
This is a repository copy of Normative Requirements Operationalization with Large 
Language Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219527/

Version: Accepted Version

Proceedings Paper:
Feng, Nick, Marsso, Lina, Getir Yaman, Sinem et al. (9 more authors) (2024) Normative 
Requirements Operationalization with Large Language Models. In: Liebel, Grischa, Hadar, 
Irit and Spoletini, Paola, (eds.) Proceedings - 32nd IEEE International Requirements 
Engineering Conference, RE 2024. 32nd IEEE International Requirements Engineering 
Conference, RE 2024, 24-28 Jun 2024 Proceedings of the IEEE International Conference 
on Requirements Engineering . IEEE Computer Society , ISL , pp. 129-141. 

https://doi.org/10.1109/RE59067.2024.00022

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Normative Requirements Operationalization with

Large Language Models

Abstract—Normative non-functional requirements specify con-
straints that a system must observe in order to avoid violations
of social, legal, ethical, empathetic, and cultural norms. As
these requirements are typically defined by non-technical system
stakeholders with different expertise and priorities (ethicists,
lawyers, social scientists, etc.), ensuring their well-formedness and
consistency is very challenging. Recent research has tackled this
challenge using a domain-specific language to specify normative
requirements as rules whose consistency can then be analysed
with formal methods. In this paper, we propose a complemen-
tary approach that uses Large Language Models to extract
semantic relationships between abstract representations of system
capabilities. These relations, which are often assumed implicitly
by non-technical stakeholders (e.g., based on common sense or
domain knowledge), are then used to enrich the automated
reasoning techniques for eliciting and analyzing the consistency
of normative requirements. We show the effectiveness of our
approach to normative requirements elicitation and operational-
ization through a range of real-world case studies.

I. INTRODUCTION

Software systems are increasingly capable to perform daily

tasks alongside humans, as important components of our

infrastructure. Therefore, ensuring the responsible integration

of these systems into our society is becoming crucial. This

includes preventing them from violating social, legal, ethical,

empathetic, and cultural (SLEEC) norms [45], [20], [21]. As

such, it is important to elicit normative non-functional re-

quirements (N-NFRs). Due to the nature of the N-NFRs, their

elicitation involves non-technical stakeholders (e.g., ethicists,

lawyers), each with different and potentially conflicting jargon,

goals, priorities, and responsibilities. So, it is particularly im-

portant to support the professionals in ensuring that the elicited

N-NFRs do not have well-formedness issues (WFIs) [20], [16],

[17], [21] such as conflict and redundancy [21].

Previous work has proposed a rule-based SLEEC language

to formalize N-NFRs [20]. Automated techniques, based on

first-order logic [19] and a process algebra [22], [5], have been

developed to check normative requirements specified in this

language for WFIs [20], [21], [16], [17]. While effective, these

techniques assume that all capabilities referenced in the rules

are independent. More precisely, the non-terminal symbols

used for describing events and measures in the rules are

treated as uninterpreted constants that do not carry semantics.

However, in practice, many of these capabilities are related, if

we take into account common sense or domain knowledge, and

those relations are often assumed by non-technical stakehold-

ers. For example, ‘on’ and ‘off’ measures of a camera can be

reasonably expected to be mutually exclusive. Ignoring these

semantic relations can affect the soundness and completeness

of the WFI analysis. For example, consider the SLEEC rules:

r1 = when BatteryLow then MuteNotifications

r2 = when BatteryLow then SendUserWarning

In the rule set {r1, r2}, r1 is conflicting with r2. This is

because r1 and r2 share the same triggering event BatteryLow,

and the response of r1, MuteNotifications, is contradictory

with the response of r2, SendUserWarning. The contradiction

follows from the fact that, if the events MuteNotifications

and SendUserWarning occur simultaneously, that is, in the same

time unit, they cannot both have their intended effect. When

all goes well (that is, there is no failure), either a warning

is delivered, or the agent is muted, but not both. However,

existing automated reasoning techniques [20], [16], [17] fail to

detect this conflict as they do not capture the semantic relation

between the two events used in the responses. Therefore, there

is a need to define and capture semantic relations of terms

used in N-NFRs according to common sense and domain

knowledge, and to use these relations in the N-NFR analysis.

Traditional knowledge extraction approaches may be con-

sidered as a means for addressing this need. However, they

use as input (structured or unstructured) sources without

information specific to applications, while the semantic re-

lations for capabilities used in SLEEC requirements come

from common sense in the context of domain-specific environ-

ments. Therefore, these knowledge extraction approaches are

ineffective without an additional knowledge source, such as a

domain-specific ontology [15], [37], [6], [13] that is effort-

intensive and costly to assemble. Our work addresses this

issue without requiring such effort to structure the domain

knowledge. To that end, we exploit the knowledge captured in

Large Language Models (LLMs). LLMs are pre-trained with

a vast amount of data covering a wide range of topics. They

have been shown effective in answering questions regarding

common sense [44], [7], [12] and domain-specific knowledge

such as programming [31], [39], healthcare [10], [26], and

law [38], [46]. LLMs are also capable of obtaining new

knowledge from analogies and examples [24], [27]. Therefore,

we propose to use LLMs for suggesting potential semantic

relations among system capabilities subject to SLEEC require-

ments. For the example above, GPT-4.0 successfully suggested

that MuteNotifications is contradictory with SendUserWarning.

On the other hand, using LLMs comes with its own risks,

as they are notorious for producing significantly incorrect

results [40], [47]. To prevent any falsely identified semantic

relations from confounding WFI analysis, we also propose a

1



RAINCOAT

I.

III.a. Confwell

well-formed SLEEC

requirements

I. Requirements elicitation

II. Sanitizing definitions

III. WFI identification

◻ conflicts ◻ insufficiency

◻ restrictiveness ◻ redundancy

IV. WFI resolution

: LLM-San : automated reasoning support

: Manual

SLEEC
principles

system
capabilities II.a. Extracting

semantic relations

II.b. Review relations

Fig. 1: Overview of RAINCOAT: the noRmAtive requIremeNts
eliCitatiOn and vAlidaTion approach.

lightweight logic-based filtering algorithm that incrementally

extends relations via a set of inference rules and heuristically

fixes logical inconsistencies on-the-fly. The filtered relations

do not induce any logical fallacies and can be used directly

for WFI analysis. We still, however, ask stakeholders to further

filter the relations based on their domain-specific knowledge.

To summarise, the main contributions of our paper are:

(1) An LLM-based technique that extracts semantic relations

between the capabilities of a system under development,

where these capabilities appear as non-terminal symbols in

the SLEEC rules that encode the system’s N-NFRs; (2) The

integration of our new semantic-relation extraction technique

with existing automated reasoning methods, to develop a

systematic end-to-end approach, RAINCOAT, for eliciting and

analyzing normative requirements; (3) An extensive evaluation

(with five non-technical stakeholders, using a range of real-

world case studies) that shows the effectiveness and usability

of our LLM-based technique and the RAINCOAT approach.

The rest of the paper is organized as follows: Sec. II

gives the background material. Sec. III presents LLM-San,

the new technique for determining semantic relations. Sec. IV

gives an overview of our approach, RAINCOAT, for eliciting

and analyzing normative requirements. Sec. V presents the

evaluation of the effectiveness of LLM-San and RAINCOAT.

Sec. VI overviews related work. Sec. VII concludes the paper

and discusses future research directions.

II. PRELIMINARIES

In this section, we present backgrouund material. In

Sec. II-A, we review the details of SLEEC, and in Sec. II-B,

we present well-formedness issues of SLEEC requirements.

A. Normalized Representation of SLEEC

SLEEC is an event-based language for specifying normative

requirements through the pattern “when trigger then response”

[20]. It builds on propositional logic enriched with temporal

TABLE I: Syntax of normalized SLEEC with signature (E, M ).
Name Definition

Term t := c ∶ N ∣m ∈M ∣ −t ∣ t + t ∣ c × t
Proposition p := ⊺ ∣ � ∣ t ≙ t ∣ t ≥ t ∣ not p ∣ p and p ∣ p or p
Obligation ob+ := ewithin t ∣ ob− := not ewithin t
Cond Obligation cob+ := p⇒ ob+ ∣ cob− := p⇒ ob−

Obligation Chain ⋁cob := cob ∣ cob+ otherwise ⋁cob

Rule r := when e and p then ⋁cob

Fact f := exists e and pwhile (⋁cob ∣ not⋁cob)

TABLE II: Capabilities, definitions and requirements of DAISY [9].

(a) DAISY capabilities.

- Meet a patient - Issue commands to the patient - Explain the protocols to the patient
- Examine the patient - Collect patient data - Perform triage assessment
- Provide instructions - Repeat the instructions - Request clinician intervention

(b) Sample DAISY SLEEC definitions.

event ExamineState measure patientStressed

event IdentifyDAISYTrust measure patientAgeConsidered

event MeetingUser measure patientXReligion

event MeetingPatient measure userDirectsOtherwise

(c) Sample DAISY SLEEC requirements.

Rule10 when MeetingUser then ExamineState

Rule13 when MeetingUser then IdentifyDAISYTrust

Rule16 when MeetingUser then ExaminingPatient

within 30 minutes unless patientStressed

Rule19 when MeetingUser and patientXReligion

then not ExaminingPatient

unless userDirectsOtherwise unless medicalEmergency

constraints (e.g., within x minutes) and the constructs un-

less, specifying defeaters, and otherwise, specifying fallbacks.

SLEEC is an expressive language, allowing specification of

complex nested defeaters and responses. A SLEEC rule may

be represented by multiple logically equivalent formulations,

complicating analysis and reasoning. This issue can be ad-

dressed with the normalized SLEEC here, which simplifies

nested response frameworks and removes defeaters, encoding

their semantics using propositional logic. A translation from

SLEEC to the normalized form is provided in [18].

Normalized SLEEC syntax. A normalised SLEEC signa-

ture is a tuple S ≙ (E,M), where E ≙ {e1, . . . , en} and

M ≙ {m1 . . .mn} are finite sets of symbols for events and

measures, respectively. In the rest of the paper, we assume that

all event symbols (e.g., OpenCurtain) are capitalized while

measure symbols (e.g., underDressed) are not. Without loss

of generality, we assume that every measure is numerical. The

syntax of the normalized SLEEC can be found in Tbl. I. For

example, an obligation ob ≙ hwithin t specifies that the event

e must (if h ≙ e) or must not (if h ≙ not e) occur within the

time limit t. We omit the time limit t if t ≙ 0.

Example 1. Consider DAISY [9], a sociotechnical AI-

supported system to direct patients through an A&E triage

pathway. Tbl. IIa describes DAISY capabilities. One normative

rule (Rule16) is “when MeetingUser then ExaminingPatient

within 30 minutes unless patientStressed”, where

MeetingUser and ExaminingPatient are events and

patientStressed a measure. Rule16 is normalized as

“when MeetingUser and not patientStressed then

ExaminingPatient within 30 minutes”.

Semantics. The semantics of SLEEC is described

over traces, which are finite sequences of states

2



time

ExaminingPatient

patientStressed

∅

1 30
σ1

Fig. 2: Trace for the DAISY robot example.

σ ≙ (E1,M1, δ1), (E2,M2, δ2), . . . (En,Mn, δn). For every

time point i ∈ ∥1, n∥, (1) Ei is a set of events that occur at i;

(2) Mi ∶ M → N assigns every measure in M to a concrete

value at time point i, and (3) δi ∶ N captures the value of

time point i (e.g., the second time point can have the value

30, for 30 sec). We assume that the time values in the trace

are strictly increasing (i.e., δi < δi+1 for every i ∈ ∥1, n − 1∥).
Given a measure assignment Mi and a term t, let Mi(t)
denote the result of substituting every measure symbol m

with Mi(m). Since Mi(t) does not contain free variables,

the substitution results in a natural number. Similarly, given

a proposition p, we say that Mi ⊧ p if p is evaluated to

⊺ after substituting every term t with Mi(t). Let a trace

σ ≙ (E1,M1, δ1) . . . (En,Mn, δn) be given.

(Positive obligation). A positive obligation ewithin t is ful-

filled subject to time point i, denoted σ ⊧i ewithin t, if there

is a time point j ≥ i such that e ∈ Ej and δj ∈ ∥δi, δi +Mi(t)∥.

That obligation is violated at time point j, denoted as σ /⊧
j
i

ewithin t, if δj ≙ δi + Mi(t), and for every j′ such that

j ≥ j′ ≥ i, e does not occur (e /∈ Ej′).

(Negative obligation). A negative obligation not ewithin t is

fulfilled subject to time point i, denoted as σ ⊧i not ewithin t,

if for every time point j such that δj ∈ ∥δi, δi +Mi(t)∥, e /∈ Ej .

The negative obligation is violated at time point j, denoted as

σ /⊧
j
i not ewithin t, if (1) δj ∈ ∥δi, δi +Mi(t)∥, (2) e occurs

(e ∈ Ej), and (3) for every j ≥ j′ ≥ i, e does not occur (e /∈ Ej′).

(Conditional obligation). A conditional obligation p ⇒ ob is

fulfilled subject to time point i, denoted as σ ⊧i (p ⇒ ob),
if p does not hold at time point i (that is, Mi(p) ≙ �) or the

obligation is fulfilled (σ ⊧i ob). Moreover, p⇒ ob is violated

at time point j, denoted as σ /⊧
j
i (p ⇒ ob), if p holds at i

(Mi(p) ≙ ⊺) and ob is violated at j (σ /⊧
j
i ob).

(Obligation chain). A chain cob+1 otherwise cob+2 . . . cobm
is fulfilled subject to time point i, denoted as σ ⊧i

cob+1 otherwise cob+2 . . . cobm, if (1) the first obligation is

fulfilled (σ ⊧i cob+1 ) or (2) there exists a time point j ≥ i

such that cob+1 is violated (i.e., σ /⊧
j
i cob1) and the rest of

the obligation chain (if not empty) is fulfilled at time point j

(σ ⊧j cob
+
2 otherwise . . . cobm).

(Rule). A rule when e and p then ⋁cob is fulfilled in σ,

denoted as σ ⊧ when e and p then ⋁cob, if for every time point

i, where event e occurs (e ∈ Ei) and p holds (Mi(p) ≙ ⊺), the

obligation chain is fulfilled subject to time point i (σ ⊧i ⋁cob).

A trace fulfills a rule set Rules, denoted as σ ⊧ Rules, if it

fulfills every rule in the set (i.e., for every r ∈ Rules, σ ⊧ r).

Example 2. Consider the normalized SLEEC rule Rule16 in

Example 1 and the trace σ1 shown in Fig. 2, corresponding to

(E1,M1, δ1), where E1 ≙ MeetingUser, M1(patientStressed)

= ⊺, and δ1 ≙ 1. The trace σ1 fulfills the rule Rule16 (i.e.,

σ1 ⊧ patientStressed), because the rule’s triggering condi-

tion not patientStressed is not satisfied, i.e., the patient is

patientStressed at the time of the meeting).

Definition 1 (Behaviour defined by Rules). Let a rule set Rules

be given. The accepted behaviour defined by Rules, denoted

as L(Rules), is the largest set of traces such that every trace

σ in L(Rules) respects Rules, i.e., σ ∈ L(Rules), σ ⊧ Rules.

On top of the usual rules, SLEEC also uses Facts as an

utility construct describing the test scenarios for rules. A fact

(see Tab. I) exists e ∧ pwhile (⋁cob ∣ not⋁cob) asserts the

existence of an event e under condition p while an obligation

chain ⋁cob is either satisfied or violated. Facts can be used

to describe undesirable behaviors, denoted as concerns, which

should be blocked by SLEEC rules. Alternatively, Facts can

also be used to describe functional goals, denoted as purposes,

which should be allowed by SLEEC rules.

B. Well-Formedness Issues (WFI)

SLEEC Rules might be subject to well-formedness issues

(WFIs): vacuous conflict, redundancy, insufficiency, over-

restrictiveness and conditional conflict. We explain each WFI

briefly and refer to [17] for a formal definition.

Vacuous conflict. A rule is vacuously conflicting in a rule set

Rules if triggering this rule always leads to a conflict with

some other rules in Rules.

Situational conflict. A rule is situational conflicting in a rule

set Rules if triggering this rule under a certain situation which

defines a history of events and measures, always leads to a

conflict with some other rules in the future.

Redundancy. A rule is redundant in a rule set Rules if this

rule is logically implied by other rules in Rules.

Insufficiency. A rule set Rules is insufficient subject to a

given concern if some behavior represented by the concern

is realizable while respecting Rules.

Over-restrictiveness. A rule set Rules is overly restrictive

subject to a given purpose if none of the functional goals

represented by the purpose is realizable while respecting Rules.

WFIs impose threats to the validity of SLEEC rules. Con-

flicting rules must be resolved to avoid inevitable SLEEC

harms. Insufficient and overly-restrictive rule sets also need to

be fixed, to avoid executions of undesirable behaviors and vi-

olations of functional goals, respectively. Situational conflicts

and redundancies also require attention. The former capture

dead-end situations where conflicts become inevitable and the

latter complicates management of evolving requirements.

Order of Resolving WFIs. Different types of WFIs have

different levels of severity and might depend on each other.

Vacuous conflicts should be resolved prior to situational

conflicts because any situation that triggers a vacuously con-

flicting rule will also create a conflicting situation. For exam-

ple, consider R1 = when A then B. This rule is vacuously con-

flicting due to another rule: R2 = when A then not B within

3



Fig. 3: Redundancy diagnosis example.

10 minutes. This implies that R1 is also situationally con-

flicting since any situation that triggers R1 leads to a conflict.

Insufficiency and over-restrictiveness are checked and resolved

after both types of conflict because the behaviors defined by

conflicting rules are inconsistent, and thus might affect the

judgment of insufficiency or over-restrictiveness analysis. For

example, without first resolving the vacuous or situational

conflict between R1 and R2, the conflicting situations are ex-

cluded from the insufficiency and over-restrictiveness analysis.

The concern exists A while X can never be identified in any

currently conflicting situation (and cannot be identified at all

if a vacuous conflict exists), thus it is blocked by the conflict.

Redundancies are checked last because they are the least

severe WFIs, and because they are affected by conflicts.

For example, without resolving the vacuous conflict between

R1 and R2, the rule R3 = when A then C is redundant because

triggering R3 would also trigger R1 and subsequently cause a

conflict. Moreover, the conflict subsumes the response of R3

(e.g., C), thus making the rule redundant.

LEGOS-SLEEC. [17] was proposed to identify and resolve

WFIs. It encodes the semantics of rules into FOL∗ and

turns WFI conditions into FOL∗ satisfiability queries. The

satisfiability results, either satisfying solutions or proofs of

unsatisfiability, are then used to diagnose the causes of WFIs.

Example 3. Consider a rule set Rules ≙ {Rule10, Rule10 01,

Rule10 02}, where Rule10,Rule10 01,Rule10 02 are rules in

Tbl. IIc. To check whether Rule10 is redundant in Rules, we

can use LEGOS-SLEEC which checks the satisfiability of the

query {¬Rule10 } ∪ {r ∣ r ∈ Rule10∖{Rule10}}. The query is

unsatisfiable (UNSAT), which means that Rule10 is a logical

consequence of the {¬Rule10} ∪ {r ∣ r ∈ Rule10; hence, Rule10

is redundant. LEGOS-SLEEC provides a diagnosis shown in

Fig. 3, with the reason of redundancy highlighted.

III. SANITIZING DEFINITIONS

The semantics of SLEEC (see Sec.II-A) assumes that the ca-

pabilities of the systems (represented by events and measures)

are independent. SLEEC does not support the description of

the relations between these capabilities. In this section, we first

propose an extension to SLEEC for describing the relations

between capabilities, denoted as CR (Sec.III-A). Then, we

present an LLM-aided approach to automatically extract CRs

from the textual semantics of the capabilities (Sec. III-B).

A. Capability Relations (CR)

We propose extending SLEEC to capture three types of

binary relations: (1) between two events, (2) between two

measures, and (3) between an event and a measure.

Relations between events. We capture the following list of

binary relations between events ea and eb:

● ea hypernym eb iff (if and only if) for every state, the

occurrence of ea implies the occurrence of eb.

● ea isContradictoryWith eb iff for every state, ea and eb
never occur simultaneously.

● ea happensBefore eb iff for every state s1 where ea
occurs, there exists some state s2 prior to s1 in which

eb occurred.

● ea equal eb iff ea hypernym eb and eb hypernym ea.

The formal definitions of these relations are presented in the

supplementary material [2]. Table III illustrates each relations.

Relations between measures. We capture the following list of

binary relations between propositions pa and pb over measures:

● pa imply pb iff for every state, pa holding implies that

pb also holds.

● pa mutuallyExclusive pb iff for every state, pa and pb
never hold simultaneously.

● pa opposite pb iff for every state, pa holds if and only if

pb does not hold.

● pa equal pb iff pa imply pb and pb imply pa.

Formal definitions of these relations are in the supplementary

material [2]. Tbl. IV illustrates each relation type.

Relations between events and measures. We capture the

following list of relations between events and measures:

● p forbids e iff for every state, if p holds, it implies that

the occurrence of e is not possible at those times.

● e induces p iff for every state, the occurrence of e implies

that p holds at the same time.

● when ea then p until eb iff p holds for all states starting

from a state where ea occurs until a state where eb occurs.

● when e then p for t iff p holds for all states starting from

a state s1 where e occurs until a state s2 such that s2 is

t units of time after s1.

The formal definitions of the above relations are presented in

the supplementary material [2]. Table V gives examples of

each type of relation. Note that forbids and induces describe

relations that are concerned with the same state (i.e., with the

same time point), while when . . . then . . . until . . . and when

. . . then . . . for . . . are temporal relations between events and

measures across multiple states.

Rationale behind the selection of semantic relation terms.

The terms used to describe the semantic relations between

events and measures were determined through collaboration

with a non-technical stakeholder, a philosopher with expertise

in common-sense knowledge and intuition-based reasoning.

The relations were chosen to be easy to understand and

intuitive where possible. The majority of the terms have

everyday usage across multiple contexts and domains, thereby

4



TABLE III: Example relations between events.

Relation SLEEC DSL example

hypernym
water is an instance of liquid

DrinkWater hypernym DrinkLiquid

equal
patient and client are interchangeable, when patients are the only clients
CallPatient equal CallClients

contradictory
impossible to open and close the door simultaneously

OpeningDoor isContradictoryWith ClosingDoor

happen locking the door occurs after closing it

before ClosingDoor happensBefore LockingDoor

TABLE IV: Example semantic relations between measures.

Notation SLEEC DSL example

imply
door opened can not be locked

doorOpened imply not doorLocked

mutual door opened can not be locked

exclusive doorOpened mutuallyExclusive doorLocked

opposite
the door can be either opened or closed

doorOpened oppositeTo doorClosed

equal patient and client are interchangeable, when patients are the only clients

patientConsented equal userConsented

making them easier for stakeholders to adopt. These ‘common

sense’ relations include ‘happens before’, ‘equal’, ‘imply’,

‘opposite’, ‘forbids’, ‘contradictory’ and ‘induces’. Stakehold-

ers will likely already possess an understanding of these

relations prior to being introduced to them in the context of

events and measures (although each relation is still thoroughly

explained to stakeholders and illustrated with examples to aid

comprehension). In the absence of readily apparent intuitive or

common-sense equivalents and to avoid verbose descriptions,

terms were selected that instead capture the intended semantic

relation. ‘Hypernym’ was selected based on its frequent use

in semantic relation databases such as WordNet [35], [34],

[42]. The term ‘mutually exclusive’ was chosen due to its

frequent use in philosophy, law, computer science and other

relevant disciplines. To ensure concurrence across disciplines,

the precise meaning intended for this work was specified and

standardised (as was the case for each relation identified).

B. LLM-aided CR Extractions

Given sets of symbols E and M for the events and measures

of a SLEEC document, the algorithm LLM-San (see Alg. 1)

computes potential binary relations between the event and

measure symbols in E and M according to their textual se-

mantics. LLM-San first prepares and executes queries (Alg. 1

LL:1-2) to an LLM to extract a set of candidate relations (as

presented in Sec.III-B1). Then, it filters (L:3) the candidate set

to ensure logical consistency (as presented in Sec. III-B2).

Remark 1. LLM-San automatically extracts relations only

between a pair of events or measures. Relations between an

event (and multiple events, in the case of when until) and a

measure should be more carefully defined by the users.

1) Relation discovery: LLM-San initially queries an LLM

to discover a set of binary relations between two events or

two measures. The query to the LLM includes the following

information: (1) the grammar of SLEEC (shown in Table I);

(2) the set of event and measure symbols in E and M ,

respectively; (3) the textual definition and an illustration for

each type of relation. For example, the query for the relation

TABLE V: Example dependencies between events and measures.

ID SLEEC DSL example

induce CollectConsent induces consentObtained

forbidden inWater forbids CarStartSpeeding

until when CollectConsent then consentObtained

until ConsentWithdraw

for when LoginConfirmed then loggedIn for 10 minutes

Algorithm 1 LLM-San (E, M )

Require: E and M are the complete sets of event and measure symbols, respectively
Ensure: Relf is a consistent set of relations between events and measures in E and

M , respectively.
1: query ← PREPAREQUERY(E, M)
2: Rel ← LLM(query)
3: Relf ← Filter(Rel)
4: return Relf

happensBefore is shown in Fig.5; (4) the JSON format for

the expected output. For example, the output format for a

discovered happensBefore relation is shown in Fig. 6.

LLM-San sends a query to the LLM and then waits for

it to populate a JSON file containing a set of discovered

relations and their verdicts Rels ≙ r1, . . . , rn. A relation

is considered positive if it is confirmed by the LLM (e.g.,

ea happensBefore eb) and negative if it is rejected (e.g.,

not (ea happensBefore eb)). Fig. 7 demonstrates the LLM’s

output representing a positive relation of happensBefore. For

all relations, LLM-San asks the LLM to provide a justification

before producing the final verdict. This simulates the forward-

thinking process and prevents the LLM from retrofitting a

justification for a random verdict.

2) Filtering relations via logic inference: The initial set of

candidate relations Rel produced by the LLM might contain

semantic errors that could lead to logical inconsistencies and

subsequently confound the WFIs analysis. While LLM-San,

as an automated procedure, cannot find all semantic errors in

Rel, it addresses any potential logical inconsistencies in it.

LLM-San calls Alg. 2 on Rel to remove candidate rela-

tions that could lead to logical inconsistencies, based on the

inference rules shown in Fig. 4. These inference rules derive

new relations from existing ones in Rel. Let Rel∗ be the fixed-

point set of all relations that are either in Rel or derivable from

Rel∗. A relation r witnesses an inconsistency if Rel∗ contains

both the positive relation r and the negative relation not (r).
A relation set Rel is consistent if Rel∗ has no inconsistency

witnesses. Alg. 2 takes as argument a set Rel of relations and

returns a candidate set Relf ⊆ Rel that is consistent.

All inference rules in Fig. 4 are Horn clauses in the form

r1, r2, . . . , rn ⇒ rcons ∣ not (rcons). Only positive relations

in Rel can lead to the deduction of new relations using the

rules. Negative relations are used for identifying inconsistency

witnesses. Therefore, an empty set of relations is vacuously

consistent. It is, however, not very useful. LLM-San aims to

greedily find a reasonably large subset of Rel that is consistent.

It is not guaranteed, however, that LLM-San returns the largest

consistent subset, as the problem of finding this subset is

generally NP-hard, even for Horn logic [29].

Given an input set Rel, Alg. 2 iteratively computes Rel∗

5



Inference rules for relations between two events.

ea isContradictoryWith eb

not (ea hypernym eb)
(IP1

−)
ea happensBefore eb

not (ea hypernym eb)
(IP2

−)
ea hypernym eb ∧ eb hypernym ec

ea hypernym ec
(IP trans+)

ea equal eb

ea hypernym eb
(IPEQ+)

ea hypernym eb

not (ea isContradictoryWith eb)
(ME1

−)
eb isContradictoryWith ea

ea isContradictoryWith eb
(MEcomm+)

ea hypernym eb ∧ eb isContradictoryWith ec

ea isContradictoryWith ec
(MEtrans+)

ea hypernym eb ∧ eb hypernym ea

ea equal eb
(EQIP+)

ea equal eb

eb equal ea
(EQcom+)

ea happensBefore eb ∧ eb happensBefore ec

ea happensBefore ec
(HBtrans1+)

ea happensBefore eb ∧ ec hypernym eb

ea happensBefore ec
(HBtrans2+)

eb hypernym ea ∧ eb happensBefore ec

ea happensBefore ec
(HBtrans3+)

Inference rules for relations between two propostions over measures.

pa mutualExc pb

not (pa imply pb)
(MIP1

−)
pa imply pb ∧ pb imply ec

pa imply pc
(MIPtrans+)

pa equal pb

pa imply pb
(IPEQ1

+)
pa equal pb

¬pa imply ¬pb
(IPEQ2

+)

pa imply pb

not (pa mutualExc pb)
(MME1

+)
pb mutualExc pa

pa mutualExc pb
(MMEcomm+)

pa imply pb ∧ pb mutualExc pc

pa mutualExc pc
(MMEtrans+)

pa imply pb ∧ pb imply pa

pa equal pb
(MEQIP+)

pa opposite ¬pb ∧ pb imply pa

pa equal pb
(MEQOP+)

pa equal pb

pb equal pa
(MEQcom+)

pa equal ¬pb

pa opposite pc
(MOPEQ+)

pb opposite ps

pa opposite pb
(MOPcoms+)

pa mutualExc pb ∧ ¬pa mutualExc ¬pb

pa opposite pb
(MOPME+)

Fig. 4: Horn inference rules for binary relations between two events or two measures. Rules with trailing “+”s and “-”s derive positive and

negative relations, respectively. Alg. 2 always propagates on negative (“-”) before propagating on positive (“+”) rules.

Algorithm 2 CheckConsistency(Rel)

Require: Rel is a set of binary relations between two events or two measures.
Ensure: Relf is a subset of Rel, and is logically consistent w.r.t. the inference rules

in Fig. 4.
1: Rel∗ ← Rel, Rel′ ← ∅
2: while ⊺ do

3: Rel∗ ← Rel ∗⋃Rel′

4: Rel∗ ← {r ∣ r is negative ∨ not (r) /∈ Rel∗}
5: old Rel∗ ← Rel∗
6: Rel∗ ← APPLYRULES

−(Rel∗)
7: Rel∗, Rel?← APPLYRULES

+(Rel∗)
8: if old Rel∗ ≙ Rel∗ ∧ Rel? ≙ ∅ then

9: return Rel⋂Rel∗
10: end if

11: Rel′ ← LLM(Rel?)
12: end while

For every pair of events ea and eb, can you please answer

the following question: Is it the case that there is always

an occurrence of ea that happens before every occurrence

of eb? If yes, please say ea happensBefore eb. If no,

please say not (ea happensBefore eb). For example,

CreateForm happensBefore ShowForm is correct be-

cause CreateForm is the prerequisite of ShowForm.

Fig. 5: LLM query for finding binary relations of “happensBefore”.

from Rel (L:1) while fixing any identified inconsistency on-

the-fly. For each iteration, before applying inference rules,

LLM-San first checks Rel∗ for local consistency (L: 4) and

overrides all inconsistent positive relations r ∈ Rel∗ (i.e., if

not (r) ∈ Rel∗). Negative relations are favored over positive

ones to speed-up convergence since all inference rules are

Horn. After fixing local consistencies, all rules for deriving

negative relations (i.e., inference rules whose name ends with

“-”) are exhaustively applied (L:6). When an inference rule

derives a negative relation not (rcons), there are three cases:

Fig. 6: Output format for binary relations of “happensBefore”.

Fig. 7: LLM output for a positive relation of “happensBefore.”

(1) not (rcons) ∈ Rel∗, (2) rcons ∈ Rel∗, and (3) otherwise.

In the first case, the consequence is consistent with Rel∗
and no action is required. In the second case, there is an

inconsistency in Rel∗ witnessed by rcons. Alg. 2 then resolves

the inconsistency by updating rcons with not (rcons) in Rel∗.

In the third case, not (rcons) is added to Rel∗.

Example 4. Let Rel ≙ {r1 ≙ ea hypernym eb, r2 ≙
ea happensBefore eb} be given. Alg. 2 first derives a relation

r3 ≙ not (ea mutualExc eb) from r1 and r2 by rule “IP2
−”.

The derived relation r3 conflicts with r1 in Rel (and Rel∗).

The conflict is resolved by replacing r1 with r3 in Rel∗.

After exhausting all negative inference rules and obtaining

a new Rel∗ (L:6), Alg. 2 then proceeds to apply the positive

rules (L:7). If an inference rule derives a positive relation

rcons, there are three cases: (1) rcons ∈ Rel∗, (2) not (rcons) ∈
Rel∗, and (3) otherwise. In the first case, the consequence is

6



Fig. 8: Follow-up query for confirming the relation User-

WantsToCook happensBefore BeforeCookingBegins.

consistent. In the second case, there is an inconsistency in

Rel∗ witnessed by rcons. Alg.2 resolves this inconsistency by

updating one of the premises ri ∈ r1, . . . , rn with ¬ri in Rel∗.

In the third case, instead of directly adding rcons to Rel∗,

Alg. 2 prepares a follow-up query to the LLM about rcons
for confirmation. Note that this follow-up query is necessary

because the LLM did not initially discover rcons as a positive

relation in Rel. This might imply that not (rcons) ∈ Rel if

the LLM follows the closed-world assumption, or ‘unknown’

otherwise. We store all follow-up queries to the LLM in a set

Rel? when applying the positive inference rules. An example

of the follow-up query is shown in Fig. 8.

After exhausting the positive inference rules, the follow-up

queries Rel? are sent to the LLM (L:11). The results, denoted

as Rel′, comprise a set of positive and negative relations,

representing confirmations and rejections of the queries in

Rel?, respectively. Alg. 2 then merges Rel∗ with Rel′ (L:3),

and starts a new iteration of inferences (LL:6-11). Alg. 2

terminates when Rel∗ reaches a fixed point and no follow-

up queries are produced (L:8). Finally, Alg. 2 returns the

intersection of Rel∗ and the original relations Rel (L:9) as the

consistent set of relations. Note that not every relation in Rel∗
can be derived from the final return set because some relations

might be updated after being used to derive other relations in

Rel∗. We do not include these non-derivable relations in the

return even though including them does not affect consistency.

On the other hand, the derivable relations in Rel∗ do not need

to be in the final return set since they can be logically inferred,

and thus are redundant.

Example 5. Let Rel ≙ {r1 ≙ ea hypernym eb, r2 ≙
eb isContradictoryWith ec, r3 ≙ ea hypernym ec} be

given. Running Alg. 2 first derives a positive relation r4 ≙
ea mutualExc ec from r1 and r2 by rule “METrans+”. r4

and not (r4) are not in Rel∗, and r4 is added to Rel? to

be queried by the LLM. Suppose the LLM confirms r4 and

adds it to Rel∗. Then in the next iteration, Alg. 2 derives

r5 ≙ not (ea hypernym ec) from r4 by rule “IP1
−”, which

conflicts with r1 in Rel. The conflict is resolved by replacing

r1 with r5 in Rel∗. At this point, Rel∗ ≙ {r2, r3, r4, r5} is

a consistent set of relations. Alg. 2 returns the intersection of

Rel and Rel∗, which is {r2, r3}.

Remark 2. Alg. 2 terminates. This is because (1) there is

a finite number of possible binary relations, and (2) every

relation r in Rel∗ can change at most once: a positive relation

r can be updated to ¬r, but ¬r can never be updated to r.

LLM-San returns the consistent relation set Relf as the

candidate relations. Stakeholders are expected to review these

candidates and validate the correct ones, which are then

automatically included in the SLEEC rules for WFIs analysis.

IV. THE RAINCOAT APPROACH

In this section, we introduce our tool-supported ap-

proach, RAINCOAT, for normative requirements elicitation

and validation, depicted in Fig. 1. The approach consists of

four distinct stages which we discuss below.

I. Initial requirements elicitation. The goal of this stage is

to systematically identify preliminary normative requirements

and obtain their formal and machine-readable representations.

RAINCOAT follows the approach presented in [45] to first

contextualize the high-level SLEEC principles by mapping

them onto the agent capabilities. Consider DAISY, the robotics

system described in Sec. II. Its capabilities to “meet a pa-

tient” and “explain the interaction protocols to the patient”

are mapped to the SLEEC principles “autonomy” and “self-

determination”, and the mapping could result in the following

preliminary requirement: “when DAISY meets a patient, it

shall explain the interaction protocol to her”. Note that during

the elicitation process, new capabilities might be recom-

mended by non-technical stakeholders if they believe that a

SLEEC harm could occur otherwise. For instance, to comply

with privacy legislation, stakeholders could recommend adding

the “RemoveData” capability to DAISY, which grants users the

right to be forgotten.

For formalizing preliminary requirements, RAINCOAT fol-

lows the approach presented in [17], which uses the domain-

specific language SLEEC. This DSL has been shown to

be accessible to stakeholders from different fields, including

lawyers, philosophers, ethicists, roboticists, and software en-

gineers [20], [21], [16], [17]. For example, the preliminary

autonomy requirement is formalized as a SLEEC rule when

MeetingPatient then ExplainProtocols. More examples of

DAISY’s SLEEC requirements and their definitions are pro-

vided in Tbl. IIc and IIb, respectively.

II. Sanitizing definitions. This stage aims to enrich the

preliminary set of normative requirements by capturing and

integrating the semantic relations (see Sec. III-A) between

system capabilities (i.e., events and measures). This stage

uses our LLM-aided CR extraction algorithm LLM-San (see

Sec. III-B) to compute a set of candidate relations which

are then (manually) validated by the stakeholders. The vali-

dated relations are integrated into the preliminary normative

requirements. For example, the relation MeetingUser equal

MeetingPatient has been suggested, validated and integrated

for DAISY because patients are the only DAISY users.

III. Identification of well-formedness issues. In this stage,

we detect WFIs (see Sec.II-B) in the preliminary normative

requirements using the existing automated reasoning tech-

nique, LEGOS-SLEEC, in the order (1) vacuous conflicts, (2)

situational conflicts, (3) insufficiencies & over-restrictiveness,

and (4) redundancies. For each issue, we provide a diag-

nosis to help stakeholders understand exactly which rules

and clauses caused the WFI. Consider a rule set containing

7



Fig. 9: A diagnosis showing that Rule10 and the rela-

tion MeetingUser isContradictoryWith with ExamineState

cause a vacuous conflict.

Rule10 and a relation MeetingUser isContradictoryWith

with ExamineState. A vacuous conflict is identified and a

diagnosis (see Fig. 9) is produced to show that Rule10 and

the relation are the causes of the conflict.

If an WFI is identified, RAINCOAT jumps to the (manual)

‘WFI Resolution’ stage (Stage IV). The process terminates

when no further WFIs have been identified, resulting in well-

formed SLEEC requirements.

IV. WFI Resolution. The objective in this stage is for the

user to use the provided diagnosis to (manualy) address the

identified WFIs. For example, consider resolving the vacu-

ous conflict given the diagnosis in Fig. 9. We can deduce

that the rule should not require a simultaneous response.

Instead, it could be rewritten to include a time delay, such

as: when MeetingUser then ExamineState within 10 min-

utes. Stakeholders are expected to resolve each issue with the

exception of redundancies, where they may choose to inten-

tionally preserve some of them. After resolving the WFIs, the

stakeholders return to Stage III to confirm that the refinement

process did not introduce new WFIs. If the resolution process

involved updating some of the requirements definitions, the

stakeholders should return to Stage II to capture the potential

dependencies in the updated capabilities.

RAINCOAT actively engages stakeholders in the elicitation

and rule analysis process, and completes when the stakehold-

ers have resolved all conflicts and concerns, and deem the

elicited requirements to be comprehensive. Our experiments

(see Sec. V) show that the process successfully terminates in

1-3 iterations.

V. EVALUATION

In this section, we evaluate the effectiveness of both the

LLM-San technique, which infers the relation between the

capabilities in the SLEEC-DSL rules, and the overall approach,

RAINCOAT, for supporting non-technical stakeholders for

eliciting a comprehensive and well-formed set of normative

requirements. LLM-San implementation and the evaluation

artifacts are available in [2].

A. Effectiveness of LLM-San

We aim to answer: RQ1: What is the effectiveness of

using LLM-San w.r.t. the number of relevant and spurious

WFIs identified? Through answering this question, we aim to

determine whether the resulting set of requirements is more

sound and comprehensive.

Models and Methods. Non-technical stakeholders (N-TSs)

were asked to review the capabilities relation inferred by LLM-

San on nine real-world case-studies. The N-TS group included

an ethicist, a lawyer, a philosopher, and a psychologist. The

case studies were taken from the repository of normative

requirements [17]: (1) ALMI [25]: a system assisting elderly or

disabled users in a monitoring/advisory role and with everyday

tasks; (2) ASPEN [11]: an autonomous agent dedicated to

forest protection, providing both diagnosis and treatment of

various tree diseases; (3) AutoCar [4]: a system that imple-

ments emergency-vehicle priority awareness for autonomous

vehicles; (4) BSN [23]: a healthcare system detecting emer-

gencies by continuously monitoring the patient’s health status;

(5) DressAssist [30], [45]: an assistive and supportive system

used to dress and provide basic care for those in need; (6)

CSI-Cobot [43]: a system ensuring the safe integration of

industrial collaborative robot manipulators; (7) DAISY [9]:

a sociotechnical AI-supported system that directs patients

through an A&E triage pathway (our running example); 8)

DPA [1]: a system to check compliance of data processing

agreements against the General Data Protection Regulation; (9)

SafeSCAD [8]: a driver attentiveness management system to

support safe shared control of autonomous vehicles. We have

selected these case studies because they have been used in

existing work [17] which examined them for well-formedness

issues. However, the authors of [17]assumed independence

of all capabilities referenced in the rules. Our goal is to

determine whether capturing the relations between capabilities

is important in practice.

For each case study, two to four N-TSs individually la-

belled the semantic relations inferred by LLM-San as correct

or incorrect, with a justification if needed, and timed this

process. After capturing the relations classified as correct, we

analyzed the case studies for any new well-formedness issues

(WFI). Subsequently, we requested that stakeholders review

the newly-identified WFIs to ensure that they are relevant,

i.e., not spurious.

Results. We consider semantic relations to be correct (TP) if

they were classified as correct by the majority of the N-TSs.

The others are considered spurious (FP). For each case study,

we report the type of semantic relation that has been captured

as well as the new relevant well-formedness issues identified.

The results are shown in Tbl. VI.

LLM-San inferred the total of 103 semantic relations for all

but one (DressAssist) case studies, and the N-TSs classified 53

of them as correct. The classification took between 4 minutes

(BSN) and 30 minutes (DPA). The number of correct relations

added per case study ranged between 19 (ASPEN) and one

(BSN and SafeSCAD). The majority of the added relations

(27) involved contradicting events, that is, there were 27 pairs

of events whose expected effects were mutually exclusive. The

second most common relation type added (13) was the one

involving mutual exclusiveness between two measures. We

observed that a higher number of events and measures did not

lead to a promortionally higher number of relations between

8



TABLE VI: LLM-San effectiveness. We record: true positive (TP) and false negative (FP) in the extracted capabilities relation (rel.);
the number of hyponyms (hyp.), coincidences (coi.), contradicting (cont.), happening before (h.b.), implications (imp.), mutually exclusive
(m.e.), equivalences (eq.), induce (induc), and forbid (forb.) relations added; the number of new issues identified (after capturing the semantic
relations) for vacuous conflict (v-conf.), situational conflict (s-conf.), redundancy (redund.), restrictiveness (restrict.), and insufficiency (insuff.).

case studies
rules relations number of relations by type new WFI

(evnt.− msr.) (TP - FP) hyp. coi. cont. h.b. imp. m.e. eq. induc. forb. v-conf. s-conf. redund. insuffi. restrict.

ALMI 39 (41 − 15) 5 - 2 0 0 0 0 2 2 1 0 0 0 0 0 0 0
ASPEN 15 (25 − 18) 19 - 8 0 0 7 1 2 7 1 0 1 1 0 1 0 0

AutoCar 19 (36-26) 6 - 19 0 0 5 0 0 0 0 0 1 0 0 0 0 0
BSN 29 (33-31) 1 - 3 0 0 1 0 0 0 0 0 0 0 0 2 0 0

CSI-Cobot 20 (23-11) 3 - 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0
DAISY 26 (45-31) 15 - 5 0 0 9 0 0 3 0 0 3 5 0 4 0 0
DPA 26 (28-25) 3 - 2 0 0 2 0 0 1 0 0 0 0 0 0 0 0

DressAssist 31 (54-42) 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SafeSCAD 28 (29-20) 1 - 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0

them. We identified 13 new well-formedness issues, all of

which have been clasisfied as relevant by the N-TSs. Out of

them, six were instances of vacuous conflicting rules, meaning

that triggering them would inevitably lead to a conflict! The

remaining seven instances represented redundant requirements.

To summarize, capturing semantic relations using LLM-San

enabled us to identify new relevant WFIs, answering RQ1.

B. Effectiveness of RAINCOAT

We now aim to evaluate the effectiveness of the overall

approach, RAINCOAT, in eliciting a comprehensive and well-

formed set of normative requirements. Specifically, We aim to

assess whether the use of RAINCOAT facilitates faster con-

vergence and yields higher quality requirements by answering

RQ2: How does RAINCOAT impact the overall elicitation

and validation process in terms of the number of iterations,

convergence speed, and quality compared to common practices

of non-technical stakeholders?

Models and Methods. We conducted a controlled experi-

ment involving two groups of non-technical stakeholders (N-

TSs) across two real-world case studies: (1) Tabiat [33], a

smartphone application (and sensors) that records symptoms

and keeps doctors updated on patients’ chronic obstructive

pulmonary disease conditions; (2) Casper [36], a socially

assistive robot designed to help people living with dementia

by supporting activities of daily living at home and improving

their quality of life. The first group of stakeholders, consisting

of a philosopher and a psychologist, was tasked with elic-

iting SLEEC requirements for the Tabiat case study using

RAINCOAT. The second group, consisting of a lawyer and

a medical doctor, did the same, but without any tool support.

For each case-study, we provided stakeholders with a detailed

description of the system’s capabilities and its operating envi-

ronment and conducted the following experiments:

(i) Group 1 elicited requirements without guidance for the

Tabiat case study and validated them manually. We refer to this

experiment as adhoc elicitation. This experiment was chosen

to provide a baseline.

(ii) Group 2 elicited requirements for the Casper case study

following Stage I guidance of RAINCOAT and validated them

manually. We refer to this experiment as systematic-elicitation.

This was done to evaluate the impact of having a structured

approach to requirements elicitation.

(iii) Group 1 and Group 2 elicited requirements for the

Casper and Tabiat case studies, respectively, following the

overall RAINCOAT approach (which includes guided elici-

tation and automated validation). We refer to these experi-

ments as RAINCOAT-elicitation-validation. This experiment

was aimed to measure how the systematic elicitation and the

automation affect the quality of the requirements.

The elicited requirements obtained in each experiment are

compared based on the size of the requirements set (including

the number of events and measures) and number of well-

formedness issues. To facilitate the comparison, we used LLM-

San to extract relations from the manually elicited require-

ments (adhoc-elicitation and systematic-elicitation), and then

asked the stakeholders to filter them.

Results. Tbl. VII reports the number of requirements, events,

and measures, the correctly identified semantic relations (TP),

the incorrectly identified ones (FP), and the number of differ-

ent WFI types for the three experiments.

The experimental results show that the requirements elicited

through the systematic approach are more comprehensive

and result in a larger set, compared to adhoc-elicitation. In

the latter case, the stakeholders were guided by the SLEEC

principles and applied them to a selection of high-level system

capabilities, but they did not explore all potential mappings

with the complete set of system capabilities. We observed that

adhoc-elicitation was free from conflicts and redundancies,

whereas systematic-elicitation had 34 WFIs, including 24

conflicts and 12 redundancies. The high number of resulting

requirements in the systematic-elicitation, 57, rendered manual

validation infeasible. In contrast, adhoc-elicitation focused

on a smaller set of requirements, each with distinct and

independent responses.

Comparing systematic-elicitation with approach-elicitation-

validation, we observe that the former yielded a significantly

larger number of requirements. Since systematic-elicitation

had to rely on manual analysis, the experimental results

revealed many redundant and conflicting requirements. More-

over, we observed that when evaluating the insufficiency and

restrictiveness of requirements elicited in approach-elicitation-

validation, the stakeholders gained confidence that they had

elicited ‘enough’ requirements to prevent SLEEC harms, en-

suring that the system remained usable without overly restrict-

ing its main functionalities. The same stakeholders expressed

9



TABLE VII: RAINCOAT compared to common practice. We record: true positive (TP) and false negative (FP) in the extracted capabilities
relation (rel.); the number of new issues identified (after capturing the semantic relations) for vacuous conflict (v-conf.), situational conflict
(s-conf.), redundancy (redund.), restrictiveness (restrict.), and insufficiency (insuff.); and the number of iterations for each WFI type.

experiments case studies
rules relations WFI Number of iterations

(evnt.− msr.) (TP - FP) v-conf. s-conf. redund. insuffi. restrict. v-conf. s-conf. insuffi. restrict. redund.

adhoc-elicitation Tabiat 19 (27 − 13) 13 - 20 0 0 0 not applicable not applicable

systematic-elicitation Casper 57 (59 − 24) 11 - 18 22 2 12 not applicable not applicable

RAINCOAT- Tabiat 28 (37 − 18) 17 - 21 0 0 0 0 0 1 3 3 0 0
elicitation-validation Casper 26 (38 − 14) 23 - 22 0 0 0 0 0 0 0 1 0 1

regret over not implementing this step during systematic-

elicitation. For the approach-elicitation-validation, on average,

the stakeholders converged within three iterations and resolved

all instances of WFI, which required at least double the amount

of time spent in systematic-elicitation.

We conclude that systematic-elicitation is crucial to elicit a

comprehensive set of requirements that encompass all system

capabilities. Although integrating it with automated validation

(approach-elicitation-validation) incurred a time cost, we con-

clude that it was essential for preventing the elicitation of

an inconsistent set of requirements. Moreover, this combined

approach, implemented in RAINCOAT, effectively empowered

non-technical stakeholders to produce a well-defined set of

requirements without compromising the elicitation process,

answering RQ2.

C. Threats to Validity

For the experiments answering both RQ1 and RQ2, (1)

the non-technical stakeholders are co-authors of this paper.

We mitigated this threat by separating the authors into those

who participated in developing the approach and those who

evaluated it, and ensured that a complete separation between

them was maintained throughout the entire lifecycle of the

project. (2) Using ChatGPT for extracting semantic relations

has expected risks, such as potential misinterpretation and lack

of traceability. To mitigate these, we involved stakeholders in

the process, asking them to review and either accept or reject

the proposed relations. Although this step is time-consuming,

it is still faster than a capturing the relations manually.

For the experiments answering RQ2, (3) the two control

groups in our study included stakeholders from diverse profes-

sional backgrounds: one group consisted of a philosopher and

a psychologist, and the other of a lawyer and a medical doctor.

To address potential bias due to their differing expertise,

we avoided making comparisons based on profession-specific

requirements, focusing only on the well-formedness of the

overall set of elicited requirements. (4) Our second experiment

was limited to only two case studies, which could potentially

narrow the scope of our conclusions. However, we mitigated

this by selecting real-world case studies from different systems

(i.e., a smartphone application and a robot), developed by

stakeholders with diverse areas of expertise.

VI. RELATED WORK

Requirement engineering, spanning from elicitation to val-

idation, poses significant challenges due to requirement un-

certainties and potential misinterpretations by stakeholders.

To address these challenges, ontology-driven techniques have

been explored, aiming to capture semantic relations among the

concepts articulated in the requirements documentation [6],

[13]. These approaches emphasize hierarchical relations (e.g.,

“is class of,” “is instance of”) between concepts [15], [37], fa-

cilitating requirements specification through relation analysis.

While knowledge graphs require substantial efforts to build the

entire language elements [28], [32], our approach prioritizes

semantic relations, considering the domain knowledge as an

input to enhance the efficacy of the elicitation process, without

claiming linguistic completeness.

Recently, LLM-based techniques have emerged to stream-

line requirements engineering tasks, particularly in bridging

the gap between natural language requirements and their

specifications [3]. Investigations into the potential role of

ChatGBT in the elicitation process have explored both its

benefits and limitations [41]. In this paper, LLM assistance

aims to extract relations among language elements of events

and measures, which we term the capability relations of the

system for a sound reasoning and analysis, rather than con-

structing a requirements specification from natural language

documents [14].

VII. CONCLUSION

We have introduced a novel technique which leverages

LLMs to capture common sense and bridge the gap between

manually and automatically analyzing requirements. This is

achieved by extracting semantic relations between the ab-

stract representations of system capabilities in the normative

requirements. These relations are then used to enrich the

automated-reasoning techniques for eliciting and analyzing the

consistency and coherence of normative requirements. The

importance of capturing such relationships has been demon-

strated by the identification of 13 new well-formedness issues

(WFI) across nine existing case studies. The effectiveness and

usability of our approach have been demonstrated on two

real world studies with a total 64 relationships captured and

130 requirements which were elicited by stakeholders with

diverse backgrounds. Our technique for extracting semantic

relationships could be improved to reduce the number of false

positives. In the future, we plan to explore enhancements,

e.g., by refining the prompting strategies or fine-tuning the

LLM to better perform the task. Our proposed approach lacks

automatic support for the debugging and resolution of WFI

concerns. Semi-automated generation of patches for WFIs is

left for future work.

10



REFERENCES

[1] Amaral, O., Azeem, M.I., Abualhaija, S., Briand, L.C.: NLP-
based Automated Compliance Checking of Data Processing
Agreements against GDPR. CoRR abs/2209.09722 (2022).
https://doi.org/10.48550/arXiv.2209.09722

[2] Anonymous: Supplementary material for RE submission: Normative
requirements operationalization with llms (2024), https://anonymous.
4open.science/r/sleecvalDef-547D/README.md

[3] Arora, C., Grundy, J., Abdelrazek, M.: Advancing requirements engi-
neering through generative ai: Assessing the role of llms (2023)

[4] Bahadır, B.N., Kasap, Z.: AutoCar Project, https://acp317315180.
wordpress.com/

[5] Baxter, J., Ribeiro, P., Cavalcanti, A.: Sound reasoning in tock-csp. Acta
Informatica 59(1), 125–162 (2022). https://doi.org/10.1007/S00236-020-
00394-3, https://doi.org/10.1007/s00236-020-00394-3

[6] Bencharqui, H., Haidrar, S., Anwar, A.: Ontology-based require-
ments specification process. https://api.semanticscholar.org/CorpusID:
266152367

[7] Bisk, Y., Zellers, R., Bras, R.L., Gao, J., Choi, Y.: PIQA: rea-
soning about physical commonsense in natural language. In: The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. pp. 7432–7439. AAAI Press
(2020). https://doi.org/10.1609/AAAI.V34I05.6239, https://doi.org/10.
1609/aaai.v34i05.6239

[8] Calinescu, R., Alasmari, N., Gleirscher, M.: Maintaining Driver Atten-
tiveness in Shared-Control Autonomous Driving. In: 16th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). pp. 90–96. IEEE (2021)

[9] Calinescu, R., Ashaolu, O.: Diagnostic AI System for Robot-Assisted
A&E Triage (DAISY) website., https://twitter.com/NorwichChloe/status/
1679112358843613184?t=ALk7s8wcyHztZyyHJoB5pg&s=19, https://
tas.ac.uk/research-projects-2022-23/daisy/

[10] Cascella, M., Montomoli, J., Bellini, V., Bignami, E.G.: Evaluat-
ing the feasibility of chatgpt in healthcare: An analysis of mul-
tiple clinical and research scenarios. J. Medical Syst. 47(1), 33
(2023). https://doi.org/10.1007/S10916-023-01925-4, https://doi.org/10.
1007/s10916-023-01925-4

[11] Dandy, N., Calinescu, R.: Autonomous Systems for Forest Pro-
tEctioN (ASPEN) website., https://tas.ac.uk/research-projects-2023-24/
autonomous-systems-for-forest-protection/

[12] Dhingra, S., Singh, M., B, V.S., Malviya, N., Gill, S.S.: Mind meets ma-
chine: Unravelling gpt-4’s cognitive psychology. CoRR abs/2303.11436

(2023). https://doi.org/10.48550/ARXIV.2303.11436, https://doi.org/10.
48550/arXiv.2303.11436

[13] Diamantopoulos, T.G., Symeonidis, A.L.: Enhancing requirements
reusability through semantic modeling and data mining techniques.
Enterprise Information Systems 12, 960 – 981 (2018), https://api.
semanticscholar.org/CorpusID:53112505

[14] Fantechi, A., Gnesi, S., Passaro, L., Semini, L.: Inconsistency de-
tection in natural language requirements using chatgpt: a prelim-
inary evaluation. In: Proceedings of IEEE 31st International Re-
quirements Engineering Conference (RE). pp. 335–340 (09 2023).
https://doi.org/10.1109/RE57278.2023.00045

[15] Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Omoronyia, I., Zojer,
H.: Ontology-driven guidance for requirements elicitation. In: Antoniou,
G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer,
P., Pan, J. (eds.) The Semanic Web: Research and Applications. pp. 212–
226. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

[16] Feng, N., Marsso, L., Getir-Yaman, S., Beverley, T., Calinescu, R., Cav-
alcanti, A., Chechik, M.: Towards a Formal Framework for Normative
Requirements Elicitation. In: Proceedings of the 38th International Con-
ference on Automated Software Engineering, (ASE’2023), Kirchberg,
Luxembourg. IEEE (2023)

[17] Feng, N., Marsso, L., Getir-Yaman, S., Townsend, B., Baatartogtokh, Y.,
Ayad, R., de Mello, V.O., Kholodetska, Y., Standen, I., Stefanakos, I.,
Imrie, C., Rodrigues, G., Cavalcanti, A., Calinescu, R., Chechik, M.:
Analyzing and Debugging Normative Requirements via Satisfiability
Checking. In: Proceedings of the 46th International Conference on
Software Engineering, (ICSE 2024), Lisbon, Portugal. ACM (2024)

[18] Feng, N., Marsso, L., Getir-Yaman, S., Townsend, B., Baatartogtokh, Y.,
Ayad, R., de Mello, V.O., Kholodetska, Y., Standen, I., Stefanakos, I.,
Imrie, C., Rodrigues, G., Cavalcanti, A., Calinescu, R., Chechik, M.:
Analyzing and Debugging Normative Requirements via Satisfiability
Checking. In: Proceedings of the 46th International Conference on
Software Engineering, (ICSE 2024), Lisbon, Portugal. ACM (2024),
https://doi.org/10.48550/arXiv.2401.05673

[19] Feng, N., Marsso, L., Sabetzadeh, M., Chechik, M.: Early verification
of legal compliance via bounded satisfiability checking. In: Proceedings
of the 34th international conference on Computer Aided Verification
(CAV’23), Paris, France. Lecture Notes in Computer Science, Springer
(2023)

[20] Getir-Yaman, S., Burholt, C., Jones, M., Calinescu, R., Cavalcanti,
A.: Specification and Validation of Normative Rules for Autonomous
Agents. In: Proceedings of the 26th International Conference on Funda-
mental Approaches to Software Engineering (FASE’2023), Paris, France.
Lecture Notes in Computer Science, Springer (2023)

[21] Getir-Yaman, S., Cavalcanti, A., Calinescu, R., Paterson, C., Ribeiro, P.,
Townsend, B.: Specification, validation and verification of social, legal,
ethical, empathetic and cultural requirements for autonomous agents
(2023), https://arxiv.org/abs/2307.03697

[22] Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe, A.W.:
FDR3 - A Modern Refinement Checker for CSP. In: Proceedings of the
20th International Conference, TACAS 2014 on Tools and Algorithms
for the Construction and Analysis of Systems, (TACAS’2014), Grenoble,
France. Lecture Notes in Computer Science, vol. 8413, pp. 187–201.
Springer (2014). https://doi.org/10.1007/978-3-642-54862-8 13

[23] Gil, E.B., Caldas, R.D., Rodrigues, A., da Silva, G.L.G., Rodrigues,
G.N., Pelliccione, P.: Body sensor network: A self-adaptive system
exemplar in the healthcare domain. In: Proceedings of the 16th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems, (SEAMS@ICSE’2021), Madrid, Spain. pp. 224–
230. IEEE (2021). https://doi.org/10.1109/SEAMS51251.2021.00037

[24] Gupta, P., Khare, A., Bajpai, Y., Chakraborty, S., Gulwani, S., Kanade,
A., Radhakrishna, A., Soares, G., Tiwari, A.: Grace: Language mod-
els meet code edits. In: Chandra, S., Blincoe, K., Tonella, P. (eds.)
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023.
pp. 1483–1495. ACM (2023). https://doi.org/10.1145/3611643.3616253,
https://doi.org/10.1145/3611643.3616253

[25] Hamilton, J., Stefanakos, I., Calinescu, R., Cámara, J.: To-
wards adaptive planning of assistive-care robot tasks. In: Pro-
ceedings of th Fourth International Workshop on Formal Meth-
ods for Autonomous Systems and Fourth International Work-
shop on Automated and verifiable Software sYstem DEvelopment,
(FMAS/ASYDE@SEFM’2022), Berlin, Germany. EPTCS, vol. 371, pp.
175–183 (2022). https://doi.org/10.4204/EPTCS.371.12, https://www.
youtube.com/watch?v=VhfQmJe4IPc

[26] Haupt, C.E., Marks, M.: Ai-generated medical advice—gpt and beyond.
Jama 329(16), 1349–1350 (2023)

[27] Hodel, D., West, J.: Response: Emergent analogical reasoning
in large language models. CoRR abs/2308.16118 (2023).
https://doi.org/10.48550/ARXIV.2308.16118, https://doi.org/10.48550/
arXiv.2308.16118

[28] Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G.D.,
Gutierrez, C., Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S.,
Ngomo, A.C.N., Polleres, A., Rashid, S.M., Rula, A., Schmelzeisen,
L., Sequeda, J., Staab, S., Zimmermann, A.: Knowledge graphs. ACM
Comput. Surv. 54(4) (jul 2021). https://doi.org/10.1145/3447772, https:
//doi.org/10.1145/3447772

[29] Jaumard, B., Simeone, B.: On the complexity of the maximum sat-
isfiability problem for horn formulas. Inf. Process. Lett. 26(1), 1–
4 (1987). https://doi.org/10.1016/0020-0190(87)90028-7, https://doi.org/
10.1016/0020-0190(87)90028-7

[30] Jevtic, A., Valle, A.F., Alenyà, G., Chance, G., Caleb-Solly, P., Do-
gramadzi, S., Torras, C.: Personalized robot assistant for support
in dressing. IEEE Trans. Cogn. Dev. Syst. 11(3), 363–374 (2019).
https://doi.org/10.1109/TCDS.2018.2817283

[31] Joshi, H., Sánchez, J.P.C., Gulwani, S., Le, V., Verbruggen, G., Radicek,
I.: Repair is nearly generation: Multilingual program repair with llms.
In: Williams, B., Chen, Y., Neville, J. (eds.) Thirty-Seventh AAAI Con-
ference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2023, Thir-

11



teenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14, 2023. pp. 5131–
5140. AAAI Press (2023). https://doi.org/10.1609/AAAI.V37I4.25642,
https://doi.org/10.1609/aaai.v37i4.25642

[32] Kejriwal, M.: Domain-specific knowledge graph construction. In:
SpringerBriefs in Computer Science (2019), https://api.semanticscholar.
org/CorpusID:71147205

[33] Liaqat, D.: The Tabiat website., https://www.tabiat.care/
[34] Lin, G., Miao, Y., Yang, X., Ou, W., Cui, L., Guo, W., Miao, C.:

Commonsense knowledge adversarial dataset that challenges electra. In:
2020 16th International Conference on Control, Automation, Robotics
and Vision (ICARCV). pp. 315–320. IEEE (2020)

[35] Miller, G.A.: Nouns in wordnet: a lexical inheritance system. Interna-
tional journal of Lexicography 3(4), 245–264 (1990)

[36] Moro, C., Nejat, G., Mihailidis, A.: Learning and personalizing socially
assistive robot behaviors to aid with activities of daily living. ACM
Transactions on Human-Robot Interaction (THRI) 7(2), 1–25 (2018)

[37] Murugesh, S., Jaya, A.: Construction of ontology for software require-
ments elicitation. Indian Journal of Science and Technology 8 (11 2015).
https://doi.org/10.17485/ijst/2015/v8i29/86271

[38] Nay, J.J.: Law informs code: A legal informatics approach to
aligning artificial intelligence with humans. CoRR abs/2209.13020

(2022). https://doi.org/10.48550/ARXIV.2209.13020, https://doi.org/10.
48550/arXiv.2209.13020

[39] Phung, T., Padurean, V., Cambronero, J., Gulwani, S., Kohn, T., Ma-
jumdar, R., Singla, A., Soares, G.: Generative AI for programming
education: Benchmarking chatgpt, gpt-4, and human tutors. In: Fisler,
K., Denny, P., Franklin, D., Hamilton, M. (eds.) Proceedings of the
2023 ACM Conference on International Computing Education Research
- Volume 2, ICER 2023, Chicago, IL, USA, August 7-11, 2023. pp.
41–42. ACM (2023). https://doi.org/10.1145/3568812.3603476, https:
//doi.org/10.1145/3568812.3603476

[40] Rawte, V., Sheth, A.P., Das, A.: A survey of hallucination
in large foundation models. CoRR abs/2309.05922 (2023).
https://doi.org/10.48550/ARXIV.2309.05922, https://doi.org/10.48550/
arXiv.2309.05922

[41] Ronanki, K., Berger, C., Horkoff, J.: Investigating chatgpt’s potential to
assist in requirements elicitation processes (2023)

[42] Snow, R., Jurafsky, D., Ng, A.: Learning syntactic patterns for automatic
hypernym discovery. Advances in neural information processing systems
17 (2004)

[43] Stefanakos, I., Calinescu, R., Douthwaite, J.A., Aitken, J.M., Law,
J.: Safety controller synthesis for a mobile manufacturing cobot. In:
Proceedings of the 20th International Conference on Software Engi-
neering and Formal Methods (SEFM’2022), Berlin, Germany. Lecture
Notes in Computer Science, vol. 13550, pp. 271–287. Springer (2022).
https://doi.org/10.1007/978-3-031-17108-6 17

[44] Talmor, A., Herzig, J., Lourie, N., Berant, J.: Commonsenseqa: A
question answering challenge targeting commonsense knowledge. In:
Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers). pp. 4149–4158. Association for Computational Lin-
guistics (2019). https://doi.org/10.18653/V1/N19-1421, https://doi.org/
10.18653/v1/n19-1421

[45] Townsend, B., Paterson, C., Arvind, T., Nemirovsky, G., Calinescu,
R., Cavalcanti, A., Habli, I., Thomas, A.: From Pluralistic Normative
Principles to Autonomous-Agent Rules. Minds and Machines pp. 1–33
(2022)

[46] Trautmann, D., Petrova, A., Schilder, F.: Legal prompt engineering
for multilingual legal judgement prediction. CoRR abs/2212.02199

(2022). https://doi.org/10.48550/ARXIV.2212.02199, https://doi.org/10.
48550/arXiv.2212.02199

[47] Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang,
X., Zhao, E., Zhang, Y., Chen, Y., Wang, L., Luu, A.T., Bi,
W., Shi, F., Shi, S.: Siren’s song in the AI ocean: A survey
on hallucination in large language models. CoRR abs/2309.01219

(2023). https://doi.org/10.48550/ARXIV.2309.01219, https://doi.org/10.
48550/arXiv.2309.01219

12


	Introduction
	Preliminaries
	Normalized Representation of SLEEC
	Well-Formedness Issues (WFI)

	Sanitizing Definitions
	Capability Relations (CR)
	LLM-aided CR Extractions
	Relation discovery
	Filtering relations via logic inference


	The RAINCOAT Approach
	Evaluation
	Effectiveness of LLM-San
	Effectiveness of RAINCOAT
	Threats to Validity

	Related Work
	Conclusion
	References

