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Finding the optimal probe state for
multiparameter quantummetrology using
conic programming
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Masahito Hayashi 1,2,3 & Yingkai Ouyang 4

The ultimate precision in quantum sensing could be achieved using optimal quantum probe states.

However, current quantum sensing protocols do not use probe states optimally. Indeed, the

calculation of optimal probe states remains an outstanding challenge. Here, we present an algorithm

that efficiently calculates a probe state for correlated and uncorrelated measurement strategies. The

algorithm involves a conic program, which minimizes a linear objective function subject to conic

constraints on a operator-valued variable. Our algorithmoutputs a probe state that is a simple function

of the optimal variable. We prove that our algorithm finds the optimal probe state for channel

estimation problems, even in the multiparameter setting. For many noiseless quantum sensing

problems, we prove the optimality of maximally entangled probe states. We also analyze the

performance of 3D-field sensing using various probe states. Our work opens the door for a plethora of

applications in quantum metrology.

Quantum sensors promise to estimate parameters with unprecedented
precision using quantum resources. A canonical problem in quantum
sensing is that of channel estimation1–4, where a quantum channel that
embeds physical parameters of interest acts on an initial probe state. The
quantum channel describes the dynamics of the quantum system embeds
the unknown physical parameters, and acts on the initial state, or probe
state, of the quantum system. With access to multiple queries of the
quantum channel, the objective is to estimate the embedded physical
parameters with maximum precision.

There are two main families of measurement strategies, namely
correlated strategies and uncorrelated strategies. In correlated strategies,
one may perform measurements across multiple copies of evolved probe
states. After each batch of correlated measurements, we can update our
choice of probe states and correlated measurement strategies on sub-
sequent batches of evolved probe states. In uncorrelated strategies, one
may only perform measurements on individual copies of evolved probe
states.

Regardless of the choice of measurement strategy, the most important
question in channel estimation is: What is the best probe state to use?
Without knowledge of the optimal probe state, a channel estimation pro-
tocol will invariably be suboptimal. Suboptimal channel estimation proto-
cols in turn impedes us from realizing the maximum potential of quantum
sensors.

Unfortunately, there is no systematic way to find the best probe state
efficiently. Typical approaches in the optimization of the probe state in
channel estimation entail a two-step optimization process. First, for a fixed
probe state, one can solve aminimization problemwith optimal value equal
to a precision bound that corresponds to a particular type of measurement
strategy. Second, we further optimize these precision bounds by changing
the probe state. The main difficulty is that the ultimate precision achievable
in channel estimation is a non-trivial function of the input probe state, and
need not have a convex structure. Hence, the numerical optimization of
such a function will be inefficient; such a function has no guarantee of fast
convergence, and its optimization would require a forbiddingly enormous
computational cost.

In this Article, we resolve the fundamental question of how to find the
optimal probe state efficiently. Namely, we present a simple and efficient
algorithm that always finds the optimal probe state for channel estimation
estimation problems in themulti-parameter setting. The algorithm involves
a conic program, which minimizes a linear objective function subject to
conic constraints on a operator-valued variable.Our algorithm thenoutputs
a probe state that is a simple function of the optimal variable.We prove that
our algorithm finds the optimal probe state for channel estimation pro-
blems, even in the multiparameter setting. Using our framework, we
unraveled numerous situations where the maximally entangled state is
optimal. We furthermore study numerically 3D-field sensing in the
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presence of collective amplitude damping, and give theoretical justifications
for our numerical findings.

This article makes it possible to determine the optimal quantum sen-
sing strategies for any quantum sensing problem that can be written as a
channel estimationproblem.This opens the door to investigate a plethora of
quantum sensing problems, where the unknown parameter is embedded in
the underlying quantum channel, for instance, in many quantum imaging
problems5. In the following, wewill refer to the Supplementary Information
for details and proofs.

The question of using the optimal probe state in the single-parameter
settinghas been studied in variousworks1,4,6–11.Here, ref. 6was thefirst study
to consider the optimal channel estimation error in the single-parameter
case. ref. 1 considers numerically finding the optimal probe states, and
an explicit algorithm to find the optimal probe state was given in ref.
[4, Appendix F]. ref. 7 provides analytical bounds for the channel estimation
error. References. 10,11 derived a semidefinite programming (SDP) form for
the optimal precision in channel estimation. Namely,10, focuses on finding
optimal input state for multiple copies of channels while here we consider
only a single channel. The references8,9,12 also consider the question of
finding optimal probe states for estimating multiple parameters embedded
in a quantum channel. For probe states without ancilla assistance, ref. 9
numerically finds the optimal two-qubit probe state with the Holevo-
Nagaoka (HN) bound when the channel models 3D-field sensing with
independent and identical amplitude (i.i.d.) damping on the two qubits.
ref. 8 considers uncorrelatedmeasurementswith unitary quantumchannels
and error-correctible noisy channels. This leaves open the questions of how
to evaluate the optimal probe state and corresponding bounds for the
general problem of quantum channel estimation with correlated or
uncorrelated measurement strategies. ref. 12 finds the optimal probe state
for channel estimation problems on one and two qubits.

In the channel estimation problem where we estimate the parameters
embedded in the quantum channel, the set of parameters is continuous. If
we discretize the channel estimation problem, wewould obtain the problem
of discriminating a discrete set of quantum channels3,13–17. Recently, the
channel discrimination problem was formulated as a convex program, and
this formulation made it possible to determine the optimal strategy to dis-
criminate apair of quantumchannels18.However, it is unclearhow to extend
this result to the continuousparameter setting thatwe require in the channel
estimation problem.

Results
Quantum state estimation

In quantum state estimation, we are given copies of an unknown state ρθ0
from the set of quantum states {ρθ: θ = (θ1,…, θd) ∈ Θ} parametrized by a
continuous set Θ � R

d , and our aim is to construct an estimator θ̂ that
estimates the true parameter θ0.

We describe a measurement using a set of positive operators
Π ¼ fΠx : x 2 Xg labeled by a set X , where the completeness condition
P

x2XΠx ¼ I holds. ByBorn’s rule, ameasurementΠonaquantumstateρθ
gives the classical label x and the state Πxρθ=TrðΠxρθÞ with probability
pθðxÞ ¼ TrðΠxρθÞ. Given a function f of the classical label x, we denote
E½f ðxÞjΠ� as the expectation of f(x), with probability distribution obtained
according to Born’s rule.

Given a measurement Π and an estimator θ̂ that depends on the
classical label x, we denote Π̂ ¼ ðΠ; θ̂Þ as an estimator. When the true
parameterθ0 is equal toθ, wedefine themean-square error (MSE)matrix for
the estimator Π̂ as

Vθ½Π̂� ¼
X

d

i;j¼1

∣ii j
�

∣Eθ ðθ̂iðxÞ � θiÞðθ̂jðxÞ � θjÞjΠ
h i

:

In multiparameter quantum metrology, the objective is to find an optimal
estimator Π̂ ¼ ðΠ; θ̂Þ thatminimizesTrGVθ½Π̂�, where aweightmatrixG, a
size d positive semidefinite matrix, quantifies the relative importance of the
different parameters.

In the neighborhoodof the true parameter θ0, we defineDj :¼ ∂

∂θj
ρθjθ0 ,

and ρ :¼ ρθ0 . Our estimator Π̂ is unbiased at θ0 = θ if for all i = 1,…, d, the
expectation of our estimator equals the true value of the parameter θ0when
θ0 = θ, that is

Eθ θ̂
iðxÞjΠ

h i

¼
X

x2X
θ̂
iðxÞTr ρθΠx

� �

¼ θi: ð1Þ

Our estimator is globally unbiased if (1) holds for all θ ∈ Θ. Since globally
unbiased estimators neednot exist, we consider estimators that are unbiased
in the neighborhood of the true parameter θ0. Taking partial derivatives on
both sides of (1), we get

∂

∂θj
Eθ θ̂

iðxÞjΠ
h i

¼
X

x2X
θ̂
iðxÞTrDjΠx ¼ δ

j
i: ð2Þ

The estimator Π̂ is locally unbiased if (1) holds for all i= 1,…, d for a fixed θ
where θ0 = θ, and when (2) holds for all i, j = 1,…, d.

For anyweightmatrixG ¼
Pd

i;j¼1 g i;j∣ii j
�

∣, the fundamental precision
limit19 is

Cθ½G� :¼ min
Π̂ :l:u:at θ

Tr GVθ½Π̂�
� �

;

where ‘l.u. atθ’ indicates ourminimizationover all possible estimatorsunder
the locally unbiasedness condition. Since this minimum is attained by Π̂

satisfying (1) when we impose only the condition (2), it suffices to consider
Cθ[G] as a minimization with only the condition (2).

Cramer-Rao (CR) type bounds19 describe any lower bound to the
weighted trace of theMSEmatrix. The fundamental precision limitCθ[G] is
one such lower bound which is tight, and hence refered to as the tight CR
bound19. Operationally, we may attain the tight CR bound using an
uncorrelated measurement strategy in the asymptotic setting. The Holevo-
Nagaoka (HN) bound20–24 is a CR bound that describes the ultimate pre-
cision using correlated measurement strategies, and the HN bound can be
strictly smaller than the tight CR bound19.

We may efficiently approximate the tight CR bound using a semi-
definite program (SDP)19, with the precision of the approximation
increasing with the complexity of the SDP. Other CR-type bounds are
significantlymore efficient to evaluate as simple SDPs, such as theNagaoka-
Hayashi (NH) bound, the HN bound, and the symmetric logarithmic
derivative (SLD) bound. Recently, ref. 19 clarifies the relationship between
these disparate CR-type bounds under a common conic proramming fra-
mework. For these conic programs, the optimization variable is an operator
that can correspond to an estimator Π̂ ¼ ðΠ; θ̂Þ. Namely, the operator

XðΠ; θ̂Þ :¼
X

x2X
∣0i þ

X

d

i¼1

θ̂
iðxÞ∣ii

 !

0h ∣þ
X

d

i¼1

ih ∣θ̂iðxÞ
 !

� Πx

acts on vectors in R�H, where R ¼ R
dþ1 is spanned by basis vectors

∣0i; ∣1i; . . . ; ∣di andH is the Hilbert space for Π.
The objective function of these conic programs is equal to the trace of

the weighted MSE matrix TrGVθ½Π̂�, and can be written as a function of
XðΠ; θ̂Þ. Namely,

TrGVθ½Π̂� ¼ TrðG� ρÞXðΠ; θ̂Þ: ð3Þ

Next, note that the completeness condition
P

x2XΠx ¼ IH using XðΠ; θ̂Þ
implies that

TrRð∣0i 0h ∣� IHÞXðΠ; θ̂Þ ¼ IH; ð4Þ

where TrR denotes the partial trace on systemR. Hence, we may interpret
(4) as a rewriting of the completeness condition

P

x2XΠx ¼ IH. Next, we
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note that the condition (2) for a locally unbiased estimator guarantees

Tr
1

2
ð∣0i ih ∣þ ∣ii 0h ∣Þ � Dj

� �

XðΠ; θ̂Þ ¼ δi;j: ð5Þ

Hence, (5) reformulates the locally unbiased condition.
The operator XðΠ; θ̂Þ has a tensor product structure; namely, XðΠ; θ̂Þ

is an element of a cone generated by separable states onR�H. This cone
S
1 is a separable cone, which is the convex hull of operators that are a tensor

product of a real positive semidefinite matrix onR and a complex positive
semidefinite operators on H with bounded norm. Hence, we consider the
minimization

S1 :¼ min
X2S1

fTrðG� ρÞXjð4Þ; ð5Þ hold:g;

which equals the tight CR type bound19. Minimization of TrðG� ρÞX
subject to (4), (5) and over suitable cones that contain S

1 can give conic
programswith optimal value equal to theNHbound, theHNboundand the
SLD bound.

Consider B as the vector space spanned by the tensor product of real
symmetricmatrices onR and bounded complexHermitianmatrices onH.
That is,

B :¼
X

d

j¼0

X

d

k¼0

∣ki j
�

∣� Xk;j∣Xk;j 2 BsaðHÞ;Xk;j ¼ Xj;k

( )

;

whereBsaðHÞdenotes the setof self-adjoint (Hermitian)matrices onHwith
bounded norm. We extend the space B to

B
00
:¼

X

d

j¼0

X

d

k¼0

∣ki j
�

∣� Xk;j∣Xk;0 2 BsaðHÞ;Xk;j ¼ ðXj;kÞy
( )

:

Basedon the spacesB andB00wedefineconesoverwhichweoptimizeX. For
instance, we consider the cone

S
2
:¼ fX 2 BjhvjXjvi≥ 0 forall ∣vi 2 C

dþ1 �Hg:

We denote RC ¼ C
dþ1. The subscript C denotes that RC is the

complexification of the real spaceR ¼ R
dþ1.We defineSðRC �HÞPPT as

the set of self-adjoint operators onRC �H with positive partial transpose,
and define the cone S3 as SðRC �HÞPPT \ B

00. Likewise, we define the set
SðRC �HÞP as the set of positive semi-definite self-adjoint operators on
RC �H, anddefine the coneS4 asSðRC �HÞP \ B

00. Then, for k=1, 2, 3,
4, we define the conic programs

Sk :¼ min
X2Sk

fTrðG� ρÞXjð4Þ; ð5Þ hold:g: ð6Þ

The relation S
1 � S

2 � S
3 � S

4 implies

S1 ≥ S2 ≥ S3 ≥ S4: ð7Þ

In addition, we introduce a linear constraint to the operatorX 2 B
00 as

TrXðð ∣j
�

hij � jii j
�

∣Þ � TÞ ¼ 0 ð8Þ

for i, j = 1, 2,…, d and a trace-class self-adjoint operator T. We define the
subset of B00 that corresponds to this linear constraint as B

00
T :¼ fX 2

B
00jð8Þ holds :g: Next, given a density matrix ρ on H, we define S5ðρÞ as

SðRC �HÞP \ B
00
ρ . We consider the minimization:

S5 :¼ min
X2S5ðρÞ

fTrðG� ρÞXjð4Þ; ð5Þ hold :g:

The cones S1;S2;S3;S4 are independent of ρ, and only the cone S5ðρÞ
depends on ρ. Since we have the relation S

2 � S
5ðρÞ � S

4; we have the
following relations

S4 ≤ S5 ≤ S2: ð9Þ

Since Skdepends on themodel ðρ; ðDjÞjÞ, i.e., the probe state ρ and the partial
derivatives of the probe state Dj for k = 1, 2, 3, 4, 5, we also write Sk as
Sk½ρ; ðDjÞj� to emphasize the CR-type bounds’ dependence on ρ and Dj.
Here S2 equals the Nagaoka-Hayashi bound (NH bound) studied in
references. 25–27, S4 equals the SLD bound, and S5 equals the HN bound19. In
the single parameter (d=1) case, the SLDbound is attainable, which implies
that

S1 ¼ S2 ¼ S3 ¼ S5 ¼ S4: ð10Þ

Channel estimation

In the channel estimation problem, we have a d-parameter channel family
{Λθ}, where the quantum channel Λθ that maps a probe state ρ on input
system isHA to output system isHB also embeds the d parameters θ to be
estimated. With copies of quantum states Λθ(ρ), we perform either corre-
lated or uncorrelatedmeasurements to obtain a probability distribution that
depends on the parameters, fromwhich we construct the best estimator for
the parameters.

In channel estimation,wemaypurify theprobe state ρ toapure state on
HA �HC . Here, the Hilbert space HC , isomorphic to HA, is an ancillary
system that the quantum channel has no access. Measurement strategies
however may access the ancillary system. This setting follows the preceding
paper10which studies the optimization of the one-parameter case under the
assumption of the ancilla system’s availability. Consideration of measure-
ment strategieswithout access to this ancilla system ishighlynon-trivial, and
is beyond the scope of our current study. In channel estimation under this
setting, the CR-type bounds of interest are

�Sk½ρAC � :¼ Sk ðΛθ � ιCÞðρACÞ;
∂

∂θj
ðΛθ � ιCÞðρACÞ

� �

j

" #

; ð11Þ

Fig. 1 | Biconvex function f(x, y)= x2+ y2+ 4xy+ 2x.The function f(x, y) is convex

inx treating y as constant, and also convex in y treating x as constant.Minimizing f(x, y)

on the convex set {(x, y): x2+ y2 ≤ 2} is not a convex optimization; there are twodistinct

localminima, eachwith a different value. Numericalmethods thatminimize iteratively

in the variable x and y need not find the global minima. The local minima found

depends on the optimization algorithm’s initial starting point.
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where ιC denotes an identity channel on systemHC . The ultimate precision
bound using the optimal probe state is

�Sk :¼ min
ρAC

�Sk½ρAC� ð12Þ

where the minimization is over all pure density operators onHA �HC .
Direct solution of the optimization in (12) is challenging. Even if one

solves the inner optimization for �Sk½ρAC�, it is unclear if the subsequent
optimization in ρAC is a tractable optimization problem, such as a convex
problem. For example, even if a function f(x, y) is biconvex on a convex set,
which means that it is convex one variable while treating the other variable
as constant, the overall function need not be convex, and can have multiple
local minima (see Fig. 1 for an illustrative example).

In this Article, we bypass these difficulties. Namely, we construct conic
programs with optimal values equal to (12), which lets us find (12) using
only a single optimization program. Moreover, from the solution of our
conic program, we explicitly construct the optimal probe state (see Fig. 2).

Our formulation uses the isomorphism between the spaceHC and the
spaceHA, and optimizes over cones onRC �HB �HA rather than cones
on RC �HB �HC . Namely, instead of considering the cones Sk

BC , we
consider the conesSk

BA, whereweobtainS
k
BA by replacingHwithHB �HA

in the definition of Sk.
Our first tool is the Choi matrix28Tθ of a quantum channel Λθ. The

idea is to rewriteΛθ(ρ) in terms of theChoimatrixTθ and the input probe
state ρ. Here, the Choi matrix Tθ of Λθ is an operator onHB �HA and is
given by

Tθ :¼ ðΛθ � ιÞð∣Ii Ih ∣Þ;

where ∣Ii :¼
P

j∣eji∣eji is an unnormalized maximally entangled state and
f∣ejig is an orthonormal basis ofHA. Then, it follows that

ΛθðρÞ ¼ TrA½TθðIB � ρÞ�; ð13Þ

where IB denotes the identity operator onHB. When the parameter θ is in
the neighborhood of the true parameter θ0, we denote the corresponding
Choi matrix Tθ0

by T and its derivatives as Fj :¼ ∂

∂θj
Tθjθ¼θ0

.
The objective function of our conic programs are all equal to

Tr½YðG� TÞ�, where Y belongs to a cone inRC �HB �HA.
We describe the constraints of our conic program using the following

conditions.

(i) Given fixed Y onRC �HB �HA, there exists a state ρA onHA such
that

TrR½Yð∣0i 0h ∣� IABÞ� ¼ IB � ρA: ð14Þ

(ii) For j; j0 ¼ 1; . . . ; d,

1

2
Tr½Yðð∣0ihj0j þ jj0i 0h ∣Þ � FjÞ� ¼ δj;j0 :

It turns out that condition (i) corresponds to the completeness con-
dition for measurements, and (ii) corresponds to the locally unbiased
condition.While the condition (ii) is a linear constraint, the condition (i) is
not a linear constraint. However, note that condition (i) is equivalent to the
following linear constraint.

(i’) Let f∣big be any orthonormal basis ofHB. For b≠ b0, we have

TrRB½Yð∣0i 0h ∣� IA � ∣bi b0
�

∣Þ� ¼ 0; ð15Þ

TrRB½Yð∣0i 0h ∣� IA � ∣bi bh ∣Þ�
¼ TrRB½Yð∣0i 0h ∣� IA � ∣b0

�

b0
�

∣Þ� ð16Þ

as operators onHA. Also,

Tr½Yð∣0i 0h ∣� IA � ∣bi bh ∣Þ� ¼ 1: ð17Þ

Note that when we impose the condition (i), the operator

ρAðYÞ :¼
1

dB
TrRB½Yð∣0i 0h ∣� IABÞ� ð18Þ

is a densitymatrix,wheredB is thedimensionofHB. Thismatrix ρA(Y) helps
us construct the optimal probe state.

Ournewconicprogramsare theminimizationof the objective function
Tr½YðG� TÞ� subject to the linear constraints (i’) and (ii) along with
appropriate conic constraints. Namely, we define

Jk :¼ min
Y2Sk

BA

fTr½YðG� TÞ�jY satisfies ði0Þ; ðiiÞ:g

for k = 1, 2, 3, 4. For k = 5, we defineS5
BAðTÞ :¼ SðRC �HABÞP \ B

00
T , and

define the conic program

J5 :¼ min
Y2S5

BAðTÞ
fTr½YðG� TÞ�jY satisfiesði0Þ; ðiiÞ:g:

Wealso use Jk½T; ðFjÞj� to denote Jkwhenwe need to clarify the dependence
of Jk with the channel model ðT; ðF jÞjÞ.

The main result of our paper is the following theorem.

Theorem 1. For k = 1, 2, 3, 4, 5, we have Jk ¼ �Sk:
The proof of Theorem 1 involves drawing connections between the

optimization in �Sk and the optimization in Jk. Theorem 1 allows calculation
of precision bounds for channel estimation optimized over probe states as
given by �Sk using the conic programs that correspond to Jk. Since the cones
considered in Jk are analogous to the cones considered in Sk

19, we know how
to solve Jk numerically. Furthermore for k = 2, 3, 4, 5, we can solve Jk via
semidefinite programming (SDP). The calculation of J1 ismore challenging,
because it requires theminimization over a certain separable cone onRC �

Fig. 2 | Relationship between J1, J2, J5, J4 and their associated cones

S
1
BA;S

2
BA;S

5
BAðTÞ;S4

BA. The optimal values of these minimizations, are the tight

bound, the NH bound, the HN bound, and the SLD bound respectively. We pic-

torally illustrate that J1 ≥ J2 ≥ J5 ≥ J4. From the optimal solution Y* of any conic

program Jk, we can derive a corresponding ρA(Y
*), whose purification to system AC

yields the corresponding optimal probe state.
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ðHB �HAÞ [ref. 19, Sec. IV]. Namely, J1 expresses the ultimate precision
when no correlated measurement is allowed. When correlated measure-
ments are allowed across several output states, the bound J5 expresses the
ultimate precision. In the single parameter case, i.e., d = 1, the SLD bound is
attainable, because (10) implies J1 = J2 = J3 = J5 = J4.

The following algorithm calculates the optimal probe state given the
optimal solution Y* of Jk.

Algorithm 1. Find the optimal probe state for Jk.
1. Take as input the matrix Y*, where Y* is the optimal solution of Jk.

Here, Y* is a matrix on the systemRC �HB �HA.
2. Obtain thematrixZ� ¼ Y�ð∣0i 0h ∣� IABÞ=dB, where ∣0i is a state on

RC; IAB is the identitymatrix on systemHB �HA, and dB is the dimension
ofHB.

3. Take the partial trace ofZ* over systemRC �HB. That is, obtain the
matrix ρ�A ¼ TrRB½Z��.

4. Write the spectral decomposition of ρ�A as ρ�A ¼
PdA

j¼1 sj∣ϕjihϕj∣,
where dA denotes the dimension of HA; sj ≥ 0 and {ϕj: j = 1, …, dA} is an
orthonormal basis ofHA.

5. Write the purification of ρ�A as ∣ψAC

�

¼
PdA

j¼1
ffiffiffi

sj
p

∣ϕji � U ∣ϕji,
where U is any unitary map from HA to HC . The optimal probe state
is ρ�AC ¼ ∣ψAC

�

ψAC

�

∣.
Most operationally significant are the conic programs J5 and J1, which

help us find the optimal probe state using correlated and uncorrelated
measurements respectively.

There are many situations where the maximally entangled probe state
∣Φi Φh ∣ onHA �HC is the optimal probe state touse in channel estimation.
In Section II D, we explore this possibility. Namely, we prove that J4 ¼
�S4½∣Φi Φh ∣� if and only if a particular operator-valued dual variable of J4 is
proportional to the identity operator. Furthermore, we prove that J5 ¼
�S5½∣Φi Φh ∣� if and only if a particular operator-valued dual variable of J5 is
proportional to the identity operator. These theoretical results allow us to
find situationswhen themaximally entangled state is theoptimal probe state
for both the SLD bound and the HN bound.

Using this theory, we prove in the Supplemental Information that for
channel estimation with a single embedded parameter, and where the
channel is a depolarizing channel on a single qubit, themaximally entangled
state is the optimal probe state, and furthermore, the tight bound, the NH
bound, the SLD bound and the HN bound are all equivalent. When the
channel applies generalized Paulis randomly on an input qudit probe state
according an apriori determined probability distribution, and the channel
estimation task is to estimate this probability distribution, we prove that the
optimal probe state under the SLD bound is the maximally entangled state.

We also consider a quantum channel that is the mixture of unitary
evolution according to the spin-j representation of SU(2) unitary evolution
according to the spin-j representation of SU(2) and replacement by a
completely mixed state. We also give equal weights to each of the three
parameters that we estimate. We derive the analytical form for SLD bound.
Furthermore, we prove that under purely SU(2) unitary evolutionwith zero
noise, all the precision bounds J1,…, J5 are equivalent, and the maximally
entangled state is the optimal probe state for all the precision bounds.

In Section IIG, we revisit the problemof quantum field sensing29 in the
multiparameter setting. In the noiseless setting, this is equivalent to the
channel estimation problem for noisy SU(2) channels. Instead of a depo-
larizing type of channel, we consider noise introduced by collective ampli-
tude damping [ref. 30, Eq. (7)]. The channel thatwe consider differs from9 in
two ways. First, we consider collective amplitude damping while9 considers
i.i.d. amplitude damping. Second, we model the channel using a master
equation, considering collective amplitude damping that occurs during the
SU(2) evolution,whereas the channel in9 considers i.i.d. amplitude damping
that occur after the unitary evolution.

Using MatLab computer code, we numerically determine the optimal
probe state for the NH bound, the HN bound, and the SLD bound, and
numerically evaluate the corresponding precision bounds. We numerically

ascertain that in the noiseless setting, the maximally entangled state on the
symmetric subspace is the optimal probe state.

When there is non-vanishing noise, we numerically ascertain that the
SLD precision bound cannot be optimal. We furthermore prove this by
calculating expectations of commutators of the symmetric logarithmic
derivatives of different angular momentum generators.

To maximize the accessibility of our work, in Supplemental Informa-
tion E, we formulate the mathematical optimization problems that corre-
spond to J2, J3, J4, J5 as semidefinite programs to be used with the CVX
package and provide the correspondingMatLab code. The outputs of these
semidefinite programs are inputs to Algorithm 1 that calculates the optimal
probe state.

On the efficiency of evaluating conic programs

Nextwe discuss the efficiency of evaluating the various bounds Jk. The conic
programs Jk have the same structure as Sk, and hence algorithms used to
solve Sk can solve Jk.When k= 2,…, 5, the optimizations for Jj are efficiently
solvable by SDPs.

When k = 1, the conic programing J1 is challenging to solve. This is
because optimizing J1 involves a minimization over a separable cone, and
such anminimization is as hard as the problem of deciding whether a given
quantum state is entangled or separable, which is NP-hard31. Such a conic
programming cannot be directly solved using SDP, and its optimization is
much harder than using SDP to solve in J2, J3, J4, J5. .

In ref. 19, we discuss how one can approximate J1 using SDP. For this
we can choose a covering of a hypersphere in R, and use a semidefinite
programwith number of variables that scales as the number of points in the
covering of the hypersphere, and approximation error that depends on the
covering radius of the covering.

Since such an approximation is numerically expensive, one can con-
sider analternative approximationof solving J1, by employing the concept of
symmetric extension. The symmetric extension was orginally introduced to
consider the membership problem for separability32,33. We consider the
systemsCdþ1�n �H,Cdþ1 �H

�n and define

S
1
n :¼ fX 2 BðCdþ1�n

;HÞjTrjcX ¼ Tr1cX;X ≥ 0g
~S
1

n :¼ fX 2 BðCdþ1;H�nÞjTrjcX ¼ Tr1cX;X ≥ 0g;

where Trjc expresses the partial trace except for the j-th system onC
dþ1�n

orH�n. TheminimizerX*of S1has a symmetric extensionX*,n that belongs
to S

1
n and ~S

1

n and satisfies Tr1cX�;n ¼ X�. Due to the condition
Tr1cX�;n ¼ X� 2 S1, we have the following lower bounds of S1

S1;n :¼ min
X2S1

n

fTrðG� ρÞTr1cXjTr1c satisfies ð4Þ; ð5Þ:g ð19Þ

~S1;n :¼ min
X2~S1

n

fTrðG� ρÞTr1cXjTr1c satisfies ð4Þ; ð5Þ:g; ð20Þ

which both can be calculated by SDP. Since an element X of S1
n or ~S

1

n

satisfies Tr1cX 2 S
2, we have

S1 ≥ S1;nþ1 ≥ S1;n ≥ S2; S1 ≥~S1;nþ1 ≥
~S1;n ≥ S2:

Also,33 showed that for anynon-separable stateρ, there exists an integer
n such that ρ does not belong to S1,n. Since the speed of the convergencewas
studied in34,35, we have

S1 ¼ lim
n!1

S1;n ¼ lim
n!1

~S1;n:

Hence the approximate calculation of J1 by SDP follows similarly.
While we have SDP formulations that approximate J1, because of the

intrinsic hardness of exactly solving J1, we should expect these SDP
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formulations to be numerically expensive to evaluate. Hence, we defer the
numerical approximation of J1 in the field sensing application for
future work.

Optimality of the maximally entangled input state

There aremany situations where themaximally entangled probe state is the
optimal probe state for channel estimation.Here, we explore this possibility.

Denoting the maximally entangled state as ∣Φi Φh ∣, for k = 1, 2, 3, 4, 5
we have

Jk½T; ðFjÞj�≤�Sk½T; ðF jÞj; ∣Φi Φh ∣�: ð21Þ

This is because ∣Φi Φh ∣might be a suboptimal probe state. If the above
inequalities are equalities, then ∣Φi Φh ∣ would be an optimal probe
state. Here, we derive necessary and sufficient conditions for the
above inequalities to be equalities when k = 4, 5, addressing the
optimality of ∣Φi Φh ∣ for the SLD bound and the HN bound respec-
tively. The proof for k = 4 and 5 crucially uses a particular inner
product structure of the optimal values of S4 and S5, which are
characterized by SLD Fisher information matrix, and RLD Fisher
information matrix over an extended space [ref. 22, Theorem 4] and
[ref. 36, Proposition 1] respectively. Since the optimal values of S1,…,
S3 are not known to have such a inner product structure, it is chal-
lenging to obtain similar results pertaining to the optimality of
maximally entangled states for channel estimation for J1, …, J3.

The key idea is that the normalized Choi state TN :¼ 1
dA
T and its

derivatives Fj;N :¼ 1
dA
Fj can be written as TN ¼ Λθð∣Φi Φh ∣Þ and

Fj;N ¼ ∂

∂θj
Λθð∣Φi Φh ∣Þ.We use the rescaled optimization variableYN: = dAY

to rewrite the constraints (i) and (ii) as

(i-N) Given fixed YN onHR �HB �HA, there exists a state ρA onHA such
that

TrR½YN ð∣0i 0h ∣� IABÞ� ¼ IB � dAρA: ð22Þ

(ii-N) For j; j0 ¼ 1; . . . ; d,

1

2
Tr½YN ðð∣0ihj0j þ jj0i 0h ∣Þ � FN;jÞ� ¼ δj;j0 :

We rewrite (i-N) as the following linear constraint.

(i’-N) Let f∣bigdBb¼1 beanyorthonormal basis ofHB. Forb∈ {1,…,dB−1} and
b0 2 f2; . . . ; dB � 1g with b > b0 we have the operator constraints

TrRB½YN ð∣0i 0h ∣� IA � ∣bi b0
�

∣Þ� ¼ 0; ð23Þ

TrRB½YN ð∣0i 0h ∣� IA � ð∣bi bh ∣� ∣bþ 1i bþ 1h ∣Þ� ¼ 0 ð24Þ

Wealso have the scalar constraint

Tr½YN ð∣0i 0h ∣� IA � ∣1i 1h ∣Þ� ¼ dA: ð25Þ

Using constraints (i’-N) and (ii-N), we rewrite Jk for k = 1, 2, 3, 4 as

Jk ¼ min
YN2Sk

BA

fTr½YN ðG� TN Þ�jYN satisfies ði’� NÞ; ðii� NÞ:g; ð26Þ

and rewrite J5 as

J5 ¼ min
Y2S5

BAðTN Þ
fTr½YN ðG� TN Þ�jYN satisfies ði’� NÞ; ðii�NÞ:g: ð27Þ

SinceTN ¼ TrA½ðT � ICÞðIB � ∣Φi Φh ∣Þ�, by replacing the systemHC

byHA, we can rewrite �Sk½∣Φi Φh ∣� as

�Sk½∣Φi Φh ∣� ¼ min
YN2Sk

BA

fTr½YN ðG� TN Þ�jYN satisfies ði”Þ; ðii� NÞ:g

¼ Sk½TN ; ðFj;N Þj�;

ð28Þ

�S5½∣Φi Φh ∣� ¼ min
YN2S5

BAðTN Þ
fTr½YN ðG� TN Þ�jYN satisfies ði00Þ; ðii� NÞ:g

¼ S5½TN ; ðF j;N Þj�;

ð29Þ

for k = 1, 2, 3, 4, where the condition (i”) is defined as
(i”)

TrR½YN ð∣0i 0h ∣� IABÞ� ¼ IAB: ð30Þ

Now the conic programs Jk have constraints (i’-N) and (ii) while the
conic programs �Sk½∣Φi Φh ∣� have constraints (ii) and (ii-N). Therefore, the
difference between the constraints (i’-N) and (i”) characterizes the differ-
ence between Jk and �Sk½∣Φi Φh ∣�.

Using the representation of �Sk½∣Φi Φh ∣� as the quantum model
Sk½TN ; ðF j;N Þj�, we elaborate on the equivalence of Jk and �Sk½∣Φi Φh ∣� for
k = 4, 5 in subsequent subsections. This helps us determine when ∣Φi Φh ∣ is
the optimal probe state for both the SLD bound and the HN bound.

Equality condition for k = 4. Denoting X �Y :¼ 1
2
ðXY þ YXÞ as the

symmetric product between operators X and Y, the SLD equations for
quantum state estimationmodel ðρ; ðDjÞjÞ are given as ρ ∘ Lj=Dj. Here, we

interpret Lj as a self-adjoint operator-valued solution to an SLD equation,
and we call Lj as an SLD operator.

The use of SLD operators is natural when we discuss S4½∣ΦihΦ�.
Namely, using the SLDoperators, we can define the SLDFisher information
matrix JSLD as JSLD :¼

P

i;j∣ii j
�

∣Tr½LiρLj�.WedefineLi :¼
Pd

j¼1 ðJ�1
SLDÞ

i;j
Lj

as a linear combination of SLD operators that depend on the ith row of the
inverse SLD Fisher information matrix. These operators Li satisfy the con-
straint TrDjL

i ¼ δij.
Since the operators Li and L

i depend on the quantum state estimation
model ðρ; ðDjÞjÞ, we also denote Li and Li as Li½ρ; ðDjÞj� and Li½ρ; ðDjÞj�
respectively. We also denote JSLD as JSLD½ρ; ðDjÞj�.

Interpreting �Sk½∣Φi Φh ∣� as a quantum state estimation problem on the
normalized Choi state TN and its derivatives Fj,N, we denote the linear
combination of corresponding SLD operators as Li� :¼ Li½TN ; ðFj;N Þj�, and
define the vector of such operators as~L� ¼ ðLi�Þi. For a vector of Hermitian
matrices~Z ¼ ðZjÞj, we define the operator

WSLDðTN ;~ZÞ :¼
X

1≤ i;j≤ d

Gj;iZ
iTNZ

j:

Then we have the following theorem.

Theorem 2. The following conditions are equivalent.

(A1) J4 ¼ S4½∣Φi Φh ∣�:
(A2) TrBWSLDðTN ;~L�Þ is proportional to the identity operator IA.

In the Supplemental Information B1, we show that WSLDðTN ;~ZÞ
corresponds to the operator-valued dual variable of the condition (i’-N) in
the conic program J4.
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Equality condition for k = 5. The constraints for Jk aremore complicated
than for Jk for k = 1, 2, 3, 4, and hence it makes sense to write the dual
variables of J5 in as simple a form as possible. For this goal, in this
subsection, given the weight matrix G, we choose the new parameter
~θ :¼

ffiffiffiffi

G
p

θ. By using the estimator θ̂ of the parameter θ, the new para-
meter’s estimator ~θ is given as

ffiffiffiffi

G
p

θ̂. Hence, by using the covariance
matrixVθ½Π̂� of the parameter θ, the covariance matrix ~V~θ½Π̂� of the new
parameter ~θ is given as

ffiffiffiffi

G
p

Vθ½Π̂�
ffiffiffiffi

G
p

. That is, we have

TrGVθ½Π̂� ¼ Tr~V~θ½Π̂�:

In otherwords, under the newparameter ~θ, theweightmatrix is given as the
identity matrix I so that the analysis on the weight matrix I can recover the
casewith a generalweightmatrixG. Therefore,without loss of generality, we
can assume that the weight matrix is the identity matrix I.

Given a vector of Hermitian operators ~Z ¼ ðZ1; . . . ;ZdÞ, we denote
Πð~ZÞ as a block matrix ~Z, where the components of Πð~ZÞ are given as
Πð~ZÞi;j ¼ ZiZj. That is, Πð~ZÞ ¼

P

1≤ i;j≤ d∣ii j
�

∣� ðZiÞyZj ¼ ð
Pd

1¼1

∣ii � ðZiÞyÞð
Pd

1¼1 ih ∣� ZiÞ. Then, we define~Z� as the optimal solution of
theminimizationof a linear functionofΠð~ZÞ subject to linear constraints on
Zi, namely,

~Z� :¼ argmin
~Z

TrΠð~ZÞðI � TN ÞjTrDjZ
i ¼ δij

n o

;

Based on~Z�, we define the operatorV
i;j
� :¼ TrZi

�ðZj
�Þ

y
TN , and defineC*: =

− ImV*∣ImV*∣
−1, where jAj :¼

ffiffiffiffiffiffiffiffiffi

AyA
p

and the inverse ∣ImV*∣
−1 acts only

on the support of ∣ImV*∣.
Next, we define

WHNðTN ;~ZÞ :¼
X

d

i¼1

ZiTNZ
i

 !

�
X

1≤ i;j ≤ d

ffiffiffiffiffiffiffi

�1
p

Ci;j
� Z

jTNZ
i

which corresponds to a dual operator-valued variable for the condition
(i’-N).

Theorem 3. The following conditions are equivalent.

(B1) J5 ¼ S5½∣Φi Φh ∣�:
(B2) TrBWHNðTN ;~Z�Þ is proportional to the identity operator IA.

Examples: one-parameter case. Consider the qubit depolarizing
channel

Λ0;pðρÞ :¼ ð1� pÞρþ pρmix;B;

where ρmix;B ¼ ð∣0i 0h ∣þ ∣1i 1h ∣Þ=2. The channel Λθ is given as
Γθ;pðρÞ :¼ UθΛ0;pðρÞU

y
θ , whereUθ :¼ expðiθσ1Þ and σ1 ¼ ∣0i 1h ∣þ ∣1i 0h ∣

is a bit-flip operator. Then, the following theorem holds.

Theorem 4. When G is 1, we have the following relation

Jk ðΓθ;p � ιÞð∣Ii Ih ∣Þ; d
dθ
Γθ;p � ι

	 


ð∣Ii Ih ∣Þ
h i

¼ �Sk ðΓθ;p � ιÞð∣Ii Ih ∣Þ; d
dθ
Γθ;p � ι

	 


ð∣Ii Ih ∣Þ; ∣Φi Φh ∣

h i

¼ 2� p

8ð1� pÞ2

ð31Þ

for k = 1, 2, 3, 4, 5.
Theorem 4 shows that the maximally entangled state is the optimal

probe state for estimating θ for the channel Γθ,p that performs a rotation
about the Pauli-X axis after applying a depolarizing channelwith papameter

p. Moreover, the precision bounds for correlated and uncorrelated mea-
surement strategies are identical, and we furthermore have their precise
analytical form.

WeproveTheorem4 in the Supplemental Information.Theproof is an
application of Theorem 2.

Examples: generalized Pauli channel

We consider the generalized Pauli channel on the qudit system
H ¼ HA ¼ HB, which is spanned by f∣aiga2Zd

. We define the operators
Wða; bÞ for a; b 2 Zd as the following unitary matrices onH;

XðaÞ :¼
X

j2Zd

∣jþ a
�

j
�

∣; ZðbÞ :¼
X

j2Zd

ωbj ∣j
�

j
�

∣; ð32Þ

Wða; bÞ :¼ XðaÞZðbÞ; ð33Þ

where ω :¼ expð2πi=dÞ. We introduce a distribution family pθ over Z
2
d .

Then, we define the family of channels {Λθ} as

ΛθðρÞ :¼
X

ða;bÞ2Z2
d

pθða; bÞWða; bÞρWða; bÞy: ð34Þ

Wedenote theFisher informationof thedistribution family {Pθ}. Then,
as shown in37,38, we have the following theorem.

Theorem 5. We have the following relations:

J4 ðΛθ � ιÞð∣Ii Ih ∣Þ; ∂

∂θl
Λθ � ι

	 


ð∣Ii Ih ∣ÞÞl
h i

¼ �S4 ðΛθ � ιÞð∣Ii Ih ∣Þ; ∂

∂θl
Λθ � ι

	 


ð∣Ii Ih ∣ÞÞl; ∣Φi Φh ∣

h i

¼ TrGJ�1
θ :

ð35Þ

Theorem 5 shows that the channel estimation problem of estimating a
noisy generalized Pauli channel with noise parameters pθ has themaximally
entangled state as the optimal probe state with respect to the SLD
precision bound.

We prove Theorem 5 in the Supplemental Information. The proof is
again an application of Theorem 2.

Examples: Spin j representation of SU(2)

Next, we consider spin j representation of SU(2) over the Hilbert spaceHj.
Here, σ1,j, σ2,j, and σ3,j are defined as the spin j representations of the gen-
erators of SU(2) onHj.We setHA andHB to beHj. Define the depolarizing
channel

Λ0;pðρÞ :¼ ð1� pÞρþ pρmix;B;

where ρmix,Bdenotes themaximallymixed state onHB.Here, the channelΛθ

is given as Λθ;pðρÞ :¼ UθΛ0;pðρÞU
y
θ , where Uθ :¼ expði

P3
k¼1 θ

kσkÞ.
Then, the following theorem holds.

Theorem 6. When the weight matrix G is chosen to be I, we have the
following relations

J4 ðΛθ;p � ιÞð∣Ii Ih ∣Þ; ∂

∂θl
Λθ;p � ι

	 


ð∣Ii Ih ∣ÞÞl¼1;2;3

h i

¼ �S4 ðΛθ;p � ιÞð∣Ii Ih ∣Þ; ∂

∂θl
Λθ;p � ι

	 


ð∣Ii Ih ∣ÞÞl¼1;2;3; ∣Φi Φh ∣

h i

¼
9 1�

4j2 þ 4j� 1

ð2jþ 1Þ2
p

� �

8jðjþ 1Þð1�pÞ2 :

ð36Þ
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In particular, for p = 0, we have

J4 ðΛθ;0 � ιÞð∣Ii Ih ∣Þ; ∂

∂θl
Λθ;0 � ι

	 


ð∣Ii Ih ∣ÞÞl¼1;2;3

h i

¼ J1 ðΛθ;0 � ιÞð∣Ii Ih ∣Þ; ∂

∂θl
Λθ;0 � ι

	 


ð∣Ii Ih ∣ÞÞl¼1;2;3

h i

¼ �S1 ðΛθ;0 � ιÞð∣Ii Ih ∣Þ; ∂

∂θl
Λθ;0 � ι

	 


ð∣Ii Ih ∣ÞÞl¼1;2;3; ∣Φi Φh ∣

h i

¼ 9

8jðjþ 1Þ :

ð37Þ

Theorem 6 shows that the channel estimation problem of estimating
the coefficients of the SU(2) generators that act on a partially depolarized
state has the maximally entangled state as the optimal probe state with
respect to the SLD precision bound. Furthermore, we have the precise
analytical form of the corresponding SLD precision bound for all noise
parameters p, and all spin values j.

We prove Theorem 6 in the Supplemental Information. The proof is
again an application of Theorem 2.

The paper39 studied a similar but different problem in the n-copy
setting of the estimation of SU(D). That paper maximized the trace of SLD
Fisher information matrix by varying the input state.

Application to field sensing

Model for field sensing. The canonical example that is widely con-
sidered in quantum metrology is ‘field sensing’, where a classical field
interacts with an ensemble of qubits. When a 3D classical field interacts
identically with n qubits, we can write the interaction Hamiltonian as

Hθ ¼ θ1E
1 þ θ2E

2 þ θ3E
3

where θ = (θ1, θ2, θ3) is a real vector that is proportional to the 3D field that
wewish to estimate, andE1,E2,E3 are angularmomentumoperators defined
on n-qubits, given by

E1 ¼ 1
2

τ
ð1Þ
1 þ 	 	 	 þ τ

ðnÞ
1

	 


;

E2 ¼ 1
2

τ
ð1Þ
2 þ 	 	 	 þ τ

ðnÞ
2

	 


;

E3 ¼ 1
2

τ
ð1Þ
3 þ 	 	 	 þ τ

ðnÞ
3

	 


;

τ1 ¼ ∣0i 1h ∣þ ∣1i 0h ∣; τ3 ¼ ∣0i 0h ∣� ∣1i 1h ∣ are Pauli matrices that apply the
bit-flip and phase-flip on a qubit, τ2 = iτ1τ3, and τ

ðkÞ
j represents an n-qubit

Pauli matrix that applies τj on the kth qubit, and identity operations
everywhere else.

Amplitude damping operators Aj, which model energy loss, apply
γ∣0i 1h ∣ on the jth qubit and the identity operator on other qubits. These
operators arise because of a linear interaction between individual qubits and
a Markovian zero-temperature bath40. Namely,

Aj;γ ¼ γI�j�1 � ∣0i 1h ∣� I�ðn�jÞ:

The collective amplitude damping operator, also considered in [ref. 30, Eq.
(7)], models collective energy loss, specifically because of a collective linear
interaction between all n qubits and a Markovian zero-temperature bath,
and is given by ~Aγ :¼

Pn
j¼1 Aj;γ.

We model the evolution of an initial probe state using the master
equation

dρ

dt
¼ Lθ;γðρÞ; ð38Þ

where tdenotes time, and theoperatorLθ canbewritten as a linear operator,
which is

Lθ;γðρÞ ¼ �iðHθρ� ρHθÞ þ ~Aγρ~A
y
γ �

1

2
ð~Ay

γ
~Aγρþ ρ~A

y
γ
~AγÞ: ð39Þ

For a non-negative evolution time s, let ~ρs denote the solution to the
master equation (38). In particular, we canwrite~ρs ¼ esLθ;γ ð~ρ0Þ:Thismeans
that we can write ~ρs as the Taylor series

~ρs ¼ ~ρ0 þ
X

1

k¼1

skðLθ;γÞkð~ρ0Þ
k!

:

In our application, we set the evolution time as s=1.Hence, the channel that
we consider in our channel estimation problem is

Λθ;γðρÞ ¼ eLθ;γ ðρÞ ¼ ρþ
X

1

k¼1

L
k
θ;γðρÞ
k!

: ð40Þ

Using Λθ,γ, we can calculate the corresponding Choi matrix Tθ,γ, and its
derivatives about the true paramater θ0 are

Fj;γ ¼
∂

∂θj
Tθ;γjθ¼θ0

for j = 1, 2, 3.

Numerical results. Here, we set the true parameter as θ0 = (0, 0, 0) and
the number of qubits as n = 2, 3, 4, 5. We investigate our channel esti-
mation problem when γ varies from 0 to 1. In our calculations, we set the
weight matrix G as the identity matrix I.

We numerically evaluate the channel estimation precision bounds J2,γ,
J4,γ, J5,γ, where

Jk;γ ¼ Jk½Tθ0 ;γ
; ðF1;γ; F2;γ; F3;γÞ�:

The precision bounds J2,γ, J4,γ, J5,γ are given by the optimal values of semi-
definite programs with corresponding optimal solutions given by Y2,γ, Y4,γ,
Y5,γ, respectively. Using the optimal solutionsY2,γ,Y4,γ,Y5,γ, we calculate the
corresponding probe states on HA given by ρA(Y2,γ), ρA(Y4,γ), ρA(Y5,γ)
respectively.

Let us denote ∣Φi as the maximally entangled state on the symmetric
subspace, and consider the precisionbounds that correspond tousing ∣Φi as
the input probe state for the channel estimation problem. These precision
bounds are

S
sym
k;γ :¼ Sk Λθ0 ;γ

� ιCð∣Φi Φh ∣Þ; ∂

∂θj
Λθ;γ � ιCð∣Φi Φh ∣Þ∣

θ¼θ0

� �

j¼1;2;3

" #

:

Wealso numerically evaluate S
sym
2;γ ; S

sym
4;γ ; S

sym
5;γ .Whenwe have no access

to an ancillary systemHC , we may consider using the 3D-GHZ state41

∣ψ3DGHZ

�

¼
P1

j¼0 ∣j
��n þ ∣þi�n þ ∣�i�n þ ∣þ ii�n þ ∣� ii�n

N
;

where ∣± i ¼ ∣0i± ∣1i
ffiffi

2
p and ∣± ii ¼ ∣0iþ± i∣1i

ffiffi

2
p , and N is the appropriate nor-

malization factor.We denote the corresponding precision bounds for using
the 3D-GHZ state without ancillary assistance as

S3Dk;γ ¼ Sk Λθ0
ðρ3DGHZÞ;

∂

∂θj
Λθ;γðρ3DGHZÞjθ¼θ0

� �

:

We also numerically calculate S3D2;γ; S
3D
4;γ; S

3D
5;γ.
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We numerically find that when γ = 0, we have

J2;0 ¼ J4;0 ¼ J5;0 ¼ S
sym
2;0 ¼ S

sym
4;0 ¼ S

sym
5;0 ¼ 9

nðnþ 2Þ :

In fact, the analysis in Subsection II F showed that the same equality when
the input state is limited to a state on the symmetric subspace. Our
numerical analysis suggests that the support of the optimal input state is
limited to the symmetric subspace.

Furthermore, whenwe solve the semidefinite programs corresponding
to J2,γ, J4,γ, J5,γ, we find that the corresponding optimal solutions Y2,γ, Y4,γ,

Y5,γ have corresponding densitymatrices ρA(Y2,γ), ρA(Y4,γ), ρA(Y5,γ) that are
very close to the completely mixed state.

When γ > 0 we numerically find that

S3D2 > S
sym
2 > J2; S3D4 > S

sym
4 > J4; S3D5 > S

sym
5 > J5: ð41Þ

In Fig. 3, for different fixed values of n = 2, 3, 4, 5, we plot the precision
bounds S3Dk;γ; S

sym
k;γ and Jk,γ on the vertical axis and γ∈ [0, 1] on the horizontal

axies. In Fig. 4, for fixed γ = 0.5 or γ = 1, we plot the precision boundsAk, Pk
and Jk on the vertical axis, and the number of qubitsn on the horizontal axis.

In this way, we confirm the suboptimality of the maximally entangled
state by our numerical evaluation of ρA(Y) using the optimal solution Y for

Fig. 3 | Plots of multiparameter Cramér-Rao bounds against increasing levels of

noise γ.We numerically calculate the CR-bounds for field sensing when θ1 = θ2 = θ3
= 0 for fixed number of qubits n = 2, 3, 4, 5. Here, Jk: = Jk,γ denote the CR-bounds

using the optimal probe state with ancilla assistance. In contrast, Pk :¼ S
sym
k;γ denote

the CR-bounds using the maximally entangled probe state on the symmetric sub-

space. We also use Ak :¼ S3Dk;γ for the CR-type bounds using the 3D-GHZ state that

do not require ancilla resistance. The vertical axis represents the CR-type lower

bound on the sum of the variances of estimates on the three field components, which

corresponds to a weight matrix G equal to the identity matrix. The horizontal axis

denotes the amount of amplitude damping noise γ.

Fig. 4 | Plots of multiparameter Cramér-Rao bounds against increasing number

of qubits. We represent the data in Fig. 3 differently, plotting the CR-bounds for

fixed values of γ. The horizontal axis denotes the number of qubits n in the 3D-field

sensing problem. The vertical axis is the sum of variances of estimates on the three

field components corresponding to using the optimal probe state on the symmetric

subspace (Jk), themaximally entangled state on the symmetric subspace (Pk), and the

3D-GHZ statewithout ancilla assistance (Ak). This plot shows the advantage of using

the optimal probe state.
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the conic programs J2,γ, J4,γ and J5,γ for γ. In particular, while ρA(Y2,γ),
ρA(Y4,γ), and ρA(Y5,γ) are still a diagonal matrices when γ > 0, they are not
completelymixed states.Hence, their purifications cannot be themaximally
entangled state.We can furthermore see the suboptimality of themaximally
entangled state because S

sym
k;γ ≥ Jk;γ for k= 2, 4, 5 when γ > 0. Curiously, from

Fig. 3, the maximally entangled state on the symmetric subspace is none-
theless still quite close to optimal.

Motivating the above analysis, we prove the following theorem.When
the support of the input state is limited to the symmetric subspace in the
channel Λθ, we denote the obtained channel by Λ

sym
θ;γ . Using this limitation

for the inputs, we define T
sym
θ;γ and F

sym
j;γ in the same way.

Theorem 7. For γ > 0, we have

J4 T
sym
θ0 ;γ

; F
sym
j;γ

	 


j¼1;2;3

� �

<S
sym
k;γ

¼ S4 Λ
sym
θ0;γ

�ιCð∣Φi Φh ∣Þ; ∂

∂θj
Λ
sym
θ;γ �ιCð∣Φi Φh ∣Þ∣

θ¼θ0

	 


j¼1;2;3

� �

:

Since the relation J4½Tθ0 ;γ
; ðF j;γÞj¼1;2;3

�≤ J4½T
sym
θ0 ;γ

; ðFsym
j;γ Þ

j¼1;2;3
� holds,

the above theorem means that the maximally entangled state on the sym-
metric subspace is not the optimal input state.

Discussion
We have unraveled the connection between the two-stage optimizations �Sk
and our conic programs Jk. The conic programs Jk are efficient to solve.
While the two-stage optimizations�Sk neednot be efficient to solve, the conic
programs Jk are efficient to solve.Using the optimal solutions of Jk, one easily
finds the corresponding optimal probe state for the channel estimation
problem. We illustrate the power of our conic programs with theoretical
analysis on the scenario when the maximally entangled state is the optimal
probe state, and also with numerical analysis for the often studied field
sensing problem using quantum probe states.

Applications of theoretical findings extend far beyond the examples we
explored. Indeed, any problem where we estimate multiple incompatible
parameters embedded within a quantum channel using entangled probe
states stands to benefit from our theory. This encompasses for example a
plethora of applications in quantum imaging5.

Recently, it was shown that field sensing using quantumprobe states in
the face of a linear rate of errors can approach theHeisenberg limit if we use
finite rounds of quantum error correction42 on appropriate permutation-
invariant codes43–45. However, the corresponding question of what can be
done using entangled probe states remains an interesting open problem.

Methods
We first give the main ideas of how to prove Theorem 1.

See the Supplementary Information for full details.

Equivalence of (i) and (i’)

Condition (i) is not linear, and hence we like to show its equivalence to the
set of linear constraints (i’). Since (i)⇒ (i’) is trivial, we show (i’)⇒ (i). Now
assume that (i’) holds. We denote TrB½TrR½Yð∣0i 0h ∣� IABÞ�ðIA �
∣bi bh ∣Þ� ¼ TrRB½Yð∣0i 0h ∣� IA � ∣bi bh ∣Þ� by ρA(Y). Then, (17) guarantees
that ρA(Y) is a state.Also, (15) and (16) imply (14).Hence, we obtain (i), and
this completes the proof.

Equality between the objective functions of
--
Sk and

--
Jk

There are two optimization variables in �Sk, namely the probe state ρAC and
an optimization variable X on RC �HB �HC . In contrast, the conic
program Jk has only a single optimization variable Y on RC �HB �HA.
Here, we clarify the connection between the optimization variableX and the
optimization variable Y.

Note that the output state that corresponds to our input state ρAC at the
true parameter value θ0 is

ðΛθ�ιCÞðρACÞjθ¼θ0
¼ TrA½ðT � ICÞðIB � ρACÞ�; ð42Þ

and its derivatives are

∂

∂θj
ðΛθ�ιCÞðρACÞjθ¼θ0

¼ TrA½ðFj � ICÞðIB � ρACÞ�: ð43Þ

Here, the joint systemHB �HC is accessible for our measurement for our
estimation. Then, we write the CR-type bound �Sk½ρAC� of channel
estimation problem in (11) as

�Sk½ρAC� ¼ Sk½TrA½ðT � ICÞðIB � ρACÞ�; ðTrA½ðF j � ICÞðIB � ρACÞ�Þj�

ð44Þ

with k = 1, 2, 3, 4, 5. We call the pair ðT; ðFjÞjÞ as the channel model. In
particular,we denote�Sk½ρAC� by�Sk½T; ðF jÞj; ρAC�whenweneed to clarify the
dependence of the channel model.

In the optimization of (44), we can write the objective function as

Tr½G� TrA½ðT � ICÞðIB � ρACÞ�X�
¼ Tr½G� ððT � ICÞðIB � ρACÞÞðIA � XÞ�
¼ Tr½ðG� TÞTrC½ðIRB � ρACÞðIA � XÞ��:

Identifying Y as TrC½ðIRB � ρACÞðIA � XÞ�, we see that we can write the
objective function of (44) as Tr½ðG� TÞY �, which is precisely the objective
function of our conic programs Jk.

Sketch of the proof of Theorem 1

Nowwe sketchTheorem1’s proof. Firstwe can establish anupper boundon
Jk in terms of �Sk in the following lemma.

Lemma 8. For k = 1, 2, 3, 4, 5, we have

Jk ≤�Sk: ð45Þ

ToproveLemma8,we show that givenany solutionρAC andX to�Sk, we
can also construct a corresponding solution Y for Jkwith the same value for
the objective function. We prove the inequality opposite to (45), based on
the discussion in Section II A, we rewrite the constraints for the com-
pleteness condition and the locally unbiased condition as

TrR½Xð∣0i 0h ∣� IBCÞ� ¼ IBC ð46Þ

1

2
Tr½ðIA � XÞðð∣0ihj0j þ jj0i 0h ∣Þ � F j � ICÞðIRB � ρACÞ� ¼ δj;j0 : ð47Þ

Then, we show the following lemma, which takes any solution Y of Jk, and
constructs a corresponding probe state ρAC and solution X for �Sk½ρAC�,
under the assumption that ρA(Y) is full rank.

Lemma9. For k= 1, 2, 3, 4, 5, we chooseY 2 S
k
BA satisfying the conditions

(i), (ii), and ρA: = ρA(Y) > 0.WediagonalizeρA as
PdA

j¼1 sj∣ϕjihϕj∣.We choose
an orthonormal basis {ψj} of HC and the state ρAC as the pure state
PdA

j¼1
ffiffiffi

sj
p

∣ϕj;ψji, which is a purification of ρA. Then, we have

Tr½YðG� TÞ�≥�Sk½ρAC�≥�Sk: ð48Þ

If theminimization in Jk is achieved by anoperatorY forwhich ρA(Y) is
full rank, the combination of Lemmas 8 and 9 yields Theorem 1. However,
the optimal operator Ymight not admit a full rank ρA(Y). Hence, we con-
sider the following lemma.
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Lemma 10. We have

Jk ¼ inf
Y2Sk

BA

Tr YðG� TÞ½ �
Y satisfies ðiÞ; ðiiÞ and;

ρAðYÞ > 0; i:e:;
ρAðYÞ is full rank :






















8

>

<

>

:

9

>

=

>

;

ð49Þ

for k = 1, 2, 3, 4, and

J5 ¼ inf
Y2S5

BAðTÞ
Tr YðG� TÞ½ �

Y satisfies ðiÞ; ðiiÞand;
ρAðYÞ is full rank :













� �

ð50Þ

The combination of Lemma 9 and Lemma 10 yields Jk ≥�Sk, while
Lemma 8 shows Jk ≤�Sk. Hence, Jk ¼ �Sk, which proves Theorem 1. We
supply the proofs of Lemmas 8, 9, and 10 in Supplemental Information A.

Methodology of numerical study of field sensing

Nowwe use ρ0 ¼ Λ


θ;γðρÞ to approximateΛθ,γ(ρ) according to the following

procedure: Given any input state ρ, we define

�m�ðρÞ ¼ minð100;minfj :k ðLj
θ;γðρÞ=j! k <10�12gÞ:

Then we define Λ


θ;γðρÞ :¼

Pm�ðρÞ
j¼0 L

j
θ;γðρÞ=j!: On the state ρAC, we also

define Λ


θ;γðρACÞ :¼

Pm�ðρAC Þ
j¼0 ðLj

θ;γ�ιCÞðρACÞ=j!: We obtain approxima-

tions of Tθ,γ with T

θ;γ ¼ Λ



θ;γððnþ 1Þ∣Φi Φh ∣Þ: We also obtain approx-

imations of F1, F2, F3 according to the formula

F

1;γ ¼

T

ð10�12;0;0Þ;γ�T


ð0;0;0Þ;γ

10�12 ;

F

2;γ ¼

T

ð0;10�12 ;0Þ;γ�T


ð0;0;0Þ;γ

10�12 ;

F

3;γ ¼

T

ð0;0;10�12 Þ;γ�T


ð0;0;0Þ;γ

10�12 :

With the above, we approximate J2,γ, J4,γ, J5,γ with

J
k;γ ¼ Jk T

ð0;0;0Þ;γ; ðF


j;γÞj¼1;2;3

h i

:

We also approximate P2, P4, P5 with

S
sym;

k;γ ¼ Sk;γ T


ð0;0;0Þ=ðnþ1Þ;γ; ðF

j;γ=ðnþ 1ÞÞ

j¼1;2;3

h i

:

We approximate Λ(0, 0, 0)(ρ3DGHZ) according to formula

Q0 ¼ Λ


ð0;0;0Þ;γðρ3DGHZÞ

and approximate ∂

∂θj
Λθðρ3DGHZÞjθ¼ð0;0;0Þ;γ according to

Q

1 ¼

Λ


ð10�12 ;0;0Þ;γðρ3DGHZÞ�Λ



ð0;0;0Þ;γðρ3DGHZÞ

10�12 ;

Q

2 ¼

Λ


ð0;10�12;0Þ;γðρ3DGHZÞ�Λ



ð0;0;0Þ;γðρ3DGHZÞ

10�12 ;

Q

3 ¼

Λ


ð0;0;10�12 Þ;γðρ3DGHZÞ�Λ



ð0;0;0Þ;γðρ3DGHZÞ

10�12 :

This allows us to approximate S3D2;γ; S
3D
4;γ; S

3D
5;γ according to

S3D;
k;γ ¼ Sk½Q0; ðQ1;Q2;Q3Þ�:

In our numerical evaluations of S3D;
k;γ ; S
sym;

k;γ ; J
k;γ, we evaluate the semi-

definite programs according to the MatLab code given in Supplemental
Information E.

Data availability
The data for the numerical plots are available from the authors upon rea-
sonable request.

Code availability
The MatLab code is provided in the Supplemental Information.
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