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Abstract 

Flexibility in animal foraging strategies can increase overall feeding efficiency for individuals. For example, group foraging 
can increase the efficiency of resource exploitation; conversely solo foraging can reduce intraspecific competition, particularly 
at low resource densities. The cost–benefit trade-off of such flexibility is likely to differ within and among individuals. Reef 
manta rays (Mobula alfredi) are large filter-feeding elasmobranchs that often aggregate to feed on ephemeral upwellings 
of zooplankton. Over three years in the Maldives, we free-dived to film 3106 foraging events involving 343 individually 
identifiable M. alfredi. Individuals fed either solo or in groups with a clear leader plus between one and eight followers. 
M. alfredi were significantly more likely to forage in groups than solo at high just prior to high tide and when aggregations 
were larger. Within aggregations, individuals foraged in larger groups when more food was available, and when the overall 
aggregations were relatively large suggesting that foraging in large groups was more beneficial when food is abundant, and 
the costs of intraspecific competition were outweighed by the efficiency resulting from group foraging strategies. Females, the 
larger sex, were more likely to lead foraging groups than males. The high within-individual variance (over 70%), suggested 
individuals were unpredictable across all foraging behaviours, thus individual M. alfredi cannot be classified into foraging 
types or specialists. Instead, each individual was capable of considerable behavioural flexibility, as predicted for a species 
reliant on spatially and temporally ephemeral resources.

Significance statement

Reef manta rays (Mobula alfredi), listed as “Vulnerable” on the IUCN Red List, are at risk from targeted and by-catch fish-
eries due to their slow life history and aggregative behaviour. M. alfredi feed together in aggregations on short-lived glut 
of microscopic zooplankton. Over three years in the Maldives, we filmed 3106 foraging events involving 343 individually 
identifiable M. alfredi. Manta rays were more likely to forage in groups than solo just prior to high tide and when aggrega-
tions were larger, attracted by the influx of zooplankton. Foraging groups included more individuals when plankton was 
more abundant. However, individuals flipped between solo and group foraging and did not specialise. Foraging groups were 
most often led by females, the larger sex. Individuals were very flexible in how they foraged, which makes sense for a species 
that relies on a food source that varies enormously in when, where and for how long it is available. Understanding manta ray 
foraging behaviour will help conservation management efforts and predict their responses to climate change.
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Introduction

Within spatially and temporally dynamic environments, 
animals need to adjust their foraging strategies to increase 
feeding efficiency and reduce metabolic costs. Group liv-
ing provides specific benefits by increasing foraging and 
movement efficiency, social information exchange and 
learning (e.g. regarding resource patches), and provid-
ing cooperative predator defence and reducing predator 
risk (Danchin et al. 2004; Kutsukake 2009; Marras et al. 
2015; Meunier 2015; Ioannou et al. 2019). However, the 
costs of intraspecific competition in foraging can lead to 
groups splitting (Svanback and Bolnick 2007). These costs 
of group living include increased detection by predators 
and higher competition for resources, which is often more 
intense in larger groups, with individuals paying the con-
sequences for reduced food intake (reviewed in Krause 
and Ruxton 2002; see also Fortin and Fortin 2009; Ioan-
nou et al. 2019). This cost–benefit trade-off may differ 
dynamically within and among individuals reflecting ener-
getic needs, relative position within feeding hierarchies, 
intraspecific competition, and food availability (Morrell 
and Romey 2008; Fortin and Fortin 2009; Marras et al. 
2015; Seebacher and Krause 2017). For example, in three-
spined sticklebacks (Gasterosteus aculeatus) bold individ-
uals risked increased predation at the front of groups but 
benefited from increased growth rates (Ward et al. 2004; 
but see Jolles et al. 2017). Thus, foraging group member-
ship can be fluid, with multiple options open to individu-
als, including whether to leave or stay in the group.

Amongst various species (including many marine 
animals), group structure is not necessarily fixed, i.e., it 
changes spatially and/or temporally. Individuals move 
within and between groups, leading to groups splitting 
(fission) and/or merging (fusion) (Aureli et al. 2008; Cou-
zin and Laidre 2009; Lewis et al. 2011; Tsai and Mann 
2013). Environmental factors (including resource abun-
dance) can influence fission–fusion of groups; increas-
ing or decreasing competition (Couzin and Laidre 2009; 
Silk et al. 2014). Thus, an individual’s role (e.g., leader 
or follower) or position (e.g., at the edge or in the mid-
dle) within a group can alternate with the changing social, 
biotic and abiotic conditions (Lendvai et al. 2006; Fis-
chhoff et al. 2007; Bonanni et al. 2010; David et al. 2011; 
Nakayama et al. 2013; but see (Georgopoulou et al. 2022)). 
Understanding how individuals assort within social forag-
ing groups is vital because it gives a clearer understand-
ing of the structuring within groups and the specific roles 
adopted by certain individuals or demographics (reviewed 
in Aureli et al 2008).

Increasingly, studies are examining what influences 
the role or position that individuals adopt within a social 

group, including knowledge, state dependence (nutri-
tional or status), age (knowledge), or sex (body size) 
(Sueur 2011; Lee and Teichroeb 2016). State depend-
ent leadership can indicate that the leadership role is not 
necessarily fixed, but will vary depending on the state of 
individuals. The ‘leading according to need’ theory pro-
poses that food-deprived animals, or those with the highest 
nutritional needs, will adopt the front position and guide 
the direction of collective foraging to reap the benefits 
of leadership, including an increased net resource intake 
and potentially a better-quality diet (e.g., King and Cowl-
ishaw 2009; Sueur 2011; Lee and Teichroeb 2016). Using 
dynamic modelling, Rands et al. (2008) found that indi-
viduals can predominantly act as a leader despite lacking 
specific leadership traits, including dominance or social 
abilities (King and Cowlishaw 2009). As such, hunger 
levels as opposed to dominance were shown to play a key 
role in determining which animal leads; the hungrier of 
the two becomes the decision-maker (Rands et al. 2008). 
These findings support the theory that leading and follow-
ing may be state-dependent behaviours (Rands et al. 2003; 
Ward and Webster 2016). Thus, fringe positions might be 
adopted by hungrier individuals who travel further and 
faster, leaving the less hunger-driven and more cohesive 
group members positioned more safely, inside the group 
(Krause and Ruxton 2002; Ward and Webster 2016).

A non-exclusive alternative is that within-group biotic 
factors, such as sex, age, body size, aggressiveness and 
strength may influence leadership behaviour amongst indi-
viduals, although this will differ between species (Webster 
and Hixon 2000; Chase et al. 2002; Jolles et al. 2017). In 
groups of cleaning gobies (Elacatinus prochilos) in Barba-
dos, the more dominant individuals, which were also larger, 
controlled optimal foraging areas with the highest food 
abundance, resulting in increased foraging success (White-
man and Côté 2004). Age can be a proxy for other traits that 
determine leadership status such as dominance (e.g., Jacob 
et al. 2007), and also knowledge and experience (Frankish 
et al. 2020). Amongst killer whales (Orcinus orca), post-
reproductively aged females led foraging in years of low 
food availability, which suggests a benefit of prior ecological 
knowledge which is key to reproductive success and survival 
(Brent et al. 2015). So, leadership status can be variable, but 
traits such as sex and age might be key in predicting which 
individuals become leaders (Ward and Webster 2016).

Many ecological studies treat conspecific individuals 
within groups as interchangeable, after accounting for biotic 
factors such as age, sex, and other group effects (Bolnick 
et al. 2003; Yamamoto et al. 2014; Wakefield et al. 2015). 
However, there is increasing evidence that individuals in 
many animal populations differ substantially in foraging 
behaviour (Araújo et al. 2011; Patrick and Weimerskirch 
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2014; Carneiro et al. 2017). Behavioural variation within 
populations can reduce the extent of intraspecific compe-
tition, as well as increasing individual foraging efficiency 
(Ceia and Ramos 2015; Carneiro et al. 2017). High repeat-
ability of a behaviour (relatively low within-individual vari-
ance compared to high among-individual variance) is indica-
tive of a personality trait or a foraging specialism (although a 
general consensus on repeatability or consistency is yet to be 
agreed (Cleasby et al. 2015)). Typically, the repeatability of 
behaviour is ~ 40 – 50% (Bell et al. 2009) which leaves much 
of the variation in behaviour explained by within-individual 
behavioural variance i.e. ‘behavioural plasticity’ or ‘flex-
ibility’ (Alonzo 2015). The partitioning of variance in forag-
ing strategies (flexible vs. consistent or repeatable) may be 
reflected in an individual's foraging preferences and behav-
iours, for example group vs. solo or the position they uphold 
within the group, for example leader or follower (Georgo-
poulou et al. 2022). Flexibility of strategies enables indi-
viduals to react differently, reducing pressure on a specific 
resource or habitat and altering a population’s ability to cope 
with change (Masello et al. 2013; Maskrey et al. 2020). Fun-
damental is the realisation that residual within-individual 
variance in behaviour, which has previously been labelled 
‘random’, in fact might indicate more adaptive phenotypic 
behaviour, which therefore should not be ignored (Westneat 
et al. 2015). A clearer understanding of individual flexibility 
enables us to better appreciate the ecological implications 
of changing environmental conditions, increased anthropo-
genic pressure and potentially how best to implement marine 
conservation measures to mitigate pressure on species (e.g., 
Belgrad and Griffen 2018; Maskrey et al. 2021).

Reef manta rays (Mobula alfredi) are slow-growing, 
large-bodied elasmobranchs. Manta rays are vulnerable to 
targeted and by-catch fisheries due to their ‘slow’ life history 
strategies, i.e. large body size, late maturity, low fecundity 
etc., and aggregating behaviour (Croll et al. 2016; Marshall 
et al. 2019). Consequently, M. alfredi is listed as “Vulner-
able” to extinction on the IUCN Red List of Threatened Spe-
cies (Marshall et al. 2019). Across global populations, manta 
rays are also impacted by natural predation, with individuals 
observed with tissue loss due to shark attacks (Marshall and 
Bennett 2010; McGregor et al. 2019), as well as anthropo-
genic threats, such as boat strikes and entanglement in fish-
ing lines (O’Malley et al. 2013; Stewart et al. 2018; Strike 
et al. 2022). M. alfredi individuals are commonly observed 
associating in aggregations of varying sizes (Stevens 2016). 
The term “aggregation” in elasmobranch research is defined 
as ‘the co-occurrence of two or more individuals in space 
and time due to the deliberate use of a common driver’ 
(McInturf et al. 2023). In our study, the aggregations were 
driven by the need to forage on short lived food patches, but 
Mobulid aggregations often involve interactive behaviours 

amongst individuals, including courtship displays and mat-
ing, or perhaps more complex, dynamic associative relation-
ships (Guttridge et al. 2009; Jacoby et al. 2012; Mourier 
et al. 2012; Perryman et al. 2022; Sims et al. 2022; Palacios 
et al. 2023). There is evidence that M. alfredi in Raja Ampat, 
West Papua, showed social preferences within aggregations, 
with a study identifying some short-term non-random affili-
ations among mainly females, when accounting for a range 
of non-social potential sources of variation (Perryman et al. 
2019). A further study of the same population using tracking 
devices suggested that some individuals showed differenti-
ated relationships linked to strong spatial fidelity to certain 
sites (Perryman et al. 2022). The overall network structure 
of M. alfredi in that region seemed to be characteristic of a 
dynamic fission–fusion society (Aureli et al. 2008; Perryman 
et al. 2019), as has been suggested by other studies of this 
species’ aggregations (Stevens 2016).

In our study, we investigated the pattern of individual 
variation in group foraging behaviour, and how this vari-
ation was affected by abiotic and biotic factors, within a 
wild population of M. alfredi in Baa Atoll in the Maldives. 
Overall, we test whether biotic factors (plankton density 
and number of manta rays in aggregation) or abiotic factors 
(site, time to high tide, current strength, year) or individual 
state (sex, age class and injury (shark bite or anthropo-
genic)) influenced different aspects of foraging behaviour. 
We addressed four specific questions; (1) What are the 
effects of abiotic and biotic factors on group and solo forag-
ing behaviour? (2) What are the effects of abiotic and biotic 
factors on group size? 3) What are the effects of individual 
state on the probability to lead the group? (4) How much 
of the variation in group size and leadership behaviour was 
explained by among-individual, and within-individual dif-
ferences? (5) How does within and among-individual vari-
ation differ depending on individual state (e.g. sex, maturity 
and injury)?

Methods

The Maldives Archipelago is home to the world’s largest 
recorded population of M. alfredi, with over 5,200 identi-
fied individuals (Manta Trust 2023). This study was con-
ducted on the sub-population of M. alfredi in eastern Baa 
Atoll (5.1569° N, 73.1335° E). Located 114 km northwest 
from Malé City, Baa Atoll was designated a UNESCO World 
Biosphere Reserve in 2011, in part due to the large number 
of M. alfredi which seasonally occur within the Atoll.

Manta ray feeding behaviour is distinctive and easily 
identified by researchers. Animals could be seen to be 
actively foraging with their cephalic fins unfurled in order 
to increase efficiency, opening their mouths to swallow 
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zooplankton rich water, then closing their mouths and 
gills to squeeze water out whilst filtering their zooplank-
ton prey out (Stevens et al. 2018). We collected data on 
manta ray feeding behaviour at different times of day as 
part of the Manta Trust’s Maldives Manta Conservation 
Programme (https:// www. manta trust. org/ maldi ves) during 
the Southwest Monsoon (May through November) when 
the highest numbers of mantas are present. Data collec-
tion lasted for 160 days in 2014, 156 days in 2015, and 
155 days in 2016. We identified five sites on the eastern 
side of Baa Atoll that served as the main monitoring spots: 
Dhigu Thila, Hanifaru Bay, Hurai Faru, Reethi Falhu and 
Veyofushi Falhu. Due to the restriction on SCUBA div-
ing at the main study site, Hanifaru Bay, all foraging data 
was collected by free-diving. When we spotted foraging 
events, we free-dived beneath the animals to video their 
behaviour and record the unique identification spots on the 
ventral surface (Marshall and Pierce 2012), taking care not 
to impede or alter this behaviour. If, on entering the water, 
we observed more than one M. alfredi in the immediate 
vicinity, we dived in order to be in position before the 
first animal in the group swam overhead. If the animal 
was feeding, we filmed continuously until feeding stopped, 
until the last member of the group passed from sight, or 
we ran out of breath. We terminated filming once reaching 
the surface, and a clear view of the ventral markings was 
lost. Clips lasted between 30 and 180 s and were collected 
between depths of five and 16 m. As feeding events could 
last up to a few hours, video clips of individual feeding 
groups were recorded on a consecutive basis as they arose 
until the feeding event finished or until the weather or 
daylight deteriorated. We filmed using a GoPro Hero 3, 
or a Canon PowerShot S110 compact camera. It was not 
possible to record data blind because our study involved 
focal animals in the field.

The total number of M. alfredi was estimated visually 
in the field and confirmed by verifying identification pho-
tos. The number of M. alfredi references the total number 
of manta rays observed throughout the whole survey win-
dow, for example the total number of manta rays observed 
from the start to finish of the two-hour survey. Group 
size represents the number of manta rays in an individual 
feeding group, for example five manta rays feeding within 
two body lengths of each other. A description of type and 
visual estimation of plankton density was conducted at 
each site using a scale from zero to two representing low, 
medium, and high density (see Table S1 in Supplemen-
tary Information). Current strength was gauged using a 
scale from “no current” (0) to “strong” (3): (no current 
(0) – researcher able to hold position without finning; 
weak (1) – researcher able to hold position with little 
effort; medium (2) – researcher able to hold position with 
strong finning; Strong (3) – researcher unable to hold 

position (Manta Trust, unpublished data). Time to high 
tide is defined as the number of minutes centred around 
high tide, either before (-) or after ( +) high tide. Time to 
high tide was included as a test variable due to increased 
manta ray detection just after high tide (Harris and Ste-
vens 2021).

Video Analysis

We only included M. alfredi that could be individually iden-
tified in analysis. Individuals were identified, aged and sexed 
by examining the unique spot-pattern on the ventral surface 
and matching this pattern with the categorised photographs 
in the regional database (Stevens 2016). Size estimation and 
visual maturity indicators are used to age manta rays (Mar-
shall and Bennett 2010; Stevens 2016) (see Supplementary 
Information for details on ageing and sizing methods). Any 
injuries were also recorded (Fig. S1 in ESM) and noted as 
either ‘natural’ e.g. shark bites, or ‘anthropogenic e.g. made 
by fishing line. Unsexed individuals were excluded from 
analysis.

Only individuals observed actively feeding were 
included in analyses. Dataset includes manta rays exhib-
iting all eight of the foraging strategies described by Ste-
vens et al. (2018); straight, surface, chain, piggyback, 
somersault, cyclone, sideways and bottom feeding. The 
most commonly observed strategies were somersault, 
straight and chain feeding (Stevens et al. 2018, see Fig. 1 
and Fig.  S1in Supplementary Information). Foraging 
type was recorded as either ‘solo’ or ‘group’. We defined 
group feeding as two or more animals recorded feeding 
together within two body lengths (Mizumoto et al. 2019). 
We defined the leader as the individual M. alfredi posi-
tioned at the front of any group with individuals following 
directly behind them. Only one individual could lead a 
group at any one time. Each clip did not necessarily focus 
on a single group. Where it did, if the leadership changed 
then this was noted. We also recorded all manta rays solo 
foraging, i.e., more than two body lengths away from 
another individual. Whole clips were analysed which 
often contained multiple examples of foraging groups and 
singletons. We measured the number of M. alfredi in the 
aggregation as the total number of individuals observed 
across a full survey, while group size referenced the num-
ber of individuals involved in an individual feeding group, 
for example those M. alfredi observed feeding in an indi-
vidual chain.

Statistical Analysis

We conducted analysis using R 4.3.2 Statistics Package (R 
Core Team 2024), aiming to answer these specific study 
questions. Full models are outlined in Table 1.

https://www.mantatrust.org/maldives
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What are the effects of abiotic and biotic factors on group 

and solo foraging behaviour?

We ran candidate generalised linear mixed models 
(GLMMs) with grouping behaviour as the response variable 
(whether the manta ray was observed foraging in a group, 
defined as within two body lengths of another manta ray or 
solo) against all abiotic and biotic fixed effects (Table 1), 
using a Binomial error distribution. Within the study popula-
tion, individual manta rays differed in their re-sighting rates 
across the full study period. To account for this variation, 
individual animal identity was used as the random effect 

throughout the analysis. Due to problems with convergence, 
the factor “site” was included as a random rather than fixed 
effect. We applied the Akaike Information Criterion (AIC) 
function to find the model of best fit and ΔAIC tested the 
degree of model(s) best fit. We considered the model with 
the lowest AIC value the best model and models with 
ΔAIC > 2 a significantly poorer fit. We considered models 
with ΔAIC < 2 as having equivalent support compared to the 
best model (Burnham and Anderson 2004).

What are the effects of abiotic and biotic factors 

on group size? What are the effects of individual state 

on the probability to lead the group?

Variables tested for each behaviour trait (group size, and lead-
ership) differed due to the intrinsic nature of the behaviour. 
Candidate models tested the effect of abiotic and biotic factors 
by fitting GLMMs in the package lme4 (Bates et al. 2015), for 
each behavioural trait, group size (Table 1a), and leadership 
(Table 1b) as predictor variable and individual animal identifi-
cation as a random effect. We applied the AIC function to find 
the model of best fit and ΔAIC tested the degree of model(s) 
best fit for each behavioural trait. For this study, biotic factors 
were plankton density or the number of manta rays in aggre-
gation. The ordinal variable “number of mantas”, defined as 
the total number of mantas observed feeding in an aggrega-
tion at a given site on a given day, was scaled for control in 
analysis. ‘Individual state’ referred to sex or age class. Due 
to problems with convergence, the factor “site” was included 
as a random rather than fixed effect in the group size model.

How much of the variation in group foraging, 

group size and leadership behaviour was explained 

by among‑individual, fixed effects and within‑individual 

differences?

For each behaviour, we calculated ratios of variation explained 
by fixed effects  (Vfe), individual identity  (Vi) and residuals 
 (VR, i.e. the within-individual variance) using the rptR pack-
age (Nakagawa and Schielzeth 2010; Stoffel et al. 2017). We 
estimated the residual variance on the latent (link) scale given 
that the considered behaviours do not follow Gaussian distri-
butions. We included all fixed effects considered in the models 
and used Binomial and Poisson error distributions depending 
on the behaviour considered (Binomial: group vs. solo forag-
ing and group leadership, Poisson: group size).

We tested for the significance of the among-individual 
random effect using a permutation test  (npermutations = 1000) 
i. Next, we calculated the proportion of variance explained 
by each variance component relative to the total variation: 
 R2

i =  Vi /  (Vi +  Vfe +  VR);  R2
fe =  Vfe /  (Vi +  Vfe +  VR) as well 

as the conditional  R2,  R2
cond =  (Vi +  Vfe) /  (Vi +  Vfe +  VR) 

(Schielzeth and Nakagawa 2013).

Fig. 1  a) Manta ray solo feeding at the surface at Hanifaru Bay; b) 
Manta rays chain feeding at Hanifaru bay. More than one chain is vis-
ible in the photo.  © Guy Stevens | Manta Trust
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How does within and among‑individual variation differ 

depending on individual state factors?

To estimate how the influence of an individual’s state (sex, 
maturity) and injury state affected the expression of vari-
ation in group leadership, we compared the distribution 
of the among-, within- and fixed effect variance between 
each group considered. To do so we estimated mixed effect 
models for each subset of the data with rptR and computed 
the difference between bootstrap values for each variance 
component and ratios (∆V, ∆R2), similarly to Royauté and 
Dochtermann (2021). From that distribution, we calculated 
95% confidence intervals to assess the precision of the esti-
mate. We also report the probability of effect direction (pd) 
corresponding to the proportion of estimates of the same sign 
as the median using the bayestestR package (Makowski et al. 
2019a). Values of pd close to 1 indicate a higher plausibil-
ity of a difference between two variance components, with 
pd > 0.975 being equivalent to a statistically significant differ-
ence at α = 0.05 for a two-tailed test (Makowski et al. 2019b).

Results

A total of 854 observations were made in 2014, 1,075 in 
2015, and 1,177 in 2016. In 2014, 185 individuals, 196 
individuals in 2015, and 209 individuals in 2016 were 
included in the study database. Individuals had a median 
of 37.5 observations across all study years. In 2014, 119 
females and 66 males were recorded, 132 females and 64 
males in 2015, and 133 females and 76 males in 2016. 
Based on the photo ID database, the sex ratio of the whole 

population in the area was approximately 50/50 (Ste-
vens 2016). A total of 114 juveniles and 71 adults were 
recorded in 2014, 101 juveniles and 95 adults in 2015, and 
80 juveniles and 129 adults in 2016.

What are the effects of abiotic and biotic factors 
on group and solo foraging behaviour?

Mixed models highlighted the significance of abiotic 
and biotic factors in determining group foraging behav-
iour amongst M. alfredi (see Table S3 in Supplementary 
Information for AIC comparisons). In the final GLMM 
investigating group vs. solo foraging, M. alfredi were more 
likely to forage in groups in 2015 and 2016 compared with 
2014 (Table 2a; Fig. 2a). Current strength (no current, 
weak, medium, strong) was not statistically significant but 
remained in the final model. M. alfredi were significantly 
more likely to feed in groups in the three hours prior to 
high tide than after high tide (Table 2a; Fig. 2a). Plankton 
density did not predict group or solo foraging. Group for-
aging was more likely than solo foraging when the num-
bers of mantas in the aggregations were larger (Table 2; 
Fig. 2a).

What are the effects of abiotic and biotic factors 
on group size?

In group size analysis, smaller group sizes were recorded in 
2015 than 2014 Table 2b; see AIC and deltaAIC values in 
Table S3). Groups were smallest when plankton density was 
medium compared with low (Table 2; Fig. 3b). The larg-
est group sizes were recorded three hours before high tide, 

Table 1  Models tested to 
explain a) Group versus solo 
foraging, b) group size, c) 
leadership (not including 
interactions). Variables tested 
for each behaviour trait differed 
due to the intrinsic nature of the 
behaviour. The number of M. 

alfredi is defined as the number 
of individuals observed in the 
aggregation across the whole 
survey. Group size is defined 
as the number of individuals 
observed per foraging group

Models Variables tested

a) Solo versus group foraging
Null

-

Abiotic Site, current, time to high tide

Biotic Plankton, number of mantas (scaled)

Abiotic + Biotic Site (random factor), current, time to high tide, plankton, number of 
mantas (scaled)

b) Group Size
Null

-

Abiotic Site (random factor), current, time to high tide

Biotic Plankton, number of mantas (scaled)

Abiotic + Biotic Site, current, time to high tide, plankton, number of mantas (scaled)

c) Group leadership
Null
Individual state

Sex, age class

Individual state + injury
Injury

Sex, age class, shark bite, anthropogenic injury
Shark bite, anthropogenic injury
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Table 2  Model coefficients 
for Generalized Linear Mixed 
Models of environmental 
covariates influence on group 
foraging (a), group size (b) and 
group leadership (c). Group 
foraging and group leadership 
were fitted with Binomial error 
and Poisson error for group size. 
P-values for each fixed effect 
term were calculated using 
type III sums or squares. For 
random effects (site and/or ID), 
 R2 and P-values were calculated 
using 1000 bootstraps and 
permutation tests respectively. 
Significant P-values are bolded

Trait Term N Estimate 95% CI P R2

a) Group vs. solo foraging

Fixed effects 0.03

(Intercept) 3,010 -0.53 -1.1, 0.05 0.073

Year  < 0.001

2014 758 — —

2015 1,075 0.60 0.26, 0.94  < 0.001

2016 1,177 0.60 0.27, 0.93  < 0.001

Current 3,010 0.19 -0.01, 0.38 0.058

Time to high tide 3,010 -0.24 -0.35, -0.12  < 0.001

Plankton 0.55

Low 431 — —

Medium 990 -0.16 -0.45, 0.13 0.27

High 1,589 -0.14 -0.45, 0.18 0.39

No. of mantas 3,010 0.23 0.11, 0.36  < 0.001

Random effects

sdID 3,010 0.73  < 0.005 0.11

sdsite 3,010 0.34  < 0.01 0.02

b) Group size

Fixed effects 0.05

(Intercept) 1,727 1.6 1.4, 1.9  < 0.001

Year  < 0.001

2014 406 — —

2015 658 -0.33 -0.43, -0.22  < 0.001

2016 663 0.01 -0.09, 0.11 0.84

Current 1,727 -0.14 -0.20, -0.08  < 0.001

Time to high tide 1,727 -0.01 -0.04, 0.03 0.70

Plankton  < 0.001

Low 230 — —

Medium 522 -0.19 -0.28, -0.10  < 0.001

High 975 0.00 -0.10, 0.09 0.92

No. of mantas 1,727 0.13 0.09, 0.16  < 0.001

Random effects

sdID 1,727 0.22  < 0.05 0.06

sdsite 1,727 0.24  < 0.005 0.09

c) Group leadership

Fixed effects 0.01

(Intercept) 1,760 -0.78 -0.97, -0.59  < 0.001

Sex 0.016

Female 1,215 — —

Male 545 -0.36 -0.65, -0.07  < 0.05

Maturity 0.57

Juvenile 1,115 — —

Adult 645 0.08 -0.19, 0.35 0.57

Shark bites 0.54

No injury 1,557 — —

Injured 203 0.13 -0.27, 0.52 0.54

Anthropogenic injury 0.39

No injury 1,392 — —

Injured 368 -0.15 -0.48, 0.19 0.39

Random effects

sdID 1,760 0.52  < 0.005 0.05
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steadily decreasing in size thereafter (Table 2b; Fig. 2b). 
Larger general aggregations resulted in larger individual 
foraging groups (see test statistics in Table 2b; Fig. 2b).

What are the effects of individual state 
on the probability to lead the group?

Leadership behaviour was most influenced by individual state 
model (see Table S3 in Supplementary Information for full 
AIC comparisons and  R2). Females were significantly more 
likely to adopt the leader position than males) (Table 2c, S3; 
Fig. 2c). Age class and presence of injury did not predict lead-
ership behaviour.

How much of the variation in group foraging 
preference, group size and leadership 
behaviour was explained by among‑individual, 
and within‑individual differences?

Environmental variables, individual state and individual 
identity consistently explained < 20% of the variation in for-
aging for all behaviours considered  (R2

cond [95% confidence 
interval], group vs. solo foraging:  R2

cond = 16.19% [10.80, 
20.72]; group size:  R2

cond = 19.74% [7.65, 29.23]; leadership: 
 R2

cond = 6.02% [4.80, 6.84]). While we found statistical evi-
dence for among-individual differences in all behaviours (all 
p-values < 0.05, Table 2), the variance explained by individuals 

Fig. 2  Fixed effects significantly predicting the probability of a) Solo versus group foraging; b) Foraging group size and c) Leadership of a for-
aging group. Error bars and shaded areas represent 95% confidence intervals based on GLMM of behavioural traits
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remained small. Preferences for foraging in group vs. solo had 
the highest signature for among-individual differences, yet still 
explained < 10% of the total variation (group vs. solo forag-
ing:  R2

i = 10.00% [7.00; 14.00]; group size:  R2
i = 5.00% [2.00; 

9.00]; group leadership:  R2
i = 5.00% [1.00; 8.00], Table S4). 

Fixed effects explained equally little variation, leaving 
the > 80% of variation was explained by unmeasured, within-
individual sources of variation (Fig. 4). This means that while 
there are some individual preferences for foraging strategies, 
individuals tend to be very flexible in their foraging styles.

How does within and among‑individual variation 
differ depending on individual state?

Using variance partitioning models, we showed that the 
majority of the variation explained was found in the residu-
als, which consistently explained > 80% of the variation 
regardless of the behavioural category considered. This 
means that there is overall very little evidence for among-
individual differences in group leadership and all individuals 
were relatively equally likely to lead or follow the group 
in turn. We did find evidence for males being significantly 
more repeatable in their leadership preferences than females 
(Fig. 3). Male among-individual variance explained ~ 9.0% 
more of the total variation compared to females individuals 
(percent of variance explained, males: 8.69% [95% CI, [1.39, 
17.82]; females: 0.54% [ 0.00, 3.38]; ΔR2

i = 7.83% [ 0.24, 
16.99], pd = 0.98; Fig. 3). All other categories (juveniles 
vs. adults, injured vs. non-injured) showed no evidence of 
differences in variance components (pd < 0.95, See Supple-
mentary Table S5).

Discussion

Mobula alfredi demonstrated considerable flexibility in 
individual foraging behaviour. Both solo and group feeding 
behaviour were frequent, with group feeding behaviour sig-
nificantly influenced by the tide, year and aggregation size. 
Foraging group sizes were smallest when there was a strong 
current and there were moderate plankton densities. The 
largest groups formed three hours before high tide and grad-
ually decreased in size. Larger overall aggregations resulted 
in larger foraging groups. Our study also showed that neither 
shark bites nor anthropogenic injuries were significant in 
explaining leadership position in the group. Leadership was 
influenced by sex, with females significantly more likely to 
lead than males, although a significant proportion of vari-
ance remained unexplained by fixed effects. Variation in 
group size and leadership behaviour were both shown to 
be strongly influenced by residual within-individual factors, 
explaining over half of variation in each trait, along with low 
repeatability scores, which indicated that M. alfredi were 
highly flexible in their foraging behaviour. All individuals 
were relatively equally likely to feed in groups or solo, as 
well as lead or follow the group. The repeatability of leader-
ship behaviour was very low (< 10%), especially compared 
to published values for behavioural repeatability (R ~ 47%, 
Bell et al. 2009), highlighting a flexibility in individual posi-
tioning and indicating that the majority of the variation in 
leadership was influenced by behavioural plasticity.

Our study shows a high level of within-individual vari-
ation, and little among-individual variance in group size, 
indicating no evidence of individual preference for small 

Fig. 3  Individual identity 
and environmental variables 
explained < 25% of the variation 
in group foraging, group size 
and probability of leading the 
foraging group. Plots represent 
the proportion of variance 
explained by fixed effect (red; 
R2fe), individual identity (blue; 
R2i) and residuals (yellow; 
R2R) (left-hand size) along 
with the distribution of variance 
components on the latent scale 
(right-hand size). Variance 
distributions were estimated 
through 1000 bootstraps using a 
binomial GLMMs for the prob-
ability of foraging in a group or 
leading the group and a Poisson 
GLMM for group size. Error 
bars represent 95% (thin bars) 
and 66% (thick bars) confidence 
intervals based on bootstrap 
values
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or large feeding groups. In the Maldives, monsoonal cur-
rents influence the abundance of zooplankton around the 
archipelago, with periods of increased food availability in 

specific areas, thus driving seasonal movements of M. alfredi 
(Anderson et al. 2011; Harris et al. 2020). Specifically, 
Hanifaru Bay, where we record the largest aggregations and 

Fig. 4  Males had stronger 
among-individual differences 
in leadership preferences 
compared to females, while 
maturity and injury status had 
no effect on among-individual 
differences. Bar plots show 
the proportion of variance in 
group leadership explained by 
all sources of variation (fixed 
effects, individual identity 
and residuals) compared 
among a) males and females 
along with the distribution 
for the difference in vari-
ance explained (ΔR2 = (R2 
males—R2ifemales) × 100); 
b) Adults and juveniles 
along with the distribution 
for the difference in variance 
explained (ΔR2 = R2adult—
R2juvenile) and c) Injured 
and non-injured individuals 
along with the distribution 
for the difference in variance 
explained (ΔR2 = R2injured—
R2non-injured). Variance 
explained was calculated with 
1000 bootstraps by fitting a 
binomial GLMM to males and 
females, adults and juveniles 
and injured and non-injured 
separately. ΔR2 was calculated 
as the difference in bootstrap 
values, e.g. ΔR2 = 10 indicates 
individual differences among 
males explain 10% more of 
the total variation compared to 
females. Error bars represent 
95% (thin bars) and 66% (thick 
bars) confidence intervals based 
on bootstrap values
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group sizes, attracts M. alfredi due to the strong lunar cur-
rents drawing seasonally large volumes of zooplankton from 
the deeper waters outside the atoll into the shallower inner 
channel where it concentrates (Harris and Stevens 2021). 
The ephemeral nature of the dense food availability means 
that M. alfredi feeding aggregations can be large in size, but 
are quick to disperse (Harris et al. 2021). Hence, we found 
that group sizes were largest around the high tide dwindling 
rapidly thereafter. This lack of consistent food availability 
and its patchy distribution supports the suggestion that M. 

alfredi must be flexible, travelling to productive areas and 
associating with conspecifics potentially in order to gain 
information about these ephemeral patches (Buckley 1997) 
and increase feeding efficiency (Sueur et al. 2011; Jaine et al. 
2012). In a study using acoustic telemetry, individual M. 

alfredi in West Papua varied strongly in levels of regional 
residency, site fidelity and number of transitions between 
aggregation areas, again suggesting flexible and responsive 
foraging movements (Perryman et al. 2022).

The grouping behaviour of M. alfredi seemed sensitive 
to diurnal and annual variations in biotic and abiotic con-
ditions, indicating both costs and benefits to social forag-
ing. Group leaders often have optimal access to prey, but 
will experience the greatest energy expenditure, while ani-
mals positioned behind benefit from energy saving while 
compromising on food intake (Couzin et al. 2002; Krause 
and Ruxton 2002). In this study, for example, we observed 
‘chain feeding’ in which followers are not directly behind 
one another, but slightly offset either to the side, or above or 
below each other like of flock of birds in flight (see Fig. S3 
in Supplementary Information). In M. alfredi, the benefits 
of group feeding strategies, e.g. chain feeding, are suggested 
to be twofold, firstly reducing the rate of collision between 
manta rays and secondly, increasing the feeding efficiency 
of following manta rays (Stevens 2016; Liao 2022). This 
could explain the increased group foraging observed in 
larger aggregations, but also in 2015 and particularly 2016 in 
which El Nino caused significant disruption to marine eco-
systems and severe coral bleaching in the Maldives (Monte-
falcone et al. 2020). This indicates that group foraging was 
most beneficial, e.g. by reducing energy expenditure, when 
intraspecific competition for food was highest.

A key motivator to leadership behaviour is individual 
state, either stemming from a dominant personality or the 
need to optimise one's position, for example, to increase 
nutritional intake, movement capabilities, foraging strat-
egies or reduce predation risk (Jacobs et al. 2008; Hodg-
kin et al. 2014). Our study also showed that injuries had 
little influence on leadership behaviours which suggests 
there is a low cost to adopting the leader position, but this 
remains to be tested (Ioannou et al. 2019). For future study, 
we could examine the effects of injuries on individuals, for 
example with our long-term dataset, we could examine the 

repeatability of these individuals to establish how consistent 
they are in their foraging behaviour before and after injury 
(Bell and Sih 2007).

Our study did find sex to be the most important factor in 
predicting the probability of leading the group, with females 
dominantly leading the foraging groups. Female leadership 
is evident in other species, for example, adult females act 
as leaders within the southern population of killer whales 
(Orcinus orca) (Brent et al. 2015) and amongst prides of 
lions (Smith et al. 2019). Consistent leadership can be ben-
eficial to groups; pods of foraging bottlenose dolphins (Tur-

siops truncatus) in the Lower Florida Keys led by consistent 
leaders were more frequently recorded in areas of higher 
fish biomass, travelled more direct paths, experienced less 
leader switches, and had more complex home ranges than 
groups with non-consistent leaders (Heithaus et al. 2013). 
Followers, in the dolphin study, benefited from the prior 
ecological knowledge of the leaders, but remains to be tested 
in Mobulids. Leadership need not be reliant on complex 
social information transfer between individuals, but can arise 
from simple mechanisms for spatiotemporal coordination 
(e.g. female leadership in grey reef sharks (Carcharhinus 

amblyrhynchos; Jacoby et al. 2016). Our observed bias in 
female leadership within foraging groups could reflect the 
higher food requirements of the larger sex and the nutritional 
demands of pregnancy.

Using a repeated measures analysis, the residual vari-
ance in our models included both the unobserved sources 
of variation, as well as within-individual variance. One 
explanation could be that most of the contribution to the 
phenotypic variation came from unmeasured sources of 
variation (residual variance), i.e., our model was incom-
plete. The second, non-exclusive, explanation is that the 
residual variance consisted largely of individual vari-
ance that does hold strong biological importance (West-
neat et al. 2015). This would support the null hypothesis 
that individual M. alfredi are flexible in their foraging 
behavioural traits. There has been increased interest in 
how flexible foraging behaviour emerges as a result of 
the spatial and temporal availability and predictability of 
prey; Behavioural variation may be affected by physical 
processes leading to ‘passive’ plasticity in individuals 
(Scheiner 2006), for example fluctuations in prey den-
sity could lead to passive plasticity in an animal’s forag-
ing success (Westneat et al. 2015). Moreover, female M. 

alfredi could become passive leaders if males choose to 
follow them whether that be for foraging or courtship rea-
sons. Foraging flexibility can also be selective or future-
dependent, for example, in anticipation of the predictabil-
ity of resource availability (Billard et al. 2020). Finally, 
trial-and-error learning may be present in which ‘learning 
rules’ as opposed to evolutionary change, influence phe-
notypic variation within a population (Franks et al. 2010).
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In our study, both adaptive plasticity and residual within-
individual variance arising through other stochastic pro-
cesses were likely influential in explaining M. alfredi for-
aging behaviour. There was little evidence of individuals 
in our study population specialising in either leader or fol-
lower phenotypes. M. alfredi acting as leaders likely differ 
in their energy output, nutritional intake and predation risk 
compared to those following, but we suggest that this trade-
off will vary dynamically within- and among-individuals as 
environmental and social conditions change (Lendvai et al. 
2006; Fischhoff et al. 2007; Bonanni et al. 2010; David 
et al. 2011; Nakayama et al. 2013; but see Georgopoulou 
et al. 2022). The ephemeral nature of zooplankton upwell-
ings, which can quickly disperse with the changing currents 
(Jaine et al. 2012; Stevens 2016), seems to lead to flexibility 
in individuals’ foraging. Our results have implications for 
understanding how M. alfredi could respond to environ-
mental change; manta rays were found to switch to group 
foraging strategies in response to increased food availability, 
a food source which is already ephemeral and highly vul-
nerable to decline in tropical waters in response to climate 
change (Stewart et al. 2018; Farmer et al. 2022). Future 
conservation efforts should focus on how the likely changes 
in zooplankton distribution and availability could shift the 
distributions and foraging behaviour of M. alfredi aggre-
gations (Stewart et al. 2018). Understanding individuals’ 
behaviours within feeding aggregations allows us to begin 
to understand the network of social interactions and rela-
tionships amongst wild populations of animals, particularly 
those demonstrating fission–fusion dynamics (Aureli et al. 
2008). Behavioural flexibility in foraging behaviour could 
be key to a species’ continued survival in light of changing 
environmental conditions.
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