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Quantum error correction enables the preservation of logical qubits with a lower logical error rate

than the physical error rate, with performance depending on the decoding method. Traditional decoding

approaches rely on the binarization (“hardening”) of readout data, thereby ignoring valuable information

embedded in the analog (“soft”) readout signal. We present experimental results showcasing the advan-

tages of incorporating soft information into the decoding process of a distance-3 (d = 3) bit-flip surface

code with flux-tunable transmons. We encode each of the 16 computational states that make up the logical

state |0L〉, and protect them against bit-flip errors by performing repeated Z-basis stabilizer measurements.

To infer the logical fidelity for the |0L〉 state, we average across the 16 computational states and employ

two decoding strategies: minimum-weight perfect matching and a recurrent neural network. Our results

show a reduction of up to 6.8% in the extracted logical error rate with the use of soft information. Decod-

ing with soft information is widely applicable, independent of the physical qubit platform, and could allow

for shorter readout durations, further minimizing logical error rates.

DOI: 10.1103/PhysRevApplied.22.044031

I. INTRODUCTION

Small-scale quantum error correction (QEC) experi-

ments have made significant progress over recent years,

including fault-tolerant logical-qubit initialization and

measurement [1,2], correction of both bit- and phase-flip

errors in a distance-3 (d = 3) code [3–5], magic state dis-

tillation beyond break-even fidelity [6], suppression of

logical errors by scaling a surface code from d = 3 to

d = 5 [5], and demonstration of logical gates [7]. The per-

formance of these logical-qubit experiments across various

qubit platforms is dependent on the fidelity of physical

quantum operations, the chosen QEC codes and circuits,
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2628 XG, Netherlands.
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and the decoders used to process QEC readout data. Com-

mon decoding approaches with access to analog informa-

tion often rely on digitized (binary) qubit readout data as

input to the decoder. The process of converting a contin-

uous measurement signal to binary outcomes inevitably

leads to a loss of information that reduces decoder perfor-

mance.

Pattison et al. [8] have proposed a method for incorpo-

rating this analog “soft” information in the decoding of

QEC experiments, suggesting a potential 25% improve-

ment in the threshold compared to decoding with “hard”

(binary) information. The advantage of using soft infor-

mation has also been demonstrated on simulated data with

neural-network (NN) decoders [9,10]. Soft-information

decoding has also been realized for a single physical

qubit measured via an ancilla in a spin-qubit system [11]

and for a superconducting-based QEC experiment with

a simple error model assuming uniform qubit quality

[12]. The incorporation of soft information with variable

qubit fidelity can in theory provide further benefit when

decoding experimental data. However, this can be chal-

lenging, as additional noise sources (e.g., leakage and

other non-Markovian effects) add complexity; therefore,

2331-7019/24/22(4)/044031(19) 044031-1 Published by the American Physical Society
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FIG. 1. The Surface-13 QEC experiment. (a) The device layout, with vertices indicating flux-tunable transmons and edges denoting

nearest-neighbor coupling via fixed-frequency resonators. Nine data qubits in a 3 × 3 array (labeled D, dark gray) are subject to four

Z-basis parity checks realized using ancilla qubits (green). Light gray vertices and edges are not used. (b) The quantum circuit for the

experiment over R QEC rounds, each round taking 700 ns. During ancilla measurement, an XL operation implemented transversally

with π pulses on all data qubits is applied to average the logical error over the logical subspace. We show the 16 computational states

over which we average. We employ various methods in postprocessing to decode the measurements and determine the value of the

logical observable, mL [13].

the advantage of decoding with soft information is not

guaranteed.

In this paper, we demonstrate the use of soft information

in the decoding of data obtained from a bit-flip d = 3 code

in a 17-qubit device using flux-tunable transmons with

fixed coupling. Unlike a typical d = 3 surface code, we

repeatedly measure only Z-basis stabilizers, utilizing 13

out of the 17 qubits in the device [Fig. 1(a)]. This approach

allows us to avoid problematic two-qubit gates between

specific pairs of qubits that have strong interactions of the

qubits with two-level-system (TLS) defects [14]. We refer

to this experiment as Surface-13. We encode and stabi-

lize each of the 16 computational basis states, shown in

Fig. 1(b), that are eigenstates of the Z-basis stabilizers and

the logical operator, ZL, with eigenvalues +1. We approxi-

mate the performance of the full logical state by averaging

across these states. The code protects the logical state from

single bit-flip errors, similar to the d = 3 repetition code

[15,16]. We employ two decoding strategies: a minimum-

weight perfect-matching (MWPM) decoder and a recurrent

NN decoder. For each strategy, we compare the perfor-

mances of two variants: one with soft information and one

without. With soft information, the extracted logical error

rates are reduced by 6.8% and 5% for the MWPM and NN

decoders, respectively.

II. EXPERIMENT CONFIGURATION

The experimental procedure begins by preparing the

data-qubit register in one of the 16 physical computational

states, as shown in Fig. 1(b). Next, repeated Z-basis stabi-

lizer measurements are performed over a varying number

of QEC rounds, R. Each round takes 700 ns, with 20 ns

and 60 ns for single- and two-qubit gates, respectively,

and 420 ns for readout. The logical state is flipped during

the ancilla measurement in each QEC round using the

XL = X ⊗9 transversal gate to symmetrize the effect of

relaxation (T1) errors, minimizing the dependence on the

input state. A final measurement of all data qubits is used

to determine the observed logical outcome mL and com-

pute final stabilizer measurements. The physical error rates

of single-qubit gates, two-qubit gates, and readout are

0.1%, 1.6%, and 1.2%, respectively, averaging over the 13

qubits and 12 two-qubit gates used in the experiment. Fur-

ther details about the device, calibration, and parity-check

benchmarking are provided in Appendices A and B.

The decoder determines whether the outcome mL needs

to be corrected (flipped) based on the values of combina-

tions of certain measurements (see below) and decoding

success is declared if this corrected readout, mL, matches

the prepared state. We calculate FL, the logical fidelity, for

a fixed R ∈ {1, 2, 4, 8, 16} and each input state as the frac-

tion of successfully decoded runs. Finally, FL is averaged

over the 16 physical computational states, approximating

the logical performance of the |0L〉 state.

Qubit readout is performed by probing the state-

dependent transmission of a dedicated dispersively cou-

pled readout-resonator mode to infer the qubit state, |j 〉
[17]. The readout pulse for each qubit has a rectangu-

lar envelope softened by a Gaussian filter of width σ =
0.5 ns (for additional details about readout calibration,

see Appendix A). After amplification [18], the transmit-

ted signal is down-converted to an intermediate frequency

and the in-phase and in-quadrature (IQ) components

integrated over 420 ns using optimal weight functions

[19–21]. The resulting two numbers, I and Q, form the

IQ signal z = (I , Q) [Fig. 2(a)] comprising the soft infor-

mation. The readout-pulse envelope and signal integration

are performed using Zürich Instruments UHFQA analyzers

sampling at 1.8 GSa/s.

044031-2
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FIG. 2. (a) The measurement response of the |0〉 and |1〉 states

in IQ space for data qubit D6, showing a projection line that con-

nects the means of the two Gaussian peaks (black dotted line). (b)

The edge weight as a function of the projected voltage z̃ for soft

and hard measurements (see Eq. (1)). Measurement errors are

most likely in the region z̃ ≈ 0, where the edge weight is mini-

mized. (c) The histogram and fitted probability density function

(PDF) P(z̃ | j ) for state preparations j ∈ {0, 1}.

III. CAPTURING SOFT INFORMATION

To transform an IQ signal z ∈ R
2 to a binary-

measurement outcome ẑ ∈ {0, 1}, we apply a hardening

map, which we choose as the maximum-likelihood assign-

ment. The hardened outcome is obtained by choosing

ẑ = 0 if P(0 | z) > P(1 | z) and ẑ = 1 otherwise, where

P(j | z) is the probability that the qubit was in state |j 〉
just before the measurement, given the observed IQ value

z. Assuming that the states |0〉 and |1〉 are equally likely,

one has P(j | z) ∝ P(z | j ). Therefore, ẑ = 1 if P(z | 1) >

P(z | 0) and ẑ = 0 otherwise. When we consider the |2〉
state, we assign the hardened-measurement outcome j to

correspond to the largest P(z | j ).

The probability density functions (PDFs) denoted

P(z | j ) are combinations of two and three Gaussians when

we do and do not consider the |2〉 state, respectively. We

find that this heuristic model works well for both two-

state and three-state discrimination. To determine the fit

parameters of the Gaussian model, we use 1.3 × 105 cali-

bration shots per state preparation j ∈ {0, 1, 2} for each of

the 13 transmons. To reduce the dimension of the prob-

lem in the case in which we do not consider the |2〉 state,

we project the IQ voltages to z̃ ∈ R along the axis of sym-

metry [black dotted line in Fig. 2(a)]. We obtain the PDFs

of the projected data P(z̃ | j ) by decomposing z = (z̃, z⊥)

to a parallel component z̃ and a perpendicular component

z⊥, giving P(z̃ | j ) =
∫

P(z̃, z⊥ | j )dz⊥. Assuming that the

IQ responses of the computational basis measurements

are symmetric along the axis joining the two centroids

[marked by black crosses in Fig. 2(a)], the projection does

not result in information loss. The hardened-measurement

outcomes are then obtained by comparing P(z̃ | 0) and

P(z̃ | 1). Further information on our classification methods

is given in Appendix E 1.

IV. MINIMUM-WEIGHT PERFECT-MATCHING

DECODING

In QEC experiments, the detectors [22] are selected

combinations of binary-measurement outcomes that have

deterministic values in the absence of errors. A detec-

tor the value of which has flipped from the error-free

value is a defect. A decoder takes observed defects in

a particular experiment and, using a model of the pos-

sible errors and the defects they result in, calculates

the logical correction. In Surface-13, assuming circuit-

level Pauli noise and with detectors defined as described

below, each error results in at most two defects. As

a result, it is possible to represent potential errors as

edges in a graph—the decoding graph—with the nodes

on either end representing the defects caused by the error

(with a virtual node added for errors that only lead to

a single defect). A matching decoder can thus be used,

which matches pairs of observed defects along minimum

[23–25] or near-minimum-weight [26] paths within the

graph and thereby approximately finds the most probable

errors that cause the observed defects. From the most prob-

able errors, one can deduce whether a logical correction is

necessary.

Typically, QEC experiments are described assuming

that ancilla qubits are reset following their measurement

in every QEC round. However, this is not the case in our

experiment. Nevertheless, without resetting qubits, suit-

able detectors can be chosen as di,r = ẑi,r ⊕ ẑi,r−2, where

ẑi,r ∈ {0, 1} is the (hardened) measurement outcome of

ancilla i in round r (for details, see Appendix C and Ref.

[27]). We note that in our case, the error-free detector

values are always 0. A key difference with the midcircuit-

reset case is that ancilla-qubit errors (that change the qubit

state) and measurement-classification errors (where the

inferred hardened measurement does not match the true

qubit state) have different defect signatures, apart from

in the final round (see Appendix C). The structure of the

decoding graph for the four-round experiment can be seen

in Fig. 3(a).

To construct the decoding graph, one can define the

probability of different error mechanisms and use a soft-

ware tool such as STIM [28]. As we do not have direct

knowledge of the noise, this graph may not accurately

capture the true device noise. Therefore, we use a pairwise-

correlation method [29–31] to construct the graph for the

MWPM decoder, whereby the decoding-graph edge proba-

bilities are inferred from the frequency of observed defects

in the experimental data. In particular, this approach

enables us to account for varying fidelities between dif-

ferent qubits. However, the pairwise-correlation method

is susceptible to numerical instabilities that we stabilize

using a “noise-floor graph” [31], as described in Appendix

C 1. This is a crucial advance over previous experimental

demonstrations of soft-information decoding [12], where a
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(a)

(b)

(c)

FIG. 3. (a) The decoding graph, showing different types of

error mechanisms. The labels indicate the ancilla qubits associ-

ated with the detectors in each column. The soft MWPM decoder

dynamically updates the weights of edges highlighted in green

and red. (b) The logical fidelity of the MWPM decoder as a

function of the number of rounds R, shown for each physical

computational state that makes up |0L〉 (transparent curves) and

averaged across all states (opaque curves). (c) The logical fidelity

at R = 8, shown for each initial computational state as indexed

in Fig. 1(b).

graph derived from STIM with uniform qubit fidelities has

been used.

To use soft information with a MWPM decoder, we

follow Ref. [8]. The edge corresponding to a measurement-

classification error is given a weight

w = − log

[

P′(z̃ | 1 − ẑ′)

P′(z̃ | ẑ′)

]

, (1)

where ẑ′ is the inferred state after measurement. This is

found by taking ẑ′ = 1 if P′(z̃ | 1) > P′(z̃ | 0) and 0 oth-

erwise. The PDFs P′(z̃ | j ′) are obtained by keeping only

the dominant Gaussian in the measurement PDFs—this is

to avoid including ancilla-qubit errors during measurement

in the classification-error edge. Therefore, to incorporate

soft information, we replace the weights calculated for the

classification-error edges using the pairwise-correlation

method with the weights from Eq. (1). This procedure is

appropriate in all rounds but the final round of ancilla- and

data-qubit measurements, where both qubit errors and clas-

sification errors have the same defect signature. In these

cases, we instead: (i) calculate the mean classification error

for each measurement by averaging the per-shot errors;

(ii) calculate the mean classification error for each edge

from those for each measurement; (iii) remove the mean

classification error from the edge probability; and (iv)

include the per-shot classification error calculated from the

soft readout information. Further information is given in

Appendix E 2.

V. NEURAL-NETWORK DECODING

Our second decoder—the NN decoder—can learn the

noise model during training without making assumptions

about it [9,10,32–34]. NNs have flexible inputs that can

include leakage or soft information, as well as nonuni-

form qubit fidelities. This again contrasts our work with

previous soft-information decoding experiments that have

used a simpler noise model with uniform qubit fidelities

[12]. Recent work [9,10] has shown that NNs can achieve

similar performance to computationally expensive (tensor

network) decoders when evaluated on experimental data

for the d = 3 and d = 5 surface code. Those networks have

been trained with simulated data, although the authors of

Ref. [10] have done a fine-tuning of their models with

approximately 2 × 104 experimental samples (while using

2 × 109 simulated samples for their main training). One

may expect that the noise in the training and evaluation

data should match to achieve the best performance.

We train a NN decoder on experimental data and study

the performance improvement when employing various

components of the readout information available from the

experiment. We use two architectures for our NN, corre-

sponding to the network from Varbanov et al. [9], and a

variant of the network that includes encoding layers for

handling different types of information [see Fig. 4(a)].

The inputs for our standard NN decoder are the observed

defects. For our soft NN decoder, the inputs are the defect

probabilities given the IQ values and the leakage flags,

one for each ancilla-qubit measurement. A leakage flag l

gives information about the qubit being in the computa-

tional space, i.e., l = 1 if ẑ = 2 and l = 0 otherwise, where

ẑ is the hardened value of z using the three-state classi-

fier. For the final round when all data qubits are measured,

we do not provide the decoder with any soft information

to ensure that we do not make the task for the decoder

deceptively simple [10]; this is a drawback of running the

decoder only on the logical |0L〉 state and not on randomly

chosen |0L〉 or |1L〉 (see the discussion in Appendix D 2).
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FIG. 4. (a) Our NN architecture, a variant of Ref. [9]. The

input 
x[r] for the soft NN contains the defect probability and

leakage flag data of round r, while for the (hard) NN it only con-

tains the defect data. The vector 
x[R + 1] contains the final-round

defects. The output p is the estimated probability that a logical

error has happened and paux is only used to help the training (see

Appendix D 1). (b) The logical fidelity of the NN decoder as a

function of the number of rounds R, shown for each physical

computational state that makes up |0L〉 (transparent curves) and

averaged across all states (opaque curves). (c) The logical fidelity

at R = 8, shown for each initial computational state as indexed in

Fig. 1(b). LSTM layer refers to a long short-term memory layer.

Due to the richer information of soft inputs, we can

use larger networks than in the (hard-)NN case without

encountering overfitting issues during training. The net-

work performance when given different amounts of soft

information is included in Appendix D 1, showing that the

larger the amount, the better is the logical performance. We

follow the same training as Ref. [9] but with some differ-

ent hyperparameters; and we use the ensembling technique

from machine learning to improve the network perfor-

mance without a time cost but at a computing-resource

cost [35].

VI. LOGICAL PERFORMANCE

The extracted logical fidelity as a function of R for

the MWPM and NN decoders is shown in Figs. 3 and 4,

respectively. The results are presented for the 16 physical

computational states (transparent lines) and for their aver-

age (opaque lines), approximating the logical performance

of the |0L〉 state. To find a logical error rate, ǫL, the decay

of logical fidelity is fitted using the model

F̃L(R) =
1

2

[

1 + (1 − 2ǫL)
R−R0

]

, (2)

where F̃L indicates the fitted fidelity to the measured FL

and R0 is a round offset parameter [13]. For both decoders,

including soft readout information enhances the logical

performance, resulting in the reduction of ǫL by 6.8% and

5.0% for MWPM and NN, respectively. We note that the

error bars are different in the two cases due to the differ-

ing ways of splitting the data set of approximately 9 × 104

samples per round and initial state. With the MWPM

decoder, we use half the data to perform the pairwise-

correlation method to obtain the decoding graph and half

for obtaining the logical error probability. We then swap

the data halves and average the logical fidelities, thereby

using every shot to obtain the overall logical fidelity. With

the NN decoder, 95% of samples are used for training and

validation and only 5% of samples are used to estimate

logical fidelities, leading to larger error bars.

VII. SUMMARY AND CONCLUSIONS

We have experimentally demonstrated the benefits of

using soft information in the decoding of a d = 3 bit-

flip surface code, utilizing 13 qubits. We have combined

soft-information decoding with techniques that learn and

account for variable qubit and gate fidelities, distinguish-

ing our work from previous experiments [12]. With soft

information, the NN decoder achieves the best extracted

logical error rate of 4.73%. It is crucial to note that as we do

not measure the X -basis stabilizers of the typical distance-

3 surface code, the extracted ǫL is likely underestimated

(compared with ǫL of 5.4% for the standard d = 3 surface

code by Ref. [3] without leakage postselection). However,

the nature of the decoding problem will be the same and

will benefit from the decoding optimizations explored in

this paper.

Despite the modest improvement in this work, simula-

tions [8,10] suggest further advantages of soft-information

decoding: improvement in the error correction threshold

and increased suppression of logical errors as the code

distance increases. Implementation of a leakage-aware

decoder [36] could also potentially enhance the logical per-

formance with MWPM but this has yet to be explored in

experiment. With the NN decoder, it is unclear if the defect

probabilities and leakage flags are the optimal way to

044031-5
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present the information to the network and this could be the

subject of further investigation. Finally, our experiments

have utilized readout durations that have been optimized

for measurement fidelity. Calibrating the measurement

duration for optimal logical performance [8] instead could

potentially lead to higher logical performance.

The source code of the NN decoder and the script to

replicate the results are available in Ref. [37] and Ref. [38],

respectively. The script to analyze the experimental data

can be found in Ref. [38].
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APPENDIX A: DEVICE OVERVIEW

Our 17-transmon device [Fig. 5(a)] consists of a two-

dimensional (2D) array of nine data qubits and eight

ancilla qubits, designed for the distance-3 rotated sur-

face code. The qubit transition frequencies are organized

into three frequency groups: high-frequency qubits (red),

midfrequency qubits (blue and green), and low-frequency

qubits (pink), as required for the pipelined QEC cycle

proposed in Ref. [43]. Each transmon has a microwave

drive line (orange) for single-qubit gates, a flux-control

line (yellow) for two-qubit gates, and a dedicated pair

of resonator modes (purple) distributed over three feed

lines (blue) for fast dispersive readout with Purcell filter-

ing [17,42]. Nearest-neighbor transmons are coupled via

dedicated coupling resonators (sky blue) [44]. Grounding

air bridges (light gray) are fabricated across the device to

interconnect the ground planes and to suppress unwanted

modes of propagation. These air bridges are also added

at the short-circuited end of each readout and Purcell res-

onator, allowing postfabrication frequency trimming [45].

After biasing all transmons to their flux sweet spot, the

measured qubit frequencies clearly exhibit three distinct

frequency groups, as depicted in Fig. 5(b). These values

are obtained from standard qubit spectroscopy. The aver-

age relaxation (T1) and dephasing (T2,echo) times of the

13 qubits used in the experiment are 23 µs and 20 µs,

respectively [Fig. 5(d)].

To counteract drift in optimal control parameters, we

automate recalibration using dependency graphs [46]. The

method, nicknamed graph-based tuneup (GBT) [47], is

based on Ref. [48]. Single-qubit gates are autonomously

calibrated with DRAG- (derivative removal by adia-

batic gate) type pulses to avoid phase error and to sup-

press leakage [49,50] and benchmarked using single-qubit

randomized-benchmarking protocols [51]. The average

error of the calibrated single-qubit gates [Fig. 5(c)] across

13 qubits reaches 0.1%, with a leakage rate of 10−4. All

single-qubit gates have 20-ns duration.

Two-qubit controlled-Z (CZ) gates are realized using

sudden net-zero flux pulses [52]. The QEC cycle in this

experiment requires 12 CZ gates executed in four steps,

each step performing three CZ gates in parallel. This intro-

duces new constraints compared to tuning an individual CZ

gates. For instance, parallel CZ gates must be temporally

aligned to avoid overlapping with unwanted interaction

zones on the way to, from, or at the intended avoided

crossings. Moreover, simultaneous operations in time (ver-

tical) and space (horizontal) may induce extra errors due

to various crosstalk effects, such as residual ZZ coupling,

microwave cross-driving, and flux crosstalk. To address

these nontrivial errors, we introduce two main calibration

strategies into a GBT procedure: vertical and horizontal

calibrations (VCs and HCs). These tune simultaneous CZ

gates in time and space as block units [53]. This approach

absorbs some of the flux and residual-ZZ crosstalk errors.

After calibration, GBT benchmarks the calibrated gates

with two-qubit interleaved randomized-benchmarking pro-

tocols with leakage modification [40,41]. The individual

benchmarking of the 12 CZ gates reveals an average error

of 1.6% with a 0.24% leakage. All CZ gates have 60-ns

duration.

Readout calibration is performed in three main steps,

realized manually and not with a GBT procedure. In the

first, readout spectroscopy is performed at fixed pulse

duration (200–300 ns) to identify the optimal frequency

maximizing the distance between the two complex trans-

mission vectors S
|0〉
21 and S

|1〉
21 in the IQ plane. The second
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FIG. 5. The device characteristics. (a) An optical image of the 17-transmon device, with added false color to emphasize different

circuit elements. The device is connected to a printed circuit board using aluminum wire bonds, visible at the edges of the image. (b)

The measured qubit transition frequencies, with all transmons biased to their flux sweet spot. X -basis ancilla qubits (light gray) are

not used in this experiment. (c) The cumulative distribution of error rates for single- and two-qubit gates, obtained by randomized-

benchmarking protocols with modifications to quantify leakage [40,41], and average readout-assignment fidelities, extracted from

single-shot readout histograms [42]. (d) The cumulative distribution of the measured qubit relaxation time T1 and the echo dephasing

time T2,echo. The dashed lines in (c) and (d) indicate the average over the 13 qubits used and the 12 two-qubit gates.

step involves a 2D optimization over the pulse frequency

and the amplitude. The goal is to determine readout-pulse

parameters that minimize a weighted combination of

readout-assignment error (εRO) and measurement quantum

nondemolition (QND) probabilities (PQND and PQNDπ ).

These probabilities are obtained using the method of Ref.

[54]. The final step verifies whether photons are fully

depleted from the resonator within the target total readout

time, 420 ns, using an ALLXY gate sequence between two

measurements [55], where an ALLXY sequence is a gate

consists of 21 sequences, each comprised of one pair of X

and Y pulses. By comparing the ALLXY pattern obtained

to the ideal staircase, we can determine whether the time

dedicated for photon depletion is sufficient to not affect

follow-up gate operations.

After calibrating optimal readout integration weights

[55], we proceed to benchmark various readout met-

rics such as εRO and standard readout QND (FQND)

using the measurement butterfly technique [56]. The

average εRO [Fig. 5(c)] is 1.2%, extracted from the

single-shot histograms. We also perform simultane-

ous multiplexed readout of all 13 qubits, constructing

assignment-probability and cross-fidelity matrices [17].

The average multiplexed readout error rate is 1.6%,

indicating that readout crosstalk is small. Moreover, the

average FQND for the four Z-basis ancillas is 95.3% con-

sidering a three-level transmon [56]. This also yields an

average leakage rate due to ancilla measurement of 0.14%,

predominantly from |1〉.

APPENDIX B: BENCHMARKING OF PARITY

CHECKS

With the individual building blocks calibrated, we pro-

ceed to calibrate the four Z-basis stabilizer measurements

as parallel block units using VC and HC strategies, as

discussed in Appendix A. The average probabilities of

correctly assigning the parity operator �iZi are measured

as a function of the input computational states of the

data-qubit register. The measured probabilities [Fig. 6(a),

solid blue bars] are compared with the ideal ones (black

wire frame) to obtain average parity-assignment fideli-

ties of 96.3%, 92.8%, 89.9%, and 92.3% for Z3, Z2, Z1,
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FIG. 6. Parity-check benchmarking. (a) The benchmarking of the assignment fidelity for four stabilizer measurements: ZD4
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. (b) The average defect rate as a function of the QEC rounds for each of the four Z-basis

stabilizers across the 16 input states.

and Z4, respectively. These results are obtained after mit-

igating residual excitation effects by postselection on a

premeasurement [56].

The defect rates (for the definition of a defect, see

Sec. III), reflect the incidence of physical qubit errors (bit-

flip and readout errors) detected throughout the rounds r,

where r ∈ {1, 2, . . . , R}. For each of the four Z-basis sta-

bilizers, the defect rate [Fig. 6(b)] is presented over 16

QEC rounds and averaged across the 16 physical compu-

tational input states. The sharp increase in the defect rate

between rounds r = 1 and r = 2 is due to the low initializa-

tion error rates and the detection of errors occurring during

the ancilla-qubit measurements in the first round. At the

boundary round r = 16, the defects are obtained using the

final data-qubit measurements, which, given the low read-

out error rates, lead to the observed decrease in the defect

rate. Over rounds, defect rates gradually build up, until lev-

eling at approximately 15%, 22%, 25%, and 25% for Z3,

Z2, Z1, and Z4, respectively. The build-up may be due to

leakage [3,5,31,56].

APPENDIX C: DECODING GRAPH

In this appendix, we describe in further detail the effect

of not using midcircuit resets on the decoding graph. Here,

we consider specifically Surface-13 but similar ideas apply

to the full surface code and other stabilizer codes.

As discussed in Sec. IV, in order to detect errors in stabi-

lizer codes, it is typical to define detectors, combinations of

binary-measurement outcomes that have deterministic val-

ues in the absence of errors. We refer to detectors the value

of which has flipped from the expected error-free value as

defects. A decoder takes observed defects in a particular

experiment and, using a model of the possible errors and

the defects they result in, predicts how the logical state

has been affected by the errors. It is desirable for errors

to result in a maximum of two defects, as this enables a

matching decoder to be used, which can efficiently find

the most probable [23–25] errors that cause the observed

defects.

In Surface-13, the stabilizers are, in the bulk, weight-4

Z operators. On the boundaries, the stabilizers are of lower

weight. In general, each data qubit is involved in two Z-

type stabilizers or one on the boundary. The experiment

proceeds by using ancilla qubits to measure the stabilizers

for some number of rounds, R, where si,r is the ith stabilizer

outcome in the rth round. An X error on a data qubit in

round r will change the value of the outcomes of the Z

stabilizers involving that data qubit from round r onward.

We define the detectors di,r to be the difference between

stabilizer measurements in adjacent rounds, so that

di,r = si,r ⊕ si,r−1. (C1)

We begin Surface-13 with initial data-qubit states that are

eigenstates of the Z-type stabilizers with eigenvalues +1;

therefore, we set si,0 = 0. At the end of the experiment,

the data qubits are measured in the Z basis; these mea-

surements can be used to construct si,R+1 outcomes for the

stabilizers.

With the definition in Eq. (C1), an X -data-qubit error

before a QEC round results in a maximum of two defects,

as desired. We note that, in general, there may be multiple
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errors that result in the same defect signature. The prob-

abilities of these errors are typically combined to give a

single edge weight.

We now consider the effect of ancilla-qubit and

measurement-classification errors. An ancilla-qubit error

in round r on the qubit used to measure the ith stabi-

lizer will change the stabilizer-measurement outcome in

the rth round, thus resulting in defects di,r and di,r+1. The

effect of classification errors depends on how the stabi-

lizer outcomes are obtained. If the ancilla qubits are reset

after measurement, si,r = ẑi,r, where ẑi,r is the hardened-

measurement outcome on the ith ancilla at round r, and

therefore a classification error in round r results in the same

defects as an ancilla-qubit error in round r. However, if the

ancilla qubits are not reset after measurement, as is the case

in this paper, si,r = ẑi,r ⊕ ẑi,r−1. Therefore, with respect to

measurements, the detectors are defined as

di,r = ẑi,r ⊕ ẑi,r−2, (C2)

for 2 ≤ r ≤ R. In this case, a classification error in mea-

surement ẑi,r causes defects di,r and di,r+2. In both cases,

a data-qubit measurement-classification error looks like a

data-qubit Pauli error between rounds R and R + 1. We

also define di,1 = ẑi,1.

In this error model, we assume that two independent

events are possible during measurement—an ancilla-qubit

error and a classification error. In practice, these are not

independent events, as both are affected by T1 processes.

However, should an error occur that causes the qubit to

decay from the |1〉 to the |0〉 state during measurement, it

can either be viewed as an ancilla-qubit error before mea-

surement (if the inferred hardened-measurement outcome

is 0) or an ancilla-qubit error after measurement (if the

inferred hardened-measurement outcome is 1). Therefore,

these coupled events can be viewed as a single ancilla-

qubit error. We note, however, that such qubit errors are

not symmetric and thus using a single edge weight is an

approximation.

We note that we have not discussed midround qubit

errors that result in so-called hook errors, as we have

focused on explaining the differences between the decod-

ing graphs with and without midcircuit reset. The hook

errors in the two cases will be identical.

1. Noise-floor graph

As discussed in the main text, the pairwise-correlation

method can be subject to numerical instabilities. We thus

use a “noise-floor graph” that has specific values for each

edge in the decoding graph. These instabilities can arise

due to the finite data and the approximation that there are

no error mechanisms resulting in more than two defects,

such as leakage. The impact is more pronounced at the

boundary of the code lattice where single defects occur

[57].

The lower-bound error parameters used to construct the

noise-floor decoding graph are given in Table I. The oper-

ation times are taken to be the same as the real device. We

note, however, that the other parameters are not the same

as those stated in Appendix A. This is because the param-

eters here set a lower bound on the error probabilities and

should only be used when the pairwise-correlation method

gives unfeasibly low values. While extensive exploration

of the parameters has not been undertaken, the ones stated

here have been found to give good performance and sev-

eral other options have not resulted in significant changes

to the results.

Each probability, p , is the probability of a depo-

larizing error after the specified operation. These are

defined so that, for single-qubit gates, resets, and mea-

surements, the probability of applying the Pauli error W is

given by

pW =
p

3
, (C3)

for W ∈ {X , Y, Z}. For two-qubit gates, the probability of

applying the Pauli VW is given by

pVW =
p

15
, (C4)

where V, W ∈ {I , X , Y, Z}, excluding V = W = I . Idle

noise is incorporated by Pauli twirling the amplitude

damping and dephasing channel to give, for an idling

duration t [58],

pX (t) = pY(t) =
1

4

(

1 − e−t/T1
)

, (C5)

pZ(t) =
1

2

(

1 − e−t/T2
)

−
1

4

(

1 − e−t/T1
)

. (C6)

We note that as T1 = T2 in our model, pX (t) = pY(t) =
pZ(t). The noise-floor graph is derived from the circuit

containing the appropriate parameters using STIM [28].

TABLE I. The lower-bound noise parameters used in the

experimental-graph derivation. These parameters are used to fix

the minimum values of each edge.

Parameter Value

Single-qubit gate-error probability 0.5 × 10−3

Two-qubit gate-error probability 5 × 10−3

Reset-error probability 0.0

Measurement qubit error probability 1 × 10−3

Measurement classification error probability 1 × 10−3

T1 30 µs

T2 30 µs

Single-qubit gate time 20 ns

Two-qubit gate time 60 ns

Measurement time 420 ns
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APPENDIX D: DETAILS OF THE

NEURAL-NETWORK DECODER

1. NN inputs, outputs, and decoding success

The inputs provided to the NN decoder consist of the

defects, the defect probabilities, and the leakage flags [see

Fig. 4(a)]. The only elements not described in the main text

are the defect probabilities. These are obtained following

Ref. [9] and using the two-state readout classifier from the

main text and Appendix E 1 a. First, we express the proba-

bility of the measured qubit “having been in the state” |j 〉
(j ∈ {0, 1}), given the IQ value z, as

P(j |z) =
P(z|j )P(j )

∑

i P(z|i)P(i)
, (D1)

where P(j ) is the probability that the qubit was in state

|j 〉. We define the incoming defects in the bulk as d̃i,r =
ki,r ⊕ ki,r−2, where ki,r is the state of the ancilla i before its

measurement in round r.

Although we do not have access to the incoming defects,

we can estimate the probability that the defect d̃i,r has

been triggered given zi,r and zi,r−2 (termed the defect

probability) by

P(d̃i,r = 1|zi,r, zi,r−2) = P(ki,r = 0|zi,r)P(ki,r−2 = 1|zi,r−2)

+ P(ki,r = 1|zi,r)P(ki,r−2 = 0|zi,r−2). (D2)

As we can incorrectly infer ki,r from zi,r, the defect

probabilities include assignment errors. Note that digitiz-

ing P(d̃i,r = 1|zi,r, zi,r−2) leads to the “standard” defects

defined in the main text [10]. The use of defect probabili-

ties allows us to infer the defect reliability, e.g., P(ki,r =
0|zi,r) ≈ P(ki,r = 1|zi,r) leads to P(di,r = 1|zi,r, zi,r−2) ≈
1/2, which is in-between 0 and 1 and thus uncertain.

We have used the incoming defects and not the “stan-

dard” defects for deriving the defect probabilities because

P(ẑ|z) is always 0 or 1, as ẑ is completely determined

by z. In that case, we would not have any soft informa-

tion and the defect probabilities would correspond to the

defects. Remember that we do not use the defect probabil-

ities of the final round, as explained in Appendix D 2, and

that we assume that P(0) = P(1) = 1/2 when calculating

P(di,r = 1|zi,r, zi,r−2).

For completeness, we study the performance of the NNs

given four combinations of inputs: (a) defects, (b) defects

and leakage flags, (c) defect probabilities, and (d) defect

probabilities and leakage flags. The results in Fig. 7 show

that the networks can process the richer inputs to improve

their performance. The reason for not giving the network

the soft-measurement outcomes z as input directly (but the

defect probabilities instead) is that we have found that the

NN decoder does not perform well on the soft measure-

ments [9]; effectively, the NN has to additionally learn the

defects, which is possible with larger NNs, as in Ref. [10].
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FIG. 7. The logical error rates of the NN decoders when given

different inputs: the label d corresponds to defects, l to leakage

flags, and the label p(d) corresponds to defect probabilities given

the soft information. “Best NN” (blue) and “Ensemble” (orange)

correspond to the architectures with the lowest logical error rate

for a single NN and for an ensemble of five NNs, respectively, as

described in Appendix D 3.

The NN gives two outputs, p and paux, which corre-

spond to the estimated probabilities that a logical flip has

occurred during the given sample. The output p has been

calculated using all the information given to the NN, while

paux does not use the final round data [see Fig. 4(a)]. We

train the NN based on its accuracy in both p and paux

because the latter helps the NN to not focus only on the

final round but decode based on the full QEC data [9,59].

Note that the outputs correspond to physical probabili-

ties (i.e., p , paux ∈ [0, 1]) due to using sigmoid activation

functions in the last layer of the NN architecture.

To determine whether or not the NN has decoded the

QEC data correctly, the output p is used as follows. If p ≥
1/2, we set the logical flip bit to b = 1; if p < 1/2, we set

the logical flip bit to b = 0. On the basis of the final data-

qubit measurements, we compute the (uncorrected) logical

ZL as a bit zout ∈ {0, 1}. We take the logical input state zin

(in our experiments, zin = 0 always, as we prepare |0L〉 in

all cases) and mark the run as successful when zin ⊕ zout ⊕
b = 0 and unsuccessful when zin ⊕ zout ⊕ b = 1.

2. Learning the final logical measurement

In machine learning, one needs to be careful about the

information given to the network. For example, the NN

could predict the logical bit-flip correction b without using

the defect information gathered over multiple rounds. In

particular, given that in our experiment we only start with

state |0L〉, the NN could just output the value of b such

that b ⊕ zout = 0. It can do this by learning zout and hence

the network should get no explicit information about zout.

While it is true that we do not directly provide the data-

qubit-measurement outcomes to the NN decoder, there still

might be some partial information provided by the defect
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FIG. 8. The logical performance of the NNs given the four input combinations and different network sizes. The NN inputs 
x[r] in

(a) are the defects, in (b) the defects and leakage flags, in (c) the defect probabilities, and in (d) the defect probabilities and the leakage

flags. The NN sizes are summarized in Table II.

probabilities or the leakage flags, e.g., when a transmon

in state |2〉 is more likely declared as a |1〉 than a |0〉 [for

transmon Z2, see Fig. 10]. Note that this issue does not

occur if one randomly trains and validates with either |0L〉
or |1L〉, since then the optimal b = zin ⊕ zout and zin is a

random bit unknown to the network.

We indeed observe an abnormally high performance for

a single network when using soft information in the final

round, with ǫL ∼ 4.2% when using defect probabilities and

ǫL ∼ 4.1% if we include the leakage flags too. Such an

increase suggests that the NN can partially infer zout and

thus “knows” how to set b. This phenomenon does not

occur when giving only the leakage flags of data-qubit

measurements, which instead leads to ǫL ∼ 4.9%. Nev-

ertheless, due to the reasons explained above, we have

decided to not include the leakage flags in the final round,

to be sure that we do not provide any information about

zout to the NN.

We note that Ref. [10] has also opted to just give the

defects in the final round, because of the possibility that

the NN decoder can infer the measured logical outcome

from the final-round soft information.

3. Ensembling

Ensembling is a machine-learning technique to improve

the network performance without costing more time, as

networks can be trained and evaluated in parallel [35]. It

consists of averaging the outputs, {pi}, of a set of NNs, to

obtain a single more accurate prediction, p̃ . One can think

that the improvement is due to “averaging out” the errors

in the models [35]. In Ref. [10], the authors trained 20

networks with different random seeds and averaged their

outputs with the geometric mean. In this work, the output

“average,” p̃ , is given by

log

(

1 − p̃

p̃

)

=
1

5

5
∑

i=1

log

(

1 − pi

pi

)

, (D3)

where the {pi} are the predictions of five individual NNs

of the logical flip probability (see Appendix D 1). This

expression follows the approach from the repeated qubit

readout with soft information [60], which is optimal if the

values are independently sampled from the same distribu-

tion. Once p̃ is determined, we threshold it to set the flip

bit b as described in Appendix D 1.

4. Network sizes, training hyperparameters, and data

set

Due to the different amounts of information in each

input, the NNs in Figs. 4 and 7 have different sizes to max-

imize their performance without encountering overfitting

issues. In Fig. 8, the size of the network is increased given

a set of inputs until overfitting degrades the performance

or there is no further improvement. The specific sizes and

hyperparameters of the NNs shown in the figures are sum-

marized in Table II. These hyperparameters are the same

as in Ref. [9] but with the following changes: (1) reduc-

ing the batch size to avoid overfitting, as the experimental

data set is smaller, and (2) decreasing the learning rate for

the large NNs. For comparison, the NN in Ref. [10] for a

d = 3 surface code uses 5.4 × 106 free parameters, a learn-

ing rate of 3.5 × 10−4, and a batch size of 256. The number

of free parameters in a NN is related to its capacity to learn

and generalize from data, the learning rate is related to

the step size at which NN parameters are optimized, and

the batch size is the number of training samples used in a

single iteration of gradient descent.

The splitting of the experimental data set into the three

sets of training, validation, and testing has been done as

follows. For each initial state and each number of rounds,

(1) randomly pick 5 × 103 samples from the given data and

store them in the testing data set, (2) randomly select 90%

of the remaining samples and store them in the training

data set, and (3) store the rest in the validation data set.

The reason for this choice is to ensure that the data sets are

not accidentally biased toward an initial state or number

of rounds. After the splitting, we have a training data set
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TABLE II. The NN sizes and training hyperparameters used in this work. ni refers to the number of layers in block i ∈
{Enc, LSTM, Eval} and di the dimension of these layers. If nEnc is not specified, the network does not have encoding layers. The

blocks are shown in Fig 4(a). The number of free parameters depends on the given input combination but the changes are of the order

of approximately 5000.

Label nEnc dEnc nLSTM dLSTM nEval dEval Number of free Batch Learning Dropout

parameters size rate rate (%)

Size 1 2 90 2 90 ∼115 000 64 5 × 10−4 20

Size 2 2 32 2 100 2 100 ∼160 000 64 2 × 10−4 20

Size 3 2 64 2 120 2 120 ∼250 000 64 2 × 10−4 22

Size 4 2 90 3 100 2 100 ∼285 000 64 2 × 10−4 22

Size 5 2 100 3 100 2 100 ∼290 000 64 2 × 10−4 20

consisting of 6.9 × 106 samples, a validation data set with

7.6 × 105, and a testing data set with 4 × 105. Note that

the NN has been trained and tested on the same number

of rounds because the experiment only goes until R = 16.

However, in longer-memory experiments, the NN should

be trained only up to a “low” number of rounds to avoid

long periods of training.

The training for each single NN has been carried out on

an NVIDIA Tesla V100S GPU and lasted around 10 h for

the smallest size and 23 h for the largest one when using

the training data set consisting of 6.9 × 106 samples with

7.6 × 105 samples for validation. The evaluation of the

network performance has been done on an Intel Core(TM)

i7-8650U CPU @ 1.90 GHz ×4. We estimate that it takes

approximately 127 µs per QEC cycle and approximately

1.77 ms for the final round when running a size-5 NN with

soft information (see Fig. 9). The same NN without soft

information takes approximately 124 µs per QEC cycle

and approximately 1.57 ms for the final round. The size-

2 NN used in the main text to decode data without soft

information takes approximately 82 µs per QEC cycle and

approximately 1.35 ms for the final round. For compari-

son, the NN in Ref. [10] for a d = 3 surface code takes

approximately 20 µs to decode a QEC round, but it has

been evaluated on a tensor processing unit (TPU).

APPENDIX E: SOFT-INFORMATION

PROCESSING

The processing of the soft information [i.e., measure-

ment edge weights in Eq. (1), the defect probabilities in

Eq. (D2), and leakage flags], all use the PDFs P(z | j ),

which can be found from experimental calibration. These

PDFs are obtained by fitting a readout model to the readout

calibration data, consisting of a set of IQ values for each

prepared state |j 〉. The performance of the soft decoders is

limited by the accuracy of the readout models used; thus in

this section we describe the models employed in this paper

and their underlying assumptions about the qubit readout

response.

1. Probability density function fits

Each of the 13 transmons in the device has a character-

istic measurement response in IQ space, requiring a unique

PDF to be fitted for each. In this section, we detail a heuris-

tic model used to classify qubit states (Appendix E 1 a)

and qutrit states (Appendix E 1 b), formulated as a lin-

ear combination of Gaussian distributions. We utilize this

Gaussian-mixture model instead of a physics-derived mea-

surement model such as the soft amplitude-damping model

derived in Ref. [8] or the Bayesian approach taken in Ref.

[61]. This is because we want to exclude the contribution

of ancilla-qubit errors that occur during measurement from

the classification-error probability. A Gaussian-mixture fit

allows us to classify states according to noisy experimental
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QEC round R
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10 000

15 000

R
u
n
ti

m
e,

∆
t
( μ

s)

∆t (μs) = 126.77R + 1770.61

R-squared coefficient = 0.9992

FIG. 9. The evaluation run time for the size-5 network with

batch size = 1. The line corresponds to a linear regression where

the R-squared coefficient shows that the fit is appropriate. The

inputs for the NN in this calculation are created at random (not

based on experimental data) because we are not interested in the

logical performance and the number of operations the NN needs

to perform only depends on the number of rounds. In particu-

lar, the number of operations in the LSTM and encoding layers

grows linearly with R but for the evaluation layers it is constant.

Therefore, we can associate the y intercept as the time required

for the evaluation layers and the slope as the time spent on the

encoding and LSTM layers. Each point is the average of 5 × 104

samples.
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data, while excluding components representing |1〉 → |0〉
decay from the measurement-error edge weights. It is also

easily extended to incorporate measurements with leakage

to the |2〉-state.

a. Two-state Gaussian-mixture model

For discrimination between |0〉 and |1〉, we can use pro-

jected coordinates z̃ as defined in the main text, where the

PDFs P(z̃ | j ) for j ∈ {0, 1} have the form

P(z̃ | j ) = (1 − rj )f (z̃; µ̃0, σ) + rj f (z̃; µ̃1, σ). (E1)

Here, f (z̃; µ̃i, σ) is a one-dimensional (1D) Gaussian dis-

tribution with mean µ̃j and standard deviation σ , and

rj ∈ [0, 1] is an amplitude parameter that determines which

normal distribution is dominant in the mixture. For {r0 =
0, r1 = 1}, the model represents a readout response with

a single dominant component (i.e., no state-preparation

errors), while {r0 > 0, r1 < 1} represents a measurement

response where, due to state-preparation errors, there are

two distinct components to the measurement response.

The Gaussian-mixture model allows us to discard state-

preparation errors from the P(z̃ | 0) by fitting the parame-

ters µ̃0, µ̃1 and σ for r0 from Eq. (E1) and then setting r0 =
0. This assumption holds on the condition that no |0〉 →
|1〉 processes are present over the course of the measure-

ment time—if significant amplitude damping occurs over

the course of the measurement, the PDF found using the

Gaussian method is inaccurate. When comparing experi-

mental results for logical fidelity with and without setting

r0 = 0 for the ground-state distribution P(z̃ | 0), we find

no statistically significant difference. We assume that the

absence of a fidelity improvement is due to the rarity of

|0〉 state-preparation errors, which are mitigated by her-

alded initialization. As mentioned in the main text, while

we include both Gaussians in the PDF in order to classify

the measurement, we use only the main peak in calculat-

ing the soft edge weights. This removes the component of

qubit error that occurs during measurement from the edge

associated with measurement-classification error.

b. Three-state classifier

The 1D projected model is unable to characterize leak-

age to |2〉, which has its own characteristic response in the

2D IQ space, shown in Fig. 10. To model this three-state

regime and discriminate leakage, we fit a mixture of 2D

Gaussians to normalized histograms of the calibration data,

giving PDFs P(z | j ) for z ∈ R
2, j ∈ {0, 1, 2} as follows:

P(z | j ) = Aj f (z; 
µ0, σ) + Bj f (z; 
µ1, σ) + Cj f (z; 
µ2, σ),

(E2)

where f (z; 
µj , σ) is the PDF of a 2D Gaussian distribution

with mean 
µj and covariance matrix σ 2I , and parameters

Aj , Bj , and Cj are to be fitted for each state |j 〉.

In Fig. 10, we observe that the |2〉 state has a mea-

surement response that is off the 
µ0 − 
µ1 axis, forming

a distinct constellation in the IQ space below the other

two measurement responses |0〉 and |1〉. The ground-state

response is centered around 
µ0, while the |1〉 response

is distributed between a dominant peak around 
µ1 and a

small number of data points closer to 
µ0, indicating |1〉 →
|0〉 decay. The response of the |2〉 state can be seen to decay

to both |0〉 and |1〉 states, most notably for transmon Z1,

where the effect can be clearly seen.

Given this simple model, the three-state classifier used

to set the leakage flags as input for the NN decoder works

as follows. Maximum-likelihood classification means that

given z, we should pick j = 0, 1, 2, which maximizes

P(j |z) in Eq. (D1). The denominator in Eq. (D1) can be

dropped, as it solely depends on z. For the numerator,

we need to know P(j ), which we assume to be indepen-

dent of j (which is not completely warranted, as j = 2 is

much less likely) and hence P(j |z) ∝ P(z | j ) with P(z |
j ) in Eq. (E2). These arguments identically apply to the

two-state classifier discussed in the main text.

2. Combining soft information with the

pairwise-correlation method in the final round

As discussed in the main text, we obtain the decoding-

graph edge weights from experimental data. These weights

will include some averaged probability of a classification

error that we wish to remove and replace with a soft-

information-based weight on a per-shot basis. In the bulk

of the experiment, this is straightforward—the weight of

the edge corresponding to a classification error can simply

be replaced with that calculated using the soft information,

following Eq. (1), as classification and qubit errors have

different defect signatures.

However, in the final round, both ancilla- and data-qubit

errors result in the same defects as classification errors.

Therefore, we expect the total (averaged across shots) edge

probability to be given by

p = q(1 − c) + c(1 − q), (E3)

where c is the averaged probability of any classification

error and q is the probability of qubit errors. The validity

of this assumption depends on the degree to which we have

made correct assumptions about the possible error chan-

nels, including that there is no correlated noise. In our case,

p is obtained by the pairwise-correlation method but it

could be obtained by other means. We note that, in general,

errors on multiple qubits may result in the same defects

and thus contribute to the same edge probability. In our

Surface-13 experiment, this only occurs for certain final-

round data-qubit measurements—the pairs D1 and D2, and

D8 and D9.
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FIG. 10. Calibration shots for experimental IQ voltages, shown for each ancilla prepared in |0〉, |1〉, and |2〉: (a) transmon Z3; (b)

transmon Z1; (c) transmon Z4; (d) transmon Z2. The cluster for |2〉 is off axis when compared to the clusters for |0〉 and |1〉 and its

separation from the two other clusters varies from transmon to transmon. State |0〉 has the cleanest response, as it does not decay to

any other state, while |1〉 and |2〉 decay partially to lower-energy states over the course of measurement.

We wish to retain the edge contributions due to the qubit

errors, q, and replace only the averaged classification con-

tribution, c, with the per-shot value. We thus have several

steps to calculate the soft-information-based weight for

final-round edges:

(i) For each measurement k, calculate the mean classi-

fication error, ck, by averaging the per-shot errors.

(ii) For each edge, calculate the total edge-classification

error, c, from the individual measurement-classification

errors, ck, through

c =
1

2

⎡

⎣1 −
∏

k

(1 − 2ck)

⎤

⎦ , (E4)

where the product is over all measurements the classifica-

tion errors of which result in the edge defects.

(iii) For each edge, remove the mean classification error

from the edge probability by rearranging Eq. (E3), to find

q =
p − c

1 − 2c
. (E5)

(iv) For each edge, include the per-shot classification

error calculated from the softreadout information by com-

bining it appropriately with q.

We now explain the above steps in more detail.

a. Step (i): Calculating the mean classification error

for each measurement

For each experiment shot s, we have a soft-measurement

outcome for each measurement k, given by zk
s , and an
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associated inferred state after measurement, ẑ′k
s . As dis-

cussed in the main text, in our case, this is found by tak-

ing ẑ′k = 1 if P′(zk | 1) > P′(zk | 0) and 0 otherwise. The

PDFs P′(zk | j ′k) are obtained by keeping only the dom-

inant Gaussian in the measurement-classification PDFs.

We can calculate the estimated averaged probability of a

classification error in measurement k, ck, via

ck =
1

N

N
∑

s=1

ck
s (E6)

=
1

N

N
∑

s=1

P(1 − ẑ′k
s )P′(zk

s | 1 − ẑ′k
s )

P(ẑ′k
s )P′(zk

s | ẑ′k
s ) + P(1 − ẑ′k

s )P′(zk
s | 1 − ẑ′k

s )
,

(E7)

where P(j ) is the overall probability, across all shots, that

the qubit is in state |j 〉; e.g., if ẑ′k
s = 0, then P(ẑ′k

s ) = P(0).

In this work, we take P(0) = P(1) = 1/2. Therefore, we

have

ck =
1

N

N
∑

s=1

P′(zk
s | 1 − ẑ′k

s )

P′(zk
s | ẑ′k

s ) + P′(zk
s | 1 − ẑ′k

s )
. (E8)

b. Step (ii): Calculating the mean classification error

for each edge

Using the estimated values for ck obtained with Eq. (E8),

we use Eq. (E4) to obtain the mean classification error,

c, for each edge. In the case in which an edge is only

due to a single measurement-classification error, we sim-

ply have c = ck, for the relevant measurement k. The only

other case of relevance for Surface-13 is where two clas-

sification errors contribute to an edge; in this case, c =
ck1(1 − ck2) + (1 − ck1)ck2 for the relevant measurements

k1 and k2.

c. Step (iii): Removing the mean classification error

from each edge probability

We now calculate q for each edge using Eq. (E5).

d. Step (iv): Including the per-shot classification error

We now wish to combine the per-shot soft information

with q in order to obtain the full edge weight. In doing

so, we mostly follow Ref. [8], with the difference that we

merge edges that result in the same defects into a single

edge. In everything that follows, we are considering a sin-

gle experiment shot and thus, to reduce notational clutter,

we drop the index s from above.

We begin by considering the full decoding problem

that we wish to solve. We have a set of possible errors

E and we consider a single error, ei, to consist of all

events that contribute to the same edge. This includes both

classification errors and other errors. We further have a set

of (labeled) soft-measurement outcomes, Z, which is the

union of all sets Zi, where Zi is the set of measurements the

incorrect classification of which leads to the same defect

combination as ei. We wish to find the combination of

errors D that explains the observed defects and maximizes

P(D | Z) =
P(D ∩ Z)

P(Z)
∝ P(D ∩ Z), (E9)

where D ∩ Z is the event that the combination of errors

D occurs and the soft-measurements outcomes Z are

obtained. We can ignore the denominator P(Z), as it is a

constant rescaling of all probabilities P(D | Z) and thus

does not need to be considered in order to find the most

likely error.

Assuming independence of events, we split P(D ∩ Z)

into individual terms for each edge, so that

P(D ∩ Z) =
∏

ei∈D

P(ei ∩ Zi)
∏

ei /∈D

P(ēi ∩ Zi). (E10)

Rearranging, we find

P(D ∩ Z) =
∏

ei∈E

P(ēi ∩ Zi)
∏

ei∈D

P(ei ∩ Zi)

P(ēi ∩ Zi)
(E11)

∝
∏

ei∈D

P(ei ∩ Zi)

P(ēi ∩ Zi)
, (E12)

where, again, we can drop the term that is common to all

error combinations. Maximizing P(D ∩ Z) is equivalent to

minimizing

− log[P(D ∩ Z)] = −
∑

ei∈D

log

[

P(ei ∩ Zi)

P(ēi ∩ Zi)

]

≡
∑

ei∈D

wi,

(E13)

where we have defined

wi = − log

[

P(ei ∩ Zi)

P(ēi ∩ Zi)

]

. (E14)

Let us now consider a particular error, ei, and its ni asso-

ciated soft measurements zk
i for k = 1, . . . , ni. We recall

that in the Surface-13 case, ni, which is the number of

classification errors that contribute to edge i, is a maxi-

mum of two, and we use this below. In order to calculate

wi, we split ei into two: ec
i , which consists of classifica-

tion errors only, and e
q
i , which consists of all other errors.

There are now two ways in which ei can occur: (i) e
q
i occurs

and ec
i does not occur (i.e., there are an even number of
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classification errors) or (ii) e
q
i does not occur and ec

i does occur (i.e., there are an odd number of classification errors).

Therefore,

P(ei ∩ Zi) = P(e
q
i )P(ēc

i ∩ Zi) + P(ē
q
i )P(ec

i ∩ Zi) = qP(ēc
i ∩ Zi) + (1 − q)P(ec

i ∩ Zi),

P(ēi ∩ Zi) = P(e
q
i )P(ec

i ∩ Zi) + P(ē
q
i )P(ēc

i ∩ Zi) = qP(ec
i ∩ Zi) + (1 − q)P(ēc

i ∩ Zi),

where we have defined P(e
q
i ) = q.

The probability of obtaining the observed soft-measurement outcomes and having an odd number of classification

errors is

P(ec
i ∩ Zi) =

{

P′(z1
i | 1 − ẑ′1

i ), ni = 1,

P′(z1
i | 1 − ẑ′1

i )P′(z2
i | ẑ′2

i ) + P′(z1
i | ẑ′1

i )P′(z2
i | 1 − ẑ′2

i ), ni = 2,
(E15)

and the probability of obtaining the observed soft-measurement outcomes and having an even number of classification

errors is

P(ēc
i ∩ Zi) =

{

P′(z1
i | ẑ′1

i ), ni = 1,

P′(z1
i | ẑ′1

i )P′(z2
i | ẑ′2

i ) + P′(z1
i | 1 − ẑ′1

i )P′(z2
i | 1 − ẑ′2

i ), ni = 2.
(E16)

These expressions can easily be extended to larger values of ni but we omit the general expressions here for brevity.

From these, we calculate the edge weight using Eq. (E14)

and find

wi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− log

(

L1
i + L

q
i

1 + L1
i L

q
i

)

, ni = 1,

− log

(

L1
i + L2

i + L
q
i + L1

i L2
i L

q
i

1 + L1
i L2

i + L1
i L

q
i + L2

i L
q
i

)

, ni = 2,

(E17)

where

L
q
i =

q

1 − q
, (E18)

Lk
i =

P′(zk
i | 1 − ẑ′k

i )

P′(zk
i | ẑ′k

i )
. (E19)

APPENDIX F: CALCULATION OF LOGICAL

ERROR RATE

To extract the logical error rate ǫL from experimental

data, we calculate the logical fidelity FL(R) for each round

R of the experiment and fit the data to a decay curve of the

form given in Eq. (2). The error in the logical fidelity is

given by σ 2
FL

= FL(1 − FL)/N , where N is the number of

samples for the given FL [10], which we propagate through

the fitting process to get estimates of uncertainty in ǫL and

the offset R0.

APPENDIX G: ADDITIONAL

LOGICAL-ERROR-RATE FIGURES

We show additional plots of the logical fidelity of

the soft and hard MWPM decoders for each round of

the experiment in Fig. 12. To illustrate the improvement

that soft information gives to logical fidelity, in Fig. 11

we show the absolute difference in logical fidelity FL(R)

between the soft and hard MWPM decoders for each round
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FIG. 11. Absolute difference in logical fidelity FL as a function

of rounds, shown for each individual logical state preparation

|0L〉 (transparent) and on average across 16 states (opaque) for

soft versus hard MWPM.

044031-16



REDUCING LOGICAL ERROR RATE... PHYS. REV. APPLIED 22, 044031 (2024)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical computational state

0.96

0.98

1.00
L
og

ic
al

fi
d
el

it
y

(a)
Hard Information Soft Information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical computational state

0.91

0.93

0.95

0.97

L
og

ic
al

fi
d
el

it
y

(b)
Hard Information Soft Information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical computational state

0.83

0.85

0.87

0.89

0.91

L
og

ic
al

fi
d
el

it
y

(c)
Hard Information Soft Information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical computational state

0.69

0.71

0.73

0.75

0.77

0.79

L
og

ic
al

fi
d
el

it
y

(d)
Hard Information Soft Information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Physical computational state

0.56

0.58

0.60

0.62

0.64

L
og

ic
al

fi
d
el

it
y

(e)
Hard Information Soft Information

FIG. 12. The logical fidelity using a soft versus a hard MWPM

decoder for each round of the experiment: (a) R = 1; (b) R = 2;

(c) R = 4; (d) R = 8; (e) R = 16.

of the experiment. The average performance is shown

in solid lines and the fidelity for each individual state

preparation |0L〉 is shown in the transparent lines.
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