
This is a repository copy of IsaVODEs: interactive verification of cyber-physical systems at
scale.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219535/

Version: Published Version

Article:

Huerta y Munive, J.J. orcid.org/0000-0003-3279-3685, Foster, S. orcid.org/0000-0002-
9889-9514, Gleirscher, M. orcid.org/0000-0002-9445-6863 et al. (3 more authors) (2024)
IsaVODEs: interactive verification of cyber-physical systems at scale. Journal of
Automated Reasoning, 68 (4). 21. ISSN 0168-7433

https://doi.org/10.1007/s10817-024-09709-2

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Journal of Automated Reasoning (2024) 68:21

https://doi.org/10.1007/s10817-024-09709-2

IsaVODEs: Interactive Verification of Cyber-Physical Systems
at Scale

Jonathan Julián Huerta y Munive1 · Simon Foster2 ·Mario Gleirscher3 ·

Georg Struth4 · Christian Pardillo Laursen2 · Thomas Hickman2

Received: 17 January 2024 / Accepted: 29 July 2024
© The Author(s) 2024

Abstract

We formally introduce IsaVODEs (Isabelle verification with Ordinary Differential Equa-
tions), an open, compositional and extensible framework for the verification of cyber-physical
systems. We extend a previous semantic approach with methods and techniques that increase
its expressivity, proof automation, and scalability to the level of state-of-the-art deductive
verification tools. Our contributions include a user-friendly specification language, a flexi-
ble hybrid store model, including vectors and matrices, and separation-logic-style rules for
local reasoning with hybrid stores using a novel form of differentiation called framed Fréchet
derivatives. The formalisation of correctness specifications with forward predicate transform-
ers, the certification of flows as unique solutions to systems of ordinary differential equations,
and invariant reasoning for such systems also contribute to the scalability and usability of our
framework. In combination, these features make our framework flexible and adaptable to sev-
eral verification workflows. A suite of examples and hybrid systems verification benchmarks
validate our framework relative to other state-of-the-art approaches.

B Jonathan Julián Huerta y Munive
huertjon@cvut.cz

Simon Foster
simon.foster@york.ac.uk

Mario Gleirscher
mario.gleirscher@uni-bremen.de

Georg Struth
g.struth@sheffield.ac.uk

Christian Pardillo Laursen
christian.laursen@york.ac.uk

Thomas Hickman
Thomas.Hickman42@gmail.com

1 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague,
Jugoslávských partyzánů 1580/3, 160 00 Prague, Czechia

2 Computer Science, University of York, Deramore Lane, York YO10 5GH, UK

3 Mathematics & Computer Science, University of Bremen, Bibliothekstraße 5, 28359 Bremen,
Germany

4 Regent Court, 211 Portobello, Sheffield S1 4DP, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-024-09709-2&domain=pdf
http://orcid.org/0000-0003-3279-3685
http://orcid.org/0000-0002-9889-9514
http://orcid.org/0000-0002-9445-6863
http://orcid.org/0000-0001-9466-7815
http://orcid.org/0000-0001-7838-2764
https://orcid.org/0000-0001-7216-1696

 21 Page 2 of 50 J. J. H. y Munive et al.

Keywords Cyber-physical systems · Hybrid systems · Program correctness and
verification · Interactive theorem proving · Predicate transformers · Lenses

1 Introduction

Cyber-physical systems (CPSs) are computerised systems whose software—the “cyber”
part—interacts with their physical environment. The software is usually given by a variable-
updating, potentially non-deterministic program, while the environment can be modelled by
a system of ordinary differential equations (ODEs). The interaction of CPSs with humans,
for example through robotic manipulators, makes them invariably safety-critical and, hence,
their design verification is desirable.

Yet, CPS verification is challenging because of the complex interactions between the
software, the hardware, and the physical environment. Verification is generally intractable,
and thus requires abstractions. A pioneering deductive verification approach based on sym-
bolic logics, which support the encoding of solutions and invariants of ODEs, has been
implemented in the KeYmaera X tool (KYX) [28]. CPSs are modelled via hybrid programs
and their behaviour is verified using differential dynamic logic (dL) that extends standard
dynamic logic by domain-specific inference rules. Numerous case studies and competitions
support the applicability of this approach [38, 43, 47, 77].

Alternatively, general-purpose interactive theorem provers (ITPs), like Coq, Lean or
Isabelle, have more recently been used for building CPS verification components [20, 49,
50, 78]. Isabelle, in particular, provides extensive libraries for analysis and ODEs for this
purpose [32, 36].

ITP-based approaches offer compelling advantages. Their universality, based on typed
higher-order logics, makes them expressive for formalising the mathematical components
needed. Their openness allows large user communities to contribute domain-specific libraries
and verification tools in incremental and compositional ways. Their trustworthiness allows
such components to be built as conservative extensions over small kernels that have passed
the test of time. Prime examples for these features are Isabelle’s Archive of Formal Proofs
and Lean’s Mathematical Library.1

We have previously introduced a semantic framework as a proof of concept that
dL-inspired verification of cyber-physical systems can be achieved in general-purpose
provers [20, 49, 50] with little formalisation effort relative to extant mathematical and verifi-
cation components. It simplifies and streamlines the dL semantics and proof infrastructure by
simply adding a hybrid store model to algebraic or categorical predicate transformer seman-
tics and their specialisations to Hoare logics and refinement calculi [7, 30]. The resulting
prototypical verification tool for hybrid systems integrates the Isabelle components for anal-
ysis and ODEs mentioned [32, 36], using a shallow embedding, which is agnostic and easily
adaptable to syntactic user preferences.

Yet, it remains to transform this prototype into a scalable verification tool for cyber-
physical systems that combines user-friendly specification features with increased proof
automation for reasoning with the dynamical systems involved.

Contributions In this article, we evolve our previous prototype [20, 50] into an Isabelle-based
verification framework called IsaVODEs (Isabelle Verification with Ordinary Differential
Equations). IsaVODEs provides a textual language for modelling CPSs, constructed as a

1 Isabelle’s Archive of Formal Proofs at https://www.isa-afp.org/statistics/. Lean’s Mathematical Library at
https://leanprover-community.github.io/mathlib_stats.html.

123

https://www.isa-afp.org/statistics/
https://leanprover-community.github.io/mathlib_stats.html

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 3 of 50 21

shallow embedding in Isabelle. This language is based on the previously introduced state-
and predicate-transformer semantics for hybrid programs [50] and on a flexible lens-based
hybrid store model [21, 25]. The semantics supports reasoning in the style of dynamic logic,
Hoare logic, or refinement calculi, with modalities for specifying both safety and reachabil-
ity properties. The store model allows software models to benefit from the full generality
of Isabelle’s type system, including continuous structures like vectors and matrices, and
discrete structures like algebraic data types. Our lens-based approach also facilitates local
reasoning à la separation logic, where a verification task can be decomposed according to
the dynamic resources a program module uses. This integration makes our language scale
to systems that include both realistic non-linear dynamics and complex control structures.
We harness Isabelle’s syntax translation mechanisms to provide a user-friendly front-end for
the language, including declarative context, program notation, and operators for arithmetic,
vectors, and matrices. Our technical solution is extensible and inspired by languages like
Modelica, Mathematica or MATLAB.

Verification of cyber-physical systems in IsaVODEs is supported by a substantial library
of domain-specific deduction rules that are correct by construction within Isabelle. These
can be used in addition to the standard rules for predicate transformers or Hoare logic. For
reasoning about ODEs, we support two workflows: the first supplies solutions via flows
for ODEs, while the second is based on reasoning with invariant sets of ODEs and thus
avoids the need for solutions [71]. To enhance the first workflow, we integrate two Computer
Algebra Systems (CASs), Mathematica and SageMath, into Isabelle. These may supply
flows for Lipschitz-continuous ODEs in a way analogous to Isabelle’s Sledgehammer. For
the second workflow, we provide a dL-style differential ghost rule and Darboux rules that
enhance IsaVODEs’ invariant reasoning capabilities for continuous dynamics where explicit
solutions may not exist.

Several theoretical contributions transcend the engineering aspects of our framework. We
provide novel laws for local reasoning with hybrid stores, which allow us to infer the frame
of a program (i.e. the mutable variables), and use a frame rule to prove invariants with respect
to variables outside the frame. This is complemented by a novel form of differentiation called
“framed Fréchet derivatives”, which allows us to differentiate with respect to a strict subset
of the store variables, particularly ignoring any discrete variables. When variables are outside
the frame of a system of ODEs, those variables are unchanged during a continuous evolution.
Local reasoning further enhances the scalability of our tool by allowing a verification task to
be decomposed into modules with their own local pre- and postconditions.

We also supply several proof methods to support automated proof and verification con-
dition generation (VCG), including various Hoare-logic and weakest precondition laws, the
application of differential induction, and certification of ODE solutions. Care is taken to
ensure that the resulting proof obligations are presented in a way that preserves abstraction,
and elides irrelevant details of the Isabelle mechanisation, to support the user. Harnessing
Isabelle’s Eisbach tool [44], we also employ various high-level search-based proof methods,
which exhaustively apply the proof rules to compute a complete set of VCs. The VCs can
finally be tackled in the usual way using tools like auto and Sledgehammer.

To evidence the scalability and automation of our framework, we have evaluated it on
a large set of hybrid verification benchmarks [45], and many non-trivial examples. Our
enhancements lead at least to the same performance in essential verification tasks as that
of other state-of-the-art provers [47]. Initial case studies suggest a simplification of user

123

 21 Page 4 of 50 J. J. H. y Munive et al.

interaction. Our new components can be found online,2 across the text. Our contributions are
highlighted through examples, while additional contributions are noted throughout the text.

This article is a substantial extension of a previous conference paper at (FM2021) [21].
Additional contributions include generalisations of the laws for frames (Sect. 5.1), differ-
ential ghosts, and Darboux rules (Sect. 5.4); proof methods for certification of continuity,
Lipschitz continuity, and uniqueness of solutions (Sect. 6.2); extensions to our previous proof
methods (Sect. 6); the CAS integrations (Sect. 6.5); a more substantial evaluation (Sect. 7);
and several additional examples (Sects. 2, 8). As a result of these enhancements, IsaVODEs
has become much more powerful and user friendly.

Overview We begin our paper by demonstrating the usage of our framework with a small case
study (Sect. 2). We then expound the foundations of our formalisation: dynamical systems
(Sect. 3.1), the state-transformer hybrid program model (Sect. 3.2), the basics of the store
model (Sect. 3.3), the specification of continuous evolutions (Sect. 3.4), and finally VCG
through our framework’s algebraic foundations (Sect. 3.5) via predicate transformers. This
includes safety, reachability and termination (Sect. 3.5.3). Next, in Sect. 4, we introduce our
framework’s hybrid modelling language. We supply commands for generating hybrid stores,
with variables, constants, and foundational properties (Sect. 4.1), and user-friendly notation
for expressions (Sect. 4.3), matrices, and vectors (Sect. 4.4). The notation is automatically
processed via rewriting rules supplied to Isabelle’s simplifier, hiding implementation details.

In Sect. 5, we present laws for local reasoning about frames (Sect. 5.1), the seamless
integration of framed ODEs into our hybrid programs (Sect. 5.2), and automatic certification
of ODE invariants through framed Fréchet derivatives (Sect. 5.3). These also serve to supply
new dL-style ghost and Darboux rules that enhance IsaVODEs’ invariant reasoning for the
second workflow (Sect. 5.4). We contribute increased IsaVODEs proof-capabilities for the
verification process. We formalise theorems necessary for increased automation on the first
workflow, like the fact that differentiable functions are Lipschitz-continuous (Sect. 6.2) or the
first and second derivative test laws (Sect. 6.7). We provide methods to automate certification
of differentiation (Sect. 6.1), uniqueness of solutions (Sect. 6.3), invariants for ODEs (Sect.
6.6), and VCG (Sect. 6.4). Additional automation is provided through the integration of
Mathematica and SageMath (Sect. 6.5). We then bring all of the results together for the
evaluation (Sect. 7) using benchmarks and examples (Sect. 8). In the remaining sections we
review related work (Sect. 9), provide concluding statements, and discuss future research
avenues (Sect. 10).

2 Motivating Case Study: Flight Dynamics

In this section, we motivate and demonstrate our framework’s usage with a worked example:
an aircraft collision avoidance scenario that was first presented by Mitsch et. al. [46]. It
describes an aircraft trying to avoid a collision with a nearby intruding aircraft travelling at
the same altitude. We can model this intruding aircraft by considering its coordinates x and
y, and angle ϑ , in the reference frame of our own ship. The intruding plane has fixed velocity
vi > 0, and our plane has fixed velocity vo > 0 and variable angular velocity ω. This is
illustrated in Fig. 1a and b.

2 See https://github.com/isabelle-utp/Hybrid-Verification also by clicking our icons .

123

https://github.com/isabelle-utp/Hybrid-Verification

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 5 of 50 21

Fig. 1 Diagrams illustrating the flight dynamics example

With our tool, we can model this using a dataspace command (see Sect. 4.1), as shown
below:

dataspace planar_flight =

constants

vo :: real (* own_velocity *)

vi :: real (* intruder velocity *)

assumes

vo_pos: "vo > 0" and

vi_pos: "vi > 0"

variables (* Coordinates in reference frame of own ship *)

x :: real (* Intruder x *)

y :: real (* Intruder y *)

θ :: real (* Intruder angle *)

ω :: real (* Angular velocity *)

This command allows us to define our constants, any assumptions about the verification
problem, and the system’s variables. In this case, we postulate two constants vo and vi , both
of type real, for the velocity of the aircraft and intruder, respectively. Here, real is the type
of precise mathematical real numbers, as opposed to floating points or rationals.

As per the problem statement, we assume that both of these constants are strictly positive.
This is specified by the assumptions called vo_pos and vi _pos, respectively, which can be
used as hypotheses in proofs. We supply the variables of this system, which give the relative
position of the intruder (x and y), its orientation θ , and its angular velocity ω.

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7981dd8beae46d5220b30d5e59a9d5a62ce353f0/Hybrid_Programs/Verification_Examples/HS_Lens_Examples.thy#L754

 21 Page 6 of 50 J. J. H. y Munive et al.

We next specify the dynamics that model the physical system by defining a constant called
plant. The system of ODEs is non-linear and uses trigonometric functions:

definition "plant ≡ {x� = vi * cos θ - vo + ω * y,

y� = vi * sin θ - ω * x,

θ� = -ω}"

The ODEs can be specified in a user-friendly manner, as physicists and engineers would
informally state them, in terms of the constants and variables of the system x, y, and ϕ.

Next, we define a simple controller to avoid collisions, as explained below:

abbreviation "I ≡ (vi * sin θ * x - (vi * cos θ - vo) * y

> vo + vi)
e"

abbreviation "J ≡ (vi * ω * sin θ * x - vi * ω * cos θ * y

+ vo * vi * cos θ

> vo * vi + vi * ω)e"

definition "ctrl ≡ (ω ::= 0; ¿I?) ⊓ (ω ::= 1; ¿J?)"

This is based on two invariants, I and J , for two different scenarios. These are properties that
remain true after the unfolding of each scenario. The invariant I holds when going straight
is safe, while J holds when an evasion manoeuvre is allowed. Our controller selects whether
to set our aircraft’s angular velocity to 0 or 1 depending on which invariant holds (I and J

respectively). The evasive manoeuvres that occur when the angular velocity is set to 1 are
illustrated in Fig. 1c.

Finally, our model follows the usual structure of an iteration (∗) of control choices (ctrl)
followed by a nondeterministic evolution of the system dynamics (plant):

definition "flight ≡ (ctrl; plant)∗"

The behaviour of the system is characterised by all states reachable by executing the controller
followed by the plant a finite number of times. Our contributions in Sects. 4 and 5 support
the smooth declaration of these definitions.

Next, we show how we can formally verify the collision avoidance of this system. We do
this by specifying a Hoare triple within an Isabelle lemma:

lemma flight_safe: "{x2 + y2 > 0} flight {x2 + y2 > 0}"
proof -

have ctrl_post: "{x2 + y2 > 0} ctrl {(ω = 0 ∧ @I) ∨ (ω = 1 ∧ @J)}"
unfolding ctrl_def by wlp_full

have plant_safe_I: "{ω = 0 ∧ @I} plant {x2 + y2 > 0}"
unfolding plant_def apply (dInv "($ω = 0 ∧ @I)e", dWeaken)

using vo_pos vi_pos sum_squares_gt_zero_iff by fastforce

have plant_safe_J: "{ω = 1 ∧ @J} plant {x2 + y2 > 0}"
unfolding plant_def apply (dInv "(ω=1 ∧ @J)e", dWeaken)

by (smt (z3) cos_le_one mult_if_delta mult_le_cancel_iff2

mult_left_le sum_squares_gt_zero_iff vi_pos vo_pos)

show ?thesis

unfolding flight_def

apply (intro hoare_kstar_inv hoare_kcomp[OF ctrl_post])

by (rule hoare_disj_split[OF plant_safe_I plant_safe_J])

qed

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7981dd8beae46d5220b30d5e59a9d5a62ce353f0/Hybrid_Programs/Verification_Examples/HS_Lens_Examples.thy#L786

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 7 of 50 21

We formulate collision avoidance using x2 + y2 > 0 as the invariant in the Hoare triple.
A collision occurs when x2 + y2 = 0, as illustrated in figure 1d. We use Isabelle’s Isar
scripting language to break down the verification into several intermediate properties via the
Isar command “have”, which takes a label followed by a property specification.

We first calculate the postconditions that arise from running the controller (ctrl) by
using our tactic wlp_full (see Sect. 6). This gives us two possible execution branches—one
where I ∧ω = 0 holds, and one where J ∧ω = 1 holds. We give this first property the name
ctrl_post.

The postconditions provide two possible initial states for the plant, which we consider
using the properties plant_safe_I and plant_safe_J. We show that both preconditions
guarantee the problem’s postcondition x2 + y2 > 0 by applying differential induction,
a technique that proves an invariant of a system of ODEs without computing a solution
(see Sect. 5.3). In each case, we use our Eisbach-designed method dInv, which takes as a
parameter the invariant we wish to prove. The invariant is simply the precondition of each
Hoare triple. However, we then need to prove that this invariant implies the postcondition,
which is done using a further method called dWeaken. The remaining proof obligations can
be solved using the Sledgehammer tool, which calls external automated theorem provers
to find a solution and reconstructs it using the names of previously proven theorems in
Isabelle’s libraries. In particular, the property plant_safe_J is discharged with a call to
Sledgehammer, which uses trigonometric identities formalised in HOL-Analysis. We display
the proof state resulting from applying differential induction below:

In the case that Sledgehammer is unable to find a proof, this proof obligation is quite
readable, and so a manual proof or refutation could be given (see Sect. 8).

Finally, we put everything together to show that the whole system is safe, using the
Isar command show, which is used to conclude proofs and restate the overall goal of the
lemma (?thesis). The proof uses a couple of high-level Hoare logic laws, and the properties
that were proven to complete the proof. This final step can be completely automated using
Isabelle’s classical reasoner, but we leave the details for the purpose of demonstration.

It is also possible to provide a proof of this verification problem using the aforementioned
first workflow. Namely, users can provide the solutions to the system of ODEs plant as we
do for other problems throughout the article (see Sects. 5.2, 8). This completes our overview
of our tool and its capabilities. In the remainder of the paper, we expound the technical
foundations of the tool, and our key results.

3 Semantics for Hybrid Systems Verification

We start the section by recapitulating basic concepts from the theory of dynamical systems.
We use these notions to describe our approach [21, 50] to hybrid systems verification in
general-purpose proof assistants via predicate transformers. Specifically, we present hybrid
programs and their state transformer semantics. We then introduce our store model and
provide intuitions for deriving state transformers for program assignments and ODEs relative

123

 21 Page 8 of 50 J. J. H. y Munive et al.

to this model. We extend our approach to a predicate transformer semantics to derive laws
for verification condition generation (VCG) [7, 50]. That is, we present the forward box
predicate transformer and use it to derive the rules of Hoare logic. Finally, we introduce the
forward diamond predicate transformer which models reachability and progress properties
of hybrid systems. Our formalisation of these concepts as a shallow embedding in Isabelle
maximises the availability of the prover’s proof automation in VCG.

3.1 Dynamical Systems

In this section, we consider two ways to specify continuous dynamical systems [71]: explicitly
via flows and implicitly via systems of ordinary differential equations (ODEs). Flows are
functions ϕ : T → C → C, where T is a non-discrete submonoid of the real numbers R

representing time. Similarly, C is a set with some topological structure like a vector space or
a metric space. We emphasise this intuition using an overhead arrow for elements �c ∈ C and
refer to C as a continuous state space. By definition, flows are continuously differentiable
(C1) functions and monoid actions: they satisfy the laws

ϕ(t1 + t2) = ϕ t1 ◦ ϕ t2 and ϕ 0 = idC .

Given a state �c ∈ C, the trajectory ϕ�c : T → C, such that ϕ�c t = ϕ t �c, is a curve modelling
the continuous dynamical system’s evolution in time and passing through �c. The orbit map

γ ϕ : C → P C, such that γ ϕ �c = P ϕ�c T , gives the graph of this curve for �c, where P

denotes both the powerset operation and the direct image operator.
Systems of ODEs are related to flows through their solutions. Formally, systems of ODEs

are specified by vector fields f : T → C → C, functions assigning vectors to points in
space-time. A solution X to the system of ODEs specified by f is then a C1-function

X : T → C such that X ′ t = f t (X t),

for all t in some interval U ⊆ T . This solution also solves the associated initial value problem

(IVP) given by (t0, �c) (denoted by X ∈ ivp-sols U f t0 �c) if it satisfies

X t0 = �c with t0 ∈ U .

The existence of solutions to IVPs is guaranteed for continuous vector fields by the Peano
theorem, albeit on an interval U �c depending on the initial condition (t0, �c). Similarly, the
Picard–Lindelöf theorem states that all solutions to the IVP X ′ t = f t (X t) with X t0 = �c
coincide in some interval U �c ⊆ T (around t0) if f is Lipschitz continuous on T . In other
words, it states that there is a unique solution to the IVP on U �c. Thanks to this, when f is
Lipschitz continuous on T , t0 = 0, and U �c = T for all �c ∈ C, the solutions to the associated
IVPs are exactly a flow’s trajectories ϕ�c, that is

ϕ′�c t = f t (ϕ�c t) and ϕ�c 0 = �c.
Therefore, the flow ϕ is the function mapping to each �c ∈ C the unique ϕ�c such that ϕ�c ∈
ivp-sols T f 0 �c.

Example 1 We illustrate the above properties about flows and ODEs with the equation

y′ t = a · y t + b,

where a
= 0 and t ∈ R. This is an important ODE modelling for instance idealised bacterial
growth [69], radioactive decay [74] or concentration of glucose in the blood (without the

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 9 of 50 21

intervention of insulin) [2]. First, given that differentiability implies Lipschitz continuity [71],
we can verify that this equation has unique solutions (by the Picard–Lindelöf theorem) simply
by noticing that f t = a · y t + b is differentiable with derivative f ′ t = a · y′ t . The solution
to the associated IVP with initial condition y 0 = c is

ϕc t = b

a
· ea·t + c · ea·t − b

a
.

Indeed,

ϕ′c t =
(

b

a
· ea·t + c · ea·t − b

a

)′

= b

a
· a · ea·t + c · a · ea·t

= a ·
(

b

a
· ea·t + c · ea·t − b

a

)

+ b

= a · ϕc t + b.

It is also easy to check that ϕc 0 = c. Hence, the mapping ϕ : R → R → R, such that
ϕ t c = ϕc t , is the unique flow associated to the ODE y′ t = a · y t + b. Indeed, for a fixed
τ ∈ R, the function g : R → R such that g t = ϕ (t + τ) c = ϕc (t + τ) satisfies

g 0 = ϕc τ and also g′ t = ϕ′c(t + τ) = a · ϕc (t + τ)+ b = a · (g t)+ b.

However, by uniqueness, the only function satisfying these two equations is ϕϕc τ . Hence
g t = ϕϕc τ t and the monoid law holds: ϕ (t + τ) c = ϕ t (ϕ τ c). Thus, the function ϕ

mapping points c to IVP-solutions ϕc of the ODE y′ t = a · y t + b satisfies the monoid
action laws, and is therefore, a flow. ⊓⊔

3.2 State Transformer Semantics for Hybrid Programs

Having introduced some basic concepts from the theory of dynamical systems, we present
our hybrid systems model. We represent these via hybrid programs which are traditionally
defined syntactically [31, 61]. Yet, our approach is purely semantic and we merely provide
the recursive definition below as a guide to what our semantics should model:

α ::= x := e | x ′ = f & G | ¿P? | α ; α | α ⊓ α | α∗.
Typically, x denotes variables; e and f are terms, and G and P are assertions. In dynamic
logic [31], the statement x := e represents an assignment of variable x to expression e, ¿P?
models testing whether P holds, while α;β, α⊓β and α∗ are the sequential composition, non-

deterministic choice, and finite iteration of programs α and β. Well-known while-programs
emerge via the equations

if P then α else β ≡ (¿P? ; α) ⊓ (¿¬P? ; β) and

while P do α ≡ (¿P? ; α)∗ ; ¿¬P?

Beyond these, differential dynamic logic (dL) [61] uses evolution commands x ′ = f & G

that represent systems of ODEs with boundary conditions or guards G. A guard G delimits
the solutions’ range to the region described by G.

We use nondeterministic state transformers α : S → P S as our semantic representation
for hybrid programs. Thus, our “hybrid programs” are really arrows in the Kleisli category of

123

 21 Page 10 of 50 J. J. H. y Munive et al.

the powerset monad. Observe that a subset of these arrows also model “assertions”, namely
the subidentities of the monadic unit ηS , such that ηS s = {s} for all s ∈ S. That is, the
functions mapping each state s either to {s} or to ∅ model assertions where P s = {s}
represents that P holds for s, and P s = ∅ that P does not hold for s. Henceforth, we abuse
notation and identify predicates P : S → B (or P ∈ B

S), sets (P ∈ P S), and subidentities
of ηS , where B denotes the Booleans. We also treat predicates as logic formulae by writing,
for instance, P ∧ Q and P ∨ Q instead of λs. P s ∧ Q s and λs. P s ∨ Q s. Thus, we denote
the constantly true and constantly false predicates by ⊤ and ⊥ respectively. They coincide
with the skip and abort programs such that skip = ηS and abort s = ∅ for all s ∈ S.
In this state transformer semantics, sequential compositions correspond to (forward) Kleisli

compositions, nondeterministic choices are point-wise unions, and finite iterations are a limit
of sequential compositions. That is,

(α ; β) s =
⋃

{β s′ | s′ ∈ α s},
(α ⊓ β) s = α s ∪ β s, and

α∗ s =
⋃

i∈N

αi s,

with αi+1 = α;αi and α0 = skip.

3.3 Store and Expressions Model

To introduce our state transformer semantics of assignments and ODEs, we first describe
our store model. We use lenses [8, 24, 52] to algebraically characterise the hybrid store.
Through an axiomatic approach to accessing and mutating functions, lenses allow us to
locally manipulate program stores [18] and algebraically reason about program variables [23,
25]. Formally, a lens x with source S and view V , denoted x ::V ⇒ S, is a pair of functions
(getx , putx) with getx : S → V and putx : V → S → S such that

getx (putx v s) = v, putx v ◦ putx v′ = putx v, and putx (getx s) s = s, (lens-laws)

for all v, v′ ∈ V and s ∈ S. Usually, a lens x represents a variable, S is the system’s state
space and V is the value domain for x . Under this interpretation, getx returns the value of
variable x while putx updates it. Yet, we sometimes interpret V as a subregion of S, making
getx a projection or restriction and putx an overwriting or substituting function. There are
other models using diverse variable lenses, such as arrays, maps and local variables [18, 25].

We model expressions and assertions used in program syntax as functions e : S → V ,
which semantically are queries over the store S returning a value of type V . We can use the
get function to perform such queries by “looking up the value of variables”. For instance,
if x, y::R ⇒ S model independent program variables, and c ∈ R is a constant, then the
function λs. (getx s)2 + (gety s)2 ≤ c2 represents the “expression” x2 + y2 ≤ c2. Then,
function evaluation corresponds to computing the value of the expression at state s ∈ S.

With this representation, the state transformer λs. {putx (e s) s}models a program assign-
ment, denoted by x := e. More generally, we turn deterministic functions σ : S → S

into state transformers via function composition with the Kleisli unit, which we denote by
〈σ 〉 = ηS ◦ σ . Then, representing expressions e as functions e : S → V , our model for
variable assignments becomes

(x := e) = 〈λs. putx (e s) s〉.

123

https://github.com/isabelle-utp/Optics/blob/main/Lens_Laws.thy

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 11 of 50 21

3.4 Model for Evolution Commands

To derive in our framework a state transformer semantics S → P S for evolution commands
x ′ = f & G, observe that a flow’s orbit map γ ϕ : C → P C with γ ϕ �c = {ϕ t �c | t ∈ T } is
already a state transformer on C. It sends each �c in the continuous state space C to the reachable
states of the trajectory ϕ�c. Based on the relationship between flows and the solutions to IVPs
from Sect. 3.1, we can generalise this state transformer to a set of all points X t of the solutions
X of the system of ODEs represented by f , i.e. X ′ t = f t (X t), with initial condition
X t0 = �c over an interval U �c around t0 (t0 ∈ U �c). Moreover, in line with dL, the solutions
should remain within the guard or boundary condition G: ∀τ ∈ U �c. τ ≤ t ⇒ G (X τ).
Thus, to specify dynamical systems via ODEs f instead of flows ϕ, we define the generalised

guarded orbits map [50]

γ f G U t0 �c = {X t | t ∈ U �c ∧ X ∈ ivp-sols U f t0 �c ∧ P X (t↓U �c) ⊆ G}, (orbit-map)

that also introduces guards G, initial conditions t0, and intervals U �c. The set t↓T is a
downward closure t↓T = {τ ∈ T | τ ≤ t} which in applications becomes the interval
[0, t] = {τ | 0 ≤ τ ≤ t} because we usually fix U �c = R≥0 = {τ | τ ≥ 0} for all �c ∈ C.
This is why we also abuse notation and write constant interval functions λ�c. T simply as T .
Notice that when the flow ϕ for f exists, γ f ⊤ T 0 �c = γ ϕ �c.

Lenses support algebraic reasoning about variable frames: the set of variables that a hybrid
program can modify. In particular, they allow us to split the state space into continuous and
discrete parts. We explain a lens-based lifting of guarded orbits γ f G U t0 from the continuous
space C → P C to the full state space S in Sect. 5.2. This produces our state transformer for
evolution commands (x ′ = f & G)

t0
U : S → P S. Intuitively, it maps each state s ∈ S to all

X -reachable states within the region G, where X solves the system of ODEs specified by f ,
and leaves intact the non-continuous part of S. Having the same type as the above-described
state transformers enables us to seamlessly use the same operations on (x ′ = f & G)

t0
U . This

also enables us to do modular verification condition generation (VCG) of hybrid systems as
described in Sect. 3.5.1.

Example 2 In this example, we use a hybrid program blood_sugar to model an idealised
machine controlling the concentration of glucose in a patient’s body. Hybrid programs are
often split into discrete control ctrl and continuous dynamics dyn. Their composition is
then wrapped in a finite iteration:

blood_sugar = (ctrl ; dyn)∗.

For the control, we use a conditional statement reacting to the patient’s blood-glucose. Con-
cretely, the program

ctrl = if g ≤ gm then g := gM else skip

states that if the value of the patient’s blood-glucose concentration g is below a certain warning
threshold gm ≥ 0, the maximum healthy dose of insulin, represented as an immediate spike
to the patient’s glucose g := gM , is injected into the patient’s body. Otherwise, the patient
is fine and the machine does nothing. The continuous variable g follows the dynamics in
Example 1: y′ t = a · y t + b. We assume a = −1 and b = 0 so that the concentration of
glucose decreases over time. This results in the evolution command

dyn = (g′ = −g &⊤)0
R≥0

,

123

 21 Page 12 of 50 J. J. H. y Munive et al.

which we abbreviate as dyn = (g′ = −g). Formally, the assignment g := gM is the state
transformerλs. {putg gM s}, the test g ≤ gm is the predicateλs.getg s ≤ gm , and the evolution
command g′ = −g is the orbit map γ ϕ lifted to the whole space S, where ϕ t c = c · e−t for
all t ∈ R. ⊓⊔

3.5 Predicate Transformer Semantics

Finally, we extend our state transformer semantics to a predicate transformer (BS → B
S)

semantics for verification condition generation (VCG). Concretely, we define two predicate
transformers and use the definition of the first one for deriving partial correctness laws, includ-
ing the rules of Hoare logic, and the definition of the second one for deriving reachability
laws. We also exemplify the application of these to VCG.

3.5.1 Forward Boxes

We define dynamic logic’s forward box or weakest liberal precondition (wlp) |−]− operator
as the predicate transformer |α] : BS → B

S such that

|α] Q s ⇔
(

∀s′. s′ ∈ α s ⇒ Q s′
)

,

for α : S → P S and Q : S → B. It is true for those initial system’s states that lead to
a state satisfying Q after executing α, if α terminates. Well-known-laws are derivable and
are simple consequences from this and our previous definitions [50]. These laws allow us to
automate and do VCG much more efficiently than by doing Hoare Logic since all of them,
except for the loop rule, are equational simplifications from left to right:

(wlp-skip) |skip] Q = Q

(wlp-abort) |abort] Q = ⊤
(wlp-test) |¿P?] Q = P ⇒ Q

(wlp-assign) |x := e] Q = Q[e/x]
(wlp-seq) |α ; β] Q = |α] |β] Q

(wlp-choice) |α ⊓ β] Q = |α] Q ∧ |β] Q

(wlp-loop) |loop α] Q = ∀n. |αn] Q

(wlp-cond) |if T then α else β] Q = (T ⇒ |α] Q) ∧ (¬T ⇒ |β] Q).

Here, n is a natural number (i.e. n ∈ N), loop α is simply α∗, and Q[e/x] is our abbreviation
for the function λs. Q (putx (e s) s) that represents the value of Q after variable x has been
updated by the value of evaluating e on s ∈ S. We write this semantic operation as a
substitution to resemble Hoare logic (see Sect. 4.3). Similarly, the wlp-law for evolution
commands informally corresponds to

(wlp-evol) |(x ′ = f & G)
t0
U
] Q s ⇔ ∀X∈ivp-sols U f t0 s. ∀t ∈ U s.

(∀τ ∈ t↓Us . G (X τ)) ⇒ Q (X t).

That is, a postcondition Q holds after an evolution command starting at (t0, s), if and only
if, the postcondition holds Q (X t) for all solutions to the IVP X ′ t = f t (X t), X t0 = s,
for all times in the interval t ∈ U s whose previous times respect G. Notice that, if there is a
flow ϕ : T → C → C for f and U = T = R≥0, this simplifies to

(wlp-flow) |x ′ = f & G] Q s ⇔ (∀t ≥ 0. (∀τ∈[0, t]. G (ϕs τ)) ⇒ Q (ϕs t).

See Sect. 5 for the formal version of these laws.

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L19
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L33
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L54
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L79
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L168
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L120
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L362
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L221
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Evolution_Commands.thy#L87
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Evolution_Commands.thy#L113

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 13 of 50 21

3.5.2 Hoare Triples

It is well-known that Hoare logic can be derived from the forward box operator of dynamic
logic [31]. Thus, we can also write partial correctness specifications as Hoare-triples with
our forward box operators via

{P} α {Q} ⇔ (P ⇒ wlpα Q).

From our wlp-laws and definitions, the Hoare logic rules below hold:

(h-skip) {P} skip {P}
(h-abort) {P} abort {Q}
(h-test) {P} ¿Q? {P ∧ Q}
(h-assign) {Q[e/x]} x := e {Q}
(h-seq) {P} α {R} ∧ {R} β {Q} ⇒ {P} α ; β {Q}
(h-choice) {P} α {Q} ∧ {P} β {Q} ⇒ {P} α ⊓ β {Q}
(h-loop) {I } α {I } ⇒ {I } loop α {I }
(h-cons)

(P1 ⇒ P2) ∧ (Q2 ⇒ Q1)

∧ {P2} α {Q2} ⇒ {P1} α {Q1}

(h-cond)
{T ∧ P} α {Q}

∧ {¬T ∧ P} β {Q} ⇒ {P} if T then α else β {Q}
(h-while) {T ∧ I } α {I } ⇒ {I } while T do α {¬T ∧ I }
(h-whilei)

(P ⇒ I) ∧ (I ∧ ¬T ⇒ Q)

∧ {I ∧ T } α {I } ⇒ {P} while T do α inv I {Q}

(h-loopi)
(P ⇒ I) ∧ (I ⇒ Q)

∧ {I } α {I } ⇒ {P} loop α inv I {Q}

(h-evoli)
(P ⇒ I) ∧ (I ∧ G ⇒ Q)

∧ {I } (x ′ = f & G)
t0
U
{I } ⇒ {P} (x ′ = f & G)

t0
U
inv I {Q}

(h-conji) {I } α {I } ∧ {J } α {J } ⇒ {I ∧ J } α {I ∧ J }
(h-disji) {I } α {I } ∧ {J } α {J } ⇒ {I ∨ J } α {I ∨ J }

where α inv I is simply α with the annotated invariant I and it binds less than any other
program operator, e.g. {P} loop α inv I {Q} = {P} (loop α) inv I {Q}.

For automating VCG, thewlp-laws are preferable over the Hoare-style rules since the laws
can be added to the proof assistant’s simplifier which rewrites them automatically. However,
when loops and ODEs are involved, we use the rules (h-whilei), (h-loopi) and (h-evoli). In
particular, two workflows emerge for discharging ODEs. If Picard–Lindelöf holds, that is, if
there is a unique solution to the system of ODEs and it is known, the law (wlp-flow) is the
best choice. Otherwise, we employ the rule (h-evoli) if an invariant is known. See Sect. 6.2
for a procedure guaranteeing the existence of flows or Sect. 5.3 for a procedure determining
invariance for evolution commands.

Example 3 We prove that I s ⇔ getg s ≥ 0, or simply g ≥ 0, is an invariant for the
program blood_sugar = loop (ctrl ; dyn) from Example 2. That is, we show that
{I } blood_sugar {I }. We start applying (h-loopi) and proceed with wlp-laws:

{I } loop (ctrl ; dyn) inv I {I }
⇐ (I ⇒ I) ∧ (I ⇒ |ctrl ; dyn] I) ∧ (I ⇒ I)

=
(

∀s. I s ⇒ |if g ≤ gm then g := gM else skip] |g′ = −g] I s
)

=
(

∀s. I s ⇒
(

g ≤ gm ⇒ |g := gM] |g′ = −g] I s
)

∧
(

g > gm ⇒ |g′ = −g] I s
))

,

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L25
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L39
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L60
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L82
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L171
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L129
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L380
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Correctness_Specs.thy#L161
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L225
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L738
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L751
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L709
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Evolution_Commands.thy#L448
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Correctness_Specs.thy#L197
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Correctness_Specs.thy#L197

 21 Page 14 of 50 J. J. H. y Munive et al.

where the first equality applies (wlp-seq) and unfolds the definition of ctrl and dyn. The
second follows by (wlp-cond). Next, given that ϕ t c = c · e−t is the flow for g′ = −g:

|g′ = −g] I s ⇔ (∀t ≥ 0. I [ϕ t c/g]) ⇔ (∀t ≥ 0. g · e−t ≥ 0) ⇔ g ≥ 0,

for all s ∈ S by (wlp-flow), the lens laws, and because G = ⊤ and k · e−t ≥ 0 ⇔ k ≥ 0.
Thus, the conjuncts above simplify to

g ≤ gm ⇒ (|g′ = −g] I)[gM/g]
= g ≤ gm ⇒ (g ≥ 0)[gM/g]
= (g ≤ gm ⇒ gM ≥ 0) = ⊤,

g > gm ⇒ |g′ = −g] I s

= g > gm ⇒ g ≥ 0

= ⊤,

by (wlp-assign), and because gm, gM ≥ 0. Thus, (I ⇒ |ctrl ; dyn] I) = ⊤. ⊓⊔

3.5.3 Forward Diamonds

Here, we extend our VCG approach by including forward diamonds in our verification
framework. Our VCG laws from Sects. 3.5.1 and 3.5.2 help users prove partial correct-
ness specifications. Yet, our approach is generic and extensible and can cover other types of
specifications [30, 50, 70]. We have added the forward diamond |−〉− predicate transformer,

|α〉 Q s ⇔ (∃s′. s′ ∈ α s ∧ Q s′),

that holds if there is a Q-satisfying state of α reachable from s. Due to their semantics, forward
diamonds enable us to reason about progress and reachability properties. In applications, this
implies that our tool supports proofs describing worst and best case scenarios stating that
the modelled system can evolve into an undesired/desired state. See Sect. 8 for an example
showing progress for a dynamical system. We formalise and prove the forward diamonds
laws below which are also direct consequences of the duality law |α〉 Q = ¬ |α] ¬Q. The
example after them merely illustrates their seamless application.

(fdia-skip) |skip〉 Q = Q

(fdia-abort) |abort〉 Q = ⊥
(fdia-test) |¿P?〉 Q = P ∧ Q

(fdia-assign) |x := e〉 Q = Q[e/x]
(fdia-seq) |α ; β〉 Q = |α〉 |β〉 Q

(fdia-choice) |α ⊓ β〉 Q = |α〉 Q ∨ |β〉 Q

(fdia-loop) |loop α〉 Q = ∃n. |αn〉 Q

(fdia-cond) |if T then α else β〉 Q = (T ∧ |α〉 Q) ∨ (¬T ∧ |β〉 Q).

Additionally, the (informal) diamond law for evolution commands is

(fdia-evol) |(x ′ = f & G)
t0
U 〉 Q s ⇔ ∃X ∈ ivp-sols U f t0 s. ∃t ∈ U s.

(∀τ ∈ t↓U s . G (X τ)) ⇒ Q (X t).

and the corresponding law for flows ϕ : T → C → C of f and U = T = R≥0 is

(fdia-flow) |x ′ = f & G〉 Q s ⇔ (∃t ≥ 0. (∀τ∈[0, t]. G (ϕs τ)) ⇒ Q (ϕs t)).

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L22
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L36
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L57
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L94
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L183
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L133
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L366
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L237
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Evolution_Commands.thy#L92
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Evolution_Commands.thy#L139

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 15 of 50 21

Example 4 A similar argument as that in Example 3 allows us to prove the inequality I ⇒
|blood_sugar〉 I where I s ⇔ (g ≥ 0) and blood_sugar = loop (ctrl ; dyn). Namely,
we observe that by (fdia-evol), the forward diamond of g′ = −g and I becomes

|g′ = −g〉 I s ⇔ (∃t ≥ 0. (I [g · e−t/g])) ⇔ (∃t ≥ 0. g · e−t ≥ 0) ⇔ g ≥ 0,

for all s ∈ S. Hence, the conjuncts below simplify as shown:

g ≤ gm ∧ (|g′ = −g〉 I)[gM/g]
= g ≤ gm ∧ (g ≥ 0)[gM/g]
= g ≤ gm ∧ gM ≥ 0 = g ≤ gm,

gs > gm ∧ |g′ = −g〉 I s

= gs > gm ∧ gs ≥ 0

= gs > gm .

Therefore, by backward reasoning with the diamond laws, we have

I ⇒ |loop (ctrl ; dyn) inv I 〉 I

⇐ I ⇒ |ctrl ; dyn〉 I

=
(

∀s. I s ⇒ |if g ≤ gm then g := gM else skip〉 |g′ = −g〉 I s
)

=
(

∀s. I s ⇒
(

g ≤ gm ∧ |g := gM 〉 |g′ = −g〉 I s
)

∨
(

g > gm ∧ |g′ = −g〉 I s
))

= (∀s. I s ⇒ g ≤ gm ∨ g > gm) = ⊤,

where the first implication follows by a rule analogous to (h-loopi) for diamonds.

Thus, we have shown that I ⇒ |blood_sugar〉 I . ⊓⊔

We have summarised our approach to hybrid systems verification in general purpose
proof assistants [21, 50]. This is the basis for describing our contributions for the rest of
this article, included among them, the formalisation of forward diamonds into IsaVODEs.
Although a similar formalisation has been done before [70], our implementation is more
automated due to its use of standard types, e.g. Isabelle predicates (S → B), that have had
more support over time. Thus, our formalisation increases the proof capabilities of IsaVODEs
and its expressivity, since the forward diamonds enable us to assert the progress of hybrid
programs. Other extensions to our framework not described here are the addition of dL’s
nondeterministic assignments and their corresponding partial correctness and progress laws,
as well as the formalisation of variant-based rules on the reachability of finite iterations and
while-loops. See previous work [7, 30] for examples with while-loops that our verification
framework could tackle.

4 Hybrid Modelling Language

Here, we describe our implementation of a hybrid modelling language, which takes advantage
of lenses and Isabelle’s flexible syntax processing features. Beyond the advantages already
mentioned, lenses enhance our hybrid store models in several ways. They allow us to model
frames—sets of mutable variables—and thus support local reasoning. They also allow us to
project parts of the global store onto vector spaces to describe continuous dynamics. These
projections can be constructed using three lens combinators: composition, sum and quotient.

The projections particularly allow us to use hybrid state spaces, consisting of both con-
tinuous components with a topological structure (e.g. R

n), and discrete components using
Isabelle’s flexible type system. This allows our tool to support more general software engi-
neering notations, which typically make use of object-oriented data structures [48]. Moreover,

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/c00d1b16490ce79c481a7be298ba43ba44837531/Hybrid_Programs/Regular_Programs.thy#L691
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Regular_Programs.thy#L518

 21 Page 16 of 50 J. J. H. y Munive et al.

the projections allow us to reason locally about the continuous variables, since discrete vari-
ables are outside of the frame during continuous evolution.

4.1 Dataspaces

Most modelling and programming languages support modules with local variables, constant
declarations, and assumptions. We have implemented an Isabelle command that automates
the creation of hybrid stores, which provide a local theory context for hybrid programs. We
call these dataspaces, since they are state spaces that can make use of rich data structures in
the program variables.

dataspace store = [parent_store +]

constants c1::C1 ... cn::Cn

assumes a1:P1 ... an:Pn

variables x1::T1 ... xn::Tn

A dataspace has constants ci : Ci , named constraints ai : Pi and state variables xi : Ti . In its
context, we can create local definitions, theorems and proofs, which are hidden, but accessible
using its namespace. Internally, the dataspace command creates an Isabelle locale with
fixed constants and assumptions, inspired by previous work by Schirmer and Wenzel [66].
Like locales, dataspaces support a form of inheritance, whereby constants, assumptions, and
variables can be imported from an existing dataspace (e.g. parent_store) and extended
with further constants, assumptions, and variables.

Each declared state variable is assigned a lens xi ::Ti ⇒ S, using the abstract store type S

with the lens axioms from Secion 3.3 as locale assumptions. We also generate independence
assumptions, e.g. xi ⊲⊳ x j for xi
= x j , that distinguish different variables semantically [25].
Formally, x ⊲⊳ y if putx u ◦ puty v = puty v ◦ putx u for all u, v ∈ V . That is, two lenses are
independent if their put operations commute on all states.

4.2 Lifted Expressions

As discussed in Sect. 3.3, expressions in our hybrid modelling language are modelled by
functions of type S → V . Assertions are therefore state predicates, or “expressions” where
V = B. Discharging VCs requires showing that assertions hold for all states. For example,
the law (wlp-test) requires us to prove a VC of the form P ⇒ Q, that is, ∀s. Ps ⇒ Q s.
Also, if we have state variables x and y, then proving the assertion x + y ≥ x corresponds
to proving the HOL predicate getx s + gety s ≥ getx s for some arbitrary-but-fixed state s,
which can readily by discharged using one of Isabelle’s proof methods (simp, auto etc.). We
automate this process via our methods expr-simp and expr-auto.

Nevertheless, there remains a gap between the syntax used in typical programming lan-
guages and its semantic representation. Namely, users would prefer writing x2 + y2 ≤ c2

over λs. (getx s)2 + (gety s)2 ≤ c2, and so, the main technical challenge is to seamlessly
transform between the two. This can be achieved using Isabelle’s syntax pipeline, which
significantly improves the usability of our tool.

Isabelle’s multi-stage syntax pipeline parses Unicode strings and transforms them into
“pre-terms” [39]: elements of the ML term type containing syntactic constants. These must
be mapped to previously defined semantic constants by syntax translations, before they can
be checked and certified in the Isabelle kernel. Printing reverses this pipeline, mapping terms
to strings.

123

https://github.com/isabelle-utp/Optics/blob/main/Dataspace_Example.thy

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 17 of 50 21

We automate the translation between the expression syntax (pre-terms) and semantics
using parse and print translations implemented in Isabelle/ML, as part of our Shallow-

Expressions component. It lifts pre-terms by replacement of free variables and constants,
and insertion of store variables (s) and λ-binders. Its implementation uses the syntactic anno-
tation (t)e to lift the syntactic term t to a semantic expression in the syntax translation rules.
The syntax translation is described by the following equations:

(t)e ⇋ [(t)e]e, (n)e ⇋

⎧

⎪

⎨

⎪

⎩

λs. getn s if n is a lens,

λs. n s if n is an expression,

λs. n otherwise,

(f t)e ⇋ λs. f ((t)e s),

where p ⇋ q means that pre-term p is translated to term q , and q printed as p. Moreover, [−]e
is a constant that marks lifted expressions that are embedded in terms. When the translation
encounters a name n (i.e. a free variable or constant), it checks whether n has a definition
in the context. If it is a lens (i.e. n::V ⇒ S), then it inserts a get. If it is an expression
(i.e. n : S → V), then it is applied to the state. Otherwise, it leaves the name unchanged,
assuming it to be a constant. Function applications are also left unchanged by ⇋. For instance,
((x + y)2/z)e ⇋ [λs. (getx s + gety s)2/z]e for variables (lenses) x and y and constant z.
Once an expression has been processed, the resulting λ-term is enclosed in [−]e. The pretty
printer can then recognise a lifted term and print it. This process is fully automated, so that
users see only the sugared expression, without the λ-binders, in both the parser and terms’
output during the proving process.

4.3 Substitutions

In our semantic approach, substitutions correspond to functions σ : S → S. We can then
denote updates as sequences of variable assignments. That is, instead of directly manipulating
the store s : S with the lens functions, we provide user-friendly program specifications
with the notation σ(x � e) = λs. putx (e s) (σ s). Thus, assignments can be described as
sequences of updates for lenses xi ::Vi ⇒ S and “expressions” ei : S → Vi :

[x1 � e1, x2 � e2, . . .] = id(x1 � e1)(x2 � e2) (lens-subs)

Implicitly, any variable y not mentioned in such a substitution is left unchanged: y � y.
We further write e[v/x] = e ◦ [x � v], with x ::V ⇒ S, e : S → V

′, and v : S → V , for
the application of substitutions to expressions. This yields standard notations for program
specifications, e.g. (x := e) = 〈[x � e]〉 and wlp 〈[x � e]〉 Q = Q[e/x]. Using an Isabelle
simplification procedure (a “simproc”), the simplifier can reorder assignments alphabetically
according to their variable name, and otherwise reduce and evaluate substitutions during
VCG [25]. We can extract assignments for x writing 〈σ 〉s x = getx ◦ σ so that, e.g. 〈[x �

e1, y � e2]〉s x reduces to e1 when x ⊲⊳ y.

Example 5 We continue our blood glucose running example and formalise Example 2. We
declare our problem variables and assumptions via our dataspace command, name this
dataspace glucose, and assume that there is a minimal warning threshold gm > 0 and a
maximum dosage gM > gm . The “continuous” variable g represents the patient’s glucose.

dataspace glucose =

constants gm :: real gM :: real

123

https://github.com/isabelle-utp/Shallow-Expressions/blob/bddbf31a67859011c81e16ad3d6723d66ed9591e/Expressions.thy#L58
https://github.com/isabelle-utp/Shallow-Expressions/blob/main/Substitutions.thy

 21 Page 18 of 50 J. J. H. y Munive et al.

assumes ge_0: "gm > 0" and ge_gm: "gM > gm"

variables g :: real

Next, inside the glucose context we declare, via Isabelle’s abbreviation command, the
definition of the controller and the dynamics. Our shallow expressions hide the lens infras-
tructure and, from the user’s perspective, the definitions are Isabelle abbreviations. Notice
also, that our recently introduced “substitution” notation allows us to explicitly specify the
flow’s behaviour on the continuous variable g. It also occurs implicitly in our declaration of
the differential equation g′ = g (see Sect. 5.2).

context glucose

begin

abbreviation "ctrl ≡ IF g ≤ gm THEN g ::= gM ELSE skip"

abbreviation "dyn ≡ {g‘ = -g}"

abbreviation "flow τ ≡ [g � g * exp (- τ)]"

abbreviation "blood_sugar ≡ LOOP (ctrl; dyn) INV (g ≥ 0)"

end

Thus, our lens integrations provide a seamless way to formalise hybrid system verification
problems in Isabelle. We explore their verification condition generation in Sect. 6.2. ⊓⊔

4.4 Vectors andMatrices

Vectors and matrices are ubiquitous in engineering applications and users of our framework
would appreciate using familiar concepts and notations to them. This is possible due to
our modelling language. In particular, vectors are supported by HOL-Analysis using finite
Cartesian product types, (A,n) vec with the notation A^n. Here, A is the element type, and
n is a numeral type denoting the dimension. The type of vectors is isomorphic to [n] → A

where [n] = {1, . . . , n}. A matrix is simply a vector of vectors, A^m^n, hence a map [m] →
[n] → A. Building on this, we supply notation [[x11,...,x1n],...,[xm1,...,xmn]]
for matrices and means for accessing coordinates of vectors via hybrid program variables [19].
This notation supports the inference of vector and matrices’ dimensions conveyed by the type
variables.

Vectors and matrices are often represented as composite objects consisting of several
values, e.g. p = (px , py) ∈ R

2. When writing specifications, it is often convenient to
refer to and manipulate these components individually. We can denote such variables using
component lenses and the lens composition operator. We write x1 �x2::S1 ⇒ S3, for x1::S1 ⇒
S2, x2::S2 ⇒ S3, for the forward composition and 1S ::S ⇒ S for the units in the lens
category, but do not show formal definitions [25]. Intuitively, the composition � selects part
of a larger store as illustrated below.

We model vectors in R
n as part of larger hybrid stores, lenses v::Rn ⇒ S, and project

onto coordinate vk ::R ⇒ S using lens composition and a vector lens
(i)::R ⇒ R
n :

(i) = (get
(i), put
(i)), where

get
(i) = (λs. vec-nth s i),

put
(i) = (λv s. vec-upd s i v),

123

https://github.com/isabelle-utp/Hybrid-Library/blob/6b37e352181fb5613cc9a960df6aed12d68cf370/Cont_Lens.thy#L117

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 19 of 50 21

and i ∈ [n] = {1, . . . , n}. The lookup function vec-nth : An → [n] → A and update
function vec-upd : An → [n] → A → An come from HOL-Analysis and satisfy the lens
axioms (lens-laws). Then, as an example, px =
(1) � p and py =
(2) � p for p::R2 ⇒ S,
using � to first select the variable p and then the vector-part of the hybrid store. Intuitively,
two vector elements are independent,
(i) ⊲⊳
(j) iff they have different indices, i
= j .

Example 6 To illustrate the use of vector variables, we model the dynamics and a controller
for an autonomous boat. We refer readers to previous publications for the verification of an
invariant for this system [19, 21]. The boat is manoeuvrable in R

2 and has a rotatable thruster
generating a positive propulsive force f with maximum fmax . The boat’s state is determined
by its position p = (px , py), velocity v = (vx , vy), and acceleration a = (ax , ay). We
describe this state with the following dataspace:

dataspace AMV =

constants S::R fmax::R assumes fmax:"fmax ≥ 0"
variables p::"R vec[2]" v::"R vec[2]" a::"R vec[2]" φ::R s::R

wps::"(R vec[2]) list" org::"(R vec[2]) set" rs::R rh::R

This store model combines discrete and continuous variables and uses the alternative notation
R vec[n] for a real-valued vector of dimension n. The dataspace specifies a variable for
linear speed s, and a constant S for the boat’s maximum speed. We also provide the discrete
variable wps for a list of points to pass through in the vehicle’s path (way-point path), org
for a set of points where obstacles are located (obstacle register), and the requested speed
and heading (rs and rh). Our dataspace allows us to declare variables p, v, a : R vec[2]
and manipulate them using operations for vectors (see Sect. 5.2). ⊓⊔

5 Local Reasoning

In this section, we describe our framework’s support for local reasoning, which allows us
to consider only parts of the state that are changed by a component in the verification. This
improves the scalability of our approach, since we can decompose verification tasks into
smaller manageable tasks, in an analogous way to separation logic [63]. We provide our
main theoretical contributions here. That is, we show how lenses can be used to characterise
a program’s frame: the set of variables which may be modified. We then explain how frames
extend to evolution commands, such that variables with no derivative (or derivative 0) are
outside of the frame. Next, we develop a framed version of differentiation, called framed

Fréchet derivatives, which allows us to perform local differentiation with respect to a strict
subset of the store variables. This, in turn, supports a method, framed differential induction,
for proving invariants in the continuous part of the state space. Finally, we introduce a
corresponding implementation of dL’s differential ghost rule [61] that augments systems of
ODEs with fresh equations to aid invariant reasoning. This rule likewise supports frames.

5.1 Frames

Lenses support algebraic manipulations of variable frames. A frame is the set of variables that
a program is permitted to change. Variables outside of the frame are immutable. We first show
how variable sets can be modelled via lens sums. Then we recall a predicate characterising
immutable program variables [22]. Most importantly, we derive a frame rule à la separation
logic for local reasoning with framed variables.

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Verification_Examples/AMV.thy#L220

 21 Page 20 of 50 J. J. H. y Munive et al.

Variable lenses x1::V1 ⇒ S and x2::V2 ⇒ S can be combined into lenses for variable
sets with lens sum [25], x1 ⊕ x2::V1 × V2 ⇒ S if x1 ⊲⊳ x2 via

getx1⊕x2
(s1, s2) = (getx1

s1, getx2
s2), and

putx1⊕x2
(v1, v2) = putx1

v1 ◦ putx2
v2.

This combines two independent lenses into a single lens with a product view. It can be used
to model composite variables, for example, (x ⊕ y) := (e, f) is a simultaneous assignment
to x and y. We can decompose such a composite update into two atomic updates, with
[(x, y) � (e1, e2)] = [x � e1, y � e2]. We can also use lens sums to model finite sets, for
example {x, y, z} is modelled as x⊕(y⊕z). Each variable in such a sum may have a different
type, e.g. {vx , �p} is a valid and well-typed construction.

Lens sums are only associative and commutative up-to isomorphism of cartesian products.
We need heterogeneous orderings and equivalences between lenses to capture this. We define
a lens preorder [25], x1 x2 ⇔ ∃x3. x1 = x3 � x2 that captures the part-of relation between
x1::V1 ⇒ S and x2::V2 ⇒ S, e.g. vx �v and �p �p ⊕ �v. Lens equivalence ∼= = ∩ #
then identifies lenses with the same shape in the store. Then, for variable set lenses up-to ∼=,
⊕ models ∪, ⊲⊳ models /∈,

and models ⊆ or ∈. Since x1 x1 ⊕ x2 and x1 ⊕ x2 ∼= x2 ⊕ x1, with our variable
set interpretation, we can show, e.g., that x ∈ {x, y, z}, {x, y} ⊆ {x, y, z}, and {x, y} =
{y, x}. Hence we can use these lens combinators to construct and reason about variable
frames.

We can use variable set lenses to capture the frame of a program. Let A::V ⇒ S be a
lens modelling a variable set. For s1, s2 ∈ S let s1 ≈A s2 hold if s1 = s2 up-to the values of
variables in A, that is getA s1 = getA s2. Local reasoning within A uses the lens quotient [18]
x�A, which localises a lens x ::V ⇒ S to a lens V ⇒ C. Assuming x A, it yields x1::V ⇒ C

such that x = x1 � A. For example, px�p =
(1) with C = R
n . .

We can also use lenses to describe when a variable does not occur freely in an expression
or predicate with the unrestriction property: A ♯ e ⇔ ∀v. e ◦ (putA v) = e [25]. A variable
x is unrestricted in e, written x ♯ e, provided that e does not semantically depend on x for its
evaluation. For example, x ♯ (y + 1), when x ⊲⊳ y, since y + 1 does not mention x . We also
define (−A) ♯ e ⇔ ∀s1 s2 v. e (putA v s1) = e (putA v s2) as the converse, which requires
that e does not depend on variables outside of A.

Non-modification Next, we capture the non-modification of variables by a program.
For α : S → P S and an expression (or predicate) e we define α nmods e ⇔
(∀s1 ∈ S. e(s1) = e(s2)), which describes when e does not depend on the mutable vari-
able of α. The expression e can characterise a set of variables giving the set of immutable
variables. For example, we have it that (x := x + 1) nmods (y, z), when x ⊲⊳ y and x ⊲⊳ z,
since this assignment changes only x and no other variables.

Intuitively, non-modification α nmods x , where x is a variable lens, is equivalent to the
specification for {x = v} α {x = v} for fresh logical variable v. This means that x retains its
initial value in any final state of α. We prove the following laws for non-modification:

A ♯ x

(x := e) nmods A

–
¿P? nmods A

α nmods A β nmods A

(α � β) nmods A
α nmods A β nmods A

(α ⊓ β) nmods A

α nmods A

α∗ nmods A

α nmods B A B

α nmods A

The variables in A are immutable for assignment x := e provided x is not in A. A test ¿P?
modifies no variables, and therefore any set A is immutable. For the programming operators,

123

https://github.com/isabelle-utp/Optics/blob/6e24cde61989a79f7601acc537dd2ee9fdf3f4f6/Lens_Algebra.thy#L38
https://github.com/isabelle-utp/Optics/blob/main/Lens_Order.thy
https://github.com/isabelle-utp/Optics/blob/6e24cde61989a79f7601acc537dd2ee9fdf3f4f6/Lens_Algebra.thy#L83

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 21 of 50 21

non-modification is inherited from the parts. The final law shows that we can always shrink
the specified set of immutable variables.

With these concepts in place, we derive two frame rules for local reasoning:

α nmods I {P} α {Q}
{P ∧ I } α {Q ∧ I }

α nmods A (−A) ♯ I {P} α {Q}
{P ∧ I } α {Q ∧ I }

If program α does not modify any variables mentioned in I , then I can be added as an
invariant of α. In the first law, non-modification is checked directly of the variables used by
I . In the second, which is an instance of the first, we instead infer the immutable variables of
A and check that I does not depend on variables outside of A. With these laws, we can import
invariants for a program fragment that refer to only those variables that are left unchanged.
This allows us to perform modular verification, whereby we need only consider invariants of
variables used in a component. In the following section, we show how this can be applied to
systems of ODEs.

5.2 Framed Evolution Commands

We extend previous components [50] for continuous dynamics with function framing tech-
niques that project onto parts of the store. That is, we formally describe the implementation of
the evolution command state transformer using the lens infrastructure described so far [21].
Specifically, we use framing to derive continuous vector fields (C → C) and flows from state-
wide “substitutions” (S → S). We also add a non-modification rule for evolution commands.
This supports local reasoning where evolution commands modify only continuous variables
and leave discrete ones—outside a frame—unchanged.

Framing uses the second interpretation of lenses where the frame C is a subregion of S

that we can access through x ::C ⇒ S. We view the store as divided into its continuous C

and discrete parts and localise continuous variables to the former. The continuous part must
have sufficient topological structure to support derivatives and is thus restricted to certain
type constructions like normed vector spaces or the real numbers. However, the discrete part
may use any type defined in HOL. With this view, we can use getx and putx to lift entities
defined on C or project those in S. For instance, given any s ∈ S and a predicate G : S → B

(like the guards in evolution commands), there is a corresponding restriction G↓s
x : C → B

such that G↓s
x �c ⇔ G[�c/x] ⇔ G (putx �c s). Conversely, for s ∈ S and X , a set of vectors in

C, the set X↑s
x = P (λ�c. putx �c s) X has values in S.

More importantly, we can specify ODEs and flows via time-dependent deterministic func-
tions (Sect. 4.3’s lens-subs). Given a lens x ::C ⇒ S from global store S onto local continuous
store C and s ∈ S, we can turn any state-wide function f : T → S → S into a vector field
f ↓s

x : T → C → C by framing it via f ↓s
x t �c = getx

(

(f t) (putx �c s)
)

.

Example 7 Suppose S = R
2 × R

2 × R
2 × S

′ and p, v, a::R2 ⇒ S. The variable set lens
A = (p⊕ v ⊕ a)::R2 ×R

2 ×R
2 ⇒ S frames the continuous part of the state space S. The

substitution f : T → S → S such that f t = [p � v, v � a, a � 0] then behaves as the
identity on S

′ and becomes the vector field f ↓s
A : T → R

2 × R
2 × R

2 → R
2 × R

2 × R
2.

Hence, f naturally describes the ODEs p′ t = v t, v′ t = a t, a′ t = 0 after framing. ⊓⊔

Using the previously described liftings and projections, we formally define the semantics
of evolution commands. For this, we only need to lift the definition of generalised guarded
orbits maps (orbit-map in Sect. 3.4) on the continuous C to the larger space S. Thus, for

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7baedd092dff0182336ef0bb6251fd8beff6a1cc/HS_Lens_Spartan.thy#L456

 21 Page 22 of 50 J. J. H. y Munive et al.

substitution f : T → S → S, predicate G : S → B, interval function U : C → P R, and
t0 ∈ R the state transformer S → P S modelling evolution commands is

(x ′ = f & G)
t0
U s = (γ f ↓s

x (G↓s
x) U t0 xs)↑s

x , or equivalently

(x ′ = f & G)
t0
U s =

{

putx (X t) s

∣

∣

∣

∣

∣

∣

∣

∣

t ∈ U xs ∧ X ∈ ivp-sols U (f ↓s
x) t0 xs

∧P X (t↓U xs
) ⊆ G↓s

x

}

,

where we abbreviate getx s with xs . That is, evolution commands are state transformers that
output those states whose discrete part remains unchanged from s but whose continuous part
changes according to the ODEs’ solutions within G. With this, the law (wlp-evol) formally
becomes

|(x ′ = f & G)
t0
U] Q s ⇔ ∀X∈ivp-sols U (f ↓s

x) t0 xs . ∀t∈U xs .

(∀τ∈t↓U xs
. G[X τ/x]) ⇒ Q[X t/x].

This says that the postcondition Q holds after an evolution command (x ′ = f & G)
t0
U for

s ∈ S if every solution X to the IVP corresponding to (t0, xs) satisfies Q on every time t ,
provided G holds from the beginning of the interval t0 ∈ U xs until t . Thus, VCG follows
our description in Sect. 3: users must supply flows and evidence for Lipschitz continuity in
order to obtain wlps. We provide tactics that automate these processes in Sect. 6.

We use Isabelle’s syntax translations to provide a natural syntax for specifying evolution
commands. Users can write {x ′1 = e1, . . . , x ′n = en | G U V @ t0} directly into the prover
where each xi ::Vi ⇒ S is a summand of the frame lens x = {x1, . . . , xn}::C ⇒ S. Users
can thus declare the ODEs in evolution commands coordinate-wise with lifted expressions
ei : S → Vi . They can also omit the parameters G, U , V and t0 which defaults them to⊤, R≥0,
C and 0, respectively. If desired, they can also use product syntax (x ′1, . . . , x ′n) = (e1, . . . , en)

or vector syntax x ′ = e, and specify evolution commands using flows instead of ODEs with
the notation {EVOL x = e τ |G}.

With these, non-modification of variables naturally extends to ODEs with the law

|(x ′ = f & G)
t0
U] Q s ⇔ ∀X∈ivp-sols U (f ↓s

x) t0 xs . ∀t∈U xs .

(∀τ∈t↓U xs
. G[X τ/x]) ⇒ Q[X t/x].

Specifically, any set of variables (A) without assigned derivatives in a system of ODEs is
immutable. Then, by application of the frame rule, we can demonstrate that any assertion I

that uses only variables outside of x is an invariant of the system of ODEs.

Example 8 We use the autonomous boat from Example 6 to illustrate the use of non-
modification. A system of ODEs for the boat’s state p, v, a may be specified as follows:

abbreviation "ODE ≡ { p� = v, v� = a, a� = 0, φ� = ω,

s� = if s
= 0 then (v · a) / s else ‖a‖
| s *R [[sin(φ), cos(φ)]] = v ∧ 0 ≤ s ∧ s ≤ S }"

s for φ and s. The derivative of the former is the angular velocity ω, which has the value
arcos((v+a) ·v/(‖v+a‖·‖v‖)) when ‖v‖
= 0 and 0 otherwise [19]. The linear acceleration
(s′) is calculated using the inner product of v and a. If the current speed is 0, then s′ is ‖a‖.
Immediately after the derivatives, we also specify the guard or boundary condition that serves
to constrain the relationship between the velocity vector and the heading φ. The guard states
that the velocity vector v is equal to s multiplied with the heading unit-vector using scalar

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7baedd092dff0182336ef0bb6251fd8beff6a1cc/HS_Lens_ODEs.thy#L30
https://github.com/isabelle-utp/Hybrid-Verification/blob/e766a6b4744f37e176cd289e9e80120b6238ad81/Hybrid_Programs/Evolution_Commands.thy#L87
https://github.com/isabelle-utp/Hybrid-Verification/blob/7baedd092dff0182336ef0bb6251fd8beff6a1cc/HS_Lens_Spartan.thy#L533

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 23 of 50 21

multiplication (*R) and our vector syntax. We also require that 0 ≤ s ≤ S, i.e. that the linear
speed is between 0 and the maximum speed.

All other variables in the store remain outside the evolution frame and do not need to
be specified. In particular, notice that the ODE above does not mention the requested speed
variable rs. This is a discrete variable that is unchanged during evolution. Therefore, we can
show: ODE nmods rs. Moreover, using the frame rule we can also demonstrate that rs > 0
is an invariant, i.e. {rs > 0} ODE {rs > 0} [21]. ⊓⊔

5.3 Frames and Invariants for ODEs

As discussed in Sect. 3, an alternative to using flows for verification of evolution commands is
finding and certifying invariants for them. Mathematically, evolution commands’ invariants
coincide with invariant sets for dynamical systems or dL’s differential invariants [50]. We
abbreviate the statement “I is an invariant for the evolution command (x ′ = f & G)

t0
U ” with

the notation diff -inv x f G U t0 I . In terms of Hoare logic, invariants for evolution commands
satisfy

diff -inv x f G U t0 I ⇔ {I } (x ′ = f & G)
t0
U {I } .

Informally, diff -inv x f G U t0 I asserts that all states in the generalised guarded orbit (x ′ =
f & G)

t0
U s of s ∈ S such that I s, will also satisfy I . In dynamical systems parlance, the

orbits of the system of ODEs within the region characterised by I remain within I .
A common approach in hybrid program verification for certifying invariants for evolution

commands is differential induction [59]. It establishes sufficient conditions for guaranteeing
that simple predicates, such as (in)equalities, are invariants. From these, more complex pred-
icates like conjunctions or disjunctions of these (in)equalities can be shown to be invariants
using the rules (h-conji) and (h-disji).

Example 9 To prove that the conjunction x > c ∧ y ≥ x is an invariant of the pair of ODEs
x ′ = 1, y′ = 2 with c ∈ R (a constant) we need to show that

{x > c ∧ y ≥ x} (x ′ = 1, y′ = 2) {x > c ∧ y ≥ x} .
An application of the rule (h-conji) yields the two proof obligations

{x > c} (x ′ = 1, y′ = 2) {x > c} , and {y ≥ x} (x ′ = 1, y′ = 2) {y ≥ x} .
We conclude the proof informally to provide an intuition for how to proceed:
Since the derivative of x is greater than 0, its magnitude is increasing. Hence, for all time
t ≥ 0, the value of x t is greater or equal to its original value x 0 > c. This means that the
“values” of x remain above c. Similarly, since the derivative of y is greater than that of x and
positive, y “grows” faster than x . Hence, the value of y remains greater or equal to that of x .
Thus, the predicate x > c ∧ y ≥ d is an invariant of x ′ = 1, y′ = 2. ⊓⊔

Formally, if a predicate I is in negation normal form (NNF) in a first-order language for
the real numbers LR〈0, 1,+,−, ·,<,≤〉, to show that it is an invariant, we can apply the
rules (h-conji) and (h-disji) until the only remaining proof obligations are Hoare triples of
literals. The negated literals can also be converted into positive ones via the equivalences
¬(x < y) ⇔ y ≤ x , ¬(x ≤ y) ⇔ y < x , and ¬(x = y) ⇔ (y < x ∨ x < y). The
remaining proof obligations can be discharged by analysing the derivatives of the magnitudes
represented in them as done in Example 9. In the sequel, we present the theory to do this
analysis formally in our setting.

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/fa0d8409cffdc04b0b9769762124d360c0bdd07c/Hybrid_Programs/Evolution_Commands.thy#L389

 21 Page 24 of 50 J. J. H. y Munive et al.

The discussion in Example 9 compares derivatives of expressions depending on the ODEs’
variables. In our semantic approach, the system of ODEs is modelled by a function f t :
S → S that becomes a vector field (C → C) after framing via some x ::C ⇒ S, where C

is the continuous part of S. Similarly, our “expressions” are really functions e : S → U

(see Sect. 3.3), and we can assume that U is a continuous state space to get “continuous
expressions”. We frame these functions to the continuous part C of S to obtain our framed

expressions e↓x
s : C → U such that e↓x

s = e ◦ (λ�c. putx �c s). We wish to “differentiate” these
expressions as informally done in Example 9. Hence, for a general and formal treatment of our
semantic entities, we use the Fréchet derivative of these framed expressions. More specifically,
recall that, if a function F : C → U between normed spaces C, U is Fréchet differentiable
at �c, the Fréchet derivative of F at �c is the bounded linear operator D F �c : C → U that
attests this. In the finite-dimensional case, e.g. F : R

n → R
m with m, n ∈ N, the Fréchet

derivative D F �c is the Jacobian. It is well-known that if �ei is the i-th unit vector of the
canonical ordered base, the function λ�x . (D F �x) �ei provides the i th partial derivatives of F

while the directional derivative of F in the direction of �c is λ�x . (D F �x) �c. With these ideas
in mind, we define our framed Fréchet derivatives D

f
x e : S → U of expression e : S → U

in the direction of f : S → S with respect to x ::C ⇒ S as [21]

(D
f
x e) s =

(

D e↓x
s (getx s)

)

(getx (f s)).

That is, they are the directional derivatives of framed expressions e↓x
s in the direction of the

projection of f onto the continuous space C. These framed Fréchet derivatives capture the
intuitive analysis performed in Example 9. In fact, the following rules are sound:

(dinv-eq) (G ⇒ D
f
x e1 = D

f
x e2) ⇒ diff -inv x f G R≥0 0 (e1 = e2)

(dinv-leq) (G ⇒ D
f
x e1 ≤ D

f
x e2) ⇒ diff -inv x f G R≥0 0 (e1 ≤ e2)

(dinv-less) (G ⇒ D
f
x e1 ≤ D

f
x e2) ⇒ diff -inv x f G R≥0 0 (e1 < e2)

The rule (dinv-eq) asserts that showing that an equality is an invariant reduces to showing
that both sides of the equality change at the same rate over time. Similarly, the rules (dinv-leq)
and (dinv-less) state that showing that inequalities are invariants requires showing that the
rates of change on both sides preserve or augment the initial difference.

From the users’ perspective, D
f
x e operates as the derivative of expression e with respect

to the variables x according to the system of ODEs f . Well-known laws hold.

D
f
x k = 0 if x ♯ k, (1)

D
f
y x = 0 if x ⊲⊳ y, (2)

D
f
X x = 〈 f 〉s x if x ∈ X and getx�X is a bounded linear operator, (3)

D
f
x (e1 + e2) = (D

f
x e1)+ (D

f
x e2), (4)

D
f
x (e1 · e2) = (e1 ·D f

x e2)+ (D
f
x e1 · e2), (5)

D
f
x en = n · (D f

x e) · e(n−1), (6)

D
f
x ln(e) = (D

f
x e)/e if e > 0. (7)

In summary, users can read (1) and (2) as stating that the derivative of constants or variables
outside the frame of differentiation are 0. The law (3) says that the derivative of a variable
inside the frame is dictated by the ODE, and thus, users simply need to substitute according

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7aa6a58e057586085f9eb6d646d523c6b7c85cb5/Framed_Derivatives.thy#L139
https://github.com/isabelle-utp/Hybrid-Verification/blob/fa0d8409cffdc04b0b9769762124d360c0bdd07c/Framed_Derivatives.thy#L410
https://github.com/isabelle-utp/Hybrid-Verification/blob/fa0d8409cffdc04b0b9769762124d360c0bdd07c/Framed_Derivatives.thy#L424
https://github.com/isabelle-utp/Hybrid-Verification/blob/fa0d8409cffdc04b0b9769762124d360c0bdd07c/Framed_Derivatives.thy#L438
https://github.com/isabelle-utp/Hybrid-Verification/blob/7aa6a58e057586085f9eb6d646d523c6b7c85cb5/Framed_Derivatives.thy#L155

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 25 of 50 21

to f . The remaining laws are well-known differentiation properties such as linearity of
derivatives or the Leibniz rule.

Example 10 First, consider the various Fréchet derivatives of the expression z2. Using the
ODE z′ = 1 (below as a lens-subs [z � 1]), the resulting expression is

D
[z�1]
z z2 = 2 · (D[z�1]

z z) · z = 2 · 1 · z = 2z.

However, differentiating with respect to a different variable yields

D
[z�1]
y z2 = 2 · (D[z�1]

y z) · z = 2 · 0 · z = 0,

assuming y ⊲⊳ z. Finally, the ODE changes the final result

D
[z�2]
z z2 = 2 · (D[z�2]

z z) · z = 2 · 2 · z = 4z.

Therefore, certifying invariants for evolution commands reduces to computing framed Fréchet
derivatives and comparing the results which are often easily computable by rewriting. For
instance, to certify that z > 0 is an invariant of z′ = z2, it suffices to check

0 = D
[z�z2]
z 0 ≤ D

[z�z2]
z z = z2

by rule (dinv-less). We can now formally culminate the proof in Example 9. By rules (dinv–
less) and (dinv-leq) respectively, the assertions x > c and y ≥ x are invariants since

1 = D
[x�1,y�2]
x⊕y x ≥ D

[x�1,y�2]
x⊕y c = 0 and 2 = D

[x�1,y�2]
x⊕y y ≥ D

[x�1,y�2]
x⊕y x = 1.

Thus, this example and Example 9 illustrate how to certify invariants throughdL’s differential
induction method by applying our semantic framed (Fréchet) differentiation. ⊓⊔

5.4 Ghosts and Darboux Rules

Differential induction does not suffice to prove all invariant certifications [55, 58]. For
instance, applying rule (dinv-less) to the dynamics x ′ = −x of Examples 1–4 to show
invariance of x > 0 does not lead to a concluding proof state. Indeed, D

[x�−x]
x x = −x

is not necessarily greater or equal to 0 = D
[x�−x]
x 0. For those cases, differential dynamic

logic dL includes the differential ghost [55] rule which asserts the correctness of an evolu-
tion command given the correctness of a higher-dimensional but equivalent system of ODEs.
Here we generalise our previous formalisation of this rule [21] and use it to derive dL’s three
Darboux rules [55]. The latter concretise the ghost rule to the atomic cases of differential
induction: (in)equalities. Thus, they help prove invariance of predicates where differential
induction does not apply. Concretely, we formalise and prove the soundness of the rules:

(dG)
{P} {x ′ = f , y′ = A · y + b & G} {Q}
{∃v. P[v/y]} {x ′ = f & G} {∃v. Q[v/y]} ,

(dbx-eq)
D

f (y�−c·y)
x+L y e = c · e

{e = 0} {x ′ = f & G} {e = 0} ,

(dbx-ge)
D

f (y�−c·y)
x+L y e ≥ c · e

{e ∝0} {x ′ = f & G} {e ∝0} ,

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/2f79ded6abbc8efc9101b226a1577651ba29dd90/Hybrid_Programs/Diff_Dyn_Logic.thy#L212
https://github.com/isabelle-utp/Hybrid-Verification/blob/2f79ded6abbc8efc9101b226a1577651ba29dd90/Hybrid_Programs/Diff_Dyn_Logic.thy#L625
https://github.com/isabelle-utp/Hybrid-Verification/blob/2f79ded6abbc8efc9101b226a1577651ba29dd90/Hybrid_Programs/Diff_Dyn_Logic.thy#L521

 21 Page 26 of 50 J. J. H. y Munive et al.

where A is a square matrix, b is a vector, ∝∈ {>,≥}, x and y are independent variables
y ⊲⊳ x , and y does not appear in G or f : y ♯ (G, f). In contrast with their usual presenta-
tion, our semantic formalisation of the Darboux rules also requires the existence of a third
independent variable z such that z ♯ (G, f) because our proof requires two applications of
the (dG) rule. More work is needed to provide an alternative proof without these conditions,
and to generalise A and b in (dG) to be functions on x that do not mention y. The use of
matrices in the (dG) rule was possible due to our previous work on linear systems [19, 34]
but further generalisations are possible in terms of bounded linear operators.

Example 11 Below, we provide an alternative (dbx-ge)-based Hoare-style proof that I ⇔
(g ≥ 0) is an invariant for blood_sugar = loop (ctrl ; dyn) from Examples 2–4.

{I } loop (ctrl ; dyn) inv I {I }
⇐ {I } ctrl ; dyn {I }
⇐ {I } g := gM {I } ∧ {I } g′ = −g {I }
⇐ (g ≥ 0) (gM ≥ 0) ∧ {gM ≥ 0} g := gM {g ≥ 0} ∧D

[g�−g,y�−1·y]
g+L y g ≥ −1 · g

⇐ ⊤∧⊤∧−g ≥ −g ⇐ ⊤.

The second implication follows by (h-seq), the third one by (h-cons) and (dbx-ge), and the
last one is true by (h-assign), definitions, and the framed derivative rules. This concludes
the proof. As previously noted, differential induction cannot certify that I is an invariant of
g′ = −g. Although its invariance could be verified with the flow as in Example 3, it is not
always straightforward to find the solution to a system of ODEs (see Sects. 7 and 8). Hence,
in dL-style reasoning, one sometimes needs to embed the ODEs into a higher-dimensional
space to prove invariance. Despite extant Isabelle’s HOL-based proof strategies to certify
this example [49], our formalisation of the Darboux rules expands our pool of methods to
tackle similar problems in the style of dL. ⊓⊔

6 Reasoning Components

Here, we describe our recently improved support for proof automation in our verification
framework. Specifically, we discuss the proof methods we have developed using Isabelle’s
Eisbach tool [44] and the underlying formalisations of mathematical concepts required to
make the automation effective. That is, our methods not only employ the proof rules intro-
duced in Sects. 3.5 and 5, but we also add lemmas and formalisations in this section that aid
in making previously described procedures hidden from the user. Thus, our methods often
discharge any side conditions generated in the verification process.

As noted in Example 2, verification problems for hybrid programs often follow the pattern
loop (ctrl ; dyn) inv I . That is, they are an iteration of a discrete controller interven-
ing in a continuous dynamical system. We can therefore apply invariant reasoning with
the laws (h-loopi)() and (h-whilei)(), meaning that often the main task requires verifying
{I } ctrl ; dyn {I }. As foretold at the end of Sect. 3.5.2, two workflows can be applied to
verify this Hoare triple. If the system of ODEs is solvable, then we can insert the flow using
law (wlp-flow), and VCG becomes purely equational using the forward box laws (Sect. 3.5.1).
This approach is implemented in our proof method wlp_full (described below in Sect. 6.4).
Alternatively, if a solution is not available, we can find a suitable invariant I and use our dif-
ferential induction proof method dInduct, and its variants (Sect. 6.6), to verify {I } dyn {I }.
In the remainder, we describe the proof methods and formalisations that support each of these

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 27 of 50 21

workflows. Specifically, for wlp_simp we describe our automation of the certification of dif-
ferentiation, Lipschitz continuity, uniqueness of solutions, and the integration of computer
algebra systems (CASs) into IsaVODEs. On the dInduct side, we provide proof methods
for automating differential induction, weakening, and differential ghosts. Finally, we lay the
foundations for automating the proof obligations that depend on analysing real-valued func-
tions. We do this by formalising and proving well-known derivative test theorems ubiquitous
in calculus.

6.1 Automatic Certification of Differentiation

Our tactic vderiv for automatically discharging statements of the form f ′ = g for functions
f , g : R → C has been described before [50] but it is a component of other tactics and we have
extended its capabilities here. Essentially, by the chain rule of differential calculus, derivative
laws often require further certifications of simpler derivatives. A recursive procedure emerges
where the certification of f ′ t = g t with f = f1 ◦ · · · ◦ fn is determined by a list of proven
derivative rules (fi (h t))′ = f ′i (h t) · (h′ t) for i ∈ {1, . . . , n} together with t ′ = 1. The tactic
vderiv recursively applies these rules until it determines that

f ′ t = (f ′n t) ·
n−1
∏

i=1

f ′i ((fi+1 ◦ · · · ◦ fn) t).

Then, it uses Isabelle’s support for (the undecidable problem of) higher-order unification to
try to show that

g t = (f ′n t) ·
n−1
∏

i=1

f ′i ((fi+1 ◦ · · · ◦ fn) t).

For this work, we have added derivative rules for the real-valued exponentiation exp(−),
the square root

√−, the tangent tan(−) and cotangent cot(−) trigonometric functions, and
vectors’ inner products ∗R and norms ‖−‖. The tactic vderiv is an integral part of those
described below, and it is tacitly used in our example of Sect. 8.1.

6.2 Automatic Certification of Lipschitz Continuity

As evidenced in Examples 1–4, verification of hybrid systems might depend on knowing
that there is a unique solution for a system of differential equations. In practice, certifying
the existence and uniqueness of solutions with a general-purpose prover has required finding
the Lipschitz-continuity constant [21, 50]. If it exists, then by the Picard–Lindelöf theorem
(see Sect. 3.1), there is an interval around the initial time where solutions to the system
of ODEs are unique. Alternatively, a domain-specific prover can restrict the specification
language to a fragment where uniqueness is guaranteed [59] albeit limiting the space of
verifiable dynamics. Here, we provide the foundation for allowing a general-purpose prover
to automatically certify the uniqueness of solutions to IVPs. Namely, we formalise the well-
known fact that continuously differentiable (C1) functions are Lipschitz continuous. The
statement of the Isabelle lemma is shown below.

lemma c1_local_lipschitz:

fixes f::"real ⇒ (’a::{banach,perfect_space}) ⇒ ’a"

assumes "open S" and "open T"

and c1hyp: "∀ τ ∈ T. ∀ s ∈ S. D (f τ))→ D (at s within S)"

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/0cd56918e956f0268d2d7ddc43c20df3cde18b89/HS_Preliminaries.thy#L771

 21 Page 28 of 50 J. J. H. y Munive et al.

and "continuous_on S D"

shows "local_lipschitz T S f"

〈proof 〉

Then, a procedure emerges when applying (wlp-flow) or (fdia-flow):

1. Users try to rewrite a correctness specification that includes an evolution command. That
is they try to rewrite |(x ′ = f & G)

t0
U] Q s or |(x ′ = f & G)

t0
U 〉 Q s.

2. In order to guarantee that (wlp-flow) or (fdia-flow) are applicable, users need to show that
there is a flow ϕ for the ODEs x ′ = f . This is formalised in Isabelle/HOL as the proof
obligation local_flow_on f x T S ϕ.

3. Unfolding this predicate’s definition yields the obligation local_lipschitz T S f to show
that the vector field f is Lipschitz continuous on T .

4. Then, users can apply our lemma c1_local_lipschitz above which requires them to show
that (1) T and S are open sets and that (2) the derivative of f τ is some function D that (3)

is continuous on S. Users can either supply D or let Isabelle try to reconstruct it through
its automation later in the proof.

5. Users discharge the remaining proof obligations: openness, continuity, differentiability,
and original obligation with |(x ′ = f & G)

t0
U] Q s rewritten by (wlp-flow).

Example 12 We illustrate the procedure for certifying the uniqueness of solutions in Isabelle
below by formalising part of the argument of Example 3. Recall the definitions of the control
and dynamics of the problem.

abbreviation "ctrl ≡ IF g ≤ gm THEN g ::= gM ELSE skip"

abbreviation "dyn ≡ {g‘ = -g}"

abbreviation "flow τ ≡ [g � g * exp (- τ)]"

abbreviation "blood_sugar ≡ LOOP (ctrl; dyn) INV (g ≥ 0)"

The procedure appears in a partial apply-style Isabelle proof below. We label each proce-
dure step with its number and add Isabelle outputs after each apply command.

lemma "{g ≥ 0} blood_sugar {g ≥ 0}"
apply (wlp_simp) — the forward box |g′ = −g] 0 ≤ g appears
apply (subst fbox_solve[where ϕ=flow]) — Step (1)
Isabelle’s output: local_flow_on [g � g] g R R flow — Step (2)
apply ((clarsimp simp: local_flow_on_def)?, unfold_locales; clarsimp?)

Isabelle’s output: local_lipschitz R R (λt. [g � g]↓Su bs tg) — Step (3)
apply (rule c1_local_lipschitz) — Step (4)
Isabelle’s outputs: open R, open R, continuous_on R D,. . .

〈proof 〉 — Step (5)

In practice, certifying openness of R or intervals (a, b) = {x | a < x < b} with a ≤ b

is automatic thanks to Isabelle’s simplifier. Finding derivatives or checking continuity is
not always as straightforward but simple linear combinations are automatically certifiable.
We have bundled the procedure for certifying the uniqueness of solutions to IVPs in an
Isabelle tactic local_flow_on_auto described in Sect. 6.3 but below we focus on automating
the certification of Lipschitz continuity. ⊓⊔

In Example 1, we use the fact that continuously differentiable (C1) functions are Lipschitz
continuous to argue that a system of ODEs f has unique solutions by the Picard–Lindelöf the-
orem. Thus, formalisation of the rule c1_local_lipschitz is the first step towards automating

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 29 of 50 21

the certification of the uniqueness of solutions to IVPs and a crucial step in hybrid system veri-
fication (via flows) in general-purpose proof assistants. Next, we provide tactics c1_lipschitz
and c1_lipschitzI to make certification of Lipschitz continuity as seamless in VCG as in
pen and paper proofs, like that of Example 1. Our tactics automate an initial application,
in a backward reasoning style, of our lemma c1_local_lipschitz. The tactics discharge the
emerging proof obligations by replicating the behaviour of vderiv but using rules for continu-
ity and Fréchet differentiability available in Isabelle’s HOL-Analysis library. The difference
between both tactics is that c1_lipschitzI allows users more control by enabling them to
supply the derivative D. We exemplify c1_lipschitz in VCG below:

lemma "vwb_lens x *⇒ vwb_lens y *⇒ vwb_lens z

*⇒ x ⊲⊳ y *⇒ x ⊲⊳ z *⇒ y ⊲⊳ z
*⇒ local_lipschitz UNIV UNIV (λt::real. [x � $y, y � $z] ↓Su bs tx +L y s)"

by c1_lipschitz

lemma "vwb_lens x *⇒ local_lipschitz UNIV UNIV (λt. [x � 1 - $x] ↓Su bs tx s)"

by c1_lipschitz

lemma "vwb_lens x *⇒ x ⊲⊳ y
*⇒ local_lipschitz UNIV UNIV (λt::real. [x � - ($y * $x)] ↓Su bs tx s)"

by c1_lipschitz

In applications, we use our tactics on framed substitutions, e.g. [x � 1 - $x] ↓Su bs tx,
that represent systems of ODEs f . VCG also requires assumptions of lens-independence
and satisfaction of lens laws due to our use of shallow expressions and frames. These are
automatically provided by our dataspace Isabelle command and taken into account in our
c1_lipschitz tactics. The tactic c1_lipschitz is indirectly used in the verification problem in
Sect. 8.1. Both tactics automatically discharge proof obligations where the ODEs’ (the vector
field f) form a linear system of ODEs. This already yields polynomial and transcendental
functions as solutions ϕ to these systems. Accordingly, users can employ our tool support for
linear systems of ODEs [34]. We leave the automation of Lipschitz continuity certification
for non-linear systems as future work. Alternative proof strategies like differential induction
(see Sect. 8) are also available for cases when these tactics fail.

6.3 Automatic Certification of the Flow

In Sect. 6.2, we describe a procedure to verify the partial correctness of an evolution command
by supplying the flow to its system of ODEs. Here, we automate the flow certification part
of this procedure in a tactic local_flow_on_auto. This proof method calls our two previously
described tactics c1_lipschitz and vderiv. The first one discharges the Lipschitz continuity
requirement from the Picard–Lindelöf theorem to guarantee uniqueness of solutions to the
associated IVP. The tactic vderiv certifies that the supplied flow ϕ is a solution to the system of
ODEs. The following lines exemplify our tactic usage in hybrid systems verification tasks. Our
tactic is robust as it automatically discharges frequently occurring proof obligations. Notice
that for each Isabelle lemma below, there is a corresponding (local) Lipschitz continuity
example from Sect. 6.2.

lemma "vwb_lens x *⇒ vwb_lens y *⇒ vwb_lens z

*⇒ x ⊲⊳ y *⇒ x ⊲⊳ z *⇒ y ⊲⊳ z
*⇒ local_flow_on [x � $y, y � $z] (x +L y) UNIV UNIV

(λt. [x � $z * t2 / 2 + $y * t + $x, y � $z * t + $y])"

by local_flow_on_auto

123

 21 Page 30 of 50 J. J. H. y Munive et al.

lemma "vwb_lens x *⇒ local_flow_on [x � - $x + 1] x UNIV UNIV

(λt. [x � 1 - exp (- t) + $x * exp (- t)])"

by local_flow_on_auto

lemma "vwb_lens (x::real *⇒ ’s) *⇒ x ⊲⊳ y
*⇒ local_flow_on [x � - $y * $x] x UNIV UNIV

(λt. [x � $x * exp (- t * $y)])"

by local_flow_on_auto

Crucially, local_flow_on_auto certifies the exponential and trigonometric solutions
required for these ODEs as evidenced by its successful application on the examples above
and in the verification problem of Sect. 8.1.

6.4 Automatic VCGwith Flows

In addition to our derivative, Lipschitz continuity, and flow automatic certifications, we have
added various tactics for verification condition generation. The simplest one is wlp_simp.
It merely calls Isabelle’s simplifier adding Sect. 3’s wlp equational laws as rewriting rules
except those for finite iterations and while loops which it initially tries to remove with
invariant reasoning via (h-loopi) and (h-whilei). The tactic assumes that the hybrid program
has the standard shapeloop (ctrl; dyn) inv I iterating a discrete controller intervening in
a continuous dynamical system as seen in Example 2. From this initial proof method, we create
two tactics for supplying flows: the tactic wlp_flow takes as input a previously proven flow-
certification theorem asserting our predicate local_flow_on. Alternatively, users can try to
make this certification automatic with the tactic wlp_solvewhich requires as input a candidate
solution ϕ. It calls local_flow_on_auto after applying wlp_simp and trying (wlp-flow) with the
input ϕ. The intention is that both wlp_flow and wlp_solve leave only proof obligations that
require reasoning of first-order logic of real numbers. Complementary tactics wlp_full and
wlp_expr_solve try to discharge these remaining proof obligations automatically leaving raw
Isabelle terms in the proof obligations without our syntax translations. We have also supplied
simple tactics for algebraic reasoning more interactively. Specifically, we have provided a
tactic for distributing factors over additions and a tactic for simplifying powers in multi-
variable monomials. See Sect. 8.1 for the application of these in a verification problem.

6.5 Solutions from Computer Algebra Systems

We have integrated two Computer Algebra Systems (CASs), namely SageMath and the
Wolfram Engine, into Isabelle/HOL to supply symbolic solutions to ODEs. The user can
make use of the integration via the find_local_flow command, which supplies a solution
to the first ODE it finds within the current subgoal.

Below, we show an application of our integration and its corresponding output in Isabelle.
Users can click the greyed-out area to automatically insert the suggestion.

lemma local_flow_example:

"{x > 0} x ::= 1; {x´ = 1} {x > 1}"

find_local_flow

Output:

Calling Wolfram...

λt. [x � t + $x]

try this: apply (wlp_solve "λt. [x � t + $x]")

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 31 of 50 21

Here, our plugin requests a solution to the ODE x ′ = 1 from the Wolfram Engine. A
λ-abstraction denotes the solution, which inputs the current time and has in its body the
constructed substitution (see lens-subs). It provides the value for each continuous variable at
time t . In this case, the substitution [x � t + x] represents the solution x t = t + x 0.

Our integration performs the following steps in order to produce a solution:

1. Retrieve an Isabelle term describing the system of ODEs.
2. Convert the term into an intermediate representation.
3. Use one of the CAS backends to solve the ODE.
4. Convert the solution to an Isabelle term.
5. Certify the solution using the wlp_solve Isabelle tactic.

We consider each of these stages below.

Intermediate representation

To have an extensible and modular interface, we implement (1) an intermediate data structure
for representing ODEs and their solutions, and (2) procedures for translating back and forth
between Isabelle and our intermediate representation. This allows us to capture the structure
of the ODEs without the added overhead of Isabelle syntax. It also gives us a unified interface
between Isabelle and any CAS.

Our plugin assumes that a system of ODEs is expressed as a substitution of the form
[x � e, y � f , . . .], as described in Sect. 5.2. Each expression (e, f , . . .) gives the derivative
expression for each corresponding variable, potentially in terms of other variables. Naturally,
for an ODE, these expressions are formed using only arithmetic operators and mathematical
functions. We therefore derive the following constrained grammar for arithmetic expressions:

datatype AExp = NConst of string | UOp of string * AExp |

BOp of string * AExp * AExp | NNat of int | NInt of int |

NReal of real | CVar of string | SVar of string | IVar

NConst represents numeric constants, such as e or π . UOp is for unary operations and BOp
is for binary operations. Both of these take a name, and the number of required parameter
expressions. The name corresponds to the internal name for the operator in Isabelle/HOL. The
operator “+”, for example, has the name Groups.plus_class.plus. We then have three
constructors for numeric constants: NNat for naturals, NInt for integers and NReal for reals.
We have three characterisations of variables: CVar are arbitrary but fixed variables, SVar
are mutable (state) variables, and IVar represents the independent variable of our system,
usually time.

A system of ODEs is then modelled simply as a finite map from variable names to derivative
expressions. Converting back and forth between Isabelle terms (i.e. elements of the term
datatype in Isabelle/ML) and the AExp datatype consists of recursing through the structure
of the term, using a lookup table to translate each named arithmetic function.

Integrating a CAS into IsaVODEs consists of three separate components: a translation
from the intermediate representation to the CAS input format, an interface with the CAS to
obtain a solution, and a translation from the solution back into the required format.

Wolfram Engine The Wolfram Engine is the CAS behind WolframAlpha and Mathemat-
ica [76]. It is one of the leading CASs on the market, with powerful features for solving
differential equations, amongst many other applications. The Wolfram language provides the
DSolve function which produces solutions to various kinds of differential equations.

123

 21 Page 32 of 50 J. J. H. y Munive et al.

The basic building block for this integration is a representation of Wolfram expressions
as an ML datatype. In the Wolfram language, everything is an expression [75], so this is
sufficient for a complete interface. We represent these expressions as follows:

datatype expr = Int of int

| Real of real

| Id of string

| Fun of string * expr list

| CurryFun of string * expr list list

Real and Int represent real and integer numbers respectively. Id represented an identifiers,
and Fun represents functions with only one list of arguments, which are distinguished from
curried functions CurryFun with multiple sets of arguments.

Our approach for translation from AExp to expr is the following:

1. Generate an alphabetically ordered variable mapping to avoid name clashes and ease
solution reconstruction.

2. Traverse the expression tree and translate each term to Wolfram.
3. Wrap in the Wolfram DSolve function, supplying the state and independent variables

along with our ODE.

Once we have a well-formed Wolfram expression, we use the wolframscript command-
line interface to obtain a solution in the form of a list of Wolfram Rule expressions, which
are isomorphic to our substitutions. We can parse the result back into the expr type, and
translate this into the AExp type using a translation table for function names and the variable
name mapping we constructed.

SageMath SageMath [72] is an open-source competitor to the Wolfram Engine. It is accessed
via calls to a Python API. It integrates several open-source CASs to provide its functional-
ity, choosing the best implementation for a particular symbolic computation. This makes
SageMath an ideal target for integration with Isabelle.

The translation process is similar to our Wolfram Engine integration, but we also apply
some preprocessing to the ODEs to make the solving more efficient. Since the CASs integrated
with SageMath are better at solving smaller ODEs, we can improve their performance by
rewriting the following kinds of ODEs:

1. Systems of ODEs from a higher order ODE (where an extra variable has been introduced
to make all derivatives first order) can be recast into their higher-order form. For example,
the ODE x ′ = 2x + y, y′ = x can be rewritten as x ′′ = 2x + x ′.

2. Independent equations that can be solved independently by the CAS. For example, in the
system x ′ = x, t ′ = 1, the variables x and t can be solved independently.

Capabilities There are two main cases where the integration fails to produce an Isabelle
certification for a solution, despite the CAS returning a solution.

The first case happens when the provided solution contains a function not implemented
in Isabelle. Instances of this case include functions defined in terms of integrals such as the
error function or the Bessel function.

The second case concerns solutions which are undefined somewhere within their domain.
Examples of this case include divisions by 0, which users can address by manually specifying
the domain of the solution in Isabelle.

Despite these shortcomings, the CAS integration proves very effective at leveraging the
solutions provided by CASs, as a large class of ODEs can be automatically solved and
certified with minimal input from the user.

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 33 of 50 21

6.6 Automatic Differential Invariants

We have developed three main Eisbach proof methods for automating differential invariant
proofs: dWeaken, dInduct, and dGhost, which implement differential weakening, induction,
and ghosts, respectively [50, 61]. We show the Eisbach declaration for some of them below.
The first method, dWeaken, applies the differential weakening law (theorem diff_weak_on) [59]
to prove {P} {x ′ = f | G} {Q}, when G ⇒ Q. Proof of the implication is attempted via the
auto proof method.

method dWeaken = (rule_tac diff_weak_on_rule; expr_simp;

auto simp add: field_simps)

Application of differential induction (see Sect. 5.3) is automated by the dInduct proof
method. Conjunctions and disjunctions are split via (h-conji) and (h-disji) (in Isabelle:
hoare_invs). To prove atomic goals {I } {x ′ = f | G} {I }, our method (1) applies rules (dinv-
eq)-(dinv-less) to produce a framed derivative expression (in Isabelle: lderiv_rules), and (2)
calculates derivatives using the laws (1)-(7) (i.e. framed_derivs below), substitution laws, and
basic simplification laws. This yields derivative-free equality or inequality predicates. The
dInduct method uses only the simplifier for calculating invariants, and so it is both efficient
and yields readable VCs.

method dInduct = ((intro hoare_invs)?; subst fbox_diff_inv_on;

rule_tac lderiv_rules; simp add: framed_derivs ldifferentiable closure

usubst unrest_ssubst unrest usubst_eval)

For cases requiring deduction to solve the VCs, we have implemented dInduct_auto,
which applies expr-auto after dInduct, plus further simplification lemmas fromHOL-Analysis.
Ultimately such heuristics should be based on decision procedures [10, 17, 33, 42], as oracles
or as verified components.

Should dInduct_auto fail, our diff_inv_on methods use the vector derivative laws from
Isabelle’s ODEs library [35, 50]. These are more interactive methods as users need to provide
the derivatives of both sides of the (in)equality. Yet, this provides more fine-grained control
and makes the tactics more likely to succeed.

While dInduct_auto suffices for simpler examples, differential induction must often be
combined with weakening and cut rules. These rules have been explained elsewhere [50,
61]. This process is automated by a search-based proof method called dInduct_mega. The
following steps are executed iteratively until all goals are proved or no rule applies: (1) try
any fact labelled with attribute facts, (2) try differential weakening to prove the goal, (3)
try differential cut [58] to split it into two differential invariants, (4) try dInduct_auto. The
rules are applied using backtracking so that if one rule fails, another one is tried.

method dInduct_mega uses facts =

(fact facts — (1) Try any facts we have provided
| (dWeaken ; force) — (2) Try differential weakening
| rule_tac diff_cut_on_split’

| rule_tac diff_cut_on_split — (3) Try differential cut (two options)
| rule_tac hoare_if_then_else_inv

| (dInduct_auto) — (4) Try differential induction
)+

The method dInduct_mega is called by dInv, which we applied in Sect. 2. The dInvmethod
allows us to prove a goal of the form {P} {x ′ = f | G} {Q} by supplying an assertion I ,

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/1ecce830644fd9137cc21622f306fa176497f2dc/Hybrid_Programs/Proof_Automation.thy#L248
https://github.com/isabelle-utp/Hybrid-Verification/blob/1ecce830644fd9137cc21622f306fa176497f2dc/Hybrid_Programs/Proof_Automation.thy#L206

 21 Page 34 of 50 J. J. H. y Munive et al.

and proving that this is an invariant of {x ′ = f | G} and also that P ⇒ I . This method also
requires us to apply differential cut and weakening laws.

Finally, the differential ghost law (dG) is automated through the dGhost proof method. We
have complemented these tactics with sound rules from differential dynamic logic. Together
with the tactics described in this Section, they enable users to seamlessly prove properties
about hybrid systems in the style of dL. Yet, users of the general-purpose prover can also
use the interactive style provided by Isabelle’s Isar scripting language [49]. See Sect. 8.2 for
an example where our tactics largely automate a proof of invariance.

6.7 Derivative Tests

To culminate this section, we lay the foundations for further automating the verification
process in our framework. Both wlp_full and dInduct methods cannot certify complex real
arithmetic proof obligations after discharging any derivative-related intermediate steps. In
many cases, this requires determining the local minima and maxima of expressions and
using them for further argumentation. A well-known application of differentiation is the
analysis of real-valued functions: determining their local minima and maxima or where they
are increasing or decreasing. Optimisation problems in physics and engineering frequently
require this kind of analysis. Behind it, there are two key results generally called the first

and second derivative tests. We formalise and prove these basic theorems in Isabelle/HOL,
setting the foundation for automatic certification of the analysis of real-valued functions (see
Sect. 8.3). We start by defining increasing/decreasing functions and local extrema:

definition "increasing_on T f ←→ (∀ x∈T. ∀ y∈T. x ≤ y −→ f x ≤ f y)"

definition "decreasing_on T f ←→ (∀ x∈T. ∀ y∈T. x ≤ y −→ f y ≤ f x)"

definition "strict_increasing_on T f ←→ (∀ x∈T. ∀ y∈T. x < y −→ f x < f y)"

definition "strict_decreasing_on T f ←→ (∀ x∈T. ∀ y∈T. x < y −→ f y < f x)"

definition "local_maximum_at T f x ←→ (∀ y∈T. f y ≤ f x)"

definition "local_minimum_at T f x ←→ (∀ y∈T. f y ≥ f x)"

We also prove simple consequences of these definitions on closed intervals [a, b] denoted
in Isabelle as {a..b}. For instance, we prove the transitivity of the increasing and decreasing
properties over consecutive intervals and their relationship to local extrema. We exemplify
some of these results below and refer to our repository for all proved properties.
lemma increasing_on_trans:

fixes f :: "’a::linorder ⇒ ’b::preorder"

assumes "a ≤ b" and "b ≤ c"
and "increasing_on {a..b} f" and "increasing_on {b..c} f"

shows "increasing_on {a..c} f"

unfolding increasing_on_def

by (auto simp: Ball_def) (metis dual_order.trans nle_le)

lemma increasing_on_local_maximum:

fixes f :: "’a::preorder ⇒ ’b::preorder"

assumes "a ≤ b" and "increasing_on {a..b} f"

shows "local_maximum_at {a..b} f b"

by (auto simp: increasing_on_def local_maximum_at_def)

lemma incr_decr_local_maximum:

fixes f :: "’a::linorder ⇒ ’b::preorder"

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7aa6a58e057586085f9eb6d646d523c6b7c85cb5/HS_Preliminaries.thy#L595

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 35 of 50 21

assumes "a ≤ b" and "b ≤ c"
and "increasing_on {a..b} f" and "decreasing_on {b..c} f"

shows "local_maximum_at {a..c} f b"

unfolding increasing_on_def decreasing_on_def local_maximum_at_def

by auto (metis intervalE linorder_le_cases)

Crucially, the proofs of all these results only require unfolding definitions and calling
Isabelle’s auto proof method and Sledgehammer tool [53] to discharge the last proof obliga-
tion. We then use our definitions of increasing and decreasing functions to state and prove
the first derivative test. It states that if the derivative of a function is greater (resp. less) than
0 over an interval T , then the function is increasing (resp. decreasing) on that interval. The
simple 2-line proof above uses an intermediate lemma has_vderiv_mono_test hiding our full
proof of this basic result.

lemma first_derivative_test:

assumes T_hyp: "is_interval T"

and d_hyp: "D f = f’ on T"

shows "∀ x∈T. (0::real) ≤ f’ x *⇒ increasing_on T f"

and "∀ x∈T. f’ x ≤ 0 *⇒ decreasing_on T f"

unfolding increasing_on_def decreasing_on_def

using has_vderiv_mono_test[OF assms] by blast

For the second derivative test, we formalise a frequently used property of continuous real-
valued functions. Namely, that if a function maps a point t to some value above (resp. below)
a threshold c, then there is an open set around t filled with points mapped to values above
(resp. below) the threshold. This result and similar ones in terms of open balls with fixed
radius around t appear in our formalisations. For these, we also complement Isabelle’s library
of topological concepts with the definition of neighbourhood and some of its properties and
characterisations.

definition "neighbourhood N x ←→ (∃ X. open X ∧ x ∈ X ∧ X ⊆ N)"

lemma continuous_on_Ex_open_less:

fixes f :: "’a :: topological_space ⇒ real"

assumes "continuous_on T f"

and "neighbourhood T t"

shows "f t > c *⇒ ∃ X. open X ∧ t ∈ X ∧ X ⊆ T ∧ (∀ τ∈X. f τ > c)"

and "f t < c *⇒ ∃ X. open X ∧ t ∈ X ∧ X ⊆ T ∧ (∀ τ∈X. f τ < c)"

Finally, the second derivative test states that if the derivative of a real-valued function is
0 at a point t , and its second derivative is continuous and positive (resp. negative) at t , then
the original function has a local minimum (resp. maximum) at t .

lemma second_derivative_test:

assumes "continuous_on T f’’"

and "neighbourhood T t"

and f’: "D f = f’ on T"

and f’’: "D f’ = f’’ on T"

and "f’ t = (0 :: real)"

shows "f’’ t < 0

*⇒ ∃ a b. a<t ∧ t<b ∧ {a--b} ⊆ T ∧ local_maximum_at {a--b} f t"
and "f’’ t > 0

*⇒ ∃ a b. a<t ∧ t<b ∧ {a--b} ⊆ T ∧ local_minimum_at {a--b} f t"
unfolding local_maximum_at_def local_minimum_at_def

using has_vderiv_max_test[OF assms] has_vderiv_min_test[OF assms]

by blast+

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7aa6a58e057586085f9eb6d646d523c6b7c85cb5/HS_Preliminaries.thy#L671
https://github.com/isabelle-utp/Hybrid-Verification/blob/7aa6a58e057586085f9eb6d646d523c6b7c85cb5/HS_Preliminaries.thy#L707

 21 Page 36 of 50 J. J. H. y Munive et al.

As before, we provide the complete argument in the proof of our lemmas has_vderiv_max_test
and has_vderiv_min_test. We refer interested readers to our repository for complete results.

Sect. 8 provides an example where we use these derivative tests to reason about real-

arithmetic properties and establish the progress of a dynamical system. Beyond that, this
subsection showcases the openness of our framework. Anyone can formalise well-known
analysis concepts that provide background theory engineering to increase proof automation
or that generalise extant verification methods.

We have presented various tactics that increase proof automation for hybrid systems
verification in our framework. The automation supports both, solution and invariant-based
reasoning. The definition of the tactics and their testing covers more than 500 lines of Isabelle
code. From these 500 lines, the tactics setup (definitions and lemmas) comprises approxi-
mately 200 lines. This number does not take into account our described formalisations.
The tactics have simplified our verification experience by discharging certifications of the
uniqueness of solutions or differential inductions. We have used them extensively in a set of
66 hybrid systems verification problems. See Sect. 7 for more details.

7 Evaluation

For the evaluation of our verification framework, we have tackled 66 problems of the Hybrid
Systems Theorem Proving (HSTP) category from the 9th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH22) [47] Friendly Competition. We
provide several classifications for them below:

• Regular, continuous or hybrid: Of the 66 problems, 5 use regular programs, 32 are
verifications of continuous dynamics and 29 are verifications of hybrid programs.

• Purpose: The first 9 problems test the tool’s ability to handle the interactions between
hybrid programs’ constructors through various orders of loops, tests, assignments and
dynamics. The next 30 problems test the tool’s ability to tackle different kinds of con-
tinuous dynamics: one evolution command after another, an evolution command with
many variables at once, and dynamics that in dL require invariants, ghosts, differential
cuts, weakenings, or Darboux rules. 21 problems come from tutorials [57, 62] (9 and 12
respectively) on how to model and prove hybrid systems in dL. They include event and
time-triggered controls for straight-line motion and two-dimensional curved motion. 3
hybrid programs come from a case study on the verification of the European train control
system protocol [54]. The remaining 3 involve linear and nonlinear dynamics.

• Competition’s categories: Relative to the competition, we took 61 (all) examples from
the Design Shapes category that test the tools’ verification features. We took 2 problems
from the nonlinear continuous models collected from the literature on continuous safety
verification and invariant generation for nonlinear systems, and we took 3 problems from
the case study benchmarks that test the tools’ scalability and efficiency on examples of
significant size.

• Dynamics: 40 problems have linear dynamics, 21 have nonlinear dynamics, and the
remaining 5 are regular programs (without ODEs). The average of continuous variables
per problem is 1.9 out of 3.8 with a maximum of 6 continuous variables and 13 variables
in a problem. See our Appendix A for more details.

We fully proved in Isabelle 58 of the 66 problems. Of the remaining 8, we proved 4 with
our verification framework while leaving some arithmetic certifications to external computer

123

https://github.com/isabelle-utp/Hybrid-Verification/blob/7aa6a58e057586085f9eb6d646d523c6b7c85cb5/HS_Preliminaries.thy#L801
https://github.com/isabelle-utp/Hybrid-Verification/blob/c6b893eb66ea9c91f116cd4145367f1b99735a23/Hybrid_Programs/Verification_Examples/ARCH2022_Examples.thy#L31

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 37 of 50 21

algebra systems. We could not find the proofs for 2 of the remaining 4 problems while the
last 2 require the generalisations of the Ghost rule discussed in Sect. 5.4 or a different proof
method [49]. Restricting the comparison to those benchmark problems in the Design Shapes
category of the competition [47] in the proof-interaction/scripted format, KeYmaera X reports
solving 60 of the 61 problem examples. Their only unsolved problem requires a witness for
an existential quantifier that no team could supply. Similarly, the HHLPy prover reports 50
of the 61 design shapes problems successfully solved. Their main issue was the difficulty of
translating problems from a dL specification to an HHLPy specification. Finally, we solved
59 of 61 of the problems in that category, with 55 of them fully proved without involving
a CAS. For an in-depth comparison, we refer readers to the competition’s full report [47].
Thus, despite its recent implementation, the performance of IsaVODEs is comparable to
state-of-the-art tools thanks to the advantages of using a well-established prover like Isabelle
to build verification tools.

In general, our first approach to solving all 66 problems was a combination of our wlp’s
tactics with a supplied solution. Yet, we were only able to solve 39 of them with this approach.
The remaining 19 problems required us to employ higher-order logic (HOL) methods or
dL techniques like differential induction, ghosts, cuts, weakenings or Darboux rules. In
particular, we had to use Isabelle’s HOL and analysis methods to tackle three nonlinear
dynamics problems which immediately require us to increase our interaction with the tool.
A generalisation of our invariance certification methods (Sect. 5.4) would alleviate this [49]
because as solutions to the systems of ODEs become more complex, their certification is
more difficult. This explains why invariant reasoning becomes prominent in the remaining
16 solved problems. Readers can see our Appendix A for tables summarising the performance
of IsaVODEs per problem.

For 14 problems, we provided several proofs to exemplify our tool’s diversity of methods.
Between providing solutions and using differential induction, neither method is compara-
tively easier to use than the other in the 14 problems tested. Most of the time they end up
with the same number of lines of code (LOC) per proof and whenever one has more LOC for
a problem, a different problem favours equally the other method. Quantitatively speaking,
we used the solution method 37 times and the induction method 26 times. We used differ-
ential ghosts 4 times and our Darboux rule twice. In terms of LOC, the average length of
the statement of a problem is 3.72 lines with a median and mode of 1 totalling 246 LOCs
for all problem statements. The average number of LOC of the problems’ shortest proofs
is 8.11 with a median of 3 and a mode of 1 totalling 511 LOC for problems’ proofs. The
shortest proof for a problem is 1 while the longest is 98 LOC. These figures do not take
into account any additional lemmata about real numbers necessary for having fully certified
proofs in Isabelle/HOL. In general, 23 of the 62 (at least partially) solved problems require the
assertion of real arithmetical facts for their full verification. Thus, automation of first-order
logic arithmetic for real numbers in general-purpose ITPs is highly desired for the scalability
of end-to-end verification within them. Otherwise, trust in computer algebra tools will be
necessary.

Our additions of tactics to the verification framework have highly reduced the number of
LOC to verify a problem as evidenced by the fact that 48 benchmark problems are solved
with a single call to one of our tactics. Our addition of the fact that C1-functions are Lipschitz
continuous has largely contributed to the success of this automation: 18 of our proofs call our
tactic wlp_solve and 9 use local_flow_on_auto. Finally, thanks to our shallow expressions
and our nondeterministic assignments, our formalisation of the benchmark problems is now
fully faithful to the ARCH22 competition-required dL syntax.

123

 21 Page 38 of 50 J. J. H. y Munive et al.

8 Examples

In this section, we showcase the benefits of our contributions by applying them in some of
the ARCH22 competition benchmarks and examples of our own.

8.1 Rotational Dynamics 3

Our first problem illustrates the integration of all our features for ODEs. It describes the
preservation of I ⇔ d2

1 + d2
2 = w2 · p2 ∧ d1 = −w · x2 ∧ d2 = w · x1 for the ODEs

x ′1 = d1, x ′2 = d2, d ′1 = −w · d2, d ′2 = w · d1. Observe that the relationship between d1 and
d2 in the system of ODEs is similar to that of scaled sine and cosine functions. Moreover, the
invariant states a Pythagorean relation among them. Thus, we can expect the flow to involve
trigonometric functions and the problem to be solved with differential invariants in dL due to
its previously limited capabilities to explicitly state these functions [29]. Indeed, differential
induction in Isabelle/HOL can prove this example in one line:

lemma "(d12 + d22 = w2 * p2 ∧ d1 = - w * x2 ∧ d2 = w * x1)e ≤
|{x1‘ = d1, x2‘ = d2, d1‘ = - w * d2, d2‘ = w * d1}]

(d12 + d22 = w2 * p2 ∧ d1 = - w * x2 ∧ d2 = w * x1)"
by (intro fbox_invs; diff_inv_on_eq)

In the proof above, the application of the lemma fbox_invs as an introduction rule splits the
Hoare-triple in three invariant statements, one for each conjunct. The semicolon indicates
to Isabelle that the subsequent tactic should be applied to all emerging proof obligations.
Therefore, our tactic diff_inv_on_eq implementing differential induction for equalities (dinv-
eq) is applied to each of the emerging invariant statements, which concludes the proof.

Nevertheless, we can also tackle this problem directly via the flow. Despite the fact that
we suspect that the solutions involve trigonometric functions, obtaining the general solution
is time-consuming. Therefore, we call our integration between the Wolfram language and
Isabelle/HOL find_local_flow to provide the solution for us. We can use the supplied solution
in the proof.

lemma "w
= 0 *⇒ (d12 + d22 = w2 * p2 ∧ d1 = - w * x2 ∧ d2 = w * x1)e ≤
|{x1‘ = d1, x2‘ = d2, d1‘ = - w * d2, d2‘ = w * d1}]

(d12 + d22 = w2 * p2 ∧ d1 = - w * x2 ∧ d2 = w * x1)"
find_local_flow

apply (wlp_solve "λt. [d1 � $d1 * cos (t * w) + - 1 * $d2 * sin (t * w),

d2 � $d2 * cos (t * w) + $d1 * sin (t * w),

x1 � $x1 + 1/w * $d2 * (- 1 + cos (t * w)) + 1/w * $d1 * sin (t * w),

x2 � $x2 + 1/w * $d1 * (1 + - cos (t * w)) + 1/w * $d2 * sin (t * w)]")

apply (expr_auto add: le_fun_def field_simps)

subgoal for s t

apply mon_pow_simp

apply (mon_simp_vars "getx1 s" "getx2 s")

using rotational_dynamics3_arith by force

done

The first line of the proof applies our tactic wlp_solve with the suggested solution from
find_local_flow. The solution’s syntax specifies one expression per variable in the system of
ODEs. As explained in Sect. 6, the tactic wlp_solve applies the rule (wlp-flow), certifies that
the corresponding vector field is Lipschitz-continuous by calling our tactic c1_lipschitz, and
certifies that it is indeed the solution to the system of ODEs via our tactic vderiv. The subgoal

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 39 of 50 21

command allows us to specify the name of the variables in the proof obligation so that we can
use those names in our subsequent tactics. Our new tactic mon_pow_simp simplifies powers in
the monomial expressions of the proof obligation. In the next line, our tactic mon_simp_vars
calls mon_pow_simp twice but reorders factors in the order of its inputs getx1 s and getx2
s. The last line supplies the lemma rotational_dynamics3_arith (below) whose proof was
provided by Sledgehammer [53].

lemma rotational_dynamics3_arith:

"w2 * (getx1 s)
2 + w2 * (getx2 s)

2 = p2 * w2

*⇒ w2 * ((cos (t * w))2 * (getx1 s)
2)

+ (w2 * ((sin (t * w))2 * (getx1 s)
2)

+ (w2 * ((cos (t * w))2 * (getx2 s)
2)

+ w2 * ((sin (t * w))2 * (getx2 s)
2))) = p2 * w2"

〈proof 〉

This example shows the versatility of using general-purpose proof assistants for hybrid
systems verification. Users can provide automation methods for invariant or flow certification.
This allows the integration of unverified tools into the verification process. Fast certification
enables ITPs to quickly validate CAS’ inputs. In terms of our contributions, this example
showcases our shallow embedding’s intuitive syntax, our integration of the Wolfram language
for suggesting simple solutions, and our tactics automating VCG, C1-lipschitz continuity,
derivatives certification, and real-arithmetic reasoning.

8.2 Dynamics: Conserved Quantity

We prove that the inequality I ⇔ x4
1 · x2

2 + x2
1 · x4

2 − 3 · x2
1 · x2

2 + 1 ≤ c is an invariant of
the system

f =
{

x ′1 = 2 · x4
1 · x2 + 4 · x2

1 · x3
2 − 6 · x2

1 · x2,

x ′2 = −4 · x3
1 · x2

2 − 2 · x1 · x4
2 + 6 · x1 · x2

2 ,

where we abuse notation and “equate” the vector field with its representation as a system
of ODEs. In contrast with the previous benchmark, the solution to this system of ODEs is
not easy to describe analytically. The following is a subexpression to the solution for x2

according to Wolfram|Alpha
⎛

⎜

⎜

⎝

∫ t

1

1

√

τ 2(τ 6 − 6τ 4 + 9τ 2 + c1)

√

−τ 4+3τ 2−
√

τ 2(τ 6−6τ 4+9τ 2+c1)

τ 2

dτ

⎞

⎟

⎟

⎠

−1

.

The solution for x2 involves another four factors with integrals of fractions with denominators
having square roots of square roots. Instead of computing these solutions and certifying them
in Isabelle, we perform differential induction. We show that I is an invariant by proving
that the framed Fréchet derivatives on both sides of the inequality are 0. In Isabelle/HOL,
certification of this reasoning is automatic due to our dInduct_mega tactic.

lemma "(x14*x22 + x12*x24 - 3*x12*x22 + 1 ≤ c)e ≤
|{x1‘ = 2*x14*x2 + 4*x12*x23 - 6*x12*x2,
x2‘ = -4*x13*x22 - 2*x1*x24 + 6*x1*x22}]

(x14*x22 + x12*x24 - 3*x12*x22 + 1 ≤ c)"
by dInduct_mega

123

 21 Page 40 of 50 J. J. H. y Munive et al.

Although the problem is simpler through differential induction, readers should be aware
that the simplicity of proving this invariance in Isabelle benefits greatly from our increased
automation. We describe below the automated steps to conclude the proof.

1. The inequality is transformed into a proof of invariance diff -inv (x1 ⊕ x2) f ⊤R+ 0 I

2. Backward reasoning with (dinv-leq) requires showing D
f
x1⊕x2

e ≤ D
f
x1⊕x2

c

3. The right hand side reduces to 0 while the simplifier performs the following rewrites on
the left-hand side e = x4

1 · x2
2 + x2

1 · x4
2 − 3 · x2

1 · x2
2 + 1 (abbreviating x ′i = D

f
x1⊕x2

xi)

D
f
x1⊕x2

e = 4 · x3
1 · x2

2 · x ′1 + 2 · x4
1 · x2 · x ′2 + 2 · x1 · x4

2 · x ′1
+ 4 · x2

1 · x3
2 · x ′2 − 6 · x1 · x2

2 · x ′1 − 6 · x2
1 · x2 · x ′2

= 8 · x7
1 · x3

2 + 16 · x5
1 · x5

2 − 24 · x5
1 · x3

2 − 8 · x7
1 · x3

2 − 4 · x5
1 · x5

2

+ 12 · x5
1 · x3

2 + 4 · x5
1 · x5

2 + 8 · x3
1 · x7

2 − 12 · x3
1 · x5

2 − 16 · x5
1 · x5

2

− 8 · x3
1 · x7

2 + 24 · x3
1 · x5

2 − 12 · x5
1 · x3

2 − 24 · x3
1 · x5

2

+ 36 · x3
1 · x3

2 + 24 · x5
1 · x3

2 + 12 · x3
1 · x5

2 − 36 · x3
1 · x3

2

= 0

4. Since D
f
x1⊕x2

e = 0 ≤ 0 = D
f
x1⊕x2

c, the proof ends satisfactorily.

Thus, our tactic dInduct_mega hides various logical, algebraic, differential and numerical
computations and certifications. This example showcases the scalability of hybrid systems
verifications in interactive theorem provers. Namely, with adequate tactic implementations,
ITPs become more automated tools and easier to use over time.

8.3 Reachability of a Rocket Launch

Consider a rocket’s vertical liftoff and assume it loses fuel at a constant rate of k > 0
kilograms per second starting with m0 > k kilograms while its acceleration is equal to the
amount of fuel left in it. These assumptions do not accurately model rockets’ liftoff; however,
they suffice to produce a behaviour approximating the observed phenomena, see Fig. 2, and
facilitate the presentation of our contributions. The corresponding system of ODEs and its
solution are

f =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

m′ = −k,

v′ = m,

y′ = v,

t ′ = 1,

ϕ τ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

m τ = −k · τ + m0,

v τ = −k · τ 2

2 + m0 · τ = τ · (−k · τ
2 + m0),

y τ = −k · τ 3

6 + m0 · τ 2

2 = τ 2

2 · (−k · τ
3 + m0),

t τ = τ,

where m is the fuel’s mass, v is the rocket’s velocity, y is its altitude, and t models time.
We study the rocket’s behaviour before it reaches a maximum altitude with its first-stage

propulsion because the second stage should begin before the rocket starts falling. We therefore
prove two things about the initial propulsion stage. The first is that no matter which height
h we consider strictly below the maximum altitude H = 2m3

0/(3k2), there will always be
a state of the rocket greater than h approaching H . The second is that all scenarios with a
single propulsion from the ground lead to altitudes lower than H . Using the abbreviations
“odes” for f and “flow” for ϕ, the verification of the first specification is now possible thanks
to our implementation of forward diamonds.

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 41 of 50 21

Fig. 2 Depiction of the rocket behaviour assuming m0 > k

The proof starts with the law (fdia-flow) using the lemma local_flow_on_rocket assert-
ing that ϕ is the flow for f . The proof of this is now automatic due to our tactic
local_flow_on_auto. The second line of the proof for our specification culminates with some
arithmetical reasoning, where we provide the time 2m0/k as the witness for the existential
quantifier in the law (fdia-flow). That is, the time for the second 0-intercept of the velocity
when the maximum altitude is reached.

lemma local_flow_on_rocket:

"local_flow_on [y�$v, v�$m, t�1, m�-k] (y+Lv+Lt+Lm) UNIV UNIV flow"

by local_flow_on_auto

lemma "(0≤h ∧ h<H ∧ m=m0 ∧ m0>k ∧ t=0 ∧ v=0 ∧ y=0)e ≤ |odes〉 (h≤y)"
using k_ge_1

by (subst fdia_g_ode_frame_flow[OF local_flow_on_rocket]; expr_simp)

(auto simp: field_simps power3_eq_cube intro!: exI[of _ "2*m0/k"])

The second specification looks equally simple and its three line proof is deceiving (see
below). Our contributed tactics automatically handle VCG, derivative certifications, and
uniqueness. However, as reported in Sect. 7, emerging arithmetic proof obligations often
have to be checked separately. We do this with the lemma rocket_arith proved using our
derivative tests from Sect. 6.7.

lemma "(m = m0 ∧ m0 > k ∧ t = 0 ∧ v = 0 ∧ y = 0)e

≤ |ode] (y ≤ 2*m0
3/(3*k2))"

apply (wlp_solve "flow")

using k_ge_1 rocket_arith

by (expr_simp add: le_fun_def)

lemma rocket_arith:

assumes "(k::real) > 1" and "m0 > k" and "x ∈ {0..}"
shows "- k*x3/6 + m0*x

2/2 ≤ 2*m0
3/(3*k2)" (is "?lhs ≤ _")

proof-

123

 21 Page 42 of 50 J. J. H. y Munive et al.

let ?f = "λt. -k*t3/6 + m0*t
2/2"

and ?f’ = "λt. -k*t2/2 + m0*t"
and ?f’’ = "λt. -k*t + m0"

have "2*m0
3/(3*k2) = -k*(2*m0/k)

3/6 + m0*(2*m0/k)
2/2" (is "_ = ?rhs")

by (auto simp: field_simps power3_eq_cube)

moreover have "?lhs ≤ ?rhs"
proof(cases "x ≤ 2 * m0 / k")
case True

have ge_0_left: "0 ≤ y *⇒ y ≤ m0/k *⇒ ?f’ 0 ≤ ?f’ y" for y

apply (rule has_vderiv_mono_test(1)[of "{0..m0/k}" ?f’ ?f’’ 0])
using 〈k > 1〉 〈m0 > k〉
by (auto intro!: vderiv_intros simp: field_simps)

moreover have ge_0_right: "m0/k≤y *⇒ y≤2*m0/k
*⇒ ?f’ (2*m0/k) ≤ ?f’ y" for y

apply(rule has_vderiv_mono_test(2)

[of "{m0/k..2*m0/k}" ?f’ ?f’’ _ "2*m0/k"])
using 〈k > 1〉 〈m0 > k〉
by (auto intro!: vderiv_intros simp: field_simps)

ultimately have ge_0: "∀ y∈{0..2*m0/k}. 0 ≤ ?f’ y"
using 〈k > 1〉 〈m0 > k〉
by (fastforce simp: field_simps)

show ?thesis

apply (rule has_vderiv_mono_test(1)[of "{0..2*m0/k}" ?f ?f’ _ "2*m0/k"])
using ge_0 True 〈x ∈ {0..}〉 〈k > 1〉 〈m0 > k〉
by (auto intro!: vderiv_intros simp: field_simps)

next

case False

have "2*m0/k ≤ y *⇒ ?f’ y ≤ ?f’ (2*m0/k)" for y

apply (rule has_vderiv_mono_test(2)[of "{m0/k..}" ?f’ ?f’’])
using 〈k > 1〉 〈m0 > k〉 by (auto intro!: vderiv_intros simp: field_simps)

hence obs: "∀ y∈{2*m0/k..}. ?f’ y ≤ 0"
using 〈k > 1〉 〈m0 > k〉
by (clarsimp simp: field_simps)

show ?thesis

apply (rule has_vderiv_mono_test(2)[of "{2*m0/k..}" ?f ?f’])
using False 〈k > 1〉 obs
by (auto intro!: vderiv_intros simp: field_simps)

qed

ultimately show ?thesis

by simp

qed

Our proof of rocket_arith analyses the altitude behaviour to the left (x ≤ 2m0/k) and
right (x > 2m0/k) of the maximum altitude. Using the first derivative test, we show that, to
the left, the altitude is increasing, and to the right, it is decreasing. Thus, the rocket achieves a
maximum altitude at 〈2m0/k, 2m3

0/(3k2)〉. Accordingly, we repeat our use of the derivative
test to show that the velocity remains above 0 in the interval [0, 2m0/k].

This example illustrates the relevance of our additions of forward diamonds and derivative
tests. The diamonds allow us to do reachability proofs and show progress for hybrid systems.
The tests enable us to prove emerging real-arithmetic proof obligations after VCG and provide
the basis for increasing automation in this subtask of the verification process.

We have showcased various examples illustrating the automation added to our hybrid
system verification framework. We refer readers interested in more examples using, for
instance, our integration of vectors and matrices to previous publications and our participation
in ARCH competition reports [21, 34, 45, 47].

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 43 of 50 21

9 RelatedWork

We know of two complementary approaches to the verification of hybrid systems: reacha-
bility analysis and deductive verification. Reachability analysis [3, 5, 11, 14, 16, 26, 27, 41]
approximates the set of all reachable states of a hybrid system via the iteration of its transition
relation until reaching a fixed point or a specification-violating state. This approach iteratively
explores a hybrid system’s state space and finds states that violate specified properties.

Our focus is on the deductive verification of hybrid systems with interactive theorem
provers (ITPs) [1, 6, 21, 28, 59, 64, 68, 73]. It uses mathematical proofs to establish adherence
to safety specifications for all system states. Examples of this approach in relevant general-
purpose ITPs include a formalisation of hybrid automata and invariant reasoning for them
in the PVS prover [1], a shallowly embedded implementation of a Logic of Events for
hybrid systems reasoning in the Coq prover [6], or the use of the Coquelicot library for
formalising a temporal logic of actions with the same purpose [64]. All these approaches have
different semantics from our predicate transformer one and arguably employ less automated
ITPs than our choice. In Isabelle/HOL, Hoare-style verification and refinement frameworks
have appeared [7, 40, 67] and fewer have been specialised to hybrid systems [20]. These
frameworks could be combined with our own in the spirit of working towards a full hybrid
systems development environment within Isabelle/HOL.

The formalisms to describe and prove hybrid systems’ correctness specifications are as
diverse as the tools to implement such deductive verification systems. The HHL and HHLPy

provers [68, 73] employ a Hybrid Hoare Logic (HHL) [78] for reasoning about Hybrid Com-
municating Sequential Processes (HCSPs) with the duration calculus in Isabelle/HOL and
Python respectively. Analogously, the KeYmaera and KeYmaeara X provers implement ver-
sions of differential dynamic logic dL, a logic to reason about hybrid systems [28, 59]. Our
work has been compared with these provers in hybrid system verification competitions [45,
47] (see Sect. 7). Yet, the tools are very different in nature and implementation. While both
families of provers implement specific logics, our development is flexible and includes a dif-
ferential Hoare logic, a refinement calculus [20], rules from differential dynamic logic [21],
and linear systems (matrix) integrations [34]. Moreover, both the HHL and KeYmaera fam-
ilies have integrated unverified tools into their certification process. The HHLPy prover is
mainly written in Python, while KeYmaera X uses the Wolfram Engine and/or Z3 as black-
box solvers for quantifying elimination procedures. Albeit, the first HHL prover is verified
with Isabelle/HOL, and there is work towards verifying real arithmetic algorithms for inte-
gration into KeYmaera X [65]. In contrast, our work has taken a stricter approach where
every input from external tools must be certified in Isabelle. This illustrates our long-term
goal of enabling general-purpose ITPs with fully automated verification capabilities.

We built our IsaVODEs framework on top of the Archive of Formal Proofs (AFP) entry
for Ordinary Differential Equations [37] and our own extensions to it [34, 50]. Together
with Isabelle’s HOL-Analysis library, they provide a thorough basis for stating real analysis
theorems in Isabelle/HOL. In particular, the library already has a different formalisation of the
fact that C1-differentiation implies Lipschitz continuity. Nevertheless, that version depends
on a type of bounded linear continuous functions while our implementation avoids creating
a new type and the corresponding abstraction functions. As a result, our version is more
manageable within IsaVODEs.

Formalisations of dL and related logics have recently appeared in the AFP [12, 56] but
they are not intended as verification tools and, therefore, they are incomparable with our
framework. Despite the implementation differences, we compare KeYmaera X and our sup-

123

 21 Page 44 of 50 J. J. H. y Munive et al.

port for dL reasoning. Our personal experience indicates that using (one-step) differential
cuts, weakenings, and inductions is similar to their use in KeYmaera X. However, supply-
ing solutions works differently because our framework requires certifying or assuming their
uniqueness. In contrast, the uniqueness of solutions is guaranteed by dL’s syntax. Our work
in this paper automates this certification process. Finally, our verification of the soundness of
the differential ghost rule presented here could be generalised further (see Sect. 5.4) to match
all the cases prescribed by dL’s syntactic implementation.

10 Conclusions and FutureWork

In this paper, we have described IsaVODEs, our framework for verifying cyber-physical
systems in Isabelle/HOL. This substantial development includes both strong theoretical foun-
dations and practical verification support, provided by automated theorem provers and an
integration with computer algebra systems. Our language and verification technique extends
dL’s hybrid programs in several ways, notably with matrices to support engineering mathe-
matics, and frames to support modular reasoning. We have validated our tool with a substantial
library of benchmarks and examples.

Here we have improved our framework by formalising and proving VCG laws about
forward diamonds which enable reasoning about the reachability or progress of hybrid sys-
tems. We have generalised our frame laws and dL-style differential ghosts rule, allowing
us to derive related Darboux rules. We have formalised foundational theorems like the fact
that differentiable functions are Lipschitz-continuous, and the first and second derivative
test laws. These support the practical goal of increasing automation via our proof methods
for performing differential induction or VCG via supplying flows. Our integration of CASs
into this process makes the verification experience with flows seamless. Finally, we have
evaluated the benefits of all these additions with various verification examples.

Our Isabelle-based approach is inherently extensible. We can add syntax and semantics for
bespoke program operators and associated Hoare-logic rules to support tailoring for particular
models. Overall, verifying CPSs using IsaVODEs benefits from the wealth of technology
provided by Isabelle, notably the frontend, asynchronous document processing, the theory
library, proof automation, and support for code generation. We need not be limited to a
single notation but can provide semantics for established engineering notations. IsaVODEs
benefits from the fact that Isabelle is a gateway for a variety of other verification tools
through “hammers”, such as SMT solvers, model generators, and computer algebra systems.
Our additions in this paper increase IsaVODEs’ usability for complex verifications. We
believe these advantages can allow the integration of our technology into software engineering
workflows.

A limitation of our current approach occurs when the arithmetic obligations at the end
of the verification are too complex for SMT solvers [53]. Currently, there are two options:
users can manually prove these obligations themselves, or they can assert them at the cost of
increasing uncertainty in their verification. In these cases, the ideal approach would connect
tools deciding these expressions, e.g. CAS systems or domain-specific automated provers [4]
in a way that IsaVODEs certifies the underlying reasoning. We leave this development for
future work.

Another avenue of improvement, following our introduction of the forward diamond in
our framework, is the addition of the remaining modal operators and their VCG rules [70].
Currently, we have only formalised a backward diamond but its VCG rules remain to be

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 45 of 50 21

proved. Their implementation could lead to a framework for incorrectness analysis [51]
of hybrid systems complementing current testing and simulation techniques. We will also
consider supporting further extensions to hybrid programs that provide additional modelling
capacity such as (constructive) differential game logic and its Kaisar proof language [13, 60],
quantified dL, or differential-algebraic logic (DAL).

In terms of alternative uses of our framework, we expect dL-style security analysis about
hybrid systems [77] to be easily done in IsaVODEs too. Similarly, IsaVODEs foundations
have been used as semantics for other model-based robot development technologies [9, 15].
Therefore, IsaVODEs proofs could be integrated into these tools for increased confidence in
the performed analysis.

A Appendix: ARCH2022 Evaluation Summary

The tables below summarise characteristics of the competition’s verification problems [47]
used for our evaluation in Sect. 7. In the final table, we provide basic statistics to describe
the set of problems in its entirety: average number of proofs per problem, number of hybrid
programs, regular programs or continuous problems, number of times the wlp strategy is
used as opposed to the Hoare-style proof strategy, number of problems that required extra
arithmetical facts, and usage of ODEs’ solutions in comparison to other dL-methods.

ARCH22 BENCHMARKS EVALUATION

Number Name

Number of

Proofs

Statement

LOC

Proof LOC

(shortest)

Proof LOC

(longest) Class Proof Strategy ODE strategy

Continuous

Variables

Vars +

Consts

ODE

complexity

Proof used

real arith

helper lemma Observation

1 Basic Assignment 1 1 1 1 Regular wlp - 0 1 None no -

2

Overwrite assignment on

some branches 1 1 1 1 Regular wlp - 0 2 None no -

3

Overwrite assignment in

loop 1 1 2 2 Regular wlp - 0 1 None no -

4

Overwrite assignment in

ODE 3 1 1 3 Hybrid wlp or hoare

solution or diff.

induction 1 1 Linear no

Both of our

proof methods

for differential

induction used.

5

Overwrite with

nondeterministic assignment 1 1 1 1 Regular wlp - 0 1 None no -

6

Tests and universal

quantification 1 1 1 1 Regular wlp - 0 2 None no -

7

Overwrite assignment

several times 2 3 7 15 Hybrid hybrid

solution or diff.

induction 1 2 Linear no -

8

Potentially overwrite

dynamics 3 1 5 16 Hybrid hybrid

solution or diff.

induction 1 2 Linear no -

9

Potentially overwrite

exponential decay 2 1 5 8 Hybrid hybrid

solution or diff.

ghosts 1 2 Linear yes -

10 Dynamics: Cascaded 2 1 5 11 Hybrid wlp or hoare

solution or

darboux 1 1 Linear no -

11

Dynamics: Single integrator

time 2 1 1 1 Continuous wlp or hoare

solution or diff.

induction 1 1 Linear no -

12 Dynamics: Single integrator 2 1 1 6 Continuous wlp or hoare

solution or diff.

induction 2 2 Linear no -

13 Dynamics: Double integrator 1 1 1 1 Continuous wlp solution 3 3 Linear no -

14 Dynamics: Triple integrator 1 1 4 4 Continuous hoare diff. induction 4 4 Nonlinear yes -

15

Dynamics: Exponential

decay (1) 2 1 1 3 Continuous wlp or hoare

solution or diff.

ghosts 1 1 Linear no -

16

Dynamics: Exponential

decay (2) 2 1 4 8 Continuous wlp or hoare

solution or

darboux 1 1 Linear no -

17

Dynamics: Exponential

decay (3) 1 1 1 1 Continuous wlp solution 1 2 Nonlinear yes -

18

Dynamics: Exponential

growth (1) 2 1 1 11 Continuous wlp or hoare

solution or diff.

ghosts 1 1 Linear no -

19

Dynamics: Exponential

growth (2) 1 1 2 2 Continuous hoare diff. induction 2 2 Nonlinear no -

20

Dynamics: Exponential

growth (4) 1 1 1 1 Continuous hoare diff. induction 1 1 Nonlinear no -

21

Dynamics: Exponential

growth (5) 1 1 15 15 Continuous hoare diff. induction 1 1 Nonlinear no -

22

Dynamics: Rotational

dynamics (1) 2 1 1 3 Continuous wlp or hoare

solution or diff.

induction 2 2 Linear no -

23

Dynamics: Rotational

dynamics (2) 2 1 11 11 Continuous wlp or hoare

solution or diff.

induction 3 3 Linear yes -

24

Dynamics: Rotational

dynamics (3) 2 3 1 10 Continuous wlp or hoare

solution or diff.

induction 4 5 Linear no -

25

Dynamics: Spiral to

equilibrium 1 1 11 11 Continuous hoare diff. induction 2 3 Linear no -

26 Dynamics: Open cases 1 1 16 16 Continuous isabelle/hol isabelle/hol 2 2 Nonlinear no -

27 Dynamics: Closed cases 1 1 8 8 Continuous hoare diff. induction 2 3 Nonlinear no -

123

 21 Page 46 of 50 J. J. H. y Munive et al.

ARCH22 BENCHMARKS EVALUATION

Number Name

Number of

Proofs

Statement

LOC

Proof LOC

(shortest)

Proof LOC

(longest) Class Proof Strategy ODE strategy

Continuous

Variables

Vars +

Consts

ODE

complexity

Proof used

real arith

helper lemma Observation

28

Dynamics: Conserved

quantity 1 3 4 4 Continuous hoare diff. induction 2 3 Nonlinear no -

29 Dynamics: Darboux equality 1 1 27 27 Continuous isabelle/hol isabelle/hol 2 4 Nonlinear yes -

30

Dynamics: Fractional

Darboux equality 0 1 30 30 Continuous

hoare or

isabelle/hol - 2 5 Nonlinear no

Proof requires

generalisation

of Darboux rule

31

Dynamics: Darboux

inequality 1 1 11 11 Continuous wlp solution 2 3 Nonlinear yes

Proof of

alternative

statement

32 Dynamics: Bifurcation 1 1 24 24 Continuous isabelle/hol isabelle/hol 1 2 Nonlinear no -

33

Dynamics: Parametric

switching between two

different damped oscillators 1 8 23 23 Hybrid wlp and hoare diff. induction 2 5 Linear yes

Helped by CAS

for real arith

34 Dynamics: Nonlinear 1 1 1 1 1 Continuous hoare diff. induction 1 3 Nonlinear no -

35 Dynamics: Nonlinear 2 1 1 1 1 Continuous hoare diff. induction 2 3 Nonlinear no -

36 Dynamics: Nonlinear 4 1 1 3 3 Continuous hoare diff. induction 2 3 Nonlinear no -

37 Dynamics: Nonlinear 5 1 1 3 3 Continuous hoare diff. induction 2 3 Nonlinear no -

38 Dynamics: Riccati 1 1 1 1 Continuous hoare diff. induction 1 1 Nonlinear no -

39

Dynamics: Nonlinear

differential cut 1 1 3 3 Continuous hoare diff. induction 2 2 Nonlinear no -

40 STTT Tutorial: Example 1 2 1 1 7 Continuous wlp or hoare

solution or diff.

induction 2 3 Linear no -

41 STTT Tutorial: Example 2 1 6 2 2 Hybrid wlp solution 2 5 Linear no -

42 STTT Tutorial: Example 3a 1 10 5 5 Hybrid wlp solution 2 6 Linear yes

Did not count

real arith.

lemmata

43 STTT Tutorial: Example 4a 1 10 1 1 Hybrid wlp solution 2 5 Linear no -

44 STTT Tutorial: Example 4b 1 6 1 1 Hybrid wlp solution 2 5 Linear no -

45 STTT Tutorial: Example 4c 1 11 1 1 Hybrid wlp solution 2 5 Linear no

Did not count

real arith.

lemmata

46 STTT Tutorial: Example 5 1 11 3 3 Hybrid wlp solution 3 8 Linear yes

Did not count

real arith.

lemmata

47 STTT Tutorial: Example 6 1 11 8 8 Hybrid wlp solution 3 8 Linear yes

Did not count

real arith.

lemmata

48 STTT Tutorial: Example 7 1 11 8 8 Hybrid wlp solution 3 8 Linear yes

Did not count

real arith.

lemmata

49 STTT Tutorial: Example 9a 1 3 16 16 Hybrid hoare diff. induction 2 6 Linear yes

Did not count

real arith.

lemmata

50 STTT Tutorial: Example 9b 1 10 46 46 Hybrid hoare diff. induction 2 7 Linear yes

Helped by CAS

for real arith

51 STTT Tutorial: Example 10 1 21 98 98 Hybrid hoare diff. induction 6 13 Nonlinear yes

Did not count

real arith.

lemmata

52

LICS: Example 1

Continuous car accelertes

forward 1 1 2 2 Continuous wlp solution 2 3 Linear no -

ARCH22 BENCHMARKS EVALUATION

Number Name

Number of

Proofs

Statement

LOC

Proof LOC

(shortest)

Proof LOC

(longest) Class Proof Strategy ODE strategy

Continuous

Variables

Vars +

Consts

ODE

complexity

Proof used

real arith

helper lemma Observation

53

LICS: Example 2 Single car

drives forward 1 8 1 1 Hybrid wlp solution 2 5 Linear no -

54

LICS: Example 3a

event-triggered car drives

forward 1 9 1 1 Hybrid wlp solution 2 5 Linear no -

55

LICS: Example 4a safe

stopping of time-triggered

car 1 7 10 10 Hybrid wlp solution 3 8 Linear yes

Did not count

real arith.

lemmata

56

LICS: Example 4b progress

of time-triggered car 0 7 - - Hybrid

wp and

isabelle/hol - 3 7 Linear -

Do not know

the proof

57

LICS: Example 4c relative

safety of time-triggered car 1 3 9 9 Hybrid wlp solution 3 8 Linear yes

Did not count

real arith.

lemmata

58

LICS: Example 5

Controllability Equivalence 1 1 2 2 Hybrid wlp solution 2 4 Linear yes

Did not count

real arith.

lemmata

59

LICS: Example 6 MPC

Acceleration Equivalence 1 4 10 10 Hybrid wlp solution 3 7 Linear yes

Helped by CAS

for real arith

60

LICS: Example 7

Model-Predictive Control

Design Car 1 12 10 10 Hybrid wlp solution 3 7 Linear yes

Helped by CAS

for real arith

61 ETCS: Essentials (safety) 1 9 6 6 Hybrid wlp solution 3 8 Linear yes

Did not count

real arith.

lemmata

62

ETCS: Proposition 1

(Controllability) 1 5 3 3 Hybrid wlp solution 2 5 Linear yes

Helped by CAS

for real arith

63

ETCS: Proposition 4

(Reactivity) 0 4 - - Hybrid wlp solution 3 8 Linear -

Do not know

the proof

64 Harmonic oscillator 1 7 6 6 Hybrid

matrices and

isabelle/hol solution 2 4 Linear yes

Did not count

preliminary

lemmata

65

Benchmarks/Nonlinear/Ahm

adi Parrilo Krstic 1 3 21 21 Continuous hoare diff. ghosts 2 2 Nonlinear yes

Did not count

real arith.

lemmata

66

Benchmarks/Nonlinear/Arro

wsmith Place Fig_3_11

page 83 0 3 - - Continuous hoare - 2 2 Nonlinear -

Proof requires

generalisation

of Darboux

1.181818182 3.727272727 8.111111111 9.19047619 29 1.924242424

1 1 3 5 32 2 3

1 1 1 1 5 2 2

78 246 511 579 39 127 251

3 21 98 98 31 6 13

0 1 1 1 37 0 1

26

4

2

3

23

14

3.80303030Average Hybrid Average

Median Continuous Median

Mode Regular Mode

Sum wlp Sum

Max hoare Max

Min solution Min

induction

ghosts

darboux

isabelle

extra real arith

>1 proofs

Acknowledgements We thank the anonymous reviewers for their valuable feedback that helped our article
convey its contributions more clearly. The first author would also like to thank Esaú Alejandro Pérez Rosales
for his work developing tactics for the simplification of monomials in Isabelle that inspired some of those
employed in this article.

123

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 47 of 50 21

Author Contributions Jonathan Julián Huerta y Munive developed and formalised in Isabelle/HOL the theory
related to the verification of hybrid systems. He also wrote some of the automated tactics of the framework and
evaluated the framework. Simon Foster formalised the theory related to the framework’s modelling language
and wrote other automated tactics. Mario Gleirscher and Georg Struth participated in the conference version
of this article and revised the final version of the article. Mario provided the model and the simulation of
the autonomous marine vehicle example. Georg Struth also developed the theory behind the framework’s
verification principles. Christian Pardillo Laursen and Thomas Hickman integrated Mathematica and SageMath
respectively into the framework.

Funding A Novo Nordisk Fonden Start Package Grant (NNF20OC0063462) and a Horizon MSCA 2022
Postdoctoral Fellowship (Project acronym DeepIsaHOL and Number 101102608) partially supported the
first author during the development of this article. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the European Research Executive
Agency. Neither the European Union nor the European Research Executive Agency can be held responsible
for them. The work was also funded by UKRI-EPSRC project CyPhyAssure (Grant reference EP/S001190/1),
the Assuring Autonomy International Programme (AAIP; Grant CSI:Cobot), a partnership between Lloyd’s
Register Foundation and the University of York, and Labex DigiCosme through an invited professorship of
the fourth author at the Laboratoire d’informatique de l’École Polytechnique.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do
not have permission under this licence to share adapted material derived from this article or parts of it. The
images or other third party material in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems: formalization and
proof rules in PVS. In: ICECCS 2001, pp. 48–57. IEEE Computer Society, New Jersey (2001)

2. Ackerman, E., Gatewood, L.C., Rosevear, J.W., Molnar, G.D.: Model studies of blood-glucose regulation.
Bull. Math. Biophys. 27(5), 21–37 (1965). https://doi.org/10.1007/BF02477259

3. Adimoolam, A.S., Dang, T.: Safety verification of networked control systems by complex zonotopes.
Leibniz Trans. Embed. Syst. 8(2), 01–10122 (2022). https://doi.org/10.4230/LITES.8.2.1

4. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-valued special functions.
J. Autom. Reason. 44(3), 175–205 (2010). https://doi.org/10.1007/S10817-009-9149-2

5. Althoff, M.: An introduction to CORA 2015. In: ARCH 2015, vol. 34, pp. 120–151. EasyChair, EasyChair
(2015). https://doi.org/10.29007/zbkv

6. Anand, A., Knepper, R.A.: Roscoq: robots powered by constructive reals. In: ITP. LNCS, vol. 9236, pp.
34–50. Springer, Heidelberg (2015)

7. Armstrong, A., Gomes, V.B.F., Struth, G.: Building program construction and verification tools from
algebraic principles. Formal Aspects Comput. 28(2), 265–293 (2016)

8. Back, R., Wright, J.: Refinement Calculus—A Systematic Introduction. Springer, Heidelberg (1998)
9. Baxter, J., Carvalho, G., Cavalcanti, A., Júnior, F.R.: Roboworld: verification of robotic systems with envi-

ronment in the loop. Formal Aspects Comput. (2023). https://doi.org/10.1145/3625563. (Just Accepted)
10. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formaliz. Reason.

9(1) (2016)

123

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/BF02477259
https://doi.org/10.4230/LITES.8.2.1
https://doi.org/10.1007/S10817-009-9149-2
https://doi.org/10.29007/zbkv
https://doi.org/10.1145/3625563

 21 Page 48 of 50 J. J. H. y Munive et al.

11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a toolbox for set-based
reachability. In: Ozay, N., Prabhakar, P. (eds.) HSCC 2019, pp. 39–44. ACM, New York (2019). https://
doi.org/10.1145/3302504.3311804

12. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differential dynamic logic. In:
CPP, pp. 208–221. ACM, New York (2017)

13. Bohrer, R., Platzer, A.: Structured proofs for adversarial cyber-physical systems. ACM Trans. Embed.
Comput. Syst. 20(5s), 1–26 (2021). https://doi.org/10.1145/3477024

14. Bu, L., Li, Y., Wang, L., Chen, X., Li, X.: BACH 2 : bounded reachability checker for compositional
linear hybrid systems. In: DATE 2010, pp. 1512–1517. IEEE Computer Society, New Jersey (2010)

15. Cavalcanti, A., Attala, Z., Baxter, J., Miyazawa, A., Ribeiro, P.: Model-based engineering for robotics
with RoboChart and RoboTool, pp. 106–151. Springer, Heidelberg (2023). https://doi.org/10.1007/978-
3-031-43678-9_4

16. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: CAV
2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)

17. Cordwell, K., Yong, K.T., A., P.: A verified decision procedure for univariate real arithmetic with the
BKR algorithm. In: Cohen, L., Kaliszyk, C. (eds.) ITP. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 193, pp. 14-11420. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Germany (2021)

18. Foster, S., Baxter, J.: Automated algebraic reasoning for collections and local variables with lenses. In:
RAMiCS. LNCS, vol. 12062. Springer, Heidelberg (2020)

19. Foster, S., Gleirscher, M., Calinescu, R.: Towards deductive verification of control algorithms for
autonomous marine vehicles. In: ICECCS. IEEE, New Jersey (2020)

20. Foster, S., Huerta y Munive, J.J., Struth, G.: Differential Hoare logics and refinement calculi for hybrid
systems with Isabelle/HOL. In: RAMiCS[postponed]. LNCS, vol. 12062, pp. 169–186 (2020). https://
doi.org/10.1007/978-3-030-43520-2_11

21. Foster, S., Munive, J.J.H., Gleirscher, M., Struth, G.: Hybrid systems verification with Isabelle/HOL:
simpler syntax, better models, faster proofs. In: FM 2021. LNCS, vol. 13047, pp. 367–386. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-030-90870-6_20

22. Foster, S., Nemouchi, Y., Gleirscher, M., Wei, R., Kelly, T.: Integration of formal proof into unified
assurance cases with Isabelle/SACM. Formal Aspects Comput. (2021)

23. Foster, S., Zeyda, F.: Optics. Archive of Formal Proofs (2017)
24. Foster, J.: Bidirectional programming languages. PhD thesis, University of Pennsylvania (2009)
25. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic foundations for automated

verification tools in Isabelle/UTP. Sci. Comput. Programm. 197, 102510 (2020). https://doi.org/10.1016/
j.scico.2020.102510

26. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang,
T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: CAV 2011. LNCS, vol. 6806, pp.
379–395. Springer, Heidelberg (2011)

27. Frehse, G., Krogh, B.H., Rutenbar, R.A., Maler, O.: Time domain verification of oscillator circuit prop-
erties. In: Maler, O. (ed.) FAC 2005. ENTCS, vol. 153, pp. 9–22. Elsevier, Amsterdam (2005). https://
doi.org/10.1016/j.entcs.2006.02.019

28. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem
prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE. LNCS, vol. 9195, pp. 527–538.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21401-6_36

29. Gallicchio, J., Tan, Y.K., Mitsch, S., Platzer, A.: Implicit definitions with differential equations for key-
maera X—(system description). In: IJCAR 2022, pp. 723–733 (2022). https://doi.org/10.1007/978-3-
031-10769-6_42

30. Gomes, V.B.F., Struth, G.: Modal Kleene algebra applied to program correctness. In: FM. LNCS, vol.
9995, pp. 310–325 (2016)

31. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
32. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis in Isabelle/HOL.

In: ITP. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39634-2_21

33. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In: PLMMS, pp. 38–45.
ACM, New York (2009)

34. Huerta y Munive, J.J.: Affine systems of ODEs in Isabelle/HOL for hybrid-program verification. In:
SEFM. LNCS, vol. 12310, pp. 77–92. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-
58768-0_5

35. Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs (2012)

123

https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3477024
https://doi.org/10.1007/978-3-031-43678-9_4
https://doi.org/10.1007/978-3-031-43678-9_4
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-90870-6_20
https://doi.org/10.1016/j.scico.2020.102510
https://doi.org/10.1016/j.scico.2020.102510
https://doi.org/10.1016/j.entcs.2006.02.019
https://doi.org/10.1016/j.entcs.2006.02.019
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-031-10769-6_42
https://doi.org/10.1007/978-3-031-10769-6_42
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/978-3-030-58768-0_5
https://doi.org/10.1007/978-3-030-58768-0_5

IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale Page 49 of 50 21

36. Immler, F., Traut, C.: The flow of ODEs: Formalization of variational equation and poincaré. In: ITP
2016. LNCS, vol. 9807, pp. 184–199. Springer, Heidelberg (2016). https://doi.org/10.1007/s10817-018-
9449-5

37. Immler, F., Traut, C.: The flow of ODEs: formalization of variational equation and Poincaré map. J.
Autom. Reason. 62(2), 215–236 (2019)

38. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Schmidt, A., Gardner, R., Mitsch, S., Platzer, A.: A formally
verified hybrid system for safe advisories in the next-generation airborne collision avoidance system.
STTT 19(6), 717–741 (2017). https://doi.org/10.1007/s10009-016-0434-1

39. Kuncar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. J. Autom. Reason. 62, 531–555
(2019)

40. Lammich, P.: Refinement to imperative HOL. J. Autom. Reason. 62(4), 481–503 (2019). https://doi.org/
10.1007/s10817-017-9437-1

41. Li, Y., Zhu, H., Braught, K., Shen, K., Mitra, S.: Verse: A python library for reasoning about multi-agent
hybrid system scenarios. In: CAV 2023. LNCS, vol. 13964, pp. 351–364. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-37706-8_18

42. Li, W., Passmore, G., Paulson, L.: Deciding univariate polynomial problems using untrusted certificates
in Isabelle/HOL. J. Autom. Reason. 62, 29–91 (2019)

43. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified.
In: FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21437-0_6

44. Matichuk, D., Murray, T.C., Wenzel, M.: Eisbach: a proof method language for Isabelle. J. Autom. Reason.
56(3), 261–282 (2016)

45. Mitsch, S., Huerta y Munive, J.J., Jin, X., Zhan, B., Wang, S., Zhan, N.: ARCH-COMP20 category
report: hybrid systems theorem proving. In: ARCH20., vol. 74, pp. 141–161. EasyChair, EasyChair
(2020). https://doi.org/10.29007/bdq9

46. Mitsch, S., Platzer, A.: Verified runtime validation for partially observable hybrid systems. (2018).
arXiv:1811.06502

47. Mitsch, S., Zhan, B., Sheng, H., Bentkamp, A., Jin, X., Wang, S., Foster, S., Laursen, C.P., Munive,
J.J.H.: ARCH-COMP22 category report: hybrid systems theorem proving. In: ARCH22. EPiC Series in
Computing, vol. 90, pp. 185–203. EasyChair, Munich (2022). https://doi.org/10.29007/4lxf

48. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J.: RoboChart: modelling and
verification of the functional behaviour of robotic applications. Softw. Syst. Model. 18, 3097–3149 (2019)

49. Munive, J.J.: Algebraic verification of hybrid systems in Isabelle/HOL. PhD thesis, The University of
Sheffield (2021)

50. Munive, J.J., Struth, G.: Predicate transformer semantics for hybrid systems. J. Autom. Reason. 66(1),
93–139 (2022). https://doi.org/10.1007/s10817-021-09607-x

51. O’Hearn, P.W.: Incorrectness logic. In: Proc. ACM Program. Lang. 4(POPL), 10-11032 (2020). https://
doi.org/10.1145/3371078

52. Oles, F.: A category-theoretic approach to the semantics of programming languages. PhD thesis, Syracuse
University (1982)

53. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between
automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S., Ternovska, E. (eds.) IWIL 2010.
EPiC Series in Computing, vol. 2, pp. 1–11. EasyChair, EasyChair (2010). https://doi.org/10.29007/36dt

54. Platzer, A., Quesel, J.: European train control system: a case study in formal verification. In: ICFEM.
LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009)

55. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power of differential ghosts.
In: LICS, pp. 819–828. ACM, New Jersey (2018)

56. Platzer, A.: Differential game logic. Archive of Formal Proofs (2019)
57. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24 (2012).

https://doi.org/10.1109/LICS.2012.13
58. Platzer, A.: The structure of differential invariants and differential cut elimination. Logical Methods

Comput. Sci. 8(4) (2008)
59. Platzer, A.: Logical Analysis of Hybrid Systems. Springer, Heidelberg (2010)
60. Platzer, A.: Differential game logic. ACM TOCL 17(1), 1–1152 (2015)
61. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Heidelberg (2018)
62. Quesel, J., Mitsch, S., Loos, S.M., Arechiga, N., Platzer, A.: How to model and prove hybrid systems

with KeYmaera: a tutorial on safety. Int. J. Softw. Tools Technol. Transf. 18(1), 67–91 (2016)
63. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS. IEEE, New Jersey

(2002)

123

https://doi.org/10.1007/s10817-018-9449-5
https://doi.org/10.1007/s10817-018-9449-5
https://doi.org/10.1007/s10009-016-0434-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/978-3-031-37706-8_18
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.29007/bdq9
http://arxiv.org/abs/1811.06502
https://doi.org/10.29007/4lxf
https://doi.org/10.1007/s10817-021-09607-x
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.29007/36dt

 21 Page 50 of 50 J. J. H. y Munive et al.

64. Ricketts, D., Malecha, G., Alvarez, M.M., Gowda, V., Lerner, S.: Towards verification of hybrid systems
in a foundational proof assistant. In: MEMOCODE, pp. 248–257. IEEE, New Jersey (2015)

65. Scharager, M., Cordwell, K., Mitsch, S., Platzer, A.: Verified quadratic virtual substitution for real arith-
metic. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 200–217.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-90870-6_11

66. Schirmer, N., Wenzel, M.: State spaces—the locale way. In: SSV 2009. ENTCS, vol. 254, pp. 161–179
(2009)

67. Schirmer, N.: Verification of sequential imperative programs in isabelle-hol. PhD thesis, Technical Uni-
versity Munich, Germany (2006)

68. Sheng, H., Bentkamp, A., Zhan, B.: HHLPy: practical verification of hybrid systems using hoare logic.
In: Chechik, M., Katoen, J., Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 160–178. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-27481-7_11

69. Stanescu, D., Chen-Charpentier, B.M.: Random coefficient differential equation models for bacterial
growth. Math. Comput. Model. 50(5), 885–895 (2009). https://doi.org/10.1016/j.mcm.2009.05.017

70. Struth, G.: Transformer semantics. Archive of Formal Proofs (2018)
71. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. AMS, Rhode Island (2012)
72. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.0). (2020)
73. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem prover for hybrid systems.

In: ICFEM. LNCS, vol. 9407, pp. 382–399 (2015)
74. Weinert, F.: Radioactive Decay Law (Rutherford–Soddy), pp. 630–632. Springer, Berlin (2009). https://

doi.org/10.1007/978-3-540-70626-7_183
75. Wolfram Research: Expressions—Wolfram Language. https://reference.wolfram.com/language/guide/

Expressions.html. Accessed 11 Jan 2024
76. Wolfram Research: Wolfram Engine. https://www.wolfram.com/engine/. Accessed 05 Jan 2024
77. Xiang, J., Fulton, N., Chong, S.: Relational analysis of sensor attacks on cyber-physical systems. In: CSF

2021, pp. 1–16. IEEE, New Jersey (2021). https://doi.org/10.1109/CSF51468.2021.00035
78. Zhan, N., Zhan, B., Wang, S., Guelev, D.P., Jin, X.: A generalized hybrid Hoare logic. CoRR

arXiv:2303.15020 (2023). https://doi.org/10.48550/arXiv.2303.15020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-030-90870-6_11
https://doi.org/10.1007/978-3-031-27481-7_11
https://doi.org/10.1016/j.mcm.2009.05.017
https://doi.org/10.1007/978-3-540-70626-7_183
https://doi.org/10.1007/978-3-540-70626-7_183
https://reference.wolfram.com/language/guide/Expressions.html
https://reference.wolfram.com/language/guide/Expressions.html
https://www.wolfram.com/engine/
https://doi.org/10.1109/CSF51468.2021.00035
http://arxiv.org/abs/2303.15020
https://doi.org/10.48550/arXiv.2303.15020

	IsaVODEs: Interactive Verification of Cyber-Physical Systems at Scale
	Abstract
	1 Introduction
	2 Motivating Case Study: Flight Dynamics
	3 Semantics for Hybrid Systems Verification
	3.1 Dynamical Systems
	3.2 State Transformer Semantics for Hybrid Programs
	3.3 Store and Expressions Model
	3.4 Model for Evolution Commands
	3.5 Predicate Transformer Semantics
	3.5.1 Forward Boxes
	3.5.2 Hoare Triples
	3.5.3 Forward Diamonds

	4 Hybrid Modelling Language
	4.1 Dataspaces
	4.2 Lifted Expressions
	4.3 Substitutions
	4.4 Vectors and Matrices

	5 Local Reasoning
	5.1 Frames
	5.2 Framed Evolution Commands
	5.3 Frames and Invariants for ODEs
	5.4 Ghosts and Darboux Rules

	6 Reasoning Components
	6.1 Automatic Certification of Differentiation
	6.2 Automatic Certification of Lipschitz Continuity
	6.3 Automatic Certification of the Flow
	6.4 Automatic VCG with Flows
	6.5 Solutions from Computer Algebra Systems
	6.6 Automatic Differential Invariants
	6.7 Derivative Tests

	7 Evaluation
	8 Examples
	8.1 Rotational Dynamics 3
	8.2 Dynamics: Conserved Quantity
	8.3 Reachability of a Rocket Launch

	9 Related Work
	10 Conclusions and Future Work
	A Appendix: ARCH2022 Evaluation Summary
	Acknowledgements
	References

