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Abstract: Robotics can play a useful role in the scientific understanding of the sense of self, both through 

the construction of embodied models of the self and through the use of robots as experimental probes to 

explore the human self. In both cases, the embodiment of the robot allows us devise and test hypotheses 

about the nature of the self with regard to its development, its manifestation in behavior, and the diversity 

of selves in humans, animals, and potentially machines. This paper reviews robotics research that 

addresses the topic of the self—the minimal self, the extended self, and disorders of the self—and 

highlights future directions and open challenges in understanding the self through constructing its 

components in artificial systems. An emerging view is that key phenomena of the self can be generated in 

robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving 

networks of predictive models.  

 

Cite as: Prescott, Tony J., Kai Vogeley, and Agnieska Wykowska, Understanding the sense of self 

through robotics. Science Robotics, 9(95), p. eadn2733. 
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SoA—sense of agency 

SoO—sense of (body) ownership 

ToM—theory of mind 
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1. INTRODUCTION 

Our lived experience of “me-here-now” is based on phenomena that are constitutive of the self, including 

feelings of body ownership and of agency, both reliant on a body-centred spatial perspectivity, and a 

sense of transtemporal unity of experience [1]. These phenomena (see below) anchor our mental life 

including our thoughts, memories, feelings, and intentions to act.  Being at the core of human experience, 

the nature of the self has been a foundational topic in philosophy and has been brought into the realm of 

empirical research by psychology and cognitive neuroscience.  The experience of self is also profoundly 

impacted in mental illness, leading to strong interest in the topic in the fields of psychiatry and 

psychopathology [2].  As we will examine in this article, the self is increasingly explored in cognitive 

robotics, with growing potential to inform these other realms of scientific endeavour.  

We consider three different ways in which robotics can be made useful for the scientific study of the self. 

First, robotics allows both the systematic construction of the self, by integrating different components in 

embodied computational models, and its deconstruction, by isolating components at the functional level.  

Second, robots can be used as sophisticated probes (apparatuses) and interaction partners in experimental 

protocols that study the human self.  Third, and largely unexplored, studies in which robots include a 

modified, or perturbed, model of self could assist in understanding the diversity of human selves 

including disturbances of the self.  Our main focus will be on research using embodied systems (physical 

robots), often with a humanoid or zoomorphic form, and not disembodied “bots” such as conversational 
agents, we will also touch on the contribution of other robotic systems such as prostheses and 

exoskeletons.  

 

 

2. THEORIES OF SELF  

While Descartes famously considered that the self was simple and distinct from the body, he elsewhere 

described the self as a composite equated with the whole person [3]. Hume understood the self as a 

bundle of experiences [4]. This tension between the intuition of the self as an unanalysable essence, and 

the self as an aggregate enmeshed with the body, is reflected in hundreds of years of debate in science and 

philosophy about the human condition.  For the psychologist, William James, there were two sides to the 

self—one the subject of experience (“I”) the other its object (“me”) [5]. While philosophy and 

consciousness science have largely focused on the problem of subjectivity; psychology, and latterly, 

cognitive neuroscience have developed a complementary understanding of self as object. For instance, a 

taxonomy of self was developed by Ulrich Neisser who decomposed different forms of self-knowledge 

into ecological (situated), interpersonal, temporally-extended, conceptual and private aspects [6]. A 

further flourishing line of research has focused on the narrative self—the construction of a coherent and 

meaningful identity through storytelling [7, 8]. 

 

2.1.  A systems perspective on the self 

A contemporary view of the self builds on this earlier research, and on the broader “systems” approach in 
biology that views organisms, including humans, as complex dynamical systems [9].  Systems are 

aggregates of many interacting parts, where the system, as a whole, can have emergent properties that are 

not present in any of its components. From a systems perspective, the self could be constituted by patterns 

of attractor dynamics in neural activity within widely distributed parts of the brain, closely coupled with 

non-neural systems throughout the body, and, via verbal and non-verbal communication, with other 

embodied selves.  Such a view aligns with enactivist and embodied cognition views of self-hood [10-12], 

recognizing the dependency of self on the body, on the wider environmental context, and on the 

construction of self through interaction with others. Gallagher [13] has proposed a related view of self as 
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a ‘pattern” arising from the activity of multiple self-related processes. Results from developmental 

psychology, cognitive neuroscience and psychopathology also support the notion of dissociable self sub-

systems that collectively give rise to the human sense of self [14]. 

In this review, we also approach the self as a construct that binds across sub-systems to form an emergent 

and unified whole constituted by (but not limited to) core phenomena of ownership, agency, and 

transtemporal unity.  These key phenomena are integrated in an embodied self-model instantiated within a 

cluster of predictive systems established within the brain and body and its ecological niche [15-21]. 

Ownership is, for example, reflected in the experiential quality of “mine-ness” of my perceptions, 
feelings, thoughts, and intentions [22], as also expressed through pronominal syntax in language, and as 

determined by a flexible boundary—the “self-manifold” (see below) [23]. Agency refers to the 

experience that I am the author or originator of my movements [24, 25] as determined by my capacity to 

predict their effects or infer my own causal influence on an outcome [26]. Both ownership and agency are 

organised according to a spatial, body-centred perspective [16, 19, 27].   

Beyond the persistence of the body, the basis for transtemporal unity of experience is the existence of a 

long-term coherent whole of beliefs and attitudes—the narrative self—that extends through lifetime and 

that stands for “the idea of a single person, a single subject of experience and action” [28] (p. 396). 

Moreover, this allows one to act as an “observer, agent, and guardian of the continuity of experience” 

([29], p. 161).  As the self develops, including through interaction with other selves, we do so, 

increasingly, based on interpretable meanings that develop during those interactions, and more broadly 

within our culture, and that can change over time [30, 31]. Active engagement with the world and other 

persons therefore profoundly impacts on the construction and experience of the self. 

As we will explore in section 3, we consider that robotics, allied with appropriate AI methods 

such as generative modelling, can provide a useful testbed to explore this broad hypothesis of the self as 

both a cluster of dissociable sub-systems and as a constructed whole.  By assembling appropriate modules 

within the cognitive architecture of a robot, a sense of self can emerge as having a unique perspective 

through its sensors and agency through its actuators.  Moreover, such a self, may also infer its own 

persistence from the predictability and consistency of that embodiment over time. 

Whilst we primarily consider psychological aspects of self in this article, this is not to dismiss the 

importance of understanding how the self becomes realized in the physical and neurobiological substrates 

of the body, and through the dynamic coupling of the brain and body with the environment [22, 32]. Our 

position is similar to Harnad’s [33] “robot functionalism” which asserts the importance, and potential 
primacy, of nonsymbolic capacities in grounding cognitive capacities and sense of self (see also [34]).  

More broadly, we consider that a full theory of self will encompass multiple levels of explanation [35] 

and that robotics research on sense of self can be usefully informed by neurobiology, for instance with 

regard to its realization through layered control architectures (e.g. [36-39]).  We note that some research 

on self asserts that a sense of self, and particularly a capacity for subjective experience, cannot be realized 

in non-biological substrates. We will return to this important question in section 6. 

 

2.2.  Minimal and extended selves 

From an evolutionary perspective, biological organisms distinguish processes that occur within the body 

boundary from those that are external to it. This provides the basis for a distinction between self and other 

which is one of the most foundational aspect of self [40].  Many organisms also have the capacity to 

distinguish the consequences of their own actions from the broader flow of environmental events via 

reafference—the effects of action on what is sensed.  For Jékely et al. [41] this provides all bilaterian 

animals with an elementary sense of self.   



Science Robotics                                               Manuscript Template                                                                           Page 4 of 23 

 

Broadly, two aspects of self—sense of body ownership (SoO) and sense of agency (SoA), building on this 

primary distinction between self and other, constitute the central elements for what, following Dennett 

[40] and Gallagher [42], we will call the minimal self. This also largely coincides with Neisser’s notion of 
the ecological self as “the embodied individual purposefully engaged with the environment” [6] (p. 20).  

Related proposals have been made by Damasio [43] who describes a “core self”—in which SoA and SoO 

build on a cluster of “protoself” brain and bodily processes that ensure survival, and by Panksepp [44] 

who discusses the “primal self”—emphasising the convergence of emotional (evaluative), sensory and 

motor schema with an integrative body map. Whilst definitions of what constitutes the minimal self may 

be somewhat fuzzy, there is broad agreement that this elementary form of self needs no capacity to reflect 

on itself, form attitudes or beliefs about itself, or to conceive or be aware of itself as persisting in time 

[42].   

Insights from developmental psychology suggest the presence of at least a minimal self, and probably 

more, in the human infant [45, 46]. Over the course of development, the child will construct further 

aspects of self, including the capacity for mental time travel into the past or future that provides for a 

sense of self that is extended in time [47], and awareness of itself as located in space [48]. With the 

achievement of “theory of mind” (ToM) [49]—the ability to infer the mental states of others from their 

observed behaviour—the child gains an understanding of social others as also being selves, building on 

what is likely to be a simpler form of awareness of others as social entities and agents that may be present 

at birth or emerge during the first years (indicated by joint attention, for example).  As the child grows 

older, the ability to recall past episodes leads to consolidation of an autobiographical memory, the 

construction of a sense of self as the “narrative centre” of its emerging life story [7, 8].  We will refer to 

these additional aspects of self collectively as the “extended self” [14, 50]. 

 

 

3. ROBOTS AS MODELS OF THE SELF  

A variety of robots have been used to investigate different aspects of self and related behavioural 

phenomena, as illustrated in figure 1. The approach of using robots to model the self follows an 

“understanding through building” strategy that capitalises on the value of physical models in investigating 
complex systems [35]. Robots provide testbeds in which candidate self sub-systems, including models of 

target brain processes, can be embedded as part of a wider control architecture [51] and evaluated in real-

world settings that include embodied others.  This embedding challenges theoretical proposals to be more 

fully specified and provides tests of their sufficiency and completeness, particularly with regard to their 

capacity to generate behavioural phenomena linked to sense of self. Through this process, robots can 

make more amenable foundational questions about self, including about the nature of the sense of the self, 

the preconditions for the emergence of sense of self, and the potential diversity of selves, including the 

minimal case [14].  

Theories of self [15, 17-20, 22] are increasingly predicated on a predictive processing view that sees the 

construction of the self as a process of minimising prediction error in a network of generative models. 

Specific models may relate to different modalities of experience such as proprioception, interoception, or 

exteroception, or may construct multimodal latent space representations (across lower-level models) that 

encode self-related information such the structure, location and pose of the body. At higher levels, such 

models will encode more abstract concepts such as memories, intentions, goals, beliefs about the self, and 

ultimately a concept of self. Such as view is particularly amenable to implementation and testing via 

robotic embodiment [21, 23, 39, 52]. 
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Figure 1.  Top. Aspects of self and some of the psychological capacities (coloured text) associated with 

them, shown above an approximate developmental timeline (log scale) based on [45-47, 53]. In this article we 

discuss early emerging aspects of self as related to the “minimal self” and later-emerging aspects as relating to the 

“extended self”. Bottom. Examples of robots used to investigate different aspects of self through embodied 

modelling. Coloured circles indicate specific psychological capacities these robots have been used to emulate. 

From left to right: A star-like robot used to investigate the emergence of a body schema through continuous self-

modelling [54]. The Kenshiro [55] robot mimics human musculoskeletal structure and is being developed as a 

platform for simulating the human body schema [56]. Commercial humanoid platforms such as Nao, Pepper (not 

shown) and Tiago have been used to investigate phenomena associate with self-other distinction [57, 58] and the 

emergence of the extended self—object permanence [59], theory of mind [60] and mirror-self recognition [58].  

Cog, an upper-torso humanoid, designed as a tool to study human cognitive development [61], was used to 

investigate joint attention [62] and theory of mind [63]. The iCub humanoid [64] is a full-body robot designed to 

emulate the motor and sensory capacities of a human child, it has been used extensively to investigate phenomena 

of self, including body schema [36, 65-67], joint attention [36], theory of mind [68], episodic/autobiographical 

memory and the narrative self [36, 39, 69, 70]. See text for further explanation. Photo credits: star-like robot, Josh 

Bongard, Victor Zykov, and Hod Lipson; Kenshiro, adapted from [55] with permission from AAAS; Nao, Softbank 

robotics; Tiago, Pal Robotics, S. L.; Cog, Sam Ogden and Science Photo Library (license obtained); iCub, Italian 

Institute of Technology.  

 

 

3.1. Constructing the minimal self 

The minimal self, as described above, is composed of two principal subsystems relating to SoO and SoA.  

The embodiment of organismic selves further implies a variety of primary capabilities including sensing 

the body and the environment, having a self-other distinction, and having a perspective on the world (a 

point-of-view).  In human adults these capacities are reflective (i.e. accessible to introspection) and 

involve meta-cognition, however, behavioural markers indicate that human infants have SoO and SoA but 

without the adult capacity to conceptualise their experience of self  [71].  In developing robot models of 

the minimal self a key interest is therefore in emulating these pre-reflective forms of ownership and 

agency.   
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The importance of sensing the body is broadly recognised in discussions of self but encompasses at least 

two distinct themes—one focusing on proprioception and kinesthetics [24, 72], and one on interoception, 

that is, sensing of internal bodily processes [20, 73]. In robotics, kinesthetics and proprioception are 

widely studied and emulated, particularly with regard to safe control of stance and movement, but also to 

construct a robot body schema that could act as a model of the human body schema (see [56, 65, 74-76]).  

Despite a wealth of studies and data there is still a lack of clear understanding of how the brain constructs 

and uses representations of the body, partly due to the difficulty of recording in the brain in moving 

animals.  Robotics can contribute by embedding models of hypothesised mechanisms in physical systems 

engaged with real environments.  A range of theories about both explicit and implicit encodings of the 

body schema have been explored using robotic systems some of which utilise robots whose actuator and 

mechanical systems are closely modelled on human anatomy and physiology [56]. Hypotheses under 

examination include that latent representations that map across modalities, such as proprioception and 

touch, could be useful in understanding body-related brain activity in areas such as parietal cortex [76, 

77]. More broadly, the capacity to learn lower-dimensional representations of the robot’s sensorimotor 

and action spaces (see for an example [78]), that discover and encode relevant invariances, can create 

what Hafner has termed the “self-manifold” [23]. By learning this manifold, which is both flexible and 

reconfigurable, the robot can acquire an understanding of how its body can move and sense in space. This 

idea also operationalises Damasio’s [79] notion of a “sensory portal” as being the configuration of brain 
and body systems that enable any given sensory capacity.    

Whilst studies of exteroceptive and proprioceptive mechanisms in robotics are commonplace, research on 

interoception is largely lacking—the internal milieu of a robot is much simpler than that of a biological 

organism as functions such as respiration, digestion, and excretion, that are fundamental to animal life, 

are not needed. The lack of interoception, which grounds homeostasis and emotion in relation to these 

bodily processes, and is often discussed in relation to self-hood (e.g. [44]), has been highlighted as a 

potential weakness of embodied artificial systems [80]. Research on self-healing sensorized materials for 

soft robots [81, 82], energy harvesting [82], and “embodied energy” [83] (using power generation that are 

more similar to these used by animals), should lead to more “internally-aware” robotic systems. 

The development of a self-other distinction has been widely studied in robotics, examples include the 

emergence of this distinction through self-touch [75], via visual feedback and the construction of a body 

model [58, 84, 85], and through the construction and monitoring of peripersonal space [67]. A key 

boundary of the human self is provided by the skin which provides both exteroceptive and interoceptive 

signals (such as warmth) while also acting as a channel for both perception (e.g. shape, texture) and 

valence (e.g. pain, social touch). Whilst there has been significant progress towards developing robotic 

models of skin [86], existing technologies are generally unimodal and are focused almost exclusively on 

perception.  Few robots have been enveloped in artificial skin, so, in existing systems, this acts as a partial 

boundary at best. The limitations of sensing at the body-world boundary, together with the relative lack of 

interoception, means that current robots have a more impoverished representation of their own 

embodiment than animals, though this may change with the development of soft robots and more energy-

autonomous devices [81, 83, 87]. 

With regard to perspective taking, it is uncontroversial that a physical robot equipped with sensory 

systems, such as directional cameras and microphones, has a point-of-view in the literal sense of that 

term. In other words, there is a position in the world that is occupied by the robot and that cannot be 

occupied directly by anyone or anything else at that time.  There is also a specific perspective or view of 

the world from that position, that is unique to the robot at any moment, and dependent on its sensor 

configuration. Blanke and Metzinger describe a “weak first person perspective” (weak 1pp) as requiring 
“a spatial frame of reference, plus a global body representation, with a perspective originating within this 

body representation” ([88], p.7), a weak 1pp is required for subjective experience, according to these 

authors, but is not, in itself, sufficient for it.  Thus, a suitable-designed robot with something akin to the 

self-manifold, as discussed above, would qualify as having weak 1pp.  Blanke and Metzinger also 
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consider a strong 1pp as emerging when the agent achieves the capacity to reflect on itself and to have a 

narrative-based identity.  This would be a property of the extended self (as discussed further below).  

Sense of agency (SoA) is the experience of control over one’s own actions and their consequences for 
external events [72].  SoA is also related to the notion of autonomy—an entity is autonomous to the 

extent to which its actions are intrinsically determined rather than externally directed.  The capacity to 

interact with the physical world through embodied sensors and actuators provides the fundamental 

material substrates for embodied agency. Combined with value systems, which could be hardwired or 

acquired through reinforcement learning, and a self-other distinction (created by body representations as 

discussed above), robots are beginning to meet the core requirements, suggested by Damasio [79] and 

Panksepp [44], for grounding SoA in the integration of external and internal sensing with value-based 

action selection. The capacity to direct attention and to actively sense the world (i.e. to control the sensing 

apparatus in an information-seeking way) are further agency-related phenomena, that have been related to 

sense of self (e.g. [88]) and extensively explored robotics [89-91]. Biological agency is also grounded in 

homeostatic and allostatic regulatory systems [38, 92], a layered control architecture of motivational 

systems [38] and neuromodulatory systems that are integrated with bodily processes [93].  Models of 

some of these mechanisms are now being investigated in brain-inspired robotics [36, 94-97].  

A key pre-requisite for sense of agency in humans is considered to be the capacity to predict the sensory 

consequences of intrinsically generated actions and thereby distinguish those consequences from other 

events [98]. Such capabilities have been developed for robots [59, 99] and applied to emulate milestones 

in infant development such as object permanence—understanding that objects continue to exist when they 

are out of sight [59].  While philosophy has suggested the necessity of object permanence for the 

development of the child’s ability to conceive of itself [100], robotics research has shown that a sense of 

agency may be required for the discovery of object permanence [59].  This illustrates how research on 

robotics could aid our understanding of the dependencies between different aspects and phenomena of 

self, and consequently their developmental timeline (as illustrated in figure 1). 

The phenomena associated with the minimal self, including SoO, SoA and self-other distinction, are 

conceptual distinct but closely related.  They are not all or nothing, each is likely to depend on multiple 

substrates some of which may be overlapping.  According to Rochat [45, 46] the infant has both a sense 

of its own body and of its own agency by age 2-3 months, many aspect of these being absent in the 

newborn, however, “the development of self-knowledge does not start from an initial state of confusion. 

Infants are born with the perceptual means to discriminate themselves from other objects and appear to 

use these means to sense themselves as differentiated, situated, and effective in their environment” ([45], 

p. 108).  Robotics offers as means of operationalising, analysing and distinguishing these concepts, their 

interdependence and time course.  For instance, the emergence of a self-other distinction prior to birth has 

been proposed as deriving, in part, from the sense of touch which develops early during gestation, and the 

different experience of touching the self, compared to touching the lining of the womb [101].  

Simulations of a brain/body model of the human fetus [102] and self-touch studies in robotics have 

demonstrated the possibility of learning about the layout of the body using somatosensation coupled with 

proprioception [66, 77]. This can help us to identify the kind of body representations that may already be 

in place before birth.  

 

3.2.  Constructing the extended self 

The human self, and likely that of other complex animals, goes significantly beyond what we have 

described as the minimal self.  Multiple phenomena of self that can be grouped into at least three distinct 

subsystems—transtemporal, interpersonal and narrative—constitute what we will describe as the 

extended self. 
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Capacities for localising in time, which relies on episodic memory, have been investigated in the context 

of cognitive architectures for humanoid robots (e.g. [70, 103, 104], for review see [39]), and provide 

additional evidence, to support that from neuroscience, that the same mechanisms can support both 

remembering of past events and imagining of future events. Localisation in time is widely emphasised in 

theories of self, however, being localised in space is also important for sense of self and involves similar 

neural substrates including the hippocampal system and default mode network [105].  Capacities for 

spatial localization are well developed in robotics in the form of simultaneous localization and mapping 

algorithms (SLAM) and can be used to inform theories of subsystems in the human brain underlying 

orientation and navigation [106].    

Aspects of the interpersonal self that have been explored in robotics include joint attention [36, 62, 107], 

imitation [108, 109] and theory of mind (ToM), viewed as the capacity to attribute goals, beliefs, desires, 

emotions and intentions to others and to recognise that these are different from one’s own (e.g. [63, 110, 

111]).  Some robots have been endowed with capacities for abstraction and distillation of important facts 

and events from episodic memory (see, e.g. [103, 104]) that can allow the robot to describe and report on 

itself [36, 112]  and could form the beginning of a narrative self and acquired self-concept.  Finally, there 

have been robotic investigations of the capacity to direct attention to, and inspect and reason about, the 

perceptions and memories generated by these systems [91, 113] that could provide the beginnings of self-

reflection.   

The development of a human-like extended sense of self for robotics will require a cognitive architecture 

with capacities for perception (of both the body and world), emotion, decision-making, memory, 

attention, and reasoning. Examples of existing architectures that go in this direction include the 

“distributed adaptive control” architecture which has been embodied in the iCub humanoid [14, 36] and 

the cognitive architecture for the Karlsruhe humanoid [104, 114]. Evidence from studies of the human 

sense of self suggest the need for a layered architecture [38] in which core self sub-systems, implemented 

at the level of the brainstem and available within the first few months life, are modulated by a hierarchy 

of predictive sub-systems specified in the forebrain and particularly the cerebral cortices [19, 39]. 

 

 

4. ROBOTS AS EXPERIMENTAL PROBES TO STUDY THE HUMAN SELF 

This section focuses on the use of robots as sophisticated “tools” to study the human self. As such, the 
robots discussed here are not necessarily endowed with the model of the self. They might not even be 

autonomous or endowed with any sophisticated cognitive architecture. Instead, they can be considered as 

technology enabling the study of human cognition that augment existing forms of experimental apparatus 

[115].  Robots offer greater ecological validity than approaches such as presenting stimuli via computers. 

At the same time, they provide improved experimental control compared to completely naturalistic 

protocols where participants are tested in interaction with the environment or with others “in the wild” 
[115-117]. The use of robots as experimental tools depends, of course, on the phenomenon under 

investigation. Robots can serve as effective proxies for studying social cognition mechanisms because 

they are embodied and thus can engage participants in tasks such as joint action and joint manipulation of 

physical objects. Additionally, they can be designed to resemble humans in their appearance and motor 

repertoire and to provide the impression of a physically-present social agent.  

In this section, we will focus on research relating to the cognitive mechanisms underlying sense of body 

ownership (SoO) and sense of agency (SoA) as core aspects of the minimal self [26] and on mechanisms 

underlying the inter-personal self as an example of research related to the extended self. 

  

4.1. Understanding the minimal self 
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Broadly speaking, research on SoO in experimental psychology has focused on body ownership, rather 

than ownership of feelings or thoughts, with several paradigms being widely used such as the 

rubber/virtual hand illusion [118] [119], body transfer or enfacement illusion [120], and the out-of-body 

illusion [88]. In all these paradigms, findings typically show a body “transfer” effect, meaning that one’s 
own body (or body part) seems to be “displaced” from its actual location, and typically towards an 

artificial limb/object. This effect is due to an illusion arising from sensory stimulation (tactile and visual) 

applied simultaneously to one’s own body part and the artificial object.  
In the context of robotics, several interesting questions related to SoO can be addressed through 

teleoperation of humanoids. In teleoperation paradigms, the robot becomes a physically embodied avatar 

that the human user can control through various interfaces including, in the most advanced case, full-body 

motion capture [121]. Jazbec and colleagues [122] have shown that when operating an android robot, 

some degree of body transfer towards the robot occurs, paralleling the classical illusion [26]. Jung and 

colleagues [123] examined the effect of body transfer to a robot and called it the “beaming” effect, while 
Ventre-Dominey and colleagues [124]showed that participants experienced embodiment (or rather 

enfacement—perceiving the face of another person as their own face) in a robot after a short “beaming” 
procedure when the robot moved in a correlated manner to the movements of the participant’s head. In 
sum, this literature shows that teleoperating a robot can induce body transfer effects. Future research 

could explore the conditions in which the beaming effect arises and how the body transfer experience 

might be impacted by different forms of robot embodiment (e.g., a child-like iCub vs. an adult-like robot 

embodiment) and context (e.g., teleoperating the robot to perform actions in a familiar vs. unfamiliar 

environment). 

A second domain of robotics that can inform our understanding of SoO is exoskeletons, prosthetics and 

physical augmentation. Here, the crucial question is whether artificial body parts are being integrated into 

one’s body and whether sense of ownership can extend to those artificial parts [125]. Kieliba and 

colleagues [126] showed that participants who were trained to use an additional robotic thumb reported 

increased sense of embodiment for the extra digit, following five days training, and demonstrated 

improved motor control of the additional thumb. These researchers also found changes in hand 

representation at the neural level. Specifically, the biological fingers of the hand on which the extra digit 

was applied became less distinctive, in terms of neural representation, following training, compared to 

those on the hand where the thumb augmentation was not applied. 

These results confirm earlier studies using the rubber hand [118] or virtual reality [119] where sense of 

ownership is transferred to external or virtual objects. The benefit of using robots lies in the opportunity 

to understand the precise mechanisms underlying a change in sense of ownership in relation to an “alien” 
body. Specifically, existing research has not resolved the question of whether sense of ownership emerges 

from bottom-up sensorimotor integration mechanisms or whether it requires internal body maps [26]. 

Some authors (e.g. [127]) have reported that the body transfer illusion can occur to objects that are not 

shaped like a body part, such as a table or cardboard box, as long as multisensory (visuo-tactile) 

stimulation is spatiotemporally correlated. This finding supports the view that bottom-up sensory cues are 

sufficient for SoO. Other authors [128], however, highlight the importance of internal body maps having 

shown that anatomical, spatial, postural or textural constraints need to be met for SoO to emerge [26]. 

Future research using robots with different shapes or motor repertoire could help to resolve this debate. 

SoA has been operationalized in the psychological literature as sense of control over the sensory 

outcomes of one’s voluntary actions [25]. This can be measured either explicitly, by asking participants to 

report on their subjective experience of degree of control, or implicitly by estimating the time interval 

between their action and the sensory outcome [129]. Typically, for self-generated voluntary actions, the 

action-outcome interval appears shorter, relative to involuntary or externally generated outcomes, a 

phenomenon called the “intentional binding” or “temporal compression” [130].  The intentional binding 

phenomenon can be modulated by a wide range of factors that could potentially be explored using robotic 

probes such as human-like movement repertoire or form of embodiment [131-133]. Figure 2 illustrates an 
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experiment with iCub humanoid robot [134] in which intentional binding was explored in a Sense of Joint 

Action (SoJA) task in which human dyads typically experience joint agency. The results showed that 

humans experience so-called vicarious SoA [135] over robot actions but only if the robot has human-like 

motor repertoire and physical embodiment [132, 133]. 

In the context of human-robot interaction, Ciardo has reported decreased individual SoA during joint 

action with a robot [136]. This effect parallels a phenomenon observed in human-human studies [137] 

theorised as arising from a diffusion of responsibility in social contexts. Sahaï et al. [138] have shown 

increased SoA in interaction with a humanoid robot, compared to a non-anthropomorphic machine. These 

seemingly contradictory results might be explained, however, by the nature of the task, and different 

socio-cognitive mechanisms involved. While the tasks in which reduction of SoA has been observed were 

related to avoiding losses (and thus, the results might be due to diffusion of responsibility), the task which 

increased SoA has been observed for humanoid robots was a joint action task where participants shared a 

common goal with the robot, acting as a “team”. In other words, the goal was not framed in terms of 

potential negative consequences (avoiding losses), but rather in a positive manner as performing a task 

together. These studies therefore support for the view that SoA is modulated by social context (amongst 

other factors); perhaps reflecting the social nature of the self, as we will explore further below. 

 

4.2.  Understanding the extended self 

We will explore the use of robotics in the context of the experimental understanding of the extended self 

through the example of theory of mind (ToM). 

As noted earlier, social interactions shape our sense of self. As we learn to distinguish between ourselves 

and others, we come to realise that those around us are also selves.  As previously noted, ToM is a 

mechanism for inferring the mental states of others from their observed behaviour [49], it therefore 

presupposes that these others have mental states. In other words, it presupposes adoption of an 

“intentional stance”—a strategy that humans take to explain and predict the behaviour of others by 

referring to their mental states [139]. The intentional stance is the default strategy adopted towards other 

humans, as opposed to alternative stances such as the “design stance” and the “physical stance” (see 
[139]). In relation to robots, however, the situation is not straightforward. Humanoid robots, owing to 

their human-like appearance and sometimes their behaviour, can (although not always) elicit the adoption 

of the intentional stance to some extent, even though they lack true mental states (see [140-142]). 

Moreover, this tendency can be detected from brain activity [143] and is enhanced by robot behaviour 

that resembles that of people [144].  Adoption of the intentional stance interacts with the experience of 

agency during joint action [134], suggesting that attribution of mental states might be crucial for engaging 

in shared attention and other mechanisms of the self. 

As noted earlier, SoA is modulated by social context, indeed, it can be experienced for one’s own actions 

and for joint actions. When we perform actions with others we experience sense of agency not only over 

our own actions (and their sensory outcomes) but also over actions that are performed jointly as a team 

and over the sensory outcomes of those jointly performed actions. This has been conceptualized as the 

sense of joint agency (SoJA) and studied experimentally [145-147]. 
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Fig. 2. An example experimental paradigm for studying SoA in a human-robot interaction. The photograph illustrates a 

joint action paradigm where the two partners (here a human participant and the iCub humanoid robot) are responsible for 

complementary actions [134]. The task is to judge the occurrence (the moment in time) of an auditory beep produced by a 

keypress of one of the partners. If SoJA is formed, then participants should show temporal compression (temporal binding) 

between the keypress and the auditory tone, regardless of who actually produced the keypress (themselves or the partner). In 

[134], participants formed SoJA with the robot when they attributed intentional agency to it. 

In the recent human-robot interaction study illustrated in Figure 2 [134] participants were ready to form a 

sense of joint agency with a humanoid robot, as demonstrated by both subjective temporal estimates and 

EEG recording of brain activity, but only if they attributed intentionality to the robot. This result implies 

that both individual and sense of joint agency involve similar underlying cognitive mechanisms including 

those linked to intentional action [130]. 

In sum, this collection of studies suggests that the human interpersonal self is a mechanism that is 

sufficiently flexible to be reused and generalized for social contexts involving non-human others, such as 

robots and artificial agents. We seem to readily attribute to others their distinct own selves, even if these 

others are robots, this accords with a wider literature on human readiness to see artificial entities as social 

actors [148]. Robots provide the possibility to manipulate various types of embodiment, the degree to 

which actions are embodied, and the extent to which intentionality is attributed to the agents. Such 

experiments provide insights into the mechanisms underlying various phenomena of the interpersonal self 

that go beyond what can be achieved solely through human-human interaction studies. 

 

5. UNDERSTANDING THE DIVERSITY OF SELVES THROUGH ROBOTICS 

The human experience of the self is broad and diverse. Whilst existing work has largely considered the 

neurotypical cases, robotic modelling offers the potential to explore the diversity of selves and so could 

contribute to a better understand of human differences and, potentially, to the treatment of disorders of the 

self.  

Research in psychopathology and psychiatry increasingly views a range of disorders as related to aspects 

of self. This is clearly the case, for instance, in relation to disorders of body representation (see [74] for 

review), where patients might experience a limb as belonging to someone else (as in “alien hand” 
syndrome), or a missing limb as still present (as in “phantom limb” syndrome) [149].   

Depersonalization disorder is a condition in which both SoO and SoA are affected, resulting in changes in 

perspectivity. In depersonalisation, the individual subjective experience is no longer anchored in the body 

and their sense of embodiment is weakened, if not lost. This leads to symptoms such as feeling that you 



Science Robotics                                               Manuscript Template                                                                           Page 12 of 23 

 

are watching yourself from outside, that life is a dream, loss of experience of control over one´s own 

movement, and to emotional detachment or physical numbness.  

The temporal self becomes disordered in amnesia, and in a variety of dementias, whilst leaving the core 

sense of self intact [70].  The interpersonal self also presents as differently organised in some 

developmental disorders including autism [63, 150] as indicated by the loss of understanding of 

intentions, feelings, thoughts and nonverbal communication signals.  Recent research has also linked 

depression to changes in both the minimal and extended self [151].  For example, the sense of agency 

may be disturbed, causing patients to experience a lack of self-efficacy (Vogel et al. 2024) this may also 

be related to a disturbed sense of time, such as slowdown or deceleration of the experience of time 

passing (Vogel et al. 2018). 

As an example of this broader field, we consider schizophrenia where different subsyndromes have been 

increasingly linked to disorders of the self.   

Psychopathology has identified three different groups of symptoms that, broadly-speaking, define 

multiple schizophrenic subsyndromes [1, 152]. These include psychomotor poverty (poverty of speech, 

flattening of affect, retardation of action), disorganization (incoherent speech, incongruity of affect), and 

reality distortion (hallucinations, delusions). The scientific understanding of the self allows the 

reconstruction of different psychopathological symptoms.   

The scientific understanding of the self allows the reinterpretation of a variety of psychopathological 

symptoms identified with schizophrenia. For instance, a disturbance of the SoO with regard one’s own 
cognitive processes could explain experiences of “thought insertion”, “thought broadcasting”, and 

hallucinations which are no longer being experienced as self-induced internal perceptions [153]. On the 

other hand, a disturbance in the SoA, involving the capacity to monitor one’s own actions [154], is 

evident in a second cluster of patients with schizophrenia.  For instance, patients with passivity syndrome 

may develop problems with representing their own intentions to act, while patients with experiences of 

alien control of their thoughts and actions have been found to be significantly less likely to make error 

corrections in the absence of visual feedback indicating a defect in "central monitoring" of actions [155].  

In relation to the interpersonal self, a recent meta-analysis studied links between clinical symptoms in 

schizophrenia and ToM impairments. Main results were that difficulties in abstract thinking and 

conceptual disorganization were most strongly linked to ToM whereas associations of ToM with positive 

symptoms and emotional symptoms including depression and anxiety were comparably small [156].  

Disturbances of the transtemporal unity of self in persons with schizophrenia often arise in relation to 

experience of passage of time [157]. For example, patients may show a disruption of the sequence of time 

confusing past, present, future. The narrative self is established by autobiographical memory which 

organises self-related memories in the context of a coherent personal history. Many patients with 

schizophrenia also show symptoms of “cognitive dysmetria” as indicated by difficulties in the 

coordination and monitoring of processes in the retrieval, processing, and expression of information 

[158].  

The emerging field of computational psychiatry [159] uses computational neuroscience and machine 

learning approaches to understanding disorders including from the perspective of modelling the self. 

Robotics can contribute to computational psychiatry by providing integration of self subsystems, and 

embodiment, a developmental trajectory, and observable behaviour that can be measured with similar 

metrics as applied to humans [52].   

Various schizophrenia subsyndromes, and their relation to self, could be explored through robotics, by 

constructing a cognitive architecture that matches aspects of the neurotypical case then altering the 

contributions different sub-systems. A general hypothesis suggested by predictive processing accounts is 

that differences in the processing of prediction errors within a cognitive hierarchy could underly multiple 

symptoms of schizophrenia and provide a unifying theory that could be tested in robotic models [160].  
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We discuss two illustrative studies.  First, an influential model of disturbances of SoO and SoA is the 

comparator model (see [52, 161] and figure 3 left) which proposes a prediction error model of the ability 

to recognise one’s owns actions.  Based on a robotic model of mirror self-recognition and the emergence 

of the self-other distinction, Lanillos et al. [58] have criticised the comparator model as being too 

simplistic (see also [162]), suggesting a “double comparator” model, where predictions of sensory 

outcomes is combined with learning spatio-temporal contingencies. This work provides an example of 

how embodied modelling provides a strong test of the sufficiency of theoretical proposals. Second, in a 

model developed by Yamashita and Tani [163], a two-layered network composed of a sensorimotor layer 

and an intentional layer, implemented as a controller for a humanoid robot, showed network level 

perturbations at mild levels of impairment (uncompensated error signals between layers), comparable to 

aberrant feelings or thoughts. However, at higher levels of impairment the robot displayed changes of 

overt behaviour such as disorganised or stereotyped actions, comparable to the more severe deficits seen 

in some patients with chronic conditions. 

 

 

Figure 3. Left: A robot control system for mirror self-recognition [58] based on the comparator model [161]. 

Building on the reafference principle (section 2), the comparator model proposes that self-agency is detected by 

congruence between the predicted sensory outcomes of motor movement and observed sensory outcomes (left, 

black text and outlines, adapted from [161] with permission).  Right: robot modelling of body and action 

recognition in a mirror [58] (permission to be obtained) suggests that the need for an additional mechanism (red 

text and arrows) that evaluates whether sensor events are contingent on robot’s actions as previously hypothesised 
in [162]. Behavioural studies of people with schizophrenia indicate disturbances to these types of self-monitoring 

mechanisms [161] which could be better understood through robotic modelling. Adapted from [58] with permission 

from the authors. 

From the perspective of using robots as experimental probes, robotic embodiment and manipulations that 

lead healthy controls to the experience of body transfer effect (e.g., enfacement) might be of interest to 

use to study in the disorders of the self. For example, by studying SoA in patients with psychosis using 

robot teleoperation, one might understand the mechanisms underlying altered SoA, altered SoO and 

weakened sense of self in this population [164]. Communicative accounts of psychopathology (e.g. [165]) 

propose the dyad, rather than the individual, as the fundamental unit of the analysis in understanding 

mental disorders. From this viewpoiny, robots could be used as interlocutors for patients and to simulate 

interactions with patients, providing a controlled environment for the systematic study of specific variants 
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of communicative behaviour in different psychopathological conditions such as the loss of intuitive 

nonverbal communication capacities in autism spectrum disorder. 

 

6. DISCUSSION 

We have argued that robotics can play an important role in the scientific understanding of the self, both 

through the construction of embodied models of self, and through use of robots as experimental probes in 

paradigms that explore the human sense of self.  In both cases, the embodiment of the robot, including its 

morphology, behaviour, appearance, and mere physical presence, allow us to develop and test 

increasingly refined hypotheses about the nature of self, including its development, its manifestation in 

behaviour, and the diversity of selves in humans, animals, and potentially machines. 

Our review has largely focused on the self in cognition and action, rather than the phenomenal experience 

of self. This is not to exclude the study of subjectivity, as being central to understanding the self, or to 

suppose that this cannot ultimately be addressed through robotic studies.  Indeed, our view is that 

constructing a robot cognitive architecture that can exhibit the capacities of the minimal and extended 

self, as described above, can help to operationalise notions of subjectivity such that we can ask what 

further might be required for an artificial entity to experience subjective states. For Blanke and Metzinger 

[88] the grounds for ascribing a “minimal phenomenal selfhood” require “(i) a globalized form of 
identification with the body as a whole (as opposed to ownership for body parts), (ii) spatiotemporal self-

location and (iii) a [weak, as defined above] first-person perspective (1PP)” ([88], p. 8). On the basis of 

our review, we consider that research in robotics is well advanced towards achieving this degree of 

organisational complexity. Indeed, Gallagher [42], in his account of the first-person experience of a 

minimal self, discusses a robot developed by Tani [166], equipped with a predictive model, which he 

describes as already providing a possible instantiation of minimal phenomenal self-hood. 

Other perspectives, particularly from enactivist and organismic viewpoints (e.g. [167, 168]), set the bar 

for subjectivity higher on the basis that robots, at least the currently existing ones, achieve only weak 

expression of key requirements around embodiment and agency.  This critique goes beyond the 

limitations previously discussed, relating to the impoverished nature of robot embodiment.  For instance, 

for Sharkey and Ziemke [167], a key distinction between current robots and animals is that the latter 

should be considered as “autopoietic machines” whose fundamental nature is to actively maintain their 
own organisation through processes including homeostasis. Biological organisms also have the character 

of open thermodynamic systems that actively resist their own decay.  This requirement chimes with some 

of the broader aspects of the minimal/proto/primal self as defined by Dennett, Damasio and Panksepp.  

Whilst it is possible to add homeostatic and emotional mechanisms to robot control architectures (e.g. 

[36]) this is unlikely to satisfy stronger versions of the enactivist critique unless robots can be made 

genuinely self-maintaining.  

We would also note that subjectivity is distinct from consciousness, although the two are not independent.  

Conscious states are necessary prerequisites for the full development of the self (e.g. transtemporal unity). 

On the other hand, conscious states are not sufficient for the self-model, as, for instance, demonstrated in 

meditative states [169, 170] and experiments with psychoactive drugs [171].  There is a significant 

literature on the possibility of creating conscious robots, readers are referred to [172] as a starting point. 

There are ethical issues, in relation to creating robots with a sense of self, both with regard to status of 

such robots and their possible impacts on society, that require serious consideration and are worth briefly 

noting here (see also [148, 173, 174]). For instance, Metzinger [175] has cautioned against developing 

robots that have subjectivity, on the grounds that there is a risk that such entities could endure negative 

experiences similar to pain; in such circumstances robots could become moral patients [176]. On the other 

hand, advances in robotics are such that we may be nearing this point, if so, it may be best to do so 

knowingly and with appropriate consideration for these potential consequences [173]. Robots are 
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increasingly being used in public life, in a variety of forms, including as socially-assistive robots that 

directly interact with people [148, 177].  Results show that assistive robots can decrease feelings of 

loneliness and anxiety, and can encourage participation in social life [148, 178], while for children, they 

can serve educational purposes [179] and facilitate acquisition of social and cognitive skills [180, 181].  

Arguably, such robots will be more effective tools if they have aspects of a sense of self. For instance, a 

better sense of their own embodiment will make them safer, a sense of themselves in time will make them 

more effective in retrieving and applying relevant information from previous interactions, and a sense of 

sense others will make them more able to anticipate and meet user needs.  

 

Conclusion 

Some of the key challenges in developing advanced robots and in understanding the human self are 

similar. For instance, given multiple, partial, fleeting, unisensory signals about the world and the body 

how do we build a coherent, stable, integrated and perspectival understanding of our own embodiment 

and situatedness?  In this review we have considered how robotics can be used to explore these questions 

from two fronts—through robotic modelling of the sense of self and by providing robot probes to help 

experimentalists explore the human sense of self. While work is still at an early stage, an emerging view 

is that key phenomena of self can be generated in robots with suitably configured sensor and actuator 

systems and a layered cognitive architecture involving networks of predictive models.  Ultimately, we 

hope that this research will lead to an explanation for how a unified sense of self can arise in a distributed, 

but embodied, network of self processes and to a better understanding of the diversity of human selves.  
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