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ABSTRACT 

Modelling uncertainty propagation in flood modelling manifests in frequency of occurrence, or histograms, for 

quantities of interest, including the flood extent and hazard rating. Such modelling at the field-scale requires the 

identification of a more efficient alternative to the Standard Monte Carlo (SMC) method that can reproduce 

comparable output probability distributions with a reduced sample size. Latin Hypercube Sampling (LHS) is the 

most evaluated alternative but yields no considerable sample size reduction. Potentially better alternatives include 

Adaptive Stratified Sampling (ASS), Quasi Monte Carlo (QMC) and Haar-Wavelet Expansion (HWE), which are 

yet unevaluated for probabilistic flood modelling. In this paper, LHS, ASS, QMC and HWE are compared to 

quantify sample size reduction to reproduce output detailed histograms – for flood extent, and average and 

maximum hazard rating – while keeping the difference below 10 % to the reference SMC prediction. The 

comparison is done a synthetic test case with two (i.e., inflow discharge and Manning’s coefficient) and three (i.e., 
further including the ground elevation) input random variables, and a real case with five input random variables. 

With two input random variables, all four alternatives yield sample size reductions, with QMC and HWE 

considerably outperforming the others; with three and more input random variables, HWE becomes inflexible and 

LHS underperforms. Still, QMC is a better choice than ASS to boost sample size reduction and should be preferred. 

1. INTRODUCTION 

Flood mapping uses a flood physical solver to estimate two-dimensional maps of flood-related quantities 

of interest, including the flood extent and/or the flood Hazard Rating (HR) [35, 44- 46]. Deterministic 

modelling does not account for the uncertainty inherent in the input variables, leading to suboptimal 

decisions in flood management and mitigation strategies [12]. Probabilistic flood modelling has become 

standard to propagate the uncertainty in the input random variables into the output probability 

distributions of quantities of interest. Such modelling can involve variability in multiple input variables, 
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non-smooth responses in any of the simulated quantities of interest, which may lead to complex 

probability distributions that are hard to capture such as those including multimodalities [2, 8, 42]. 

The present Uncertainty Quantification (UQ) framework assumes forward propagation of Type-B 

uncertainty, for which the variability in the random input parameters is generated from the means and 

standard deviations reported in published resources, and using an equiprobable uniform distribution [4]. 

Often, the forward propagation from such uncertain input variables into the probabilistically simulated 

quantities of interest is achieved using the Standard Monte Carlo method (referred herein to as SMC) 

[5, 13, 22, 24, 26, 39, 31, 48]. However, SMC requires a large sample size (𝑁𝑠) to accurately propagate 

the uncertainty in the input parameters, which is not ideal for field-scale applications [2, 8]. This study 

aims to identify alternative-to-SMC UQ methods that use reduced 𝑁𝑠 to reproduce 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 and 𝐻𝑅-related histograms in a maximum allowed difference of 10 %. 

Existing studies are often limited to analyze the reduction in the 𝑁𝑠 for one alternative to SMC often 

using the conventional statistical metrics like the mean or the variance [16, 46]. However, the use of 

conventional metrics may not be adequate to suggest reliable 𝑁𝑠 reductions, because such metrics permit 

to overlook key information that could be present in complex output probability distributions (e.g., 

multimodal statistical peaks [2, 8, 41]. Hence, the reduction in the 𝑁𝑠 for probabilistic flood modelling 

would be more reliable when using the more complex metric of the relative histogram difference. 

Among the few papers that explored this aspect, Beevers et al. [8] found that Latin Hypercube Sampling 

(LHS) [30] offers no reduction in 𝑁𝑠 over SMC to reproduce 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 histograms associated with 

D-dimensional uncertainty spaces including more-than-one random input variables (D > 1). The present 

UQ analysis framework is aimed to further assess other alternatives to SMC, which could better reduce 𝑁𝑠 to reproduce the most uncertain quantity of interest among 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 and 𝐻𝑅-related histograms. 

Accelerated Monte Carlo methods, or random sampling methods, rely on variance reduction to reduce 𝑁𝑠 over SMC [23, 36]. From this category, LHS is a popular alternative [30, 38, 54, 56], but offer no 

reduction in 𝑁𝑠 for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 histograms [2, 8]. Other random sampling techniques include the 

stratified sampling [11, 18, 38]. Stratified sampling and its Adaptive Stratified Sampling (ASS) versions 

[15, 37, 43] were shown to offer promising reductions in 𝑁𝑠 over SMC for conventional statistical 

metrics: For synthetic fluid dynamics problems, ASS yielded 100-to-1000 times, 10-to-40 times, and 5-

to-10 times smaller 𝑁𝑠 with D = 2, 3 and 4, respectively [37], but is yet unassessed for flood modelling.  

Deterministic realisation methods include Quasi Monte Carlo (QMC) and non-intrusive stochastic 

collocation approaches [53]. QMC [32, 51] uses low-discrepancy sequences of quasi-random samples 

for uncertainty spaces and using Hammersley sequences [20] reduce 𝑁𝑠 by 40 times for 𝐷-dimensional 

spaces (2 ≤ D ≤ 100) [25, 50, 27]. In the non-intrusive stochastic collocation approach [6, 14, 55], global 

orthogonal polynomials are used as continuous basis functions to span the uncertainty spaces [42, 52]. 

However, this choice may not be suited for flood modelling to accurately represent multimodal discrete 

distributions [1, 42]. Using discrete basis functions of the Haar-Wavelet Expansion (HWE) [28] can 

remedies this issue, as exemplified by capturing critical physics of wetting and drying in the histograms 

using 4 times smaller 𝑁𝑠 against SMC for a three-dimensional uncertainty space (D = 3) [42].  

In this paper, LHS, ASS, QMC and HWE is compared to identify their potential 𝑁𝑠 reduction against 

SMC to capture the histograms for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, average and maximum 𝐻𝑅 (𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥). 

Section 2 describes the UQ analysis framework including details on: the generation of input variables 

(Section 2.1); the choice of the physical solver used for the probabilistic runs and definitions of 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, 𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥 (Section 2.2); the comparison approach based on the relative 

histogram difference against the reference SMC prediction (Section 2.3); and the definition and 

characteristics of flooding test cases for uncertainty spaces with 2 ≤ D ≤ 5 (Section 2.4). In Section 3, 

the comparative analysis is presented to identify 𝑁𝑠𝐾, per alternative-to-SMC UQ method K (K = QMC, 

HWE, LHS and ASS), to keep a histogram difference below the target threshold of 7.5 % ± 2.5 %. 

Section 4 draws conclusions on the most efficient UQ method. 
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Figure 1: The UQ analysis framework. Upper-left: pre-defined uncertain variables, via probability distribution 

functions, spanning a D-dimensional uncertainty space; upper-right: a typical (random) sampling in the uncertainty 

space; lower-left: the output of a probabilistic run, after applying a physical solver for all samples, for the quantities 

of interest; lower-right: a relative histogram for a quantity of interest for evaluation against a reference prediction 

(brute-force SMC runs). 

2. UQ ANALYSIS FRAMEWORK  

The present uncertainty propagation framework is described in Fig. 1. The uncertainty in the values of 

the input parameters is represented by a vector of random variables, X = [X1,...,XD], in which each 

random variable is assigned a probability distribution that should reflect the information available about 

the corresponding input parameter (Fig. 1, upper left). It is commonly accepted that the choice of which 

probability distributions to adopt to model the uncertain hydrological parameters is less important than 

acquiring good estimates of their means and standard deviations. Therefore, the input random variables 

are generated based on given means and standard deviations from surveyed uncertainty ranges in 

published resources, and using uniform, or rectangular, probability distributions to conservatively model 

Type-B uncertainty (i.e., with equal probabilities) [4]. The input random variables X are sampled, with 

either a random sampling (e.g., Fig. 1, upper-right) or deterministic sampling, depending on the UQ 

method. A probabilistic run is achieved by applying a physical solver to all the samples (𝑁𝑠 simulations), 

leading to output samples for selected quantities of interest Y = [Y1,...,Yq] (Fig. 1, lower-left). 

Histogram(s) for Y are generated for each UQ method, normalised to 𝑁𝑠 to become relative histogram(s), 

to assess 𝑁𝑠 reduction such that to keep the difference against the reference prediction (Fig. 1, lower-

right) below the target threshold of 7.5 % ± 2.5 %. 

2.1 Generation of the input random variables 

In probabilistic flood modelling, the three most significant uncertain variables are the inflow discharge, 

Manning coefficient, and ground elevation [3, 9, 24]. Here, each uncertain (i.e., random input) variable 

is assumed to result from the same measurement error at any point in time for the inflow discharge(s) 

and at any point in space for the Manning coefficient and the ground elevation. With this assumption, 

the dimensionality of the uncertainty space is the number of input variables for computational feasibility. 

Otherwise, non-correlated, cell-wise variations in the ground elevation would need a distinct random 

variable for every cell, leading to an unfeasible increase in the dimensionality [47]. The uncertainty in 

each mean inflow discharge, 𝑄̅(𝑡) at a time instant 𝑡, is often assigned to a 16 % range [7]. Therefore, a 

uniform inflow discharge random variable, 𝑄(𝑡, 𝜉𝑄), follows: 
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where 𝜉𝑄 is a random variable taking values in [−1, +1] and 𝜎𝑄(𝑡) = 0.08𝑄̅(𝑡) is the range of variation 

with respect to the mean 𝑄̅(𝑡). For 𝑃 mean inflow discharges, 𝑄1̅̅ ̅(𝑡), …, 𝑄𝑃̅̅̅̅ (𝑡) (𝑃 > 1), the variation 

in each of 𝑄1(𝑡, 𝜉𝑄1), …, 𝑄𝑃(𝑡, 𝜉𝑄𝑃) follows Eq. (1), assuming that 𝜉𝑄1, …, 𝜉𝑄𝑃  are not intercorrelated 

[Neal et al., 2013], leading to an uncertainty space dimension of 𝐷 =  𝑃.  

The Manning coefficient’s uncertainty depends on friction elements (e.g., vegetation, land, or soil type) 
and is often assigned a range of 10 %, from bibliographical values and calibration to match observed 

flood-related data [10, 33]. Thus, the uniform Manning coefficient random variable follows: 𝑛(𝜉𝑛) = 𝑛̅ + 𝜉𝑛 𝜎𝑛      (2) 

where 𝜉𝑛 is a random variable taking values in [−1, +1], 𝑛̅ is a given mean constant Manning coefficient 

and 𝜎𝑛 = 0.05 𝑛̅  is the range of variation with respect to 𝑛̅. It is sometimes necessary to also include 

uncertainty in the mean ground elevation variable, 𝑧̅(𝑥, 𝑦), with respect to which the range of variation 𝜎𝑧(𝑥, 𝑦) can be generated from the analysis of the Digital Elevation Model (DEM) data. The range of 

variation 𝜎𝑧(𝑥, 𝑦) is often assigned a measurement error uncertainty as high as 10 % depending on the 

quality of the DEM data. Hence, the uncertainty in 𝑧̅(𝑥, 𝑦) may be significant in some locations, 

informed by local estimates of 𝜎𝑧(𝑥, 𝑦). Hu et al. [21] and Liu et al. [29] estimated 𝜎𝑧(𝑥, 𝑦) for LiDAR-

based DEMs as a function of the diagonal length of the DEM’s cell size, denoted by ld, and the local 

curvature for the DEM’s value at this cell, denoted by 𝑀(𝑥, 𝑦). Their estimates suggest significant 𝜎𝑧(𝑥, 𝑦) either when the DEM resolution is coarse or when the DEM’s cells represent a topographic 
area with large curvatures (e.g., riverbanks or buildings). As these estimates for 𝜎𝑧(𝑥, 𝑦) have different 

weights for 𝑀(𝑥, 𝑦)𝑙𝑑2  to analyze distinct DEM data types, 𝜎𝑧(𝑥, 𝑦) can generally be estimated to |𝑐 𝑀(𝑥, 𝑦)𝑙𝑑2|, where c is a user-defined weight identified by a DEM-specific sensitivity analysis, 

suggesting c around 0.04 to 0.125 for realistic, uneven DEM, and 5 for idealistic, smooth DEM. After 

estimating 𝜎𝑧(𝑥, 𝑦), the ground elevation random variable, for 𝜉𝑧 varying in [−1, +1], follows: 𝑧(𝑥, 𝑦, 𝜉𝑧) = 𝑧̅(𝑥, 𝑦) + 𝜉𝑧 𝜎𝑧(𝑥, 𝑦)   (3) 

2.2 Physical solver and quantities of interest 

For a selected UQ method at a fixed 𝑁𝑠, a physical solver should be employed to make a probabilistic 

run, or ensemble of 𝑁𝑠 simulations, to propagate the variations in the input variables (Eqs. 1-3) into 

output probability distributions. The first-order finite volume hydrodynamic solver of the LISFLOOD-

FP suite was employed, using the version parallelized on Graphical Processing Units (GPU), so-called 

GPU-FV1 [19]. The probabilistic run leads to output samples for the water depth, ℎ(𝑥, 𝑦, 𝑡) and velocity 

field magnitude, 𝑉(𝑥, 𝑦, 𝑡), that are post-processed into the following quantities of interest: 

• Flood extent. It is the sum of the area of the computational cells with non-zero water depth ℎ , i.e., 

total wet area. The 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 has often been used in probabilistic flood modelling to analyse 

flood extent frequencies [2, 8]. 

• Average Hazard Rate (𝑯𝑹𝒂𝒗𝒆) and maximum Hazard Rate (𝑯𝑹𝒎𝒂𝒙). The flood 𝐻𝑅 is defined as: 𝐻𝑅 =  ℎ × (𝑉 + 0.5); and, it has been used to provide more information on velocity impacts to 

assets including structural damage to residential buildings, damages to road infrastructures, and risks 

to people’s life and injury [44]. In this study, 𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥 quantify the average and maximum 

flood 𝐻𝑅 over the computational area. 

• 𝑭𝒍𝒐𝒐𝒅 𝒕𝒊𝒎𝒊𝒏𝒈. The above quantities are evaluated at 𝑓𝑙𝑜𝑜𝑑 𝑡𝑖𝑚𝑖𝑛𝑔, 𝑡, of maximum flood extent.  

 

2.3 Comparison approach using the relative histogram difference 

In SMC the order of convergence is inversely proportional to 𝑁𝑠1/2
, requiring a large 𝑁𝑠 to reproduce a 

true reference prediction (e.g., known analytical functions [27]). Four selected alternative-to-SMC UQ 

methods are compared to potentially reduce 𝑁𝑠 while keeping a relative histogram difference below 

10 % against the reference SMC prediction for the most relevant quantity of interest. The alternatives 
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are HWE and QMC, from the deterministic realisation methods, and ASS and LHS from the random 

sampling methods. Compared to the conventional statistics like the mean or the variance, a histogram 

can inform on key aspects contributing to the overall statistics, such as multimodalities in a frequency 

of occurrence, which can otherwise be missed (i.e., as shown in [41]). 

For a quantity of interest, among 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, 𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥, the relative histogram predicted by 

the UQ method K for a fixed 𝑁𝑠𝐾 (K = SMC, QMC, HWE, LHS and ASS) is compared to the relative 

histogram of the reference prediction–produced using SMC with a 𝑁𝑠 that is 2.5-to-320 times larger than 𝑁𝑠𝐾, depending on the affordability of SMC per test case to make the probabilistic run (i.e., to produce 

the reference prediction). Comparing the difference between these two relative histograms may not be 

straightforward. On the one hand, a relative histogram is sensitive to the number of bins, 𝑁𝑏𝑖𝑛𝑠, as too 

wide bins can overlook multimodalities. As a rule of thumb, 𝑁𝑏𝑖𝑛𝑠 depends on the 𝑁𝑠𝐾, which here ranges 

between 125 and 4096. For this range of 𝑁𝑠𝐾, 𝑁𝑏𝑖𝑛𝑠 can be as large as 40 to analyze flood extent 

frequency occurrence [8]. Therefore, the three values for 𝑁𝑏𝑖𝑛𝑠 = {10, 20, 40} are considered when 

comparing the difference between these two relative histograms. On the other hand, for a fixed 𝑁𝑏𝑖𝑛𝑠, 

comparing two relative histograms, can either be bin-wise or via a cross-bin approach [40]. The bin-

wise approach measures the difference bin-by-bin, and the cross-bin approach also incorporates the 

correlations from the differences at the neighbouring bins. Although less sensitive to 𝑁𝑏𝑖𝑛𝑠, the cross-

bin approach tends to predict zero differences in regions of uniform frequency distributions [40]. Hence, 

the bin-wise approach is used to compare the two histograms, as follows [49]: 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%) = 100 × ∑ |𝑓𝑟𝑒𝑓𝑗 − 𝑓𝑗|𝑁𝑏𝑖𝑛𝑠𝑗=1   (4) 

In Eq. (4), 𝑓𝑗 and 𝑓𝑟𝑒𝑓𝑗  denote the relative frequency (normalised by 𝑁𝑠𝐾) inside the jth bin for the 

histogram predicted by the selected UQ method and for the histogram of the reference prediction, 

respectively. The identified 𝑁𝑠𝐾 per alternative-to-SMC UQ method K (K = QMC, HWE, LHS and ASS) 

are then used to quantify the reduction in terms of the following relative-to-SMC speedup ratio: 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑟𝑎𝑡𝑖𝑜 = 𝑁𝑠𝑆𝑀𝐶/𝑁𝑠𝐾(K = QMC, HWE, LHS and ASS) 

 (5) 

Note that, the quantified speedup ratios (Eq. 5) for the identified 𝑁𝑠𝐾 are only based on the relative 

histogram difference (Eq. 4); in other words, not based on the standard errors of the mean and the 

variance, which lead to greatly larger speedup ratios, and that the identified 𝑁𝑠𝐾 required 60 times more 

runs, or replications, per random sampling method (i.e., SMC, ASS and LHS) [19].  

2.4 Definition and characteristics of the test cases 

Two probabilistic flood modelling test cases are used to assess the alternative-to-SMC UQ methods K 

(K = QMC, HWE, LHS and ASS) to potentially reduce 𝑁𝑠𝐾 over 𝑁𝑠𝑆𝑀𝐶 to keep a maximum threshold of 

10 % for the relative histogram difference (Eq. 4), while also analyzing the effect of 𝑁𝑏𝑖𝑛𝑠 = {10, 20, 

40}. The first test case is a synthetic “Rapidly propagating flood over a smooth terrain” (Section 2.4.1). 

It is employed to identify 𝑁𝑠𝐾 for two sub-cases: D = 2 for the two input random variables: 𝑄(𝑡, 𝜉𝑄) and 𝑛(𝜉𝑛); and, 𝐷 = 3 for the three input random variables: 𝑄(𝑡, 𝜉𝑄), 𝑛(𝜉𝑛) and 𝑧(𝑥, 𝑦, 𝜉𝑧). The aim is to 

identify the 𝑁𝑠𝐾 that keeps the relative histogram difference (Eq. 4) below the average target threshold 

of 7.5 % for all the quantities of interest, and then accordingly quantify the speedup ratios (Eq. 5). The 

second test case assesses the validity of the best two selected candidates among the random sampling 

methods and the deterministic realization methods (QMC and ASS) for probabilistic modelling of the 

“Carlisle 2005 flooding” (Section 2.4.2). This test case is featured by a D = 5 including three input 

random discharge variables, 𝑄𝑝(𝑡, 𝜉𝑄𝑝)𝑝=1,2,3, and the input random variables for the Manning 

coefficient and the ground elevation, 𝑛(𝜉𝑛) and 𝑧(𝑥, 𝑦, 𝜉𝑧) for  two choices of 𝑁𝑠𝐾 identified in the 

previous test case. 

2.4.1. Rapidly propagating flood over a smooth terrain 
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In this synthetic test case [34], the mean inflow discharge, 𝑄̅(𝑡), is 65.5 m3 s-1. The inflow discharge 

variable 𝑄(𝑡, 𝜉𝑄) enters from the left boundary into a small domain area of 0.3 km × 0.1 km that has a 

mean Manning coefficient 𝑛̅ = 0.01 with variation of 𝑛(𝜉𝑄). The mean ground elevation variable 𝑧̅(𝑥, 𝑦) 

is taken from a pseudo-two-dimensional DEM at 2 m resolution and its variation 𝑧(𝑥, 𝑦, 𝜉𝑧) is estimated 

for 𝜎𝑧(𝑥, 𝑦), using c = 5. The flood timing is 193 seconds, when a simulation stops for analysis of 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, 𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥. Using 7,500 computational cells, a single simulation took 3 seconds 

and the probabilistic SMC run used 𝑁𝑠  = 40,000 to produce the reference prediction. 

   

Figure 2: Rapidly propagating flood over a smooth terrain. Centreline plots of the projections from the D-

dimensional response surfaces for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, 𝐻𝑅𝑎𝑣𝑒  and 𝐻𝑅𝑚𝑎𝑥, showing their variations in each uncertainty 

dimension for the case with D = 2 (solid lines) and the case with D = 3 (dotted lines). 

From the reference prediction, 𝐷-dimensional response surfaces for each of 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, 𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥 can be produced to analyse how the variations in the input variables (from their mean values) 

propagate into each of the quantities of interest. Figure 2 shows the plots of the centreline projections of 

the response surfaces of each random variable for the sub-cases with D = 2 (solid lines) and with D = 3 

(dotted lines). With 𝐷 = 2, larger variations are seen due to the inflow discharge variable compared to 

variations due to the Manning coefficient variable. For 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, the variations due to these two 

variables are few, flat states connected by steep jumps, that are more frequent for the inflow discharge 

variable. For 𝐻𝑅𝑎𝑣𝑒, the variations are quite linear; but the variation due to the inflow discharge variable 

is steeper and far more deviates from the close-to-flat variation due to the Manning coefficient variable. 

For 𝐻𝑅𝑚𝑎𝑥, though the variations have a lower range of variability, they display non-smooth waviness 

compared to 𝐻𝑅𝑎𝑣𝑒. Its lower range of variability arise from the fact that 𝐹𝑙𝑜𝑜𝑑 𝑡𝑖𝑚𝑖𝑛𝑔 is closer to the 

time when the maximum of 𝐻𝑅𝑎𝑣𝑒 is reached, than to the time when 𝐻𝑅𝑚𝑎𝑥 reaches its maximum. 

With 𝐷 = 3, the variations in both dimensions of the inflow discharge variable and the Manning 

coefficient remain quite unchanged for all the quantities of interest. In the ground elevation variable, the 

variations for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 and 𝐻𝑅𝑎𝑣𝑒 are close to zero, thus relatively insignificant, which is in 

contrast with the variation for 𝐻𝑅𝑚𝑎𝑥 that is noticeably large, significantly adding up to the overall 𝐻𝑅𝑚𝑎𝑥 variation. Overall, the analysis of Figure 2 shows that 𝐻𝑅𝑚𝑎𝑥 is the most uncertain quantity of 

interest in this test, in which the responses for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 and 𝐻𝑅𝑎𝑣𝑒 are similar with 𝐷 = 2 and 3. 

A range of choices to select 𝑁𝑠𝐾 per UQ method is explores to include 500 samples per uncertain input 

variable as recommended in [8]. For HWE, the range of 𝑁𝑠HWE = {64, 256 ,1024, 4096} is used with 𝐷 

= 2 and of 𝑁𝑠HWE = {64, 512, 4096} with 𝐷 = 3 [42]. The other UQ methods (SMC, LHS, ASS and 

QMC) can be given the same range of 𝑁𝑠𝐾 ={125, 250, 500, 1000, 2000, 4000}. In Section 3.1, the 

identified 𝑁𝑠𝐾 that keep the relative histogram difference below the average threshold of 7.5 % are 

discussed, together with quantifications of their relative-to-SMC speedup ratios and analysis of their 

sampling patterns in the uncertainty space and ability to reproduce different shapes of relative 

histograms. 

2.4.2. Carlisle 2005 flooding 

This test case [17] is also adjusted to become probabilistically impacted by five input random variables. 

The fluvial flooding is driven by three given mean inflow discharge variables, 𝑄̅𝑝(𝑡)𝑝=1,2,3, originating 
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from rivers Eden, Caldew and Petteril, with the variations of their random variables, 𝑄𝑝(𝑡, 𝜉𝑄𝑝)𝑝=1,2,3, 

shown in Figure 3a-c. The inflow drivers lead to a flood propagation over a 14.5 km2 area in the city of 

Carlisle, where the mean Manning coefficient is often considered to be a constant of 𝑛̅ = 0.055, based 

on which the random input variable 𝑛(𝜉𝑛) is introduced. The mean ground elevation variable, 𝑧̅(𝑥, 𝑦), 

is based on a 5 m resolution DEM (finest available), and its random input variable 𝑧(𝑥, 𝑦, 𝜉𝑧) was based 

on estimates for 𝜎𝑧(𝑥, 𝑦) using c = 0.04, taking the values (Figure 3d). 

 
      (a) 

 
     (b) 

 
      (c) 

 

 

 

 

 

   (d)      (e) 

Figure 3: Carlisle 2005 flooding. Subfigure (a) to (c) show the variation in inflow discharge originating from 

rivers Eden, Caldew, and Petteril, respectively; subfigure (d) shows the variation from the mean ground elevation 

variable; and subfigure (e) shows the centreline plots of the projections from the response surface into each 

uncertainty dimension.  

 

A single simulation used 581,061 cells and was stopped at the flood time of 40 hours, costing a runtime 

of 400 seconds. This results in a large, elapsed, runtime to make a probabilistic SMC run, limiting the 

reference prediction to 𝑁𝑠  = 10,000. Here, 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 is the most uncertain quantity of interest to 

investigate, as is usually the case with such a slowly propagating flood over rough and realistic terrains 

[2, 8, 19]. Hence, only the 5-dimensional response surface for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 is produced from the 

reference prediction to analyze its variation due to each of the five random variables – again via the plots 

of centreline projections included in Figure 3e. The strongest, largest, and widest range of variation in 

the response surface arises due to the Manning coefficient variable. The range of variation due to each 

of three inflow discharge variables is comparatively weaker, but a cumulative variations is expected to 

lead to an overall stronger variation than that due to the Manning coefficient variable. For any of these 

four random variables, the type of variation for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 is quite similar, exhibiting semi-flat states 

in some regions or non-smooth patterns in other regions, which are connected by steep jumps. 

Comparatively, a flat variation is observed due to the ground elevation variable, suggesting that this 

variation would insignificantly influence the predictions compared to any other variation. This finding 

suggests giving less importance to the variation in the ground elevation variable for probabilistic 

modelling over real and highly rough topologies. In Section 3.2, only ASS and QMC are compared using 𝑁𝑠𝐾 = 2000 and 4000 (justified in Section 3.1), with validation to reproducing the relative histogram for 

the 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 quantity. 
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Figure 4: Rapidly propagating flood over a smooth terrain. The 𝑁𝑠𝐾 and relative-to-SMC speedup ratio (Eq. 5) to 

meet the target difference of 7.5 % ± 2.5 % for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 (upper panel), 𝐻𝑅𝑎𝑣𝑒 (middle panel), and 𝐻𝑅𝑚𝑎𝑥 

(lower panel), using 𝑁𝑏𝑖𝑛𝑠 = {10, 20, 40} (left to right).  

3. RESULTS AND DISCUSSION  

3.1 Rapidly propagating flood over a smooth terrain 

3.1.1. Sub-case with D = 2 

Figure 4 shows the identified 𝑁𝑠𝐾 and relative-to-SMC speedup ratios 𝑁𝑠𝑆𝑀𝐶/𝑁𝑠𝐾 to keep the target 

average threshold for 𝑁𝑏𝑖𝑛𝑠 = {10, 20, 40}. All the UQ methods achieve speedup ratios greater than one, 

thus lead to identifying 𝑁𝑠𝐾 that offer a reduction over 𝑁𝑠𝑆𝑀𝐶. However, the reduction differs depending 

on the quantity of interest. 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, since it has few flat variations in its responses, leads to the 

smallest 𝑁𝑠𝐾 alongside the highest speedup ratios and irrespective of 𝑁𝑏𝑖𝑛𝑠. The identified 𝑁𝑠𝐿𝐻𝑆 and 𝑁𝑠𝐴𝑆𝑆 are at least one order of magnitude larger than 𝑁𝑠𝑄𝑀𝐶
 and 𝑁𝑠𝐻𝑊𝐸, yielding speedup ratios that range 

between 1.1 and 1.8 for LHS and ASS and between 5 and 25 for QMC and HWE. For 𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥, the identified 𝑁𝑠𝐾 are expectedly larger, up to one order of magnitude with the largest 𝑁𝑏𝑖𝑛𝑠 = 

40. This leads to a drop in the lower bound of the speedup ratios for QMC and HWE from around 5 to 

around 1.1. However, this drop occurs due to the overly large 𝑁𝑠𝐻𝑊𝐸 = 4096 identified for 𝐻𝑅𝑎𝑣𝑒. With 

the lower 𝑁𝑠𝐻𝑊𝐸 = 1024, the relative histogram difference for 𝐹𝑙𝑜𝑜𝑑 𝐸𝑥𝑡𝑒𝑛𝑡 and 𝐻𝑅max are 1.3 % and 

6.4 %, respectively; however, the difference for 𝐻𝑅𝑎𝑣𝑒 becomes 8.1 %, which is not below the average 

target difference of 7.5 %. The only next possible choice for an 𝑁𝑠𝐻𝑊𝐸 that is larger than 1024, is 𝑁𝑠𝐻𝑊𝐸 = 4096, given the inflexibility of HWE in the selection of 𝑁𝑠𝐻𝑊𝐸, which is four-times larger 

leading to a difference of 3.8 % for 𝐻𝑅𝑎𝑣𝑒 that is below the target average difference of 7.5 %. Therefore, 

QMC is a better alternative since its lower bound remains around four-times higher than 1.1. The 

speedup ratios for LHS and ASS remain similar to the ratios identified for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, subject to a 

slightly lower upper bound, of 1.30. For each UQ method for the largest 𝑁𝑠𝐾 was identified to meet the 

average threshold difference of 7.5 % for the most uncertain quantities of interest with 𝑁𝑏𝑖𝑛𝑠= 40. The 

sampling with SMC needed 𝑁𝑠𝑆𝑀𝐶 = 4675 and a more efficient sampling is achieved by LHS, with 937 

fewer samples (𝑁𝑠𝐿𝐻𝑆 = 3738). ASS performs like LHS, needing slightly more samples (𝑁𝑠𝐴𝑆𝑆 = 3790). 

HWE leads to overtly refined sampling (𝑁𝑠𝐻𝑊𝐸 = 4096), caused by its inflexibility. QMC achieves the 

highest reduction (𝑁𝑠𝑄𝑀𝐶 = 1359) and is thus the most efficient sampling of the uncertainty space with 𝐷 = 2. 
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Figure 5: Rapidly propagating flood over a smooth terrain. Relative histogram plot per UQ method for the 𝑁𝑆𝐾. 

The plots for the coarser relative histograms using 𝑁𝑏𝑖𝑛𝑠 = {10, 20} are based on the same 𝑁𝑠𝐾. 

 

Figure 5 shows the plots of the relative histograms for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, 𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥, extracted per 

UQ method for the identified 𝑁𝑠𝐾 based on 𝑁𝑏𝑖𝑛𝑠 = 40 (shown in Fig. 9), and in which the coarser relative 

histograms using 𝑁𝑏𝑖𝑛𝑠 = {10, 20} are based on the same 𝑁𝑠𝐾. For 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, the relative histograms 

exhibit a discrete distribution for 𝑁𝑏𝑖𝑛𝑠 = {20, 40}, which tends to look like a left-skewed unimodal 

distribution with the coarsest 𝑁𝑏𝑖𝑛𝑠 = 10, suggesting that larger 𝑁𝑏𝑖𝑛𝑠 is still needed despite the few 

discrete states in this quantity of interest. For 𝐻𝑅𝑎𝑣𝑒, the relative histograms follow an almost symmetric 

distribution that becomes more complex with larger 𝑁𝑏𝑖𝑛𝑠. The relative histograms seen for 𝐻𝑅𝑚𝑎𝑥 are 

the most complex overall, in particular as 𝑁𝑏𝑖𝑛𝑠 is enlarged to 40 leading to a quite irregular distribution. 

Among the histogram distributions, the discrete one is the most accurately captured by all the UQ 

methods. The symmetric distribution seems to be more challenging to capture, though it is better 

reproduced with the deterministic realisation methods (QMC and HWE) than with the random sampling 

methods (SMC, LHS and ASS). The distribution for 𝐻𝑅𝑚𝑎𝑥, involving multimodalities, is the most 

challenging to capture for which all the UQ methods reach the average threshold difference of 7.5 %. 
 

3.1.2. Sub-case with D = 3 

Here, the analysis is restricted to 𝐻𝑅𝑚𝑎𝑥 as it is the only quantity of interest that changes drastically as 𝐷 is increased to 3 – compared to 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 and 𝐻𝑅𝑎𝑣𝑒 that retain similar responses to as with 𝐷 = 
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2. Figure 6a shows the 𝑁𝑠𝐾 identified per UQ method and their relative-to-SMC speedup ratios 𝑁𝑠𝑆𝑀𝐶/𝑁𝑠𝐾 

to keep the target threshold difference with 𝑁𝑏𝑖𝑛 = {10, 20, 40}. As can be observed, there is no notable 

reduction in the identified 𝑁𝑠𝐿𝐻𝑆 and 𝑁𝑠𝐴𝑆𝑆 since they lead to a speedup ratio range close to 1. The 

identified 𝑁𝑠𝑄𝑀𝐶
 and 𝑁𝑠𝐻𝑊𝐸 yield a speedup ratio range of around 0.5-to-2.0. These upper and lower 

bounds are, however, fluctuations reached by HWE, which leads to an average speedup ratio that is 

lower than the average speedup ratio of 1.6, which is consistently preserved by QMC. This suggests that 

QMC is a better choice to meet the average threshold difference of 7.5 % while having 𝑁𝑠  somewhere 

between 2000 and 4000.  

 

Figure 6b shows the plots of the relative histograms for 𝐻𝑅𝑚𝑎𝑥, shown for each UQ method for the 

identified 𝑁𝑠𝐾 to meet the average threshold difference of 7.5 %, based on 𝑁𝑏𝑖𝑛𝑠 = 40. The relative 

histograms follow a triangular distribution that displays sharper details as 𝑁𝑏𝑖𝑛𝑠 is enlarged, making it 

even more challenging to capture by the UQ methods K with a 𝑁𝑠𝐾 between around 2000 and 4000 (K = 

SMC, LHS, ASS and QMC). QMC again outperforms the other methods with a relatively smaller 𝑁𝑠𝑄𝑀𝐶
= 2400, that is closer to the lower bound of 2000, compared to any other UQ method K that yield 

a 𝑁𝑠𝐾 that is closer to the upper bound of 4000. 

 

Overall, the alternative-to-SMC UQ methods with the identified 𝑁𝑠𝐾 (Section 3.1) leads to predictions 

that are close to the average threshold difference of 7.5 % without exceeding the maximum threshold of 

10 %. Among these methods, QMC and ASS keep the relative histogram prediction to 7.5 % and tend 

to perform better as D is increased, with 𝑁𝑠𝐴𝑆𝑆 and 𝑁𝑠𝑄𝑀𝐶
 remaining within 2000 and 4000. Therefore, 

ASS and SMC are investigated further for the real case study involving five input random variables (D 

= 5) to only analyze their 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 histograms (Section 3.2) using 𝑁𝑠𝐾 = {2000, 4000}. 

 𝑁𝑏𝑖𝑛𝑠 = 10 𝑁𝑏𝑖𝑛𝑠 = 20 𝑁𝑏𝑖𝑛𝑠  = 40 
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Figure 6. Rapidly propagating flood over a smooth terrain. (a) The 𝑁𝑠𝐾 and relative-to-SMC speedup ratio (Eq. 5) 

to meet the target difference of 7.5 % ± 2.5 % for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 (upper panel), 𝐻𝑅𝑎𝑣𝑒 (middle panel), and 𝐻𝑅𝑚𝑎𝑥 

(lower panel), using 𝑁𝑏𝑖𝑛𝑠 = {10, 20, 40} (left to right); and (b) Relative histogram plot per UQ method for the 𝑁𝑆𝐾 

identified to keep the target average difference of 7.5 % based on 𝑁𝑏𝑖𝑛𝑠 = 40. 



SimHydro 2023: New modelling paradigms for water issues? 

8-10 November 2023, Chatou – Kesserwani et al. - Efficent uncertainty propagation methods for flood modelling 

 

 
Figure 7: Carlisle 2005 flooding. Relative 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 histograms (using 𝑁𝑏𝑖𝑛𝑠 = 40) per UQ method K (K = 

QMC and ASS) for 𝑁𝑠𝐾 = 2000 (left) and 4000 (right). 

 

Table 1. Carlisle 2005 flooding. Relative histogram differences (via Eq. 4) for 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 against the test-

specific reference prediction considering 𝑁𝑏𝑖𝑛𝑠 = {10, 20, 40} for the UQ methods K (K = QMC and ASS). 𝑁𝑏𝑖𝑛𝑠 
Relative histogram difference (%) 𝑁𝑠 = 2000 𝑁𝑠 = 4000 

 ASS QMC ASS QMC 

10 4.1 2.6 2.4 4.4 

20 8.7 5.1 6.1 6.2 

40 12.5 8.6 8.5 7.7 

3.2 Carlisle 2005 flooding 

In Figure 7, the relative 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 histograms predicted by QMC and ASS are compared to the 

reference prediction for 𝑁𝑠𝐾 = 2000 (left) and 4000 (right). The histograms follow a symmetric 

distribution that is better captured by QMC compared to ASS. Table 1 shows the relative histogram 

differences against the test-specific reference prediction for QMC and ASS for 𝑁𝑏𝑖𝑛𝑠 = {10, 20, 40} and 𝑁𝑠𝐾 = {2000, 4000}. For 𝑁𝑠𝐾 = 2000, the relative histogram difference increases with both QMC and 

ASS with larger 𝑁𝑏𝑖𝑛𝑠, but the difference with ASS increases at faster rate than the difference with 

QMC, leading to differences around 8.6 % and 12.5 % for the largest 𝑁𝑏𝑖𝑛𝑠 = 40, respectively. This 

suggests favouring QMC over ASS when using a 𝑁𝑠𝐾 close to 2000. For 𝑁𝑠𝐾 = 4000, the relative 

histogram difference with ASS is lower than that with QMC for 𝑁𝑏𝑖𝑛𝑠= 10, almost identical for 𝑁𝑏𝑖𝑛𝑠= 

20 but slightly higher for 𝑁𝑏𝑖𝑛𝑠= 40, suggesting that the increase in 𝑁𝑏𝑖𝑛𝑠 may be of less influence as 𝑁𝑠𝐾 is close to 4000. Overall, QMC leads to a difference that is closer to the average threshold difference 

of 7.5 %, with both 𝑁𝑠𝑄𝑀𝐶
 = 2000 and 4000, and irrespective of 𝑁𝑏𝑖𝑛𝑠; whereas ASS only meets this 

criterion with 𝑁𝑠𝐴𝑆𝑆 = 4000. This means that to keep the relative histogram difference below the 

maximum threshold of 10 %, using 𝑁𝑠𝑄𝑀𝐶
 = 2000 is feasible to achieve a relative-to-SMC speedup ratio 

of 5 with QMC, for this test case, whereas only a speedup ratio of 2.5 can be achieved with ASS by 

using 𝑁𝑠𝐴𝑆𝑆 = 4000. 

4. CONCLUSIONS 

Four uncertainty quantification methods were assessed to find alternatives to the Standard Monte Carlo 

(SMC) method for reproducing flood-related histograms, efficiently at a reduced sample size: two based 

on random sampling, which are Latin Hypercube Sampling (LHS) and Adaptive Stratified Sampling 

(ASS), and two based on deterministic realisation, which are Quasi Monte Carlo (QMC) and Haar-

Wavelet Expansion (HWE). The reproduced flood-related histograms were evaluated for three quantities 
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of interest, the 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 and the average and maximum hazard rating (𝐻𝑅𝑎𝑣𝑒 and 𝐻𝑅𝑚𝑎𝑥). These 

quantities stemmed from the probabilistic modelling of torrential and fluvial floodplain flows, impacted 

by uncertainty from at least two input random variables amongst the inflow discharge(s), the Manning 

coefficient and the ground elevation. The relative histograms predicted by each of the four alternative-

to-SMC methods were validated against the reference SMC prediction achieved by brute-force 

probabilistic runs using a much larger sample size.  

 

Firstly, the four methods were exhaustively compared for a synthetic rapidly propagating flood over a 

smooth terrain to include diagnostic analyses of their sample size reduction for two sub-cases: one with 

two input random variables for the inflow discharge and the Manning coefficient; and, the other with 

three input random variables, further incorporating the input random variable for the ground elevation. 

The analyses identified a sample size between 2000 and 4000 for the four methods to keep the relative 

histogram difference below an average threshold around 7.5 % with respect to the reference prediction. 

The identified sample sizes were mostly based on 𝐻𝑅𝑚𝑎𝑥, since it was the most uncertain quantity of 

interest, exhibiting the highest level of non-smoothness in the responses, and on the largest number of 

bins, of 40, since using fewer bins led to better sample size reductions. With two input random variables, 

the sample size for LHS was slightly smaller than that for ASS, both yielding about 900 samples less 

than the sample size predicted for SMC, or a relative-to-SMC speedup ratio in the range of 1.2-to-1.8. 

However, LHS and ASS yielded no considerable speedup ratios with three input random variables; 

despite this, the sample size for ASS became smaller than that of LHS, suggesting a tendency for ASS 

to potentially outperform if the number of input random variables is increased beyond three. QMC and 

HWE yield higher speedup ratios, in range of 1.1-to-25, with two input random variables; the lower 

bound of 1.1 was caused by the inflexibility of HWE to use any sample size between 1024 and 4096, as 

opposed to QMC that had a four-times higher lower bound. With three input random variables, the 

speedup ratios for QMC and HWE dropped, to a range of 0.5-to-2.0, though QMC preserved an average 

speed up ratio of 1.6; again, the lower and upper bounds were fluctuations arising from the 

(aforementioned) inflexibility of HWE. Common to both sub-cases, QMC entailed a sample size closer 

to 2000, compared to the sample size for LHS, ASS and HWE that were closer to 4000. 

 

Secondly, therefore, ASS and QMC were validated using sample sizes of 2000 and 4000 to reproduce 

the reference prediction for the 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡, which is the most uncertain quantity of interest for this 

real-world fluvial flooding scenario with five input random variables. For the sample size of 2000, both 

ASS and QMC capture the reference 𝐹𝑙𝑜𝑜𝑑 𝑒𝑥𝑡𝑒𝑛𝑡 histogram, with a difference below the maximum 

threshold of 10 %, with low number of bins, of 10 and 20; however, ASS failed to meet this threshold 

when the number of bins is enlarged to 40. For the larger sample size of 4000, ASS and QMC predicted 

relative histogram differences that meet the maximum threshold, irrespective of the number of bins, 

suggesting that they are both valid choices for sample sizes as large as 4000 to get a speedup ratio of 

2.5. However, only QMC could meet this threshold to further reduce the sample size somewhere close 

to 2000 and boost the speedup ratio to 5. 

Overall, the comparative analyses in this study identify QMC to be the simplest and most efficient 

alternative-to-SMC for probabilistic flood modelling applications, including rapid and slow flows, 

driven by more than one input random variable but not exceeding five. The speedup ratio for QMC is in 

the range of 1.6-to-5. However, this ratio has been quantified for suboptimal conditions (i.e., for the 

relative histogram metric in order to capture the full details of the probability distributions, for the most 

uncertain flood-related quantity of interest and the largest number of bins); thus should be larger when 

using less sensitive metrics (e.g., the standard errors of the mean and variance) or when targeting a flood-

related quantity with low and/or smooth variations in its responses. Despite the limitations of this study, 

its findings still provide useful insights into the potential utility of QMC to speedup probabilistic 

modelling of more sophisticated water resource problems including more than five random variables 

such as, for example, to use QMC with a multi-physics solver to support a data-driven model to minimize 

the number of sub-samples of the training dataset. 
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