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Abstract: The most complex challenge facing the energy market is identifying 

effective solutions to reduce CO2 emissions (CEs) and enhance environmental 

performance (EP). Coal production within the power sector is the primary source of 

these emissions. In this study, we developed a novel linear programming model that 

accounts for undesirable outputs to assess the EP of 15 power enterprises in eastern 

China from 2016 to 2020. In addition, we employed a global non-radial Malmquist-

Luenberger productivity index (GNML) to analyse the mechanisms influencing 

changes in efficiency among these enterprises. Our findings indicate that, while the EP 

of the power industry in eastern China improved, it remains at a relatively low level 

and exhibits instability. Moreover, technological efficiency (TE) and scale efficiency 

(SE) play a significant role in determining production efficiency within the sector. 

Therefore, it is essential for industry managers to implement standardized production 

management regulations, enhance technological development and scale investments, 

and strengthen control over unintended emissions that could facilitate energy transition. 
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1. Introduction 

As global temperatures continue to rise, effectively decarbonizing the energy 

market has emerged as a key challenge for all countries (Tol, 2023; Bigerna et al., 2022). 

The recent flagship report on global energy-related CO2 emissions (CEs) published by 

the IEA indicates that energy-related CEs reached 37.4 billion tons in 2023, marking an 

increase of 490 million tons compared to 2022 (IEA, 2023). Despite this, global energy 

consumption is on the rise (Huang, 2014; Meng et al., 2020). According to the 2024 BP 

World Energy Outlook, driven by rapid electricity consumption growth in emerging 

economies, global terminal electricity demand is projected to increase by 

approximately 75% by 2050 under the “current path scenario”. For instance, the China 

Electricity Development Report (2023) states that China’s electricity demand rose by 

3.6% in 2022, with projections indicating total electricity consumption will reach 

between 9.8 trillion and 10.2 trillion KWh by 2025. Similarly, a recent research report 

from Bank of America Merrill Lynch forecasts unprecedented growth in electricity 

demand in the United States, expecting a compound annual growth rate of 2.8% from 

2023 to 2030. Although countries worldwide advocate for the transition to clean energy 

for electricity production, the surging demand means that clean energy sources cannot 

meet current needs in the short term, leaving coal power as the dominant source. 

Consequently, finding effective strategies to improve the environmental performance 

(EP) of the energy market remains an urgent issue to address (Zeng et al., 2023). 

In this context, the evaluation of EP in the energy market has garnered significant 

academic attention. Our review of existing literature reveals that scholars primarily 

focus on two aspects: (1) the impact of various policy implementations on the EP of the 

power industry (Bigerna et al., 2020). Some studies argue that regulatory measures can 

inhibit production efficiency and lead to heterogeneous effects across different regions 

(Tang et al., 2023). Conversely, other scholars contend that policy constraints can 

significantly drive reforms within the power industry, ultimately enhancing EP 

(Sueyoshi and Goto, 2013). (2) EP evaluations of the power industry from a macro 

perspective (Long et al., 2018). Currently, few studies have addressed the EP evaluation 

of power enterprises and the mechanisms influencing their performance from a micro 
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perspective. Given that power enterprises are primarily responsible for energy 

production, exploring EP at this level can effectively guide the energy industry toward 

achieving green and high-quality development. Therefore, we aim to advance research 

in this area. 

In China, energy combustion accounts for approximately 88% of its CEs, with the 

electricity market alone contributing about 41% of emissions from the energy sector. 

Therefore, improving EP in the electricity market is crucial for the sustainable 

development of the energy sector. According to the latest report from the IEA, China is 

currently the world's largest electricity consumer, with average annual energy demand 

exceeding a quarter of global demand (Fan et al., 2019). Given the variability in 

production capacities among different power enterprises, we selected 15 power 

companies in eastern China, where the power industry is relatively advanced, as the 

focus of our study. These enterprises consume more than 10,000 tons of standard coal 

annually or produce over 26,000 tons of CEs, collectively representing more than one-

third of the region’s power production, making them highly representative for our 

analysis. 

Considering the differences in technical capabilities and production scales among 

various power enterprises, we propose our first research question: (1) Is there 

heterogeneity in the EP of different power enterprises? To investigate this, we employ 

an improved non-radial directional distance function (NDDF) approach to analyze the 

historical production data of 15 power enterprises in China from 2016 to 2020. Our 

findings reveal significant disparities in EP across these enterprises, with notable 

fluctuations in efficiency values at different stages. However, the underlying causes of 

this heterogeneity in EP and the factors influencing changes at various stages remain 

unclear. Therefore, we present the second research question: (2) What mechanisms 

drive efficiency heterogeneity and fluctuations in different power enterprises? 

This study significantly contributes to both theoretical frameworks and 

management practices. From a theoretical perspective, we introduce several 

innovations in environmental production technology: (1) To address the limitations of 

the radial directional distance functions (DDF) model, which may overestimate 
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efficiency due to non-zero relaxation (Fukuyama and Weber, 2009), we employ an 

NDDF method that integrates relaxation into the efficiency measurement. (2) Previous 

practices that imposed equal constraints on undesirable outputs in measuring the 

efficiency of decision-making units (DMUs) can lead to misleading conclusions (Chen, 

2014). We address this by utilizing inequality constraints, which enable the 

incorporation of Pareto-Koopman efficiency into our analysis. Furthermore, we 

developed an environmental production technology model that employs non-uniform 

emission reduction factors, accounting for the heterogeneity in emission reduction 

technologies among different DMUs, thereby strengthening our theoretical foundation. 

(3) Numerous classical approaches exist for exploring heterogeneity in the literature 

(Bigerna et al., 2020). To facilitate temporal comparisons and effectively address issues 

of infeasibility, we adopted a global frontier analysis approach, which serves as a 

benchmarking technique for all DMUs. This method allows for the construction of a 

best practice frontier based on comprehensive observations. These innovations enhance 

the robustness and applicability of environmental production technology models, 

offering a detailed understanding of the ecological efficiency of various DMUs. 

In terms of management practice, previous studies on the power industry have 

largely focused on macro perspectives, emphasizing regional development 

heterogeneity (Li et al., 2024). While these conclusions inform government 

departments regarding macro allocation, they do not directly guide production decision-

making at the enterprise level. Our analysis, based on actual production data from 15 

power enterprises, offers actionable insights for enterprise-level production decisions. 

Additionally, the annual standard coal consumption of these enterprises exceeds 10,000 

tons, effectively representing the development of the power industry in eastern China. 

Thus, our findings can guide not only the power industry in China but also serve as a 

reference for similarly scaled power enterprises globally. 

 

2. Literature review 

In this section, we systematically review two categories of literature pertinent to this 

study: (1) EP measurement of power enterprises, and (2) Aapplications of the 
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Malmquist Productivity Index(MPI). These two types of literature offer valuable 

insights that inform the foundation of this research. 

EP measurement  

Due to rapid economic development and a continuous increase in energy demand, 

power enterprises remain a primary source of energy supply in China. The energy 

produced by these facilities predominantly relies on fossil fuels, resulting in substantial 

CEs (Pan et al., 2024). Globally, countries have set the goal of limiting the average 

temperature increase to below 2
。
C compared to pre-industrial levels, with efforts to 

restrict the rise to within 1.5
。
C. This underscores the urgent need to enhance EP in the 

energy sector. 

Wang et al. (2017) employed a validity measurement approach based on Data 

envelopment analysis(DEA) to evaluate the EP of power enterprises in China, using an 

efficiency index to demonstrate changes in EP. Wu et al. (2019) developed a novel DEA 

method to assess the EP of different power enterprises, revealing that nearly half of 

these companies require significant improvement in their performance. Fang et al. 

(2022) investigated the development efficiency of power enterprises within China’s 

energy markets, analysing factors such as energy, economy, and environment. Zhu et 

al. (2022) utilized network DEA alongside the non-parametric production DEA method 

to evaluate the developmental efficiency of China’s energy sector, offering 

recommendations for effective industry transformation. Li et al. (2022) focused on 

power enterprises in China, proposing a two-stage DEA method to assess energy 

production and utilization efficiency. Li et al. (2023) investigated the EP of different 

power enterprises in China by employing a fixed total pollutant framework, combining 

advanced DEA with an efficiency index to explore the underlying impact mechanisms.  

Existing research on the performance of power enterprises has yielded substantial 

results, introducing a range of classical methods such as the DDF model and the 

application of equilibrium constraints on undesirable outputs. In this study, we propose 

an NDDF model and employ unequal constraints on undesirable outputs to mitigate the 

inaccuracies in efficiency measurement associated with previous methodologies. 

Furthermore, we will utilize a GNMI to facilitate efficiency comparisons among all 
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DMUs across different stages. This enhancement will provide business managers and 

researchers with a more nuanced understanding of the environmental efficiency of 

various DMUs. 

Study of the MPI 

MPI is a valuable tool for evaluating and comparing the production efficiency of 

DMUs over various time periods. By comprehensively considering the effects of 

technological progress and environmental factors, it enables managers to analyze 

production efficiency in depth, making it widely applicable in fields such as 

environmental and economic decision-making (Simar et al., 2002; Simar et al., 2011). 

For instance, Ali et al. (2016) introduced a global MPI capable of addressing adverse 

factors in DEA to measure the productivity and efficiency decomposition of different 

manufacturing industries in China across multiple years. Wang et al. (2024) constructed 

a MPI index based on an adjusted epsilon measure to assess the total factor productivity 

(TFP) of heavily polluting listed enterprises in China. Additionally, Song et al. (2018) 

proposed an EP evaluation model utilizing the Ray relaxation metric, analyzing the EP 

and energy consumption of various regions in China in conjunction with the TFP. 

To address the limitations of the traditional MPI method, some scholars have 

proposed revisions. For example, Du et al. (2018) developed an improved MPI based 

on a new directional distance function (DDF) to resolve the infeasibility issues 

associated with the traditional MPI. This method evaluates the TFP of China from a 

macro perspective and assesses the EP of Chinese automobile manufacturers from a 

micro perspective. Aparicio et al. (2021) built an efficiency measurement model based 

on the DDF that accommodates non-proportional changes in input and output 

combinations with variable returns to scale(VRS), applying this model to measure the 

productivity of various types of schools in EU countries. Bansal et al. (2022) introduced 

dynamic MPI and dynamic sequential MPI indices to assess productivity changes in 

dynamic network production structures, applying these methods to evaluate 

productivity across different banks in India. Yu et al. (2023) established a MPI index 

for a two-stage dynamic production system, verifying dynamic changes in productivity 

within the airline sector and its various stages. Du et al. (2023) proposed a new MPI 
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method that combines meta-frontier DEA with a cost minimization function to evaluate 

TFP and efficiency decomposition in different urban water supply industries. 

This study employs the global MPI to measure TFP, technical efficiency(TE), and 

scale efficiency(SE) of 15 power enterprises in eastern China from 2016 to 2020. It 

provides a reference for power industry managers to analyze resource utilization 

efficiency in the production process, inform policy decisions, and promote the 

industry’s green transformation. Additionally, this methodology allows us to explore 

the mechanisms affecting productivity in power enterprises from a micro perspective, 

assisting managers in making more informed management decisions. 

3. Methodology 

3.1 DEA with undesired outputs 

The Chinese Institute of Ecological and Environmental Sciences(CIEES) provided 

us with input and output data for 15 power enterprises between 2016 and 2020. For 

each power enterprise, three production inputs, namely installed capacity (C), unit 

running time (H) and standard coal consumption (E), were converted into a single 

desired output—power generation capacity (Y)—and one undesired output—CE. 

Undesired outputs differ from desired outputs in that the DMUs (in this case, the power 

enterprises) does not want to increase these outputs, but rather reduce them. While the 

quality of coal used in the different power enterprise varies, for the calculation of the 

EP of the power enterprise (see Section 4.1), a standardised coal quality was applied.  

Most DEA models focus on evaluating the EP of a DMU during a single time 

period. However, when assessing multi-period data, it is essential that the EP of 

different power enterprises remains comparable across the various time periods. This 

can be achieved by employing a global DEA technique (Oh, 2010) where all 

observations belong to the same production possibility set (PPS). Moreover, when 

modelling a realistic production process for power enterprises, where the DMU0 

produces both desired and undesired outputs, the environmental production technology 

can be defined as follows: 
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PPS={(𝐶,𝐻, 𝐸, 𝑌, 𝐶𝑂2):  ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1

𝑇
𝑡=1 𝐶𝑗𝑡 ≤ 𝐶𝑜 , ∑ ∑ 𝜆𝑗𝑡

𝑛
𝑗=1

𝑇
𝑡=1 𝐻𝑗𝑡 ≤

𝐻𝑜 , ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1

𝑇
𝑡=1 𝐸𝑗𝑡 ≤ 𝐸𝑜 , ∑ 𝑌𝑗𝜆𝑗𝑡 ≥ 𝑌𝑜

𝑛
𝑗=1 , ∑ ∑ 𝜆𝑗𝑡

𝑛
𝑗=1 𝐶𝑂2𝑗𝑡

𝑇
𝑡=1 =

𝐶𝑂2𝑜 , ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1 = 1,𝑇

𝑡=1 𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,2,⋯ , 𝑛, 𝑡 = 1,2,⋯ , 𝑇} 

 

 

(P1) 

In the above PPS (P1), both the null-jointness assumption (A1) and the weak 

disposability assumption (A2) of the desired and undesired outputs are valid. The null-

jointness assumption implies that producing desired outputs inevitably results in the 

production of undesired outputs, while the weak disposability assumption indicates that 

a decrease in undesired outputs is inevitably accompanied by a decrease in desired 

outputs. The two assumptions are as follows: 

(A1) Null-jointness assumption: 

(𝑿, 𝒀, 𝟎) ∈ 𝑃𝑃𝑆 ⟹ 𝒀 = 𝟎𝑠. 

(A2) Weak disposability assumption: 

(𝑿, 𝒀, 𝑩) ∈ 𝑃𝑃𝑆 ⟹ (𝑿, λ𝒀, λ𝑩) ∈ 𝑃𝑃𝑆, ∀𝜆 ∈ [0,1]. 

where 𝑿, 𝒀and 𝑩 represent inputs, and the desired and undesired outputs, respectively, 

while subscript s is the dimension of the desired outputs. The uniform abatement factor 

employed in the PPS (P1), which represents the heterogeneous power generation and 

pollution treatment capacities of the TPPs, fails to accurately capture the heterogeneity 

in weak disposability between the desired and undesired outputs of the different power 

enterprises. Following Kuosmanen (2005), we revised the environmental production 

technology under the assumption that the VRS characterises the non-uniform abatement 

factors across the power enterprises and ensures the comparison of EP across multiple 

periods. The specific formula used is as follows: 

PPS= { ( 𝐶,𝐻, 𝐸, 𝑌, 𝐶𝑂2 ):  ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡
𝑛
𝑗=1 )𝐶𝑗𝑡

𝑇
𝑡=1 ≤ 𝐶𝑜 , ∑ ∑ (𝜆𝑗𝑡

𝑛
𝑗=1 +𝑇

𝑡=1

𝜇𝑗𝑡)𝐻𝑗𝑡 ≤ 𝐻𝑜 , ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)
𝑛
𝑗=1 𝐸𝑗𝑡

𝑇
𝑡=1 ≤ 𝐸𝑜 , ∑ 𝑌𝑗𝜆𝑗𝑡 ≥𝑛

𝑗=1

𝑌𝑜 , ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1 𝐶𝑂2𝑗𝑡

𝑇
𝑡=1 = 𝐶𝑂2𝑜 , ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)

𝑛
𝑗=1 = 1,𝑇

𝑡=1 𝜆𝑗𝑡 , 𝜇𝑗𝑡 ≥ 0, 𝑗 =

1,2,⋯ , 𝑛, 𝑡 = 1,2,⋯ , 𝑇} 

 

 

(P2

) 

where 𝜆𝑗𝑡 and 𝜇𝑗𝑡 are weighting variables used for linearisation and construction of 

the convex combination of the evaluated DMU0. However, PPS (P2) may violate the 
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Pareto-Koopmans environmental dominance. Here, the Pareto-Koopmans 

environmental dominance is defined as follows: for a given (𝑿𝑜,𝒀𝑜,𝑩𝑜) ∈ 𝑃𝑃𝑆, if there 

does not exist another solution (𝑿𝑜̂ , 𝒀𝑜̂ , 𝑩𝑜̂) ∈ 𝑃𝑃𝑆 such that 𝑿𝑜̂ ≦ 𝑿𝑜   𝒀𝑜̂ ≧

𝒀𝑜   𝑩𝑜̂ ≦ 𝑩𝑜 , then (𝑿𝑜 ,𝒀𝑜 ,𝑩𝑜 ) is considered a Pareto-Koopmans environmentally 

dominant solution of the PPS. Here, “≦” denotes component-wise inequality.  

It is worth noting that the Pareto-Koopmans environmental dominance is similar 

to the Pareto-Koopmans efficiency (Cooper et al., 2007, pp. 45–46). Therefore, in the 

undesirable output constraints in the PPS (P2), the “=” constraints were replaced with 

“≤ ” constraints to reformulate the PPS (P3). This implies that not only does the 

modified PPS satisfy the Pareto-Koopmans environmental dominance but also that the 

undesirable outputs can be improved independently of desirable outputs (Ji et al., 2021; 

Leleu, 2013; Sun et al., 2017). The modified Pareto-Koopmans environmental 

production technology is as follows: 

PPS= { ( 𝐶,𝐻, 𝐸, 𝑌, 𝐶𝑂2 ):  ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡
𝑛
𝑗=1 )𝐶𝑗𝑡

𝑇
𝑡=1 ≤ 𝐶𝑜 , ∑ ∑ (𝜆𝑗𝑡

𝑛
𝑗=1 +𝑇

𝑡=1

𝜇𝑗𝑡)𝐻𝑗𝑡 ≤ 𝐻𝑜 , ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)
𝑛
𝑗=1 𝐸𝑗𝑡

𝑇
𝑡=1 ≤ 𝐸𝑜 , ∑ 𝑌𝑗𝜆𝑗𝑡 ≥𝑛

𝑗=1

𝑌𝑜 , ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1 𝐶𝑂2𝑗𝑡

𝑇
𝑡=1 ≤ 𝐶𝑂2𝑜 , ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)

𝑛
𝑗=1 = 1,𝑇

𝑡=1 𝜆𝑗𝑡 , 𝜇𝑗𝑡 ≥ 0, 𝑗 =

1,2,⋯ , 𝑛, 𝑡 = 1,2,⋯ , 𝑇} 

 

 

(P3) 

Following Chambers et al. (1996), to calculate the environmental inefficiency of 

TPPo, a DDF model was constructed based on the Pareto-Koopmans environmental 

production technology under the VRS assumption as follows: 

 

 

𝐷⃑⃑ (𝑥0, 𝑦0, 𝑏0, 𝒈) = 
max 𝛽  

s.t. ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡
𝑛
𝑗=1 )𝐶𝑗𝑡

𝑇
𝑡=1 ≤ 𝐶𝑜 + 𝛽𝑔𝐶 ,  

 ∑ ∑ (𝜆𝑗𝑡
𝑛
𝑗=1 + 𝜇𝑗𝑡)𝐻𝑗𝑡

𝑇
𝑡=1 ≤ 𝐻𝑜 + 𝛽𝑔𝐻,  

 ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)
𝑛
𝑗=1 𝐸𝑗𝑡

𝑇
𝑡=1 ≤ 𝐸𝑜 + 𝛽𝑔𝐸, (1) 

 ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1 𝑌𝑗𝑡

𝑇
𝑡=1 ≥ 𝑌𝑜 + 𝛽𝑔𝑌,  
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 ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1 𝐶𝑂2𝑗𝑡

𝑇
𝑡=1 ≤ 𝐶𝑂2𝑜 + 𝛽𝑔𝐶𝑂2,  

 ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)
𝑛

𝑗=1
= 1,

𝑇

𝑡=1
 

 

 𝛽 ≥ 0, 𝜆𝑗𝑡, 𝜇𝑗𝑡 ≥ 0, 𝑗 = 1,2,⋯ , 𝑛, 𝑡 = 1,2,⋯ , 𝑇  

where 𝒈 = (𝑔𝐶 , 𝑔𝐻, 𝑔𝐸 , 𝑔𝑌, 𝑔𝐶𝑂2)  denotes the direction vectors for reducing inputs, 

expanding desirable outputs and expanding undesirable outputs, and 𝛽 represents the 

supremum of the inputs contraction proportion, desirable outputs expansion proportion 

and undesirable outputs expansion proportion. In this study, we set 

(𝑔𝐶 , 𝑔𝐻, 𝑔𝐸 , 𝑔𝑌, 𝑔𝐶𝑂2)   (−𝐶, −𝐻,−𝐸, 𝑌,−𝐶𝑂2)  according to Färe and Grosskopf (2004). 

When 𝛽𝑜 = 0, TPPo is the Pareto-Koopmans environmental efficient in the direction 

𝒈, whereas if 𝛽𝑜 > 0, TPPo is the Pareto-Koopmans environmental inefficient.  

Notwithstanding this, the radial DDF described above assumes that the inputs, 

desired outputs and undesired outputs scale in the same proportion. This assumption 

could result in biased efficiency estimates when slack items are non-zero. The NDDF 

model relaxes this assumption, allowing for non-uniform proportions of input reduction, 

expansion of desired outputs and reduction in undesired outputs (Lin & Guan, 2023; 

Zhang et al., 2020; Zhou et al., 2012). This relaxation addresses the issue of slack bias, 

thus improving the accuracy of the efficiency assessment. Therefore, based on the 

Pareto-Koopmans environmental production technology, we define the NDDF model 

as follows: 

𝐷⃑⃑ (𝑥0, 𝑦0, 𝑏0, 𝑔)

= 

max 𝑤𝐶𝛽𝐶 + 𝑤𝐻𝛽𝐻 + 𝑤𝐸𝛽𝐸 + 𝑤𝑌𝛽𝑌 + 𝑤𝐶𝑂2𝛽𝐶𝑂2  

s.t. ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡
𝑛
𝑗=1 )𝐶𝑗𝑡

𝑇
𝑡=1 ≤ 𝐶𝑜 − 𝛽𝐶𝑔𝐶, 

 

 ∑ ∑ (𝜆𝑗𝑡
𝑛
𝑗=1 + 𝜇𝑗𝑡)𝐻𝑗𝑡

𝑇
𝑡=1 ≤ 𝐻𝑜 − 𝛽𝐻𝑔𝐻,  

 ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)
𝑛
𝑗=1 𝐸𝑗𝑡

𝑇
𝑡=1 ≤ 𝐸𝑜 − 𝛽𝐸𝑔𝐸, (2) 

 ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1 𝑌𝑗𝑡

𝑇
𝑡=1 ≥ 𝑌𝑜 + 𝛽𝑌𝑔𝑌, 

 

 ∑ ∑ 𝜆𝑗𝑡
𝑛
𝑗=1 𝐶𝑂2𝑗𝑡

𝑇
𝑡=1 ≤ 𝐶𝑂2𝑜 − 𝛽𝐶𝑂2𝑔𝐶𝑂2, 

 

 ∑ ∑ (𝜆𝑗𝑡 + 𝜇𝑗𝑡)
𝑛

𝑗=1
= 1,

𝑇

𝑡=1
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 𝛽𝐶 , 𝛽𝐻, 𝛽𝐸 , 𝛽𝑌, 𝛽𝐶𝑂2 ≥ 0, 𝜆𝑗𝑡 , 𝜇𝑗𝑡 ≥ 0, 𝑗 = 1,2,⋯ , 𝑛, 𝑡 = 1,2,⋯ , 𝑇  

where (𝑤𝐶 , 𝑤𝐻, 𝑤𝐸 , 𝑤𝑌, 𝑤𝐶𝑂2) represents the normalised weight parameter of each input, 

desired output and undesired output. Here, the normalised weight parameter is set at 

(𝑤𝐶 , 𝑤𝐻, 𝑤𝐸 , 𝑤𝑌, 𝑤𝐶𝑂2 )  (
1

9
,
1

9
,
1

9
,
1

3
,
1

3
)  in this study with reference to Barros et al. 

(2012) and Zhou et al. (2012). In this study, the normalised weight parameters are set 

at (𝑤𝐶 , 𝑤𝐻, 𝑤𝐸 , 𝑤𝑌, 𝑤𝐶𝑂2) (
1

9
,
1

9
,
1

9
,
1

3
,
1

3
) with reference to Barros et al. (2012) and Zhou 

et al. (2012). By solving the equation (2), the optimal solution 𝛽∗ =

(𝛽𝐶,𝑗𝑡
∗, 𝛽𝐻,𝑗𝑡

∗, 𝛽𝐸,𝑗𝑡
∗, 𝛽𝑌,𝑗𝑡

∗, 𝛽𝐶𝑂2,𝑗𝑡
∗)𝑇 can be obtained. With reference to Zhou et al. 

(2012), the unified Pareto-Koopmans environmental efficiency index (UEEI) of the 

TPPs can be defined as follows: 

𝑈𝐸𝐸𝐼𝑗𝑡 =
1−

1

4
(𝛽𝐶,𝑗𝑡

∗+𝛽𝐻,𝑗𝑡
∗+𝛽𝐸,𝑗𝑡

∗+𝛽𝐶𝑂2,𝑗𝑡
∗)

1+𝛽𝑌,𝑗𝑡
∗ , 𝑗 = 1,2,⋯ , 𝑛, 𝑡 =

1,2,⋯ , 𝑇 

(3) 

The larger the UEEI score (UEEI∈ (0,1]), the higher the unified Pareto-Koopmans 

environmental efficiency.  

Theorem 1. UPEE is the Pareto-Koopmans environmental measure. 

Proof. If UPEE( 𝑿𝑜 , 𝒀𝑜 , 𝑩𝑜 ) 1. Assume that there exists another solution 

(𝑿𝑜̂ , 𝒀𝑜̂ , 𝑩𝑜̂) ∈ 𝑃𝑃𝑆(P3), where (𝑿𝑜̂ , 𝒀𝑜̂ , 𝑩𝑜̂) ≠(𝑿𝑜,𝒀𝑜,𝑩𝑜), with 𝑿𝑜̂ ≦ 𝑿𝑜  𝒀𝑜̂ ≧ 𝒀𝑜 

and 𝑩𝑜̂ ≦ 𝑩𝑜. According to the equation (2) and the equation (3), we can deduce that 

UPEE(𝑿𝑜,𝒀𝑜,𝑩𝑜)<1. Therefore, the original assumption is not valid. This implies that 

for a given solution (𝑿𝑜 , 𝒀𝑜 , 𝑩𝑜) ∈ 𝑃𝑃𝑆(P3) where UPEE(𝑿𝑜,𝒀𝑜,𝑩𝑜) 1, there exists 

no other solution (𝑿𝑜̂ , 𝒀𝑜̂ , 𝑩𝑜̂) ∈ 𝑃𝑃𝑆  such that (𝑿𝑜̂ , 𝒀𝑜̂ , 𝑩𝑜̂) ≠ (𝑿𝑜 ,𝒀𝑜 ,𝑩𝑜 ), 𝑿𝑜̂ ≦

𝑿𝑜  𝒀𝑜̂ ≧ 𝒀𝑜 and 𝑩𝑜̂ ≦ 𝑩𝑜. If there exists no other solution (𝑿𝑜̂ , 𝒀𝑜̂ , 𝑩𝑜̂) ∈ 𝑃𝑃𝑆(P3), 

where (𝑿𝑜̂ , 𝒀𝑜̂ , 𝑩𝑜̂) ≠ (𝑿𝑜 ,𝒀𝑜 ,𝑩𝑜 ), with 𝑿𝑜̂ ≦ 𝑿𝑜   𝒀𝑜̂ ≧ 𝒀𝑜  and  𝑩𝑜̂ ≦ 𝑩𝑜 , then 

according to the equation (2) and the equation (3), we can deduce that 

UPEE(𝑿𝑜,𝒀𝑜,𝑩𝑜)=1. In summary, we conclude that UPEE(𝑿𝑜,𝒀𝑜,𝑩𝑜) 1 if it is non-

dominated in the 𝑃𝑃𝑆 (P3), that is TPP( 𝑿𝑜 , 𝒀𝑜 , 𝑩𝑜 ) is the Pareto-Koopmans 

environmentally efficient. 
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3.2 Global Non-radial Malmquist-Luenberger Productivity Index (GNMI) 

According to Emrouznejad and Yang (2016), we propose a GNML index of UEEI based 

on the contemporaneous, and global production technologies as follows: 

where subscript ‘v’ denotes VRS assumption on technology, subscript ‘c’ denotes CRS 

assumption on technology and superscript ‘G’ denotes the global technology. Where 

contemporaneous benchmark technology is calculated as 𝐷𝑣
𝑡(𝑋𝑡, 𝑌𝑡, 𝐵𝑡) , 

𝐷𝑣
𝑡+1(𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) and abbreviated 𝑃𝑇𝐸𝑡, 𝑃𝑇𝐸𝑡+1. 𝑃𝑇𝐸𝑡 =

1

1+𝐷𝑣
𝑡(𝑋𝑡,𝑌𝑡,𝐵𝑡)

, and 

𝑃𝐸𝐶𝑡,𝑡+1 =
𝑃𝑇𝐸𝑡+1

𝑃𝑇𝐸𝑡  denotes the pure technical efficiency (PTE) in period t and the pure 

efficiency change (PEC) in period t to t+1. PEC measures the pure efficiency change 

between the time t and t+1. When PEC > (< )1, it means the DMU in period t+1 catches 

up (lags behind) relatively to the contemporaneous benchmark technology frontier. 

𝐵𝑃𝐶𝑡
𝑡,𝑡+1 =

1

(1+𝐷𝑣
𝐺(𝑋𝑡,𝑌𝑡,𝐵𝑡))/(1+𝐷𝑣

𝑡(𝑋𝑡,𝑌𝑡,𝐵𝑡))
 denotes the best practice gap ratio between 

the contemporaneous technology frontier and global technology frontier. Thus 

𝐵𝑃𝐶𝑡,𝑡+1 =
𝐵𝑃𝐺𝑡+1

𝑡,𝑡+1

𝐵𝑃𝐺𝑡
𝑡,𝑡+1 denotes the best practice gap change, which measures technical 

change between two time period t and t+1. When a BPC >(< )1 implies that the 

contemporaneous technology frontier is moving closer or faraway(>(< )1) from the 

𝐺𝑁𝑀𝐿𝑣
𝐺(𝑋𝑡, 𝑌𝑡 , 𝐵𝑡, 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) 

=
1 + 𝐷𝑣

𝐺(𝑋𝑡, 𝑌𝑡, 𝐵𝑡)

1 + 𝐷𝑣
𝐺(𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)

×
𝑆𝐸𝑡+1(𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)

𝑆𝐸𝑡(𝑋𝑡, 𝑌𝑡 , 𝐵𝑡)
 

 =
1 + 𝐷𝑣

𝑡(𝑋𝑡, 𝑌𝑡, 𝐵𝑡)

1 + 𝐷𝑣
𝑡+1(𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)

 

 ×[
(1+𝐷𝑣

𝐺(𝑋𝑡,𝑌𝑡,𝐵𝑡))/(1+𝐷𝑣
𝑡(𝑋𝑡,𝑌𝑡,𝐵𝑡))

(1+𝐷𝑣
𝐺(𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1))/(1+𝐷𝑣

𝑡+1(𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1))
] 

 ×
𝑆𝐸𝑡+1(𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)

𝑆𝐸𝑡(𝑋𝑡, 𝑌𝑡 , 𝐵𝑡)
 

 =
𝑃𝑇𝐸𝑡+1

𝑃𝑇𝐸𝑡
×

𝐵𝑃𝐺𝑡+1
𝑡,𝑡+1

𝐵𝑃𝐺𝑡
𝑡,𝑡+1 ×

𝑆𝐸𝑡+1(𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)

𝑆𝐸𝑡(𝑋𝑡, 𝑌𝑡, 𝐵𝑡)
 

 = 𝑃𝐸𝐶𝑡,𝑡+1 × 𝐵𝑃𝐶𝑡,𝑡+1 × 𝑆𝐶𝐻𝑡,𝑡+1 
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global technology frontier. Variable 𝑆𝐸𝑡  means the scale efficiency on global 

benchmark in period t and 𝑆𝐸𝑡(𝑋𝑡, 𝑌𝑡 , 𝐵𝑡) = (1 + 𝐷𝑣
𝐺(𝑋𝑡, 𝑌𝑡, 𝐵𝑡))/(1 +

𝐷𝑐
𝐺(𝑋𝑡, 𝑌𝑡 , 𝐵𝑡)). Variable 𝑆𝐶𝐻𝑡,𝑡+1 =

𝑆𝐸𝑡+1(𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

𝑆𝐸𝑡(𝑋𝑡,𝑌𝑡,𝐵𝑡)
 denotes the scale efficiency 

changes (SCH) .  

4. Variable selection and data description 

4.1 Variable selection 

Among the existing studies on performance evaluation in the energy industry and 

power enterprises, several scholars have conducted in-depth discussions on 

constructing indicator systems for EP evaluation (Zha et al., 2016; Wang et al., 2018; 

Hadi-Vencheh et al., 2024; Pan et al., 2024), which provide valuable references for this 

research.  

Through a review of the literature and interviews with staff from various power 

enterprises, we selected installed capacity(C), Unit Running Time (H), and coal 

consumption(E) as input indicators; Power generation capacity(Y) as the expected 

output indicator; and CO2 emissions(CEs) as the indicator for undesirable output. See 

Table 1 for the meanings of indicators. 

Table 1 Definition of different indicators  

Inputs Indicator 

C Installed capacity of all units in a power enterprise, measured in MW. 

H 
Cumulative working time of all units in a power enterprise in one year, 

measured in hours. 

E Standard coal consumed by power enterprises in one year, measured in tons. 

Desirable output  

Y Electricity produced by a power enterprise in one year, measured in MWh. 

Undesirable output 

CEs 
Carbon dioxide emitted by the production of power enterprises in one year, 

measured in tons. 

4.2 Data description 
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This study focuses on the EP of various power enterprises. To facilitate this 

analysis, we obtained production and operational data for all major emitters within the 

jurisdiction of CIEES for the period from 2016 to 2020. The key emission power 

enterprises included in our study are those with annual standard CEs exceeding 10,000 

tons (i.e., noting that different power plants utilize varying coal qualities, which are 

converted to standard coal for calculations) or CEs exceeding 26,000 tons. This 

criterion not only meets our research needs but also ensures strong representativeness. 

The study period spans five years; however, due to incomplete CEs records for some 

power enterprises in 2016 and 2017, we excluded this data and finalized our sample to 

15 power enterprises. Descriptive statistics for the relevant indicators are presented in 

Table 2. 

Table 2 Descriptive statistics 

Year Variable Obs Mean Min Max Std. dev. 

2016 

C 15 655  300  1000  185  

H 15 7176  4679  8068  926  

E 15 1039642  274370  1657932  304085  

Y 15 3508483  861972  6158256  1148656  

CEs 15 3425097  784226  8989990  1824485  

2017 

C 15 655  300  1000  185  

H 15 6123  2386  8429  1552  

E 15 874677  151875  1409701  340864  

Y 15 2838627  467658  5121302  1288647  

CEs 15 2453408  442853  4231000  975654  

2018 

C 15 655  300  1000  185  

H 15 7106  6103  8494  650  

E 15 948356  476812  1534678  262410  

Y 15 3331557  1513700  6118286  1139051  

CEs 15 2987195  1352663  5324916  971524  

2019 

C 15 655  300  1000  185  

H 15 7251  5787  12836  1666  

E 15 945001  473438  1650646  288433  

Y 15 3257651  1511239  5855435  1099566  

CEs 15 3195587  1707448  5953109  1086180  

2020 

C 15 655  300  1000  185  

H 15 6734  2816  12265  2135  

E 15 848472  338098  1329783  263077  

Y 15 2963762  1058717  4992040  1016156  

CEs 15 2353416  947312  3666054  724691  
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5. Results 

In this section, we calculate the EP for 15 DMUs(i.e., power enterprises), from 2016 to 

2020 based on the model presented in Section 3. We compare the heterogeneity of the 

EP values among different DMUs and analyze the evolution of overall efficiency in the 

power industry across the years. Additionally, we explore the mechanisms influencing 

the efficiency values of power enterprises. 

5.1 EP results 

Table 3 presents the EP results for 15 DMUs from 2016 to 2020. The overall EP 

of these DMUs during this five-year period remains low, at only 0.7757, indicating that 

none have reached an effective state. The highest EP was recorded by DMUaq, with a 

value of 0.9618, while DMUciz exhibited the lowest performance at only 0.6572. 

Column (6) displays the average EP for the 15 DMUs over the past five years, revealing 

that 10 DMUs (66.7%) fell below the overall average, highlighting significant room for 

improvement in the EP of the power industry in eastern China. 

Further analysis shows that the overall EP of the 15 DMUs fluctuated between 

2016 and 2020, with values of 0.7903, 0.7637, 0.7832, 0.7502, and 0.7910, respectively, 

indicating clear cyclical variations (i.e., a decline followed by a rise, then another 

decline followed by a rise). Notably, only DMUwh displayed a consistent upward trend 

in EP throughout this period, while the efficiency values of the remaining DMUs 

exhibited fluctuations. This instability suggests that the development of the power 

industry in the region remains uncertain, and relevant management entities should 

consider implementing unified standards to regulate the operations of power enterprises. 

Additionally, the overall EP of the 15 DMUs decreased by 2.66% between 2016 

and 2017. Analysis revealed that 7 DMUs (46.7%) experienced a decline in 

performance, with DMUhn and DMUciz showing decreases exceeding 15%. 

Conversely, between 2017 and 2018, the overall EP increased by 1.95%, with 7 DMUs 

(46.7%) demonstrating improvements; notably, DMUtl saw an increase of nearly 30%. 

However, between 2018 and 2019, EP declined for 12 DMUs (80%), except for DMUhn, 

DMUla, and DMUwh, with DMUbb experiencing a decline of over 20%.  

Finally, the overall EP of the 15 DMUs increased by 4.08% between 2019 and 
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2020, representing the largest improvement in the past five years. Further analysis 

indicated that 11 DMUs (73.3%) showed upward trends, with 5 DMUs (33.3%) 

increasing by more than 10%. Nonetheless, some DMUs, such as DMUbz, experienced 

significant declines. This aligns with previous findings, underscoring the necessity for 

a unified management policy to standardize production management within power 

enterprises. 

Table 3  EP results from 2016 to 2020 

 2016 2017 2018 2019 2020 Ave 

 (1) (2) (3) (4) (5) (6) 

DMUhf 0.7932  0.7319  0.7206  0.7023  0.7737  0.7443  

DMUhb 0.6575  0.6715  0.7534  0.7492  0.8172  0.7298  

DMUbz 0.9328  0.9349  0.8711  0.8642  0.6108  0.8428  

DMUsz 0.7322  0.7175  0.8176  0.7603  0.7588  0.7573  

DMUbb 1 1 0.8237  0.5926  0.7401  0.8313  

DMUfy 0.7089  0.7871  0.7996  0.7313  0.7121  0.7478  

DMUhn 0.8609  0.6836  0.6574  0.7958  0.6351  0.7266  

DMUcuz 0.9081  1  0.7282  0.6796  0.8849  0.8402  

DMUla 0.8080  0.8162  0.7936  0.8309  0.9089  0.8315  

DMUmas 0.7628  0.7553  0.7348  0.7194  0.7701  0.7485  

DMUwh 0.6393  0.7050  0.7920  0.8024  0.8264  0.7530  

DMUxc 0.7234  0.7361  0.7769  0.7572  0.7995  0.7586  

DMUtl 0.5717  0.5127  0.8032  0.7473  0.8900  0.7050  

DMUciz 0.7559  0.4804  0.6759  0.6357  0.7380  0.6572  

DMUaq 1 0.9239  1  0.8851  1  0.9618  

Ave 0.7903  0.7637  0.7832  0.7502  0.7910  0.7757 

Comparison between different DMUs 

Fig.1 presents the average EP results for different DMUs from 2016 to 2020. The 

overall EP of the power industry in eastern China during this five-year period is 77.57%, 

indicating a noticeable gap from an effective state. Further analysis reveals that only 

one DMU (6.7%) has EP values between 60% and 70%, while 9 DMUs (60%) fall 

within the range of 70% to 80%. Additionally, 4 DMUs (26.7%) have EP values 

between 80% and 90%, and only one DMU (6.7%) exceeds 90%. The fact that most 

power enterprises have performance ratings below 80% underscores the need for 

substantial improvements in the overall development of the power industry. 
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Fig.1 EP of different DMUs from 2016 to 2020 

In 2016, the DMUtl exhibited the lowest EP, with an efficiency value of only 

57.17%. In contrast, DMUbb and DMUaq achieved the highest efficiency values, both 

reaching an effective state (i.e., efficiency value of 1). As indicated in Table 3, the 

overall EP of the 15 DMUs was 79.03%. Furthermore, as shown in Fig.2, 8 DMUs 

(53.3%) fell below the annual average performance, while only 2 DMUs (13.3%) 

attained an efficiency value of 1. 

 

Fig.2 EP of different DMUs in 2016 

In 2017, DMUciz exhibited the worst EP, with an efficiency value of only 48.04%, 

representing a 27.55% decrease compared to 2016. This decline may be attributed to 

factors such as endogenous production decision-making or technological development 

issues. Conversely, DMUbb and DMUcuz demonstrated the highest EP, both achieving 

an effective state (i.e., efficiency value of 1). Notably, DMUbb has maintained this 

effective status for two consecutive years, suggesting that its internal factors, such as 

management decision-making and technical capabilities, are relatively sound. 

According to Table 3, the overall EP of the 15 DMUs was 76.37%. Furthermore, as 
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indicated in Fig.3, 9 DMUs (60%) fell below the annual average performance, with 

only 2 DMUs (13.3%) achieving an efficiency value of 1. 

 

Fig.3 EP of different DMUs in 2017 

In 2018, DMUhn exhibited the lowest EP, with an efficiency value of only 65.74%. 

This represents a significant improvement of 17.7% compared to the lowest 

performance recorded in 2017, indicating an overall enhancement in the EP of the 

power industry. However, some individual DMUs experienced slight declines. DMUaq 

achieved the highest EP, reaching an effective state (i.e., efficiency value of 1), although 

the number of DMUs attaining this effective status decreased compared to 2016 and 

2017. According to Table 3, the overall EP of the 15 DMUs was 78.32%. Furthermore, 

as shown in Fig.3, 11 DMUs (73.3%) fell below the annual average performance, with 

only one DMU (6.7%) achieving an efficiency value of 1. 

 

Fig.4 EP of different DMUs in 2018 

In 2019, DMUbb recorded the lowest EP at only 59.26%, a decline of 23.11% 

compared to the same period in 2018. This fluctuation underscores the significant 

variability in EP among power enterprises over time, highlighting the need for 
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improved production management. The highest EP was achieved by DMUaq, with an 

efficiency value of 88.51%, which is 11.49% lower than the best performance of the 

previous three years (which was 1). Notably, no enterprise reached an effective state of 

EP, indicating a significant decline in the overall performance of the power industry 

that year. According to Table 3, the overall EP of the 15 DMUs was 75.02%, marking 

the worst performance in the past five years. Additionally, as shown in Fig.3, 8 DMUs 

(53.3%) had EP below the annual average, with none achieving effective performance. 

In 2020, DMUbz recorded the lowest EP at 61.08%, a decrease of 26.03% 

compared to 2019. The highest EP was again observed in DMUaq, which reached an 

effective state. As indicated in Table 3, the overall EP of the 15 DMUs improved to 

79.10%, representing the best performance of the power industry over the past five 

years. 

 

Fig.5 EP of different DMUs in 2019 

 

Fig.6 EP of different DMUs in 2020 

Comparative analysis of Fig.2 to 5 reveals significant heterogeneity in the EP of 

different power enterprises. For instance, DMUaq consistently achieved an overall EP 
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level exceeding 96% over the past five years, reaching an effective state in three of 

those years. Conversely, while DMUwh's overall performance remains modest, it has 

shown remarkable growth, increasing by over 18.71% annually from 63.93% in 2016 

to 82.64% in 2020. In contrast, other DMUs have experienced serious declines; 

DMUbb's performance dropped from an effective state of 1 in 2016 to 74.01% in 2020, 

a decrease of more than 25%. Similarly, DMUciz saw a reduction of 27.55% in its 

performance between 2016 and 2017. These findings highlight the overall low 

development level of EP in the power industry and indicate that individual enterprises 

have considerable room for improvement regarding factors such as production 

decision-making and technological advancement. 

5.2 GNMI analysis 

Based on the analysis in Section 5.1, we subdivide the research period into distinct 

stages according to the year and further investigate the factors influencing the 

production efficiency of the power industry in eastern China over the past five years. 

The results are illustrated in Fig.7. Overall, the GNMI for eastern China’s power 

industry increased from 0.9999 to 1.0571, indicating a continuous improvement in 

overall productivity and a trend toward high-quality development within the industry. 

Additionally, the BPC rose from 1.0008 to 1.0492, signifying substantial efforts to 

control undesirable outputs, such as CEs, with an accelerating trend in progress. 

Furthermore, both TE and SE of the power industry improved by approximately 5%. 

Examining specific stages, from 2016 to 2018, the overall GNMI of the power 

industry in eastern China increased slightly from 0.9999 to 1.0028, accompanied by 

improvements in TE, best practice gap, and SE. However, from 2017 to 2019, the 

GNMI, TE, BPC, and SE all declined, with GNMI falling from 1.0028 to 0.9729 (i.e., 

decrease of 2.99%), TEC from 1.0061 to 0.9761 (i.e., decrease of 3%), BPC shifting 

from 1.0052 to 0.9699 (i.e., decrease of 3.53%), and SE decreasing from 1.0101 to 

0.9680 (i.e., decrease of 4.21%). This suggests a significant decline in BPC, TEC, and 

SEC during this period, alongside a notable increase in CEs. 

Between 2018 and 2020, the GNMI rose from 0.9729 to 1.0571, reflecting a 

substantial increase in the overall productivity of the power industry. Our analysis 
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indicates that TE and SE increased by 7.89% and 8.99%, respectively, contributing to 

the overall productivity enhancement. Additionally, the BPC improved from 0.9699 to 

1.0492 (i.e., increase of 7.93%), further demonstrating the industry's intensified efforts 

to manage CEs. In conclusion, we find that TE and SE significantly impact the 

productivity of the power industry. 

Fig.7 Power industry GNMI results from 2016 to 2020 

Comparison between different DMUs 

Building on the previous analysis, we further examine the productivity changes 

across different DMUs over the past five years. Notably, 73.3% of DMUs experienced 

productivity improvements, indicating overall progress in the power industry's 

development. Among these, DMUwh exhibited the largest increase in the GNMI at 

5.16%. Conversely, 26.7% of DMUs saw declines in productivity, with DMUbz 

recording the most significant drop at 3.78%. Among the 4 DMUs with decreased 

productivity, two experienced simultaneous declines in both PEC and SEC while one 

DMU showed a decline in PEC and another in SCH. This suggests that both TEC and , 

SEC significantly impact the productivity of the power industry. 

Additionally, within the 15 DMUs analyzed, PEC grew for 10 DMUs (66.7%), 

with DMUwh showing the largest increase at 5.78%. Our analysis further revealed that 

the GNMI improved for 9 of the 10 DMUs with PEC growth, reinforcing our earlier 

findings that PEC plays a crucial role in enhancing productivity. Thus, it is advisable 

for regulators and industry stakeholders to invest more in technological advancements 

to boost EP. 

Moreover, 9 DMUs (60%) experienced growth in BPC, although the rate of 

increase was slow, underscoring the need for sustained efforts to manage CE within the 
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power sector. Additionally, SEC increased in 5 DMUs (33.3%), with productivity rising 

in four of them, highlighting the importance of SEC for achieving high-quality 

development in the industry. Enterprise managers should make informed production 

decisions and engage in reasonable investment practices to avoid inefficiencies 

stemming from resource wastage. 

Table 4  GNMI variation from 2016 to 2020 

 GNMI PEC BPC SEC 

DMUhf 0.9950 0.9859 1.0096 1.0034 

DMUhb 1.0279 1.0269 1.0028 1.0007 

DMUbz 0.9622 1.0066 0.9881 0.9708 

DMUsz 1.0112 1.0188 1.0017 0.9926 

DMUbb 0.9748 0.9898 0.9982 0.9873 

DMUfy 1.0042 1.0094 1.0031 0.9925 

DMUhn 0.9731 0.9774 1.0012 0.9992 

DMUcuz 1.0064 1 0.9984 1.0092 

DMUla 1.0112 1.0108 0.9986 1.0021 

DMUmas 1.0032 1.0025 1.0024 0.9984 

DMUwh 1.0516 1.0578 0.9989 0.9983 

DMUxc 1.0289 1.0323 1 0.9975 

DMUtl 1.0421 1.0003 1.0095 1.0368 

DMUciz 1.0078 1.0213 1.0041 0.9883 

DMUaq 1.0029 1 1.0026 1 

6. Conclusion  

This paper utilizes an improved NDDF model and the GNMI to analyze the EP of 

15 power enterprises in eastern China from 2016 to 2020, as well as the underlying 

mechanisms influencing their impact. The findings are as follows: (1) The overall EP 

of the power industry in eastern China remains low, with approximately 66.7% of the 

companies underperforming relative to the industry average; (2) The development of 

EP within the sector is unstable, characterized by significant fluctuations among certain 

enterprises; thus, a unified standard is necessary to regulate EP across the industry; (3) 

Although there has been an improvement in the overall EP of the power sector, the 

growth rate is sluggish, necessitating ongoing efforts to mitigate CEs; (4) TE and SE 

have a substantial impact on the productivity of the power industry.  

Furthermore, based on these conclusions, we explore potential causes affecting the 
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EP of China’s power industry and offer relevant policy recommendations. This study 

focuses on specific power enterprises in eastern China. Future research could 

investigate the EP of power companies in various countries or regions to conduct a 

heterogeneity analysis. Additionally, while the power sector represents a significant 

portion of the energy market, it encompasses numerous components, warranting further 

examination of the EP across different energy sectors to provide valuable insights for 

promoting green and high-quality development in the energy field. 
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