeling scheme. Using this terminology, we can say that the family of classes
of graphs of bounded treewidth has uniformly bounded labeling schemes. Another
example of a family with uniformly bounded labeling schemes is the family of proper
minor-closed classes, since each of these classes admits a (2 + o(1)) log n-bit labeling
scheme [23].

Note that an n-vertex graph with adjacency labels of size f(n) can be encoded by
a binary word of length at most n - f(n) obtained by concatenating the vertex labels.
Therefore, an f(n)-bit labeling scheme can represent at most 2f (") unlabeled n-
vertex graphs. Hence, a necessary condition for a family of graph classes to have
a uniform bound (s + o(1))logn on labeling schemes is that every class in the family
should have at most 2(sto(D)nlogn yplabeled n-vertex graphs. The proper minor-
closed classes (including the classes of bounded treewidth) are small, i.e., in each such
class the number of labeled n-vertex graphs is at most nle” = 2(1+e(M)nlogn for some
constant ¢ [33]. Thus, this family has the uniform bound of 2(1+e(1)nlogn eyven on
the number of labeled graphs. In fact, the bound on the number of unlabeled graphs
in proper minor-closed classes is smaller: for any such class there exists a constant ¢
such that the number of unlabeled n-vertex graphs is at most ¢™ [10, 9, 7]. We will
call such classes tiny. Note that any n-vertex unlabeled graph corresponds to at most
n! labeled graphs that are isomorphic to it, and therefore any tiny class is small. It
is not known whether the converse holds (see 3. = 2. of Conjecture 8.1, in the first
version of [16]).

It is known that the classes of bounded clique-width [3] and more generally the
classes of bounded twin-width [16] are tiny, and thus they have a uniform upper
bound on the number of n-vertex graphs. These classes are also known to admit
O(log n)-bit labeling schemes, but these are not uniformly bounded labeling schemes.
Indeed, the best known labeling schemes for graphs of clique-width at most &k are
of size ©(klogk - logn) [37, 8]; and the only known labeling scheme for graphs of
twin-width at most k is of size 22" -logn [14]. For each of these families no uniform
bound is known, but such a bound is still possible. In fact, the necessary condition on
the number of graphs does not rule out that the entire family of small classes admits
the optimal uniform bound of (1 + o(1)) logn on labeling schemes, and this question
appeared in the literature several times [23, 18, 11, 14].

The main result of the present work is a strong negative answer to this question:
for any constant s, there exists a monotone tiny class that does not admit an s log n-bit
labeling scheme.

1.1. Our contributions. Our main result shows that the family of small classes
cannot have uniformly bounded adjacency labeling schemes. In fact, we prove the
stronger result that the monotone (i.e., closed under taking subgraphs) tiny graph
classes do not admit such labeling schemes.

THEOREM 1.1. For any constant s € N, there exists a tiny monotone graph class
C that does not admit a universal graph of size n®. Equivalently, C has no adjacency
labeling scheme of size slogn.

Our technique also allows us to show that the family of all monotone tiny (and
therefore the family of all small) classes cannot be “described” by a countable set of
c-factorial classes, where a hereditary class C is c-factorial if it contains at most n"
labeled graphs on n vertices.

THEOREM 1.2. For any ¢ > 0, and any countable family F of c-factorial classes,
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there exists a monotone tiny class that is not contained in any of the classes in F.

As noted in [1], most positive results from the literature on implicit representa-
tions are associated with specific graph parameters in the sense that an implicit rep-
resentation for a class is derived from the fact that some graph parameter is bounded
for this class. It is tempting to try and apply such a parametric approach to the
characterization of small classes: identify a set of graph parameters each of which
implies smallness, and such that for any small class, at least one of the parameters in
the set is bounded. Such an attempt, in the somewhat extreme form of a single graph
parameter, was recently made. Namely, the Small conjecture posited that every small
hereditary class has bounded twin-width [14]. This conjecture was already refuted in
[15] using a group-theoretic construction. A corollary (Corollary 4.4) of Theorem 1.2
is that the parametric approach to characterization of small, and even monotone tiny
classes, is futile even if countably many parameters are utilized. As a special case of
this corollary we obtain an alternative refutation of the Small conjecture that avoids
groups.

COROLLARY 1.3. There exists a monotone tiny graph class with unbounded twin-
width.

In order to prove Theorem 1.1 we construct the target classes via the proba-
bilistic method. This requires us to study of the growth of the number of k-vertex
subgraphs in a random graph (see Section 1.2 for more details). In particular, we
obtain two characterizations of the exponential growth of the number of subgraphs
in random graphs. The first one, Theorem 1.4, characterizes random graphs in which
the number of k-vertex subgraphs grows exponentially as a function of k. The second
one, Theorem 1.5, characterizes random graphs in which the total number of (in-
duced) subgraphs grows exponentially. We introduce some essential definitions before
stating these results.

Let G(n,p) be the (random graph) distribution on n-vertex graphs where each
edge is included independently with probability p. For a constant ¢, we say that an
n-vertex graph G is monotone c-tiny if, for every k > 1, the number of unlabeled
k-vertex subgraphs of G is at most c*.

THEOREM 1.4 (Consequence of Theorems 3.1 and 3.5). The following holds:
1. for every di > 0, there exists ¢ > 0 such that w.h.p. G, ~ G(n,di/n) is
monotone c-tiny; and
2. for every ¢ > 0, there exists do > 0 such that w.h.p. Gy, ~ G(n,da/n) is not
monotone c-tiny.

To obtain the second half of this result (Theorem 3.5), we provide an explicit
lower bound on the number of unlabeled k-vertex induced subgraphs of G(n,p) for
all 1/n < p < 1—1/n. As a consequence, we prove that p = ©(1/n) is a threshold for
the property of having exponentially many unlabeled (induced) subgraphs. This has
connections to an old question by Erdés and Rényi, who conjectured that Ramsey
graphs (i.e., graphs in which maximum homogeneous induced subgraphs are of loga-
rithmic size) have exponentially many unlabeled induced subgraphs. This conjecture
was proved by Shelah [36]. Our threshold shows that (relatively) sparse G(n,p) has
exponentially many unlabeled subgraphs (note that such graphs are not Ramsey).
Let s(G,) and i(G,) denote the number of unlabeled subgraphs and the number of
unlabeled induced subgraphs of G,,, respectively.

THEOREM 1.5. Let G, ~ G(n,p), and 0 < ¢ < 1 be constant. Then, there exist
constants A > 1 and C > 0 such that the following holds.
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(i) If min{p,1—p} < £, then w.h.p., i(Gy) < s(Gy) = 2°.
(i1) If € <p<1—E, then wh.p., s(Gn) >i(Gp) > A"

1.2. Proof outlines and techniques. In this section we outline the proofs of
our main results.

Monotone tiny classes that do not admit polynomial size universal graphs.. Our
approach is inspired by the refutation of the IGC by Hatami and Hatami [28]. Namely,
we expose a family of tiny monotone classes that is so large that there are not enough
universal graphs of uniformly bounded size to capture all of them. The approach is
illustrated in Figure 1 and involves several key ingredients:

1. Estimation of the number of sets of graphs with fixed cardinality representable
by universal graphs. A set of graphs M is representable by a universal graph
U if every graph in M is an induced subgraph of U. Fix some positive
integer s. A direct estimation shows that the number of sets of cardinality
k, := n?*~! of n-vertex graphs that are representable by a u,,-vertex universal
graph, with u,, := n® is at most

(1.1) 2qu . uzkn — 2n25 . nsn% — 2n28+sn25 logn_

2. Notion of c-tiny graphs and its refinement (¢, Y, t)-tiny graphs. We will con-
struct our monotone tiny classes by taking the monotone closure of an appro-
priately chosen set of graphs. The monotonicity and tinyness of target classes
impose a natural restriction on graphs that can be used in such constructions.
To explain, let C be a monotone and tiny class, i.e., for every graph G € C all
subgraphs of G are also in C, and for every natural n, the class C contains at
most ¢ unlabeled n-vertex graphs for some constant c. This implies that for
any G € C and every k, the number of unlabeled k-vertex subgraphs of G is
at most c¥. We call graphs possessing this property monotone c-tiny.

This notion, however, is not strong enough for our purposes. Indeed, while
each monotone c-tiny graph contributes to the monotone closure an appro-
priate number of graphs at every level (i.e., on every number of vertices), we
build our desired classes by taking the subgraph-closure of infinitely many
of such graphs, and this can result in some levels having too many graphs.
To overcome this difficulty, we introduce the notion of monotone (¢, Y, t)-tiny
graphs, which are monotone c-tiny n-vertex graphs with the extra restriction
that all their subgraphs on at most ¢(n) vertices belong to a fized tiny class Y.

3. Construction of monotone tiny classes from sets of monotone (¢, Y, t)-tiny
graphs. For some suitable ) and ¢, we show that for any constant ¢ and
sequence (M, )ien, where ¢; < t(f;41) and each My, is a set of monotone
(¢, Y, t)-tiny ¢;-vertex graphs of cardinality ko, (recall that k, = n?*~!), the
monotone closure Mon(U;enMy,) is a tiny class.

4. Lower bound on the number of sets of cardinality &, of monotone (c, Y, t)-
tiny n-vertex graphs. We show that for any constant d there exists a constant
¢ such that the number of unlabeled monotone (¢, ), t)-tiny n-vertex graphs

@ (1-0(1)

grows as n , and thus the number of sets of cardinality k, of
(¢, Y, t)-tiny n-vertex graphs is at least

(1.2) o(1—o(L)) hn 2 logn _ o(1=0(1)-45%n* logn,
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(o e o o Y o o ° o ° o ° oo o e e Jovn Tl
e o o Y ° e e J—n2~! graphs n+4;
chosen among = 1(* 1"

n®-vertex graphs cannot represent

(s+1)n qy2e
all (" ,. ) ~ 26+ n™ logn gyhgets
2

In?n Tli-1

4ln’Inn Tli-2

vertex count

Fic. 1. The picture illustrates our strategy to witness a monotone tiny graph class without
n®-vertex universal graphs.

The blue strip represents the class ). The circles within each horizontal rounded rectangular box
represent (c,),t)-tiny graphs on a number of vertices corresponding to the vertical height of the
rectangular box. By definition, an n-vertex (c,Y,t)-tiny graph has at most c* unlabeled subgraphs
on k wvertices, and each of its subgraphs on at most t(n) = In? n vertices belong to Y. For each
black circle, its respective green “cone” shows the monotone closure (i.e., the set all subgraphs) of
the corresponding graph.

To build a monotone tiny graph class we fiz a sequence (¢;);eny with €1 = 1 and €41 = [e\/al
for every i € N. We show that the monotone closure of a set of graphs U;enMy, , where My, is any
set of ke, = Z?s_l distinct €;-vertex (¢, Y, t)-tiny graphs (illustrated with black circles at level ¢;), is
a tiny class.

To prove the mon-representability, at level £; = n, we show the ezistence of ~ n(stD" many
distinct (¢, Y, t)-tiny graphs with n vertices (illustrated with circles at level £;). Thus we have around

(s+1)n 2 . . . .
("nQS,l ) ~ 2(s+1)n " logn cpoices of subsets of cardinality kn, = n?5~1. This is more than all the
s

n

. . 2s ( ) 2s
n®-vertex universal graphs can represent since 2™ - ( o ) ~ 251" logn
n

By choosing d larger than 2s + 2, it can be seen that (1.2) is larger than (1.1).
Therefore, there exists a monotone tiny class Mon(U;enMy, ) that is not representable
by a universal graph of size n°.

Many (¢, Y, t)-tiny graphs.. A core step in the above approach is to show that for
any constant d there exists a constant ¢ such that the number of (¢, Y, ¢)-tiny graphs
grows as 2“3 (1=e(W)nlogn T do so, we show that a random graph G ~ G(n,d/n)
is (¢, Y, t)-tiny w.h.p.. For this we set ¢(n) := In®n and choose ) to be a monotone
class of graphs in which the number of edges does not exceed the number of vertices
by a large margin. First, we show that ) is tiny. Next, we show that w.h.p. every
subgraph of G on at most t(n) vertices belongs to ). Finally, we show that for
any k > t(n) there are at most exponentially many unlabeled subgraphs of G on
k vertices. This is achieved by computing the expected number of such subgraphs
which are connected and have a fixed number of edges, and then by showing that
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these numbers are sufficiently concentrated.

Barrier for c-tinyness of random graphs.. Our lower bound on the size of labeling
schemes is dependent on the number of (¢, Y, t)-tiny graphs, in the sense that the more
(¢, Y, t)-tiny n-vertex graphs we have, the better our lower bound is. In particular, it
is not excluded that using our approach a lower bound can be made sufficiently strong
to disprove the IGC with a tiny class. One would then need to show that there are
superfactorially many, i.e., n“(™), (¢, ), t)-tiny n-vertex graphs. We provide evidence
suggesting that this cannot be achieved via random graphs. More specifically, we
show that for any fixed ¢ and any p = w(1/n) w.h.p. a random graph drawn from
G(n,p) is not c-tiny.

Our strategy is as follows. First, we observe that for a large enough k = o(n),
w.h.p. a typical k-vertex induced subgraph of G(n,p) has at least linearly in n many
edges. Next, assuming that the number of unlabeled k-vertex induced subgraphs
(i.e., the number of isomorphism classes of k-vertex induced subgraphs) is small, we
conclude that there is a large isomorphism class, i.e., an isomorphism class that is
represented by many k-vertex induced subgraphs. Then, we show that w.h.p. two
induced k-vertex subgraphs with a “small” vertex intersection cannot be isomorphic
due to the linear (in n) lower bound on the number of edges in each. Hence, the k-
subsets of vertices inducing the representatives of the large isomorphism class should
each have a “large” intersection with a fixed k-subset. To reach a contradiction, we
show that the total number of k-subsets that have “large” intersections with a fixed k-
subset is much smaller than the number of the representatives of the large isomorphism
class.

Our proof provides an explicit lower bound on the number of k-vertex induced
subgraphs in G(n, p). From this bound we derive a coarse ©(1/n)-threshold for G(n, p)
to have exponentially many unlabeled induced subgraphs. Furthermore, it turns out
that the property of having exponentially many unlabeled (not necessarily induced)
subgraphs has the same (coarse) threshold.

Organization. The rest of the paper is organized as follows. section 2 contains
classic definitions, inequalities, and auxiliary statements as well as the crucial defi-
nitions of (monotone) c-tiny and (monotone) (¢, Y, t)-tiny graphs. section 3 shows
upper and lower bounds on the number of unlabeled subgraphs of Erdés—Rényi ran-
dom graphs. Note that only the upper bound is used in the proof of our main result,
Theorem 1.1. In section 4 we give the construction of our complex monotone tiny
classes. Finally we discuss some open problems in section 5.

To establish the proof of Theorem 1.1, one only needs to go through section 2
and subsections 3.1, 4.1 and 4.2.

2. Preliminaries, inequalities, and tinyness. We begin with some routine
definitions in Subsection 2.1. Subsection 2.2 provides a number of standard useful
inequalities and auxiliary statements. Finally, in Subsection 2.3, we introduce our
new notions of tinyness for graphs, which are key to how we build our classes and
prove our main result.

2.1. Standard definitions and notation . For two real numbers i, j, we let
[i, 5] == {[i],[4] +1,...,|J] = 1,4} Note that if j < 4, then [i, ] is the empty set.
We may use [i] as a shorthand for [1, |i]], and In® z as a shorthand for (Inz)2. We use
the notation X ~ D to denote that the random variable X has distribution D. We
say that a sequence of events (A,) holds with high probability (w.h.p.) it P[A,] — 1
as n — oo.
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Graphs.. We consider finite undirected graphs, without loops or multiple edges.
Given a graph G, we write V(G) for its vertex set, and F(G) for its edge set. When
we refer to an n-vertex graph G as labeled, we mean that the vertex set of G is [n], and
we distinguish two different labeled graphs even if they are isomorphic. In contrast,
if we refer to G as unlabeled, its vertices are indistinguishable and two isomorphic
graphs correspond to the same unlabeled graph. For this reason, we will sometimes
refer to unlabeled graphs as isomorphism classes.

A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). Thus, H
can be obtained from G by vertex and edge deletions. The graph H is an induced
subgraph of G if V(H) C V(G), and E(H) consists exactly of the edges in F(G) with
both endpoints in V(H). In that case, H can be obtained from G by vertex deletions
only. In the usual way, for a set of vertices U C V(G), we denote by G[U] the induced
subgraph of G with the set of vertices U. We denote by s, (G) and ix(G) the numbers
of unlabeled k-vertex subgraphs and of unlabeled k-vertex induced subgraphs of G,
respectively. For k£ > 1 and ¢t > 0, we denote by si(G,t) the number of unlabeled
k-vertex t-edge subgraphs of G.

Graph classes.. A class of graphs is hereditary if it is closed under taking induced
subgraphs, and it is monotone if it closed under taking subgraphs. For a set C of
graphs we let Her(C) denote the hereditary closure of C, i.e., the inclusion-wise minimal
hereditary class that contains C; and Mon(C) denote the monotone closure of C, i.e.,
the minimal monotone class that contains C.

Tiny, small, factorial graph classes.. We say that a hereditary class of graphs is
tiny if there is a constant ¢ such that the number of unlabeled n-vertex graphs in the
class is at most ¢" for every n € N.

A hereditary graph class is small if there exists a constant ¢ such that the number
of n-vertex labeled graphs in the class is at most nlc™ for every n € N. Since any
unlabeled n-vertex graph gives rise to at most n! different labeled graphs, any tiny
class is small; the converse is an open question (see section 5 for more detail).

For a constant ¢, we say that a hereditary graph class is c-factorial if, for every
n € N, the number of labeled n-vertex graphs in the class is at most n". A class is
factorial if it is c-factorial for some c. Clearly, any small class is factorial.

2.2. Inequalities and auxiliary statements. We will make use of the inequal-
ities (%)k < (Z) < (%)k; see for example [22, Lemma 2.7]. One such example is to

prove the following bound on the number of sparse graphs.

LEMMA 2.1. For any k > 1, the number of unlabeled connected k-vertex graphs
with at most k — 1+ ﬁ edges is less than 100,

Proof. The statement holds for k < 13 as 2(3) < 268 = 64% thus we can assume
that & > 14. A connected k-vertex graph with at most & — 1 + ﬁ edges consists of
a spanning tree (of k — 1 edges) plus at most ﬁ edges. Recall that the number of
unlabeled trees on k vertices is at most k - 4% by [35]. The number of ways to choose
the remaining at most ﬁ edges is bounded from above by

k

k
Ik k k 2 Tk
() crnf (D) () oot onm

i=0 Ink

Ink

The last inequality holds since elnk < k. The result follows since

(k-4%) . (k- e*) < k- 307 < 3% - 307 < 1007,
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as 4e? < 29.6. O

We will use the following lemma to reduce the estimation of the number of graphs
in a class to that of its number of connected graphs, whenever it is convenient.

LEMMA 2.2. Let C be a hereditary class of graphs such that, for every m, the
number of unlabeled connected n-vertexr graphs in C is at most a™ for some constant
. Then, for every n, the number of all unlabeled n-vertex graphs in C is at most 5",

for some = B(a).

Proof. For any ki, ks,...,k. > 0 such that k1 + ko 4+ --- + k, = k, the number
of unlabeled k-vertex graphs in C with r connected components of sizes ki, ks, ..., k.,
respectively, is at most []_; a*i = oF. Furthermore, since the partition function p(k)
(counting the number of partitions of a given positive integer k as a sum of positive
integers) satisfies p(k) < exp[m - 1/2k/3] [20, Eq. (4)]. We conclude that the total

number of k-vertex graphs in C is bounded above by 8* for some 3 := (). ]

We conclude this section with the following form of Chernoff bound, which is an
immediate consequence of [29, Theorem 2.1].

LEMMA 2.3 (Chernoff bound). Let £ be a binomial random variable with EE =
and lett > 0. Then

2
Pl —pul=t] <2exp {2(/“"75/3)]

2.3. Tiny graphs. Our next definition can be thought of as a specialization of
the definition of tiny classes to graphs. In particular, both the hereditary closure of
a c-tiny graph and the monotone closure of a monotone c-tiny graph give a tiny class.

DEFINITION 2.4 (c-tiny graphs). Let ¢ be a constant. An n-vertex graph G is
c-tiny if ir,(G) < cF holds for every k € [n]. The graph G is monotone c-tiny if
sk(G) < ¥ holds for every k € [n].

The next definition is a strengthening of the previous one.

DEFINITION 2.5 ((¢, Y, t)-tiny graphs). Let ¢ be a constant, Y be a tiny class of
graphs, and let t : N — N be a non-decreasing and unbounded function. We say that
an n-vertez graph G is (¢, ), t)-tiny (respectively, monotone (c, Y, t)-tiny) if
(1) for every k € [t(n)], every k-vertex induced subgraph (respectively, subgraph) of G

is in Y; and
(2) for any integer t(n) < k < n, it holds that ix(G) < c* (respectively, si,(G) < c¥).

Remark 2.6. We note that, since the sets of induced subgraphs and subgraphs
of G form hereditary classes, in Item (2) of Definition 2.5 the numbers of unlabeled
induced subgraphs and subgraphs (i.e., it (G) and sx(G), respectively) can be replaced
with the numbers of unlabeled connected induced subgraphs and subgraphs. This is
because, by Lemma 2.2, an exponential upper bound on the number of unlabeled
connected graphs implies an exponential bound on the number of arbitrary unlabeled
graphs in any hereditary class.

The strengthening of the notion of c-tiny graphs to (¢, Y, t)-tiny graphs will grant
us a lot of power when taking unions of many graphs of different sizes. In particular,
when considering subgraphs of a given size in the monotone closure of a sequence of
(¢, Y, t)-tiny graphs, one does not need to worry about subgraphs coming from graphs
significantly further along in the sequence (of much larger size) as all such subgraphs
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will belong to the fixed class ). In our application of (¢, Y, t)-tiny graphs, the role of
the fixed class ) will be played by the following class S? (where ‘s’ stands for sparse).

DEFINITION 2.7 (Class 8). For any d > 0, let S% be the class of all unlabeled
graphs G such that for every k € [100010(d+1), \V(G)H , every k-vertex subgraph of G
has at most k — 1+ k/Ink edges.

We now show this class is suitable for use in the definition of monotone (¢, Y, t)-tiny.
LEMMA 2.8. For any fired d > 0, the class S* is monotone tiny.

Proof. The fact that the class S is monotone easily follows from its definition.

By Lemma 2.2, it suffices to upper bound only the number of connected graphs in
S9. Since each connected graph in 8¢ on k vertices either has at most k — 1+ k/Ink
edges, or k < 100094+ the number of connected unlabeled k-vertex graphs in S¢
is bounded from above by

(10001‘;("”1))

100% 4 2 <",

for some constant n = n(d), due to Lemma 2.1. 0

3. Growth of the number of unlabeled subgraphs in G(n,p). In Subsec-
tion 3.1, we show that w.h.p. a sparse random graph is monotone (p, Sd,lnz)—tiny,
for some p. This result is used to construct a large family of monotone tiny classes
in the proof of Theorem 1.1. Then, in Subsection 3.2, we prove a lower bound on
the constant ¢ := ¢(d) for which a random graph with average degree d can be c-tiny
w.h.p. This result shows that (at least w.h.p.) ¢ must grow with d, and thus gives
strong evidence that our construction cannot be so easily improved by taking random
graphs of growing average degree. Finally, in Subsection 3.3, we show that p = ©(1/n)
is a threshold for having an exponential number of unlabeled (induced) subgraphs in
a random graph G(n, p) and relate this to previous results on the number of unlabeled
subgraphs of a given graph.

3.1. Upper bounds. Let G(n,m) denote the uniform distribution on simple
graphs with n vertices and m edges. Our aim in this subsection is to prove the
following result.

THEOREM 3.1. For any d > 0, there exists some p := p(d), such that for G, ~
G(n,[d(n—1)/2]) we have

P [G,, is not monotone (p, Sd,lnz)-tiny} =0 (\/d/n) .

Recall that G(n,p) denotes the distribution on n-vertex graphs where each edge
is included independently with probability p, i.e., a fixed labeled graph G on [n]
occurs with probability p/Z(@(1 — p)(;)_‘E(G)l. We work with G(n,p) for most of
this section as it is more convenient; this is not a significant restriction as we can
transfer the result to G(n,m) via the following result.

< 1 satisfy

LEMMA 3.2. Let P be any graph property (i.e., graph class) and 0 < p
~ G(n,m) and

p(g) — oo and (g) —p(g) — 00 and m = [p(g)] Then, for G,
Gl ~ G(n,p), we have

P[G, € P] < 10vm -P[G, € P].

Lemma 3.2 follows by a very minor adaption of [22, Lemma 3.2]; the only difference
is a ceiling in the number of edges, which makes no difference in the proof.
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Recall that, for K > 1 and ¢t > 0, si(G,t) denotes the number of unlabeled
subgraphs H of a graph G such that |V(H)| = k and |E(H)| = t. Lemma 3.3 deals
with small subgraphs.

LEMMA 3.3. Letd >0, n >3, and t > 2 satisfy 3In((d + 1)e?)Int < Inn. Then,
forG, ~G (n d), we have

‘n

P Xt: 3 sk(Grrd) >0 :0(%).

k=2 j>k+ kg

Proof. For k € {2,3,4}, all k-vertex graphs have less than k + k/Ink edges, so
we can assume from now on that t > k > 5, likewise we can assume d > 0. Observe

k
that, for any ¢ > 0, there are ( lgi)e) ways of choosing k + ¢ edges between the vertices

of a k-vertex subset. Thus, the probability G, ~ G (n, %) has an k-vertex subgraph
with at least k + ¢ edges is bounded from above by

Pl Y s6(Gnj) >0 < (Z) (k@g) (Z>k+e

2kt
<) ()
< (deg>k+é (fL)e
(3.1) =exp [kIn (de*) — ¢ (Inn — In (kde?))] .

Now, for any 5 < k < t and d > 0, the assumptions on t,d and n give

1
In(kde?) = In(de?) +Ink < In((d+ 1)e2) Ink < In((d + 1)e) Int < %

Thus, by (3.1), if we set £ = ﬁ, then for any %k < t,

[ k
Pl > sk(Gnj)>0]| <exp k;ln(deQ)—lnk-(1nn—1n(kd62))]
Jzk+ )
[ oy k 2lnn
< exp _kln(de) I 3 ]
B [k 5 2lnn
= exp _M<ln(de)lnk 3 )}
coxp |- . nn
SO ThE s
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Thus, by (3.2), the union bound, and since we can assume k > 5, we have

PIY > sk(Gud) >0 <0+> P| Y si(Gnj) >0

k=2 j>k+ k=5 2kt

Lk
< E n~ 3mnk
k=5

1 o0
< —- E n_Slik+1
n
k=5

whellrce the last line follows since n > 3 and so, for suitably large k, we have n~ e+l <
35w 1 < k2, thus, the sum converges for any n > 3 and so is bounded from above
by a constant. 0

The following lemma covers any subgraphs of sufficiently large density.

2
LEMMA 3.4. For any d > 0, let 5 := 2 (ezd)e ¢ Then, for any n,k > 1, § > 1
such that 0k is an integer, and G, ~ G (n, %), we have

P [ sp(Gn,dk) = gF] <275

Proof. We begin by bounding the expected number of subgraphs appearing in
G,~G (n, %) The result will then follow from Markov’s inequality. Observe that

)
< (%)k (?:)M (;j)ék

(6=Dk , 2\ 0k

SORC

Next, we show that for any fixed d > 0, there exists some constant « := a(d) > 1
such that, for all k € [n] and 1 < ¢ < kgl, the following inequality holds

B\ G-V 72\ ok .
. — —_— < .
03 ) () =

If § > e%d then, since k < n, the left-hand side of (3.3) is at most 1060=Dk 10k <1
and so we can assume that 1 < § < e?d when proving (3.3) holds. Note that we can
also assume d # 0 or else the statement of the theorem holds vacuously.

Since § > 1, taking the (6 — 1)k-th root of both sides and rearranging gives

” e (o (2))

2
Now, since § < e?d and § > 1, if we choose a = (e2d)* ¢ then the right-hand side of
(3.4) is at least n and so (3.3) holds for all k£ < n.
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Finally, observe that by Markov’s inequality and (3.3) we have

5% (G a® _
P [ sx(Gn,0k) > (204)% S B lﬁ((;;)kék)} s (2a)k =27%,

2
giving the result for § =2a =2 (eQd)e e a0
We now have all we need to prove the main result of this section.

Proof of Theorem 3.1. We will show that for any d there exists some p := p(d)
such that for G/, ~ G(n7 %),

(3.5) P [ G}, is not monotone (p, S%, In*)-tiny | = O (;) )

the result then follows directly from Lemma 3.2.

We first show that Item (1) of Definition 2.5 holds for the function ¢ : N — R given
by t(n) = In? n and the class S%; that is, for every k € [t(n)], every k-vertex subgraph
of G! is contained in S?. Since S? includes all graphs on at most 1000'°(¢+1) vertices,
we can assume that n > 1000'°(4+1D) > 3 and consider any k-vertex subgraph of Gl
where k < t(n) = In? n. Observe that since n > 1000'°+1) and 6 < In 1000 < 10, for
any d > 0 we have

Inn Inn 10(d+1)I1000  _  10(d+1)

= = = 21 1 2,
3-Int(n) 3-2Inlnn ~ 3-2In(10(d + 1)In1000) ~ In(100(d + 1)) n((d+1)e”)

where the first inequality holds since Inn/Inlnn is increasing on the interval n €
(e€,00). Thus, we satisfy the conditions of Lemma 3.3 with ¢ := ¢(n). Hence, with
probability at least 1—O(n™1), all subgraphs of size k < t(n) have at most k—1+k/Ink
edges, and so are contained in S

We now show that Item (2) of Definition 2.5 holds; that is, there exists some
p = p(d) such that s;(G") < p* for any integer t(n) < k < n. By Remark 2.6,
we only need to establish an exponential upper bound on the number of connected
k-vertex subgraphs of G, for every k > t(n). We proceed with a case distinction on
the number of edges in such a k-vertex subgraph.

o Subgraphs on at most k — 1+ k/Ink edges. By Lemma 2.1, the number of
k-vertex graphs with at most k£ —1+k/Ink edges does not exceed 100%. This
bound holds deterministically.

o Subgraphs on at least k + k/Ink edges. By Lemma 3.4 and the union bound
there exists a constant 5 = 3(d) such that

() (%)
Pl Y sGuipzk -8 < Y Plsk(Gi) >8]

j=[k+k/Ink] j=[k+k/Ink]

< k%27,
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Thus, again by taking the union bound and since ¢t = w(logn), we have

n (3) n
P Yo sk(Gu) =R g | <D R
k=t

k=t | j=[k+k/Ink]

<nd. 27t
S

Thus, by combining both cases, we see that with probability 1 —n~“(}) the number of

k-vertex connected subgraphs of G, is at most 100* + k2 - 3% < p¥, for some p := p(d).
Thus, due to Remark 2.6, Item (2) of Definition 2.5 holds with probability 1 —n=<1),

Hence, by the union bound over Items (1) and (2), there exists a constant p := p(d)
such that the probability G, is not monotone (p, S?,1In?)-tiny is less than O(n~1) +
n=M < O(nh). O

3.2. Lower bounds. In this section, we prove a lower bound on the number of
induced subgraphs in a random graph.

THEOREM 3.5. Let 0 < 6 < 1 be a sufficiently small constant, 1 < d < n/2, and
ke [n/\/g, \/Sn] Then, w.h.p. Gy, ~ G(n, L) satisfies i(Grn) > (6(n/k)5/?)k,

Observe that if we take k = [n/\/a then w.h.p. G,, ~ G(n,d/n) satisfies ix(G,) =
d?*®) Consequently, as soon as d is allowed to grow with n then, w.h.p. G, ~
G(n,d/n) is not c-tiny for any constant c¢. This proves one of the two limit statements
in Theorem 1.4 and also suggests a barrier to applying our approach for constructing
monotone tiny classes from graphs in G(n,d/n) when d is growing with n.

Proof of Theorem 3.5. Let p := d/n. We may assume that d > 1/§ since oth-
erwise 1/ Vd > /¢, and so the range of k for which the theorem holds is empty
and the statement holds vacuously. Fix a k-subset U C [n]. In order to show that
w.hp. i (Gn) > (6(n/k)%/?)*, we use the following strategy. First, we prove that
a typical k-subset U induces a subgraph with around k%p/2 edges (Claim 3.6), and
every sufficiently small subset S C U induces a subgraph with at most 6k?p edges
(Claim 3.7). Therefore, if G,, has a small number of isomorphism classes among its
k-vertex subgraphs, it should have many pairwise isomorphic k-vertex subgraphs with
the above two restrictions on their edges. We then show that this is unlikely since
most pairs of k-sets have small intersections (Claim 3.9), and w.h.p. two k-sets in G,
that have a small intersection induce non-isomorphic subgraphs as soon as edges in
these subgraphs satisfy the above-mentioned restrictions (Claim 3.8).

Let p:= (g)p be the expected number of edges in a k-vertex induced graph. As

k> n/\/&, we have
(3.6) w=——-n.
CLAIM 3.6. W.h.p. the number of edges in Gp[U] is between (1—38)p and (148)p.

Proof of Claim 3.6. Note that E|E(G,[U])| = p. Therefore, by the Chernoff
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bound (Lemma 2.3),

5
P H|E(Gn[U])| - M‘ > 5/1} < 2exp T3(1+4/3)
n
< 2exp {—(1 - 0(1))4(1+5/3)}
=o(1),
as claimed, where the second inequality is by (3.6). O

CLAIM 3.7. W.h.p. every set S C U of size at most 0k induces at most 26y edges.

Proof of Claim 3.7. Let j < dk. For a set S C U of size j, the induced subgraph
G, [5] satisfies E|E(G,[S])| = (})p < 62u. It follows that [E(G,[S])| is stochastically
dominated by a binomial random variable with mean 62x. Thus, the Chernoff bound
(Lemma 2.3) gives

, , Su — 62 2
B [||B(GalS))| - 0| > 26— 8] < 2exp [—wzﬁ o @2#)/3)}
35(24)1

= 2exp [_“ A(1+0)

We can assume § < 1 as it is ‘sufficiently small’, so simplifying and applying (3.6)
yields
P[|E(G,[S])] > 26] < e~ 0n(1=o(/10,

Since there are (k) ways to choose a set S C U of size j, k < v/0n, and we can take
0 > 0 sufficiently small, we have

L5k ] |5k

Z <I;) < Z <k.€>j <k (g)ék < exp {5\/5111 (g) n(l+ 0(1))] =o0 (65”/100) ,

=1 =1 N

thus we get that w.h.p. every set S C U of size at most dk induces at most 26 edges
by the union bound. O

Let & count the number of sets U C [n] of size k such that,
(i) every set S C U of size at most dk induces at most 26u edges in Gy,
(ii) the number of edges in G, [U] belongs to [(1 — &), (1 4 0) p].
By Claims 3.6 and 3.7, we get that E¢ = (1 — o(1))(}). Hence, E((}) — &) = o((})).
By Markov’s inequality,

P [(Z) —e> 5(2)} < 0;272%) = o(1).

Therefore, w.h.p. the following event C holds: £ > (1 —0)(}).

Let B be the event that ix(G,) < (6(n/k)%/?)k. Clearly, BN C implies the ex-
istence of a k-vertex set U C [n] satisfying (i) and (i7) such that G, has at least
(1=0)(}) (6(n/k)%/?)=* induced subgraphs isomorphic to G,,[U]. We shall use the
following two claims to conclude that the latter event is unlikely.

CrAM 3.8. W.h.p. in G, there are no two k-vertex sets U, U’ sharing at most
0k wertices such that Properties (i) and (ii) hold for U and G,|U] = G,[U’].



16 E. BONNET, J. DURON, J. SYLVESTER, V. ZAMARAEV, M. ZHUKOVSKII

Proof of Claim 3.8. Fix a k-set U and assume that it has Properties (i) and (ii).
Fix another set U’ that shares at most 0k vertices with U. Due to Properties (i) and
(ii), the probability that G,,[U] = G,,[U’] is at most k! - p1 =394 Indeed, by Property
(i), the subset U N U’ C U of size at most §k induces at most 20u edges. As, by
Property (ii), G,[U] has at least (1 — 0)u edges, there are at least (1 — 30)u edges
that should be found at the right place in G,[U’ \ U] after committing to one of the
(k — 0k)! < k! orderings of U" \ U.

By the union bound, the probability that these sets exist is at most

2
n

Lkl (130
(o s

ne

2%
) kR e~ (1=30)pn g

k

[ ENd n
< — — — —
< exp _len(ne) (1 —39) (2>nln d}

[ kd n
< — — - — —
< exp _k <21nn (1 45)2nln d)]
< exp k<21nn1_246\/;iln3)]

O

as claimed, since d > 1/§ and ¢ > 0 is sufficiently small.

CramM 3.9. Let U C V(G,,) be a set of size k and n be sufficiently large. Then,
the number of sets U' C V(G,,) of size k sharing at least 5k vertices with U is less
than 1 (1) (8(n/k)%/?)=*.

Proof of Claim 3.9. Let k' = [dk]. Let us fix U and compute the number of

GG <l G0N % G) <

It remains to prove that, for large n,
n

(&)
(%)

k

>

i=k

k

)

J

n—=k
k—j

n—=k
k—j

k

>0

i=k

(3.7)

>2 (26(n/k;)5/2>k — exp [k (g m% + ln(25)> +ln 2} .

n!
nnti/2g—n

Using Stirling’s inequality in the form /27 <

(&)

< e, we obtain

n

" (k- k)(n —k+ &)

S \/27'1’(]6 — K- \/27r(n —k+K) y (k _ k/)k_k/ (n k4 k/)n—k+k'
~ eVk-evn—k Kk (n— k)n—F
2my/1 =25 1 B\ Rk ) B\
. Zz —— X — A NG .
(3.8) = X (1+kk,> (n—k+k) <1+nk>
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Now, since x — 22/2 < In(1 + x) < — 2%?/2 + 23 /3 for any x > 0, we have

(1 ¥ kf'k,y(k_k/) (1 T k>n_k

—exp [~(k = k) (14 155 ) + (0= By (14 355 )]
exp = (K = 5y + sy ) + (W — ot )]
exp {’f (2(k’ik'> — sy 2<nkik>)} :

Recall that &' = [0k] and n/vd < k < V6 - n, thus for any sufficiently small § > 0
and large n,

% —(k—Ek") k' n—=k
14— 1
<+k—k’> (+n—k>
, s 5+o(1) 8%/2 (140(1))
= exp {k (2(175) 3=+ T T 2=V0) )}
(3.9) > 1

WV

Thus by (3.8) and (3.9), for suitably small § > 0, we have
() _2nvT-25 (n—k+ KK

() g e . kM
> exp {k’ (ln r ; k) + In (27”126)]

exp {5/4: (ln% +1In(1 — \/5)) +1In (@)} )

which implies (3.7) holds for large n, concluding the proof of the claim. O

We now have what we need to complete the proof of Theorem 3.5. Let us assume
that P(BNC) > ¢, where ¢’ > 0 is bounded away from 0 and n is sufficiently large.

From Claim 3.8 it follows that w.h.p. there are no sets U, U’ satisfying Properties
(1) and (ii) sharing at most dk vertices and inducing isomorphic subgraphs in G,,. But
then with probability at least 6" — o(1) there exists U of size k satisfying Properties
(i) and (ii) and at least (1 —6)(}) (6(n/k)%/?)=* — 1 other sets U’ having at least 0k
common vertices with U and inducing subgraphs isomorphic to G,,[U]. However, the
total number of sets U’ that have such a large intersection with U is smaller than this
by Claim 3.9, a contradiction. 0

3.3. Threshold for exponentially many unlabeled induced subgraphs.
For a graph G, we denote by ¢(G) the size of the largest homogeneous (i.e., complete
or edgeless) induced subgraph of G. Recall that s(G) and i(G) denote the num-
ber of unlabeled subgraphs and the number of unlabeled induced subgraphs of G,
respectively.

A graph G is called c-Ramsey, if t(G) < [clogn]. Note that c-Ramsey graphs
have order-smallest possible homogeneous induced subgraphs due to the well-known
theorem of Ramsey: ¢(G) > 3 logn for every G (see, e.g., [24]). A conjecture of Erdés
and Rényi, that was resolved by Shelah [36], says that such graphs have essentially the
largest number of unlabeled induced subgraphs possible. More precisely, it states that
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if a graph G is ¢-Ramsey, then there exists € > 0 such that i(G) > e™. This conjecture
sparked the study of the relation between the two parameters ¢(G) and i(G). For
example, for graphs G with t(G) < (1 — €)n, it is known that i(G) = Q(n?) [4].
Further, in [19], it is shown that

i(G) > nﬂ(,/n/t(c;)).

This result is far from being tight for graphs with small ¢(G) as follows from the
resolved conjecture of Erdds and Rényi. In [5], it is shown that i(G) > on/(2£20 1051
where ¢ = t(G), which gives a much better bound for G with ¢(G) close to logn.
However, in general, for non-Ramsey graphs, i.e., graphs G with ¢(G) = w(logn),
tight lower bounds on i(G) are not known.

For a constant p, a random graph G, ~ G(n,p) is 2/log (min{p,l—p}*l)—
Ramsey w.h.p. [29, Theorem 7.1], and thus, Shelah’s result implies an exponential
lower bound on i(G,). For 1/n < p < 1/2, w.h.p. t(G,) = O(log(2np)/p) (see [29,
Theorems 7.1, 7.4]). In particular, when p = o(1), w.h.p. G,, is not c-Ramsey for any
constant ¢ > 0. Nevertheless, Theorem 3.5 implies that for a large enough constant
C and C/n < p € 1/2, wh.p. G, still has exponentially many unlabeled induced
subgraphs. Indeed, by taking k = L64/5nj, we deduce from Theorem 3.5 that w.h.p.
i(Gy) > ix(Gr) > (1/5)F > e for an appropriate choice of ¢ > 0. Note that, since
the set of unlabelled induced subgraphs of any graph G is in bijection with those of
the compliment of GG, the upper bound on p does not cause any loss in generality—this
bound on i(G,,) can be immediately extended to every C/n < p < 1 — C/n. This
result is fairly tight as stated below.

THEOREM 1.5. Let G, ~ G(n,p), and 0 < ¢ < 1 be constant. Then, there exist
constants A > 1 and C > 0 such that the following holds.
(i) If min{p,1—p} < £, then w.h.p., i(Gy) < s(Gy) = 2°.
(i1) If € <p<1—E, then wh.p., s(Gn) >i(Gp) > A"

Proof. As observed above, by symmetry, we can restrict to the case p < 1/2.
Let § > 0 be any sufficiently small constant that satisfies Theorem 3.5, and ensure
that C > 268/, Ttem (ii) now follows from Theorem 3.5 by taking d = C and
k = [6%n], since this yields

' nA /2 k n 5/2 (649 ass, .
in(Gp) > <5(k) ) > (5(54/%) ) = (1/8)5 ) > an,

5475 /2
where we take A := (1/9) > 1.

We must now prove Item (i) where, again by symmetry, we only need to prove
that w.h.p. s(G,) = 2°") whenever p < <. To this end we will use the fact that,
within this regime, w.h.p. G,, is a union of connected components of size at most
Alogn, for some constant A > 0, and all components contain at most one cycle (see,
e.g., [29, Theorems 5.4, 5.5]). First, note that by Markov’s inequality, w.h.p. the
number of vertices that belong to components of size at least y/loglogn is at most f,
for a certain f,, = o(n). Indeed, letting X} be the number of vertices that belong to
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components of size k, we get

Alogn Alogn
n
dOEX< D) k(k> F2pE =1 (1 — p)k(n=h)

k=+/Toglogn k=+/loglogn
Alogn
<(1+o1) > (emp(l—p)™)*/p
k=+/loglogn
(o) . &
<(+o0(1) Y (npe' )" p.
k=+/loglogn

Now, since npe! ™™ increases with p in this range, it is at most ce! ¢ < 1 as ¢ < 1
fixed. Thus,

Alogn 1—np) Vioglogn
1+4+0(1 npe-~"P
E E[Xk] < 1 (1_)np : ( ) n
— npe np
k=+/loglogn

e+ o(1)
1 —cel-e

= o(n).

(npel—np) \/W_ 1 n

Now, let S C V(G,) be the set of vertices in the union of all components of size at
least v/loglogn. We shall bound the number of unlabeled subgraphs of G,,[S] and the
number of unlabeled subgraphs of GG,, that are entirely outside S, and then the total
number unlabeled subgraphs in the entire graph is at most the product of these two
bounds, since there are no edges between S and V(G,,) \ S in G,,.
e Subgraphs of G,[S]. Since |S| < f,, there are at most 2/» ways to choose
a subset U from S. Furthermore, recall (see, e.g., [20]) that there are
exp[O(\/|U])] = 2°U») partitions of |U|. Now, for a fixed U C S and its
fixed partition U = Uy UUy U --- U Uy, by Lemma 2.1, there are at most
I, 1001Y1 = 100V < 100/ unlabeled graphs with connected compo-
nents containing at most one cycle and whose sizes are |Uy|, |Us|, ..., |Usl,
respectively. Thus, the number of unlabeled subgraphs of G, [S] is at most
9(1+o(1))fn . 100/

o Subgraphs of G, \ S. Connected subgraphs of G,,[V(G,)\ S] fall into at most

[VIoglogn] . P —
Z 2(:) < |/ loglogn| (R < gloglogn logn

i=1

isomorphism classes. Any subgraph of G,[V(G,)\ 5] is a disjoint union of at
most n connected graphs from these isomorphism classes. The number of ways
to assign ¢ components to j isomorphism classes is at most (“J”_ Il), where for
the upper bound we assume each component (of potentially differing sizes)
can be assigned to any isomorphism class. Thus, the number of unlabeled

subgraphs of GG,, that are entirely outside S is at most

ZZ: (Z Tl([lgoi]nlz 1) <(n+1) (” ‘EOZO%M) < 2l

Eventually we get that w.h.p. s(G,,) < 200+e(M)f» . 100/ . 92log’n — go(n) d
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4. Monotone tiny classes can be unwieldy. The aim of this section is to
construct a family of classes that are tiny (thus also small) and monotone, but are
unwieldy in the sense that they cannot be encoded by uniformly bounded labeling
schemes (Theorem 1.1) or described by a countable collection of c-factorial (in par-
ticular, small) classes (Theorem 1.2).

4.1. Construction of monotone tiny classes. The following lemma is key to
our construction of monotone tiny classes with no universal graph of a given polyno-
mial size. Let (¢;);en be an increasing sequence of natural numbers and ¢ : N — R
be an increasing function satisfying t(n) < n for all n € N. We say that (¢;);en is
t-sparse if €; < t(€;41) < ;41 holds for all ¢ € N.

LEMMA 4.1. Let (¢;)ien be a t-sparse sequence and let v be a constant. For every
i €N, let My, be a set of {;-vertex monotone (¢, Y, t)-tiny graphs with |M,,| < ).
Then Z := Mon(U;enMy;) is a monotone tiny class.

Proof. By Definition 2.5 there exists a 5 such that ) has at most 5™ unlabeled
n-vertex graphs for every n € N.

Let n be an arbitrary fixed natural number and ¢ be the smallest index such
that n < ¢;. Consider an arbitrary n-vertex graph G € Z. By construction, G is
a subgraph of some G’ € My, with k > i. If k > i, then from t-sparseness we
have n < ¢; < €1 < t(€y) < {, and since G’ € My, is monotone (¢, Y, t)-tiny, we
conclude that G belongs to ). For the same reason, if k =4 and n < t(¢;), then G is
in Y. Thus, if G is not in Y, then k =4 and ¢(¢;) < n < ¢;, in which case G is one of
at most ¢™ many n-vertex subgraphs of G’ € M,,. Consequently, there are at most
Mo, |- " < ) e < 4™ ™ unlabeled graphs on n vertices in Z that are not in ).

Combining these observations, we conclude that the number of unlabeled n-vertex
graphs in Z is bounded from above by

ﬂn_’_,yn.cngan’
for some constant . a

4.2. Lower bound on labeling schemes. Let d € N, p := p(d) be the constant
given by Theorem 3.1, S? be the monotone tiny class given by Definition 2.7, and
t(n) := In® n. We denote by X% the class of monotone (p, S, t)-tiny unlabeled graphs
G with [d- ([V(G)| — 1)/2] edges.

LEMMA 4.2. For any d, the number of unlabeled n-vertexr graphs in X% is at

least n(d?)n(l_o(l)).

Proof. The number of labeled graphs in the support of G (n, [d(n — 1)/2]) is

(rdm (—3)1)/21) g (Z)d(n;)

By Theorem 3.1, a 1 — O(\/d/n) fraction of these labeled graphs are monotone
(p, Sd,lnz)—tiny. Furthermore, there are at most n! < n” labelings of a given un-
labeled graph. Thus, the number of unlabeled n-vertex graphs in X< is bounded from
below by

(-o(Vam))- - (3) T =i

since d is a constant. O
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We can now show the main result of the paper, which we recall for convenience.

THEOREM 1.1. For any constant s € N, there exists a tiny monotone graph class
C that does not admit a universal graph of size n®. Equivalently, C has no adjacency
labeling scheme of size slogn.

Proof. Suppose, towards a contradiction, that any monotone tiny class admits
universal graphs of size u, := n°. Let k, := n?*~! and let d be any fixed integer
satisfying % > s, say, d := 2s + 4.

The number of distinct wu,-vertex graphs is at most 247 and the number of n-
vertex induced subgraphs of a fixed u,,-vertex graph is at most (“;) Hence the number
of collections of k, graphs on n vertices that are induced subgraphs of a u,-vertex
(universal) graph is at most

(4.1) gu ((J)) < 29Uy,

On the other hand, by Lemma 4.2 the number of different collections of unlabeled
n-vertex graphs from X% of cardinality k,, is at least

d=2n (1 _o(1
(4.2) (n 3 k( ( ))> _ nkn‘w(lf"(l)),

By taking logarithms, we can see that for sufficiently large n the upper bound
(4.1) is smaller than the lower bound (4.2). Indeed,

log (2“i : uﬁ”'”) =u? +k,-n-logu,
=n? +n? .slogn

=n%(1 + slogn),

while

—2)m —9
log (nk"'%(l_o(l))) =kp- d=2n 5 )n(l —o(1)) - logn

=n?-(s+1)(1-0(1)) - logn.

Hence, for any sufficiently large n there exists a collection of k,, unlabeled n-vertex
graphs from X? not all of which are induced subgraphs of a w,-vertex graph.

We finally seek to apply Lemma 4.1. Let (¢;);en be a sequence, where £; = 1 and
liv1 = [exp[v/F;]] for all i € N. We claim that this sequence is In*-sparse. Indeed,
since In*(x) <  holds for all z > 1, we have ¢; = In*(exp[v/%;]) < In*(£iz1) < liy1
for all « € N. Now, for each sufficiently large i € N, let M,, be a set of size ky, of
unlabeled /;-vertex graphs from X'¢ that is not representable by any wuy,-vertex graph;
for all other i € N we set My, to be the empty set. Observe that for all i+ € N we
have |My,| < ky, = 02571 = e(2s=DInts ¢ yn* f — 46 for some constant . Thus,
by Lemma 4.1, C = Mon(U;enMy,) is monotone tiny. However, by construction, for
any sufficiently large i € N, the set of /;-vertex graphs in C does not admit a universal
graph of size u,, = £;. O

4.3. Complexity of tiny classes. A natural approach to describe some family
of graph classes is to establish that each class in the family is a subclass of a class
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from some other family possessing some desirable properties. For example, the Small
conjecture [14] suggested such a description for the family of small classes. The
conjecture stated that any small class has bounded twin-width, i.e., for any small
class C there exists a k € N such that C is a subclass of the class of graphs of twin-
width at most k.

Chandoo [17] observed that the proof of Hatami and Hatami [28] implies that the
family of factorial classes cannot be described by a countable set of factorial graph
classes. In particular, the family of factorial classes cannot be described by a countable
set of graph parameters that can be bounded only for factorial classes. We show below
that our proof implies similar conclusions for tiny classes. Recall that for a constant
¢, a hereditary graph class C is c-factorial if, for every n € N, the number of labeled
n-vertex graphs in C is at most n°".

THEOREM 1.2. For any ¢ > 0, and any countable family F of c-factorial classes,
there exists a monotone tiny class that is not contained in any of the classes in F.

Proof. Let F = {CY},cn be any countable set of c-factorial graph classes. If we
set d = 2c¢ + 4, then, by Lemma 4.2, we have that, for any n € N, the number of
n-vertex unlabeled graphs in X% is at least n(ctHn(1—o(1) — w(n), and so X% is not
a c-factorial class. It follows that for every ¢ € N there exists a constant k; such that
for any k > k; there exists a k-vertex graph that belongs to X%, but not to C(*).

Let t : N — R be an increasing function satisfying ¢t(n) < n for all n € N, and let
(m)men be a t-sparse sequence. Let 1o = 0. For every j € N, we define r; to be the
minimum element in (¢,)men that is greater than max{r;_,,%;}. For every n € N,
let G; be an r;-vertex graph in X% that does not belong to C(*). By the definition of
r; and the above discussion, such a graph always exists.

Now, by Lemma 4.1, the class Z := Mon({G; : n € N}) is a monotone tiny
class since we are including at most one ¢,,-vertex graph for every m € N. Clearly,
by construction, Z is not contained in any class from F. O

DEFINITION 4.3. A graph parameter is a function o that assigns to every graph
a number such that o(G1) = o(G2) whenever Gy = Ga2. The graph parameter o is
bounded for a class of graphs C if there exists a k € N such that o(G) < k for every
G € C; otherwise o is unbounded for C. For a constant ¢ > 0, the graph parameter
is c-factorial (resp. small), if for any fized number k the class of all graphs G with
o(G) < k is c-factorial (resp. small) and the parameter is unbounded for any class
that is not c-factorial (resp. small).

We say that a set X of graph parameters describes a family F of graph classes if
for every graph class C € F, there exists a parameter 0 € ¥ such that o is bounded

for C.

COROLLARY 4.4. For any ¢ > 0, and any countable set of c-factorial parame-
ters, there exists a monotone tiny graph class for which every parameter in the set is
unbounded.

Proof. Given any countable set of graph parameters (o, )nen, we define the count-
able family of classes F = {C(™") : (n,i) € N x N}, where C(™? is the class of graphs
G with 0,(G) < i. By Theorem 1.2, there exists a monotone tiny class C that is
contained in none of the classes in F. This implies that every parameter in (o, )nen is
unbounded for C. Indeed, otherwise we would have C C C(™? for some (n,i) € N x N,
a contradiction. ]

Corollary 4.4 shows that attempts to describe the family of small (or even monotone
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tiny) classes via a single or countably many c-factorial parameters will fail. A very
special corollary of the above theorem is the negative answer to the Small conjecture
[14], which posits that every small class has bounded twin-width.

COROLLARY 4.5. There exists a monotone tiny graph class with unbounded twin-
width.

Proof. This follows from Corollary 4.4 since twin-width is a small parameter [14,
Theorem 2.5], and in particular it is a 2-factorial parameter. O

We note that this conjecture was already refuted [15], however the proof relied on
some powerful group-theoretic machinery in the form of Osajda’s result on so-called
small cancellation labelings [34, 21]. One benefit of our proof is that it is self-contained,
not relying on this result, nor anything else from group theory.

We also note that Theorem 1.2 could alternatively be derived (with some work)
from the previous refutation of the Small conjecture [15]. Again, the strength of
our approach is that it is self-contained and relatively elementary. The limit of the
construction of [15] is that one cannot add many graphs at a same level, hence it
cannot be used to show Theorem 1.1.

5. Discussion and open problems. Our main result shows that for any con-
stant s there exists a small, even monotone tiny, class of graphs that does not have
a universal graph of size n®, or, equivalently, does not admit an adjacency label-
ing scheme of size slogn. However, the Implicit Graph Conjecture for small classes
remains a challenging open problem.

Question 5.1. Does every hereditary small class admit an O(logn)-bit labeling
scheme?

We note that after the submission of this paper, Question 5.1 has been answered
positively for monotone small classes [13].

While it is not known whether every tiny class admits an O(logn)-bit labeling
scheme or not, there are families of tiny classes (namely, classes of bounded clique-
width and classes of bounded twin-width) that do admit such labeling schemes, but
no uniformly bounded labeling schemes are currently known.

Question 5.2. Is there a constant ¢ such that every graph class of bounded clique-
width (twin-width) admits a labeling scheme of size (¢ + o(1)) logn?

We note that, according to the discussion in subsection 4.3, there is qualitative differ-
ence between the entire family of tiny classes and the families of classes of bounded
clique-width and classes bounded twin-width. Indeed, each of the latter two families
can be described by a single small parameter (clique-width and twin-width, respec-
tively), while the entire family of tiny classes cannot be described even by countably
many such parameters.

As mentioned in the introduction, “tiny = small” is still open. Equality was
conjectured in the first arXiv version of [16] (see Conjecture 8.1, 3. = 2.) however
this conjecture has disappeared from the current arXiv version of [16] (due to being
partially refuted, as it contained the Small conjecture). We believe “tiny < small” is
an interesting question, so we restate it here.

Question 5.3. Is every small class tiny?

Finally, we mention an intriguing question about random graphs that arose in our
study. We found a threshold for the property of having exponentially many unlabeled
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induced subgraphs. We do not know whether there exists a sharp threshold for this
property.

Question 5.4. Let G,, ~ G(n,p). Does there exist ¢ > 1 such that for any constant
§>0,if p < <2, then w.h.p. the number of unlabeled induced subgraphs of G,, is

n

20(n) "and, if p > <2 then w.h.p. this number is 20?7

n
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