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Abstract

Supraglacial lakes (SGLs) are widespread across the Greenland ice sheet and cause transient
changes in ice flow. Here, we produce the first annual ice-sheet wide database of maximum sum-
mer SGL extents spanning 1985 to 2023 using all July and August Landsat images. Lake visibility
percentages were calculated to estimate the uncertainty induced by variable image data coverage.
SGLs were mainly distributed between 1000 and 1600 m elevation, with large lake area observed
in northwestern, northeastern and southwestern basins. Lake area increased at a rate of 50.5 km2

a−1 across the entire Greenland, and lakes advanced to higher elevations at an average rate of 10.2
m a−1 during 1985–2023. We leveraged spatiotemporally matched ICESat-2 and Landsat 8
reflectance data to develop a deep learning model for lake depth inversion for the period
2014–23. This model demonstrates the highest accuracy among all image-based methods, albeit
with an underestimation of ∼15% when compared to ICESat-2 data. A significant positive cor-
relation between lake volume and area is used to up-scale the approach to the entire time period,
indicating a lake volume increase of 221.9 ± 63.6 × 106m3 a−1. Increasing air/land surface tem-
perature, surface pressure and decreasing snowfall were the most important contributing factors
in driving lake variability.

1. Introduction

Supraglacial lakes (SGLs) play an important role in the response of the Greenland ice sheet
(GrIS) to climate warming. The presence of SGLs reduces ice-sheet albedo, providing a positive
feedback with ice-sheet ablation (Hubbard and others, 2016). Large volumes of meltwater
stored in SGLs can rapidly (hours to a few days) drain into the ice sheet via moulins and cre-
vasses, resulting in transient ice-flow perturbations (Das and others, 2008; Stevens and others,
2022). SGLs are expected to become more abundant and extend further inland towards higher
elevations due to increases in surface melt extent and duration (Leeson and others, 2015;
Ignéczi and others, 2016). It is, therefore, essential to have a comprehensive understanding
of their spatiotemporal distribution and evolution to evaluate their potential future impacts.

Remote sensing can be used to reveal the spatial and temporal evolution of SGLs at the ice-
sheet scale. Understanding of lake variability has improved due to more frequent (weekly and
seasonal) and larger-scale observations (Benedek and Willis, 2021; Yang and others, 2021).
However, only a few studies have detected SGLs across the entire GrIS (Selmes and others,
2011; Hu and others, 2022; Zhang and others, 2023), while regional studies have primarily
focused on the southwestern and northeastern regions (e.g. Rowley and others, 2020; Lu
and others, 2021; Turton and others, 2021; Yang and others, 2021). Therefore, regional differ-
ences in lake evolution (e.g. Noël and others, 2019) and underlying controls remain poorly
understood. Finally, studies utilizing medium- to high-resolution imagery have mainly focused
on lake changes in the recent decade (Liang and others, 2012; Miles and others, 2017;
Williamson and others, 2018); long-term (multi-decadal) variations in lake evolution are
less well constrained.

Although most studies typically monitor changes in lake area (e.g. Gledhill and Williamson,
2018; Turton and others, 2021; Hu and others, 2022), their depth and volume are of crucial
significance in quantifying changes in stored surface meltwater, the amount of water entering
the ice sheet through crevasses and moulins and the water lost through subglacial systems
(Smith and others, 2015). Depth inversion from optical imagery includes empirical-based
(Liang and others, 2012) and physically based methods (Pope and others, 2016; Williamson
and others, 2017; Arthur and others, 2022). ICESat-2 laser altimetry can also detect the
bathymetry of lakes up to 11.55 m deep using the ATL03 photon data to differentiate the dou-
ble reflection of the water surface and bottom (Datta and Wouters, 2021). These methods
exhibit strengths and limitations in estimating lake depths. Empirical methods typically require
substantial in situ data as reference values for deriving depth–reflectance curves. Physically
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based methods can offer continuous spatial coverage with high
temporal resolution, but their applicability is limited to lakes
<5 m deep (Pope and others, 2016). Although ICESat-2 has the
capability to accurately measure lake depths, it is confined to its
tracks, which are spatially distant and exhibit a coarse temporal
sampling interval of 91 d under cloud-free conditions. This
makes it challenging to assess lake depths on weekly or monthly
timescales.

To capture the interannual variability of SGLs, we first mapped
the maximum summer SGL extent across the entire GrIS using all
Landsat images acquired between July and August from 1985 to
2023 with cloud cover <50%. Interannual variations in the loca-
tion, area and elevation of SGLs were quantified.
Spatiotemporally matched ICESat-2 and Landsat 8 band reflect-
ance data were used to construct a deep learning model for lake
depth inversion to calculate lake depth/volume for the period
2014–23, which aligns with the operational period of Landsat
8. The relationship between lake area and volume were used to
construct a linear relationship to estimate lake volume from
1985 to 2013. Finally, relationships between climatic factors and
lake development were investigated.

2. Methods

2.1 Identification of SGLs

Given the 16 d temporal resolution of Landsat images and fre-
quent cloud cover, it becomes extremely challenging to observe
SGLs on monthly or weekly timescales at a large scale.
Consequently, we focused on lake area around the peak of the
melt season (July–August) to analyse interannual variability (fol-
lowing Arthur and others, 2022). To fully leverage the Landsat
Collection 2 Tier 1 Top-Of-Atmosphere Reflectance data in the
Google Earth Engine (GEE) platform, we used all available
Landsat images during July and August each year to provide con-
tinuous and comprehensive SGL observations. We filtered to only
include images with cloud cover <50% and sun elevation angles
larger than 20° (Moussavi and others, 2020). We used a relatively
high cloud cover filter as images still provided partial cloud-free
observations.

To fill data gaps caused by the Landsat 7 ETM+ Scan Line
Corrector (SLC)-off data, we employed interpolation techniques
using the focal statistics function in the GEE platform
(Tedstone and Machguth, 2022), which utilizes a circular buffer
with a radius of ∼8 pixels to calculate the mean value of non-void
pixels and took this mean value as the reflectance of the void
pixel. All Landsat images have a spatial resolution of 30 m.

For all Landsat images, we first used the ice-sheet boundary
from Tedstone and Machguth (2022) to mask rock, land and
sea regions. Additionally, the boundary data provided by them
(100k_boxes.shp) represent the upper limit of meltwater areas.
This shapefile was used to define the boundary for our lake
extraction operations, helping to focus the analysis on regions
with SGL influence. In this paper, we refer to the unmasked
areas as the study area. Clouds were masked out using a shortwave
infrared (SWIR) band threshold of <0.1. The normalized differ-
ence snow index (NDSI) of >0.8 (Eqn (1)) was used to mask
snow (Moussavi and others, 2020):

NDSI =
Green− SWIR

Green+ SWIR
(1)

where Green and SWIR bands correspond to the reflectance in the
green and SWIR bands, respectively.

Overall, 1935 Landsat 5 images, 3550 Landsat 7 images and
8179 Landsat 8 images across the study area were used in this

study, with an average of 350 images per year (Fig. 1a). The sens-
ing times of these images varied between years, but most images
were obtained in July (Fig. 1b). A composite image of the study
area was obtained each year, with each pixel taken from the
image with the highest Normalized Difference Water Index
(NDWIice, Eqn (2)) in the image collection (using the
qualityMosaic function in GEE). The NDWIice was then used to
extract SGLs:

NDWIice =
Blue− Red

Blue+ Red
(2)

where Blue and Red correspond to the reflectance in the blue and
red bands, respectively. In order to capture as many shallow SGLs
as possible, a threshold of 0.2 was applied to segment water (Datta
and Wouters, 2021).

Following Pope and others (2016) and Williamson and others
(2018), regions with areas <5 pixels (4500 m2) and widths <2 pix-
els were removed to avoid potential misclassifications caused by
mixed slush and supraglacial rivers. However, slush zones often
comprise large connected areas that would not be removed by
these thresholds. Hill and cloud shadows also caused misclassifi-
cation. Therefore, as a final check, the results were manually
inspected to remove or correct misclassifications. Misclassified
objects caused by shadows tended to be identified in the NO
basin, whereas misclassifications due to slush were found in the
SW basin (Fig. S1). To quantify the accuracy of using NDWIice
to identify SGLs, we compared the automatic classification and
manually corrected results, resulting in a kappa coefficient of
0.84, a mean intersection over union of 0.82 and F1-score of
0.88. These results suggest the automatic NDWIice classification
has an accuracy of ∼84% highlighting the importance of manual
checking to improve identification accuracy.

Figure 1. (a) The total number of used Landsat images taken in individual years from

1985 to 2023 in the study area of GrIS. (b) Number of available Landsat images on

individual days in the months of July and August from 1985 to 2023.
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2.2 Lake visibility percentage calculation

As the coverage of the composite image varied from year to year,
particularly prior to the Landsat 8 mission, we calculated the
coverage of the Landsat 5 and 7 data compared to the year of
2014 (complete coverage) to provide an indication of data gaps.
For these gaps, mapped lakes represent minimum estimates of
the true lake area. To account for uncertainty in lake area due
to visibility issues, we followed the method of Tuckett and others
(2021), which uses the ‘lake visibility percentage’ (LVP) to evalu-
ate the impact of variable data coverage on lake area.

The calculation of the LVP involves the determination of
image visibility scores (IVSs) and lake pixel contribution scores
(LPCSs). IVSs represent the percentage of visible ice cover (i.e.
cloud free) within each individual image. Subsequently, the fre-
quency of lake pixels contributed by each image within the
mosaicked imagery was calculated using the
ee.Reducer.frequencyHistogram function in GEE. The LPCS for
each image was obtained by multiplying its lake pixel frequency
by the corresponding IVS. The LVP for a given year is then cal-
culated by summing the LPCSs of all images. For Landsat 7
images, we did not perform gap-filling before calculating the
LVP to avoid introducing additional uncertainty. A comprehen-
sive description of the methodology can be found in Tuckett
and others (2021). By performing this assessment of lake cover-
age, we could scale mapped lake area results up to 100%, thereby
attaching an upper uncertainty bound to the minimum mapped
lake areas. Years with no image coverage in certain basins were
excluded from further analysis. We used the scaled maximum
summer SGL extents to analyse the lake variability and climatic
factors controlling lake development in this paper.

2.3 Lake depth data from ATL03 data

ICESat-2 ATL03 data can estimate lake bathymetry of SGLs based
on the distinct photon returns received from the lake surface
(air–water) and bottom (water–ice) interfaces (Fair and others,
2020; Datta and Wouters, 2021; Xiao and others, 2023). The
Watta automated depth detection algorithm (Datta and
Wouters, 2021) was employed to estimate lake depth as it exhibits
good agreement with the original photon data, meeting the
requirements for large-scale lake depth extraction (Fricker and
others, 2021).

To acquire an extensive set of lake depth training samples,
ICESat-2 ATL03 data that were temporally (±3 d) and spatially
concurrent with Landsat 8 imagery from July to August during
2019–21 were selected. Given the impact of cloud cover on laser
altimetry data and the absence of clear double reflection charac-
teristics in all SGLs, we applied the sliderule technique (Shean
and others, 2023) to pre-generate photon profiles for lake loca-
tions, which offers an open-source framework for processing
the archive of low-level data products from the ICESat-2 mission
in the cloud. ICESat-2 data with double reflection characteristics,
indicating the ability to detect lake depth, were manually selected
(Fig. 2). As the Watta algorithm operates at the photon scale, we
averaged depths within the same Landsat 8 pixel to spatially
match the resolution, and both the average depth and Landsat 8
band reflectance were utilized as samples for the deep learning
model.

2.4 Depth inversion using deep learning

To build a depth inversion model, we initially evaluated the cor-
relation between Landsat 8 reflectance in different bands and the
depth of SGLs derived from ICESat-2 (Table 1). The findings
revealed a strong correlation between lake depth and reflectance
in the visible, near-infrared (NIR) and panchromatic bands,
while the correlation is comparatively lower in the SWIR band.
Consequently, the depth inversion model was constructed using
reflectance from coastal, blue, green, red, NIR and panchromatic
bands, excluding the SWIR band to enhance model precision dur-
ing training.

A multi-layer perceptron was employed for data training
(Fig. S2), which is an artificial neural network designed for super-
vised learning (Gaudart and others, 2004). It consisted of multiple
layers of nodes or neurons, organized in an input layer, one or
more hidden layers and an output layer. Each connection between
nodes was associated with a weight, and the network learned to
adjust these weights during training to optimize its performance
on data classification and regression. The depth dataset was parti-
tioned, with 70% allocated to the training set, 20% to the valid-
ation set and 10% to the test set. The Adam optimization
algorithm was selected as the optimizer (Zhang, 2018). Through
iterative experimentation involving different configurations of
hidden layers and neurons per layer, we identified the configur-
ation that yielded the smallest RMSE in the validation set.

Figure 2. Example of the Watta algorithm for SGL depth detection. (a) ICESat-2 ATL06 track overlaid on a Landsat 8 image acquired on 3 August 2020, showing an

SGL. (b) Original ICESat-2 ATL03 photon data collected over the lake on 2 August 2020. The top (blue line) and bottom (red line) of the double reflection correspond

to the lake surface and bed derived from Watta.
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Specifically, a model comprising three hidden layers with respect-
ive neuron counts of 12, 25 and 12 is chosen. The rectified linear
unit was adopted as the activation function for feedforward.
Parameters such as batch size (16), iteration count (100) and
learning rate (0.001) were set to establish the depth inversion
model. We treated RMSE between lake depths derived from
deep learning and ICESat-2 in the validation dataset as the inver-
sion uncertainty.

Three other typical approaches for determining lake depth
were used for comparison with the deep learning approach. The
physically based method was approximated as follows (Pope
and others, 2016):

depth =
[ln (Ad − R1)− ln (Rw − R1)]

g
(3)

where Ad represents the lake bottom albedo, estimated through
the average reflectance in a circular buffer of three pixels around
the lake. R

∞
is the reflectance of deep water (>40 m), which is cal-

culated as the average value of the dark ocean areas in four
Landsat 8 images from 2019 to 2020, Rw is the reflectance of
the lake water and g is the bidirectional attenuation coefficient,
g = 0.7507 in the red band, and g = 0.3817 in the panchromatic
band. The lake depth is equal to the mean value of the red
band and panchromatic band.

The logarithm ratio of blue and green band reflectance
(Moussavi and others, 2016) was calculated using the below
equation:

depth = a ln
Rb

Rg

( )[ ]2

+b ln
Rb

Rg

( )

+ c (4)

where Rb and Rg represent the reflectance of blue and green
bands, a, b and c are the coefficients of its quadratic polynomial
fit of ln(Rb/Rg).

Finally, depth was calculated using multi-variable linear
regression based on reflectance bands 1–5 and band 8 for com-
parison with the results of deep learning.

2.5 Climatic factors controlling SGL development

Fifth generation of European Centre for Medium-Range Weather
Forecasts atmospheric reanalysis (ERA5) offers high-resolution,
continuous data from 1950 to present, with higher accuracy in
simulating downward solar and infrared radiation fluxes com-
pared to ERA-Interim and Modèle Atmosphérique Régional
(Delhasse and others, 2020). Therefore, climatic factors from
ERA5 reanalysis data, comprising 2 m air temperature, skin tem-
perature, snowfall, surface net thermal radiation, surface net solar
radiation and wind speed, were utilized to analyse potential con-
trols governing lake development. These factors have been
detected as key controls governing SGL reoccurrence at the
GrIS and the Antarctic ice sheet (Rowley and others, 2020;
Turton and others, 2021; Arthur and others, 2022). The
July–August mean of each basin was calculated using the cumu-
lative lake areas over the entire study period, and Pearson’s correl-
ation analysis was performed between lake areas and mean
climatic factors to investigate relationships.

3. Results

3.1 Impact of variable data coverage on SGL area

LVPs ranged from 33.13 to 86.27%, with an average of 72.08%
and a median of 73.73% across the entire GrIS from 1985 to
2013 (Fig. 3b). However, notable differences were observed
between LVPs from Landsat 5 (66.56%) and Landsat 7 (77.23%)
images, with the latter exhibiting higher mean values. The dis-
crepancies in Landsat 7 data can be mainly attributed to gaps
caused by the SLC failure despite gap filling. The ice-sheet basins
with the lowest LVPs were primarily located in the southwest, par-
ticularly in the SO and SW basins from 1985 to 1991 (Fig. 3b).
Additionally, the NO basin exhibited low LVPs in 1986, 1996,

Table 1. Correlation between SGL depth from ICESat-2 and Landsat 8 reflectance in each band

Band Coastal Blue Green Red NIR SWIR1 SWIR2 Pan Cirrus

Correlation −0.61 −0.66 −0.68 −0.53 −0.39 −0.24 −0.23 −0.62 −0.16

All significance levels <0.01.

Figure 3. (a) Location of Greenland and the division of eight basins delineated by

Zwally and others (2012). Grey lines represent contours with a contour interval of

500 m, produced from the 1 km ArcticDEM. (b) LVP for Greenland basins from 1985

to 2013.
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1997, 2000 and 2001, while the CE basin experienced significant
data loss only in 1996. By using LVPs to estimate maximum lake
areas, we were able to address lake area underestimations due to
data gaps in early images. On average, incorporating LVPs into
lake area estimates resulted in a 50.29% increase in lake area for
Landsat 5 and a 29.76% increase for Landsat 7 images.

3.2 Distribution of Greenland SGLs

Using 14 064 Landsat images, we mapped for the first-time
ice-sheet-wide distribution of maximum summer SGL extents
during the melt season and evolution peak from 1985 to 2023.
Over this time period, an average of 8791 ± 2388 SGLs were
mapped annually across the GrIS. Generally, SGLs were found
to be widespread within 150 km of the ice-sheet margin, with
large lake area observed in NW, NE and SW basins.

Approximately 90% of the total number of SGLs had relatively
small areas, ranging from 0.045 to 0.5 km2 (Fig. S3a), consistent
with the findings of Hu and others (2022). Despite their abun-
dance, these smaller SGLs represent ∼30% of the total lake area.
In contrast, lakes of larger area (0.5–20 km2) account for only
∼10% of the total number but are a substantial proportion
(∼65%) of the total lake area. Maximum lake area exhibited a sig-
nificant increase of 0.4 km2 a−1 ( p < 0.01) from 1985 to 2023
(Fig. S3b). The distribution of SGLs on the GrIS is predominantly
concentrated within the elevation bin of 1000–1600 m (Fig. 4a).
Larger lakes were mainly observed in the SW and NE basins of
Greenland within the elevation range of 900–1100 m (Figs 4b,
S4), while smaller lakes are prevalent across the ablation zone,
consistent with Ignéczi and others (2018).

3.3 Variability and trends in SGL area development

SGLs on the GrIS exhibit significant interannual variation between
1985 and 2023, but with an overall positive trend in lake area of
50.5 km2 a−1 (R2 = 0.81, p < 0.01) (Fig. 5e). The northern basins
exhibited increases in lake area of 7.4–7.6 km2 a−1, which is a rela-
tively higher rate of increase compared to the central and southern
basins. The SW basins exhibited the highest increase in lake area
(15.8 km2 a−1, R2 = 0.41), whereas the SE and SO basins had rela-
tively lower rates of 0.02 and 0.9 km2 a−1, respectively (Figs 5a,
c). Regions with higher rates of change also exhibited larger inter-
annual variations. For example, the NE basin had a total lake area
exceeding 645.44 km2 in 2019, compared to only 228.85 km2 in
2013. The rate at which lake area increased was not uniform across
the different elevation bins, with the greatest increase between 1000
and 1800m, particularly after 2004 (Fig. 4a). Lake elevation
increased at a rate of 10.2m a−1 over the 39 year period (Fig. 5f),
with the magnitude of different basins ranging from 4.1 to 14.3
m a−1 (Figs 5b, d). Overall, after calculating the LVP, the trend
decreased from 60.8 to 50.4 km2 a−1 for the entire GrIS (Fig. S5).
Most basins show a decreased slope after the LVP calculation,
with the SW basin, exhibiting the most significant decrease of
7.2 km2 a−1. This indicates that not accounting for data gaps can
lead to an overestimation of lake growth rates.

SGL reoccurrence refers to the number of times lakes occur at
each pixel. At the ice-sheet scale, SGLs reoccur more often at low
ice-surface elevations (600–1800 m) near the ice-sheet margin
where surface meltwater is prevalent each melt season enabling
basins to be re-filled (Fig. S6). In the north, both the average
reoccurrence and maximum reoccurrence rate of SGLs is higher
compared to the south suggesting a more stable surface hydro-
logical system. Conversely, the SE basin exhibits lower reoccur-
rence rates, indicating a higher likelihood of new lakes forming
in these areas, and greater sensitivity to variations in melt
(Fig. 6). The average reoccurrence is ∼5 years, with ∼70% of

pixels having relatively low reoccurrence values of <5 years.
Regions with high reoccurrence rates (>10 years) were concen-
trated at a surface elevation of 600–1500 m, with a mean surface
elevation of ∼1068 m. This elevation spectrum aligns with zones
characterized by the presence of deep and large lakes (see also
Zhu and others, 2022). Differences in reoccurrence rate is likely
related to variations in lake filling due to the amount of melt, var-
iations in the extent of melting and the timing of lake draining.

3.4 Temporal evolution of lake depth and volume

Deep learning demonstrates excellent performance in lake depth
inversion (Fig. 7), with a correlation (r value) of 0.92, a mean abso-
lute deviation is 0.85m and an RMSE of 1.26 m (depth inversion
uncertainty) for the validation sets. The RMSE of depth inversion
for lakes with very shallow depths (0–1m) is 1.17 m, which is rela-
tively high, as also noted by Xiao and others (2023). The errors may
be partly attributed to the limited number of samples available for
shallow water, as indicated by the data sparsity at these shallow
depths (0–1m), observed in Lv and others (2024). The accuracy
of depth inversion remains consistent for lakes with depths from
1 to 10m, yielding an RMSE of 1.02 m and a mean absolute devi-
ation of 0.70 m. However, for deeper lakes, the accuracy experiences
a notable decline, resulting in an RMSE of 2.26m and a mean
absolute deviation of 1.79 m. However, by performing the method
over large scales, this uncertainty is minimized.

The average depths of lakes remained consistent from 2014 to
2023, ranging from a minimum of 2.06 m in 2019 to a maximum
of 2.58 m in 2016. Overall, 65% of lakes have an average depth
below 2 m, 24% fall within the 2–4 m depth range, and only 2%
exceed depths of 7 m. This distribution is consistent with findings
from Fitzpatrick and others (2014), although it likely underesti-
mates the deepest lakes due to saturation of the signal of
Landsat 8 or ICESat-2 in our deep learning method. Despite
minor interannual variations among different basins, distinct spa-
tial characteristics emerge, with northern basins generally exhibit-
ing higher lake depths than southern basins (Fig. 8).

The NO and NE basin stand out with the highest average
depths, reaching 2.4–2.7 m, while SO basins typically have lower
average depths ranging from 1.5 to 2 m (Fig. 8). This is likely
due to a high basal slip ratio in the NO and NE basins facilitating
the transfer of longer basal wavelengths to the surface at higher
elevations, favouring the formation of larger and deeper SGLs
(Ignéczi and others, 2016). Lakes >50 m deep have been observed
in NE Greenland (Neckel and others, 2020), which both supports
our findings, while also highlighting how the depth inversions
based on Landsat images or ICESat-2 have an upper limit on
depth estimation, probably leading to an underestimation of the
true depth/volume of lakes here.

We multiplied the lake depth of each pixel by the area of that
pixel and summed them to get lake volume. Lake volume on the
GrIS demonstrates notable interannual variations from 2014 to
2023. On average, the lake volume is 8.7 km3, reaching a max-
imum of 10.6 km3 in 2015, and a minimum of 5.8 km3 in 2018
(Fig. 9). The SW, NW and NE basins generally exhibit larger
lake volumes, while the SO basin displays a smaller volume, con-
sistent with findings from Ignéczi and others (2016). In 2018, all
basins experienced a negative volume anomaly, with a substantial
volume decrease in the SW, NW and NE basins, ranging up to
−60%. All basins except for the SW basin exhibited positive
anomalies in 2019. There is a robust positive correlation between
lake volume and area (Fig. 10), characterized by the equation
(RMSE = 1.299 × 106m3, R2 = 0.83, p = 0.000):

SGL Volume (106 m3) = 4.396× SGL area (km2) (5)
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This relationship aligns with the findings of Gledhill and
Williamson (2018), who reported that SGL volume (106m3) is
4.71 times the SGL area (km2). We therefore scaled up lake area
to estimate volume over our entire time period, revealing an aver-
age estimated lake volume of 4.8 km3 during 1985–89 increasing
to 11.7 km3 over 2019–23. Overall, lake volume increased at a
rate of 221.9 ± 63.6 × 106m3 a−1 from 1985 to 2023.

4. Discussion

4.1 Comparison with other SGL area studies

The distribution of SGLs is consistent with previous studies (e.g.
Selmes and others, 2011; Hu and others, 2022; Zhang and others,
2023), with largest total lake area in NW, NE and SW basins.
These regions exhibit significant negative surface mass balance

Figure 4. Distribution and variation of total lake area (a) and maximum lake area with a log scale (b) with elevation in the study area of the GrIS from 1985 to 2023.
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(Khan and others, 2022), indicating a strong link between lake
presence and ice-sheet melting processes. There was a general
paucity of lakes in the SE basin of Greenland, which is character-
ized by steep ice-surface slopes and thick firn making it difficult
for meltwater to accumulate and form SGLs (MacFerrin and
others, 2019).

Existing research on lake area change at the ice-sheet scale has
generally focused on a limited 5 year period (Lu and others, 2021;
Hu and others, 2022; Zhang and others, 2023), making it difficult
to directly compare with our study. Nevertheless, our results sug-
gest that during this 5 year period (2016–20) lake area was rela-
tively consistent in 2016, 2017 and 2020, smaller in 2018
(∼1965 km2) but expanded significantly to ∼2997 km2 in 2019.

This finding aligns with previous studies, and directly reflects
the impact of surface melt intensity on lake area. The distribution
of lake elevations (1000–1600 m) is consistent with the findings of
Ignéczi and others (2018) who demonstrated that lakes tend to
form in regions of moderate ice-surface relief where depressions
that can hold lakes are most abundant. The elevation of lakes
also varies with latitude, with SGLs on the northern GrIS
∼300–400 m lower than in the SW.

Regional mapping of lake evolution over longer periods are of
the same magnitude as previous studies. For example, Gledhill
and Williamson (2018) found that in the northwestern GrIS
(74.1–74.7° N), and lakes advanced to higher elevations at a
rate of ∼13.5 m a−1 and area increased at a rate of 1.4 km2 a−1

Figure 5. Interannual variability in maximum summer SGL extents (a, c, e) and lake elevation of 95th percentile (b, d, f) of the GrIS from 1985 to 2023. The first row

represents the northern region, the second row represents the central and southern regions and the third row represents the entire GrIS. The trend of mapped lake

area results can be found in Figure S5.
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from 1985 to 2016, with a noticeable acceleration after 2000.
Using the same study area as Gledhill and Williamson (2018),
our approach approximately reproduces the pattern and magni-
tude of change, with an increase in lake elevation of 8.5 m a−1,
and an increase in lake area of 1.2 km2 a−1. In the southwestern
GrIS, Zhu and others (2022) found that lake elevation increased
at a rate of ∼12.5 m a−1 from 2000 to 2020. Our data for the
same period revealed a comparable elevation increase of 11.8 m

a−1. The similarity of our results with more regional-scale analyses
gives us confidence in our results.

4.2 Comparison with other depth inversion methods

We first analysed the relationship between band reflectance and
lake depth. Blue, green and red band reflectance all decrease
with increasing lake depth (Fig. 11). This absorption of light is

Figure 6. SGL reoccurrence on the GrIS and selected basins, that is: (a) NO, (b) NW, (c) CW, (d) SW and (e) NE basins. Reoccurrence was calculated by summing the

number of times lakes occur at each pixel. The Greenland panel shows the spatial density of the lake with reoccurrence >2 over 5 km grids, indicating the propor-

tion of this grid covered by lakes from 1985 to 2023. The pie chart indicates reoccurrence class distribution in the eight basins in GrIS, and the circle size is scaled

according to the average lake area from 1985 to 2023.
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apparent for lake depths >7.5 m for the blue and green channels,
but most pronounced for the red band. The reflectance is similar
when the lake depth exceeds 5 m due to the signal saturation,
which is consistent with Pope and others (2016) and Moussavi
and others (2016). Shallow lakes have quite large differences of
0.4 in reflectance values, while medium-depth lakes typically
exhibit similar reflectance values.

To evaluate the performance of deep learning method, com-
parisons were conducted with three alternative methods. The
multi-variable linear regression model displayed a notable under-
estimation of ∼25% compared to ICESat-2 measurements
(Fig. 7b). The difference between the multiple linear regression
and deep learning methods demonstrates that the accuracy of
the deep learning method surpasses that of multiple linear regres-
sion in lakes with depths exceeding 5 m, while multiple linear
regression performs well for lakes with depth <5 m. Our approach
demonstrated a marked improvement in accuracy compared to
the logarithmic ratio of blue and green band reflectance
(Moussavi and others, 2016), with an RMSE of 1.26 m for the
deep learning method compared to 1.93 m for the logarithmic
method (Fig. 7c). In comparison to physically based methods,
deep learning exhibited a considerable improvement. Physically
based methods were limited to lake depths not exceeding 5 m
(Fig. 7d), indicating a significant deviation from lake depths
detected by ICESat-2. In summary, deep learning proves to be
well suited for long time-series studies focusing on the inversion
of lake depth and volume.

4.3 Factors affecting SGL variability

We analysed the influence of climatic factors on the interannual
variability of lake area (Figs 12, S7). Lake areas of northern basins
have a significant positive correlation with 2 m air temperature
(0.62–0.66), and a slight positive correlation in the SE and SO
basins (0.04–0.15), consistent with regions with enhanced nega-
tive mass balance (Medley and others, 2022), as reported by
other studies (e.g. Sundal and others, 2009; Turton and others,
2021). Snowfall generally shows a negative correlation across all
basins (−0.08 to −0.59), implying that decreased snowfall is asso-
ciated with increased lake areas. Surface pressure shows a range of
correlations with lake area, with statistically significant positive
correlations in the central and northern basins. Positive correla-
tions in the SO and SW basins are also significant but at a
lower level, while the correlation in the SE is not significant.
Wind speed is only significantly positively correlated in the NW
basin. Surface net solar radiation and surface net thermal radi-
ation show no significant correlation, while land surface tempera-
ture shows positive correlations (0.06–0.65). The negative
correlation with snowfall in the SE and SO basins is likely linked
to the thick permeable firn and relatively steep surface slopes in
these regions that favour meltwater infiltration and aquifer forma-
tion (Miller and others, 2022). Reduced snowfall and increased
melt in this setting would act to increase firn saturation, with
refreezing of melt also creating impermeable ice lenses, enabling
meltwater to more easily form lakes.

Figure 7. Comparison of SGL depths obtained by ICESat-2 and (a) deep learning, (b) multiple linear regression, (c) logarithm ratio of blue and green band reflect-

ance and (d) physically based method. The red line represents its linear regression line, and grey dotted lines denote the range within three SDs of the mean, the

text at the top left of each panel gives different statistical metrics for difference and MAD indicates the mean absolute deviation.

Journal of Glaciology 9

https://doi.org/10.1017/jog.2024.87 Published online by Cambridge University Press



The SW basin, with the largest lake area, showed no obvious
link with climatic factors. This lack of correlation might reflect
the limited number of depressions above the equilibrium line alti-
tude compared to other basins (Ignéczi and others, 2016). As
most depressions in the SW basin are likely already filled, this
leaves limited capacity for further lake expansion with increased
warming. In contrast, regions with more available depressions,
such as the central and northern basins, show a strong correlation

with temperature. Ice slabs up to several metres thick can be also
found in the SW basin, which reduce vertical percolation path-
ways, and encourage further ice aggregation at their horizon
(MacFerrin and others, 2019; Jullien and others, 2023). Recent
increases in the area drained by surface rivers align closely with
the extent of the ice slabs on the ice sheet (Jullien and others,
2023), and therefore likely play a significant role in controlling
lake area in this basin.

Figure 8. Violin plots showing the depth distribution of lakes in the eight Greenland basins from 2014 to 2023. The shape of each violin plot represents the kernel

density estimation of depth data for each year. The black diamond markers in the centre are the mean depths.
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5. Conclusions

Here, for the first time, maximum summer SGL extents are
mapped across the entire GrIS during July and August and
from 1985 to 2023 using the Landsat catalogue. The NE and
SW basins have the largest lake areas and greatest interannual
variability. All eight basins experienced lake area gains from
1985 to 2023, with the southwestern GrIS experiencing the
most significant increasing trend of 15.8 km2 a−1. Lakes exhibited
an average rate of inland advance of 10.2 m a−1, with the largest
rate of 14.3 m a−1 found in the SO basin. These lake expansion
rates are consistent with previous regional-scale studies, helping
to provide confidence in the reliability of our results. Lakes tend
to re-occur near the ice-sheet margin where higher rates of surface
melting at lower surface elevations enable basins to be repeatedly
filled. ICESat-2 measurements and the expansive spatial coverage

of Landsat 8 images were used to employ a deep learning method
to invert lake depths from 2014 to 2023. Compared with other
image-based methods, this approach exhibited substantial
improvement, with only a 15% underestimation compared with
ICESat-2 data. Lake volume exhibited a minimum volume in
2018 during a period of weak surface melt.

The relationships between common climatic factors and lake
area differ regionally, with the key contributing factors being
increasing air and land surface temperature except in the southern
basins. The presence of thick ice slabs in these southern regions
reduces vertical percolation pathways, potentially limiting further
expansion of lakes, while the number of available depressions is
generally lower than the central and northern basins, further con-
straining the potential for lake formation. These findings imply
that, as ice-sheet melting intensifies, both the area and volume

Figure 9. Interannual variations in SGL volume on the GrIS: (a) absolute lake volume and its uncertainty and (b)–(h) represent the anomalies (lake volume relative

to the average from 2014 to 2023) in lake volume for each basin. The average values and uncertainty are indicated in the text, and positive and negative anomalies

are distinguished by blue and red, respectively.
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of lakes will continue to expand, gradually extending their distri-
bution towards the inland regions of Greenland but could become
limited by the presence of thick ice slabs and available
depressions.

More robust relationships between climatic factors and supra-
glacial conditions remain to be developed to constrain the inter-
play between climatic factors and lakes. Depth inversion
accuracy can be improved by optimizing the deep learning
model and integrating multi-source data for improved spatio-
temporal resolution. This will contribute to a more comprehen-
sive and continuous record of lake area/volume changes,
advancing our understanding of lake evolution.

Supplementary material. The supplementary material for this article can

be found at https://doi.org/10.1017/jog.2024.87.

Data. The codes for mapping lake extents, and the lake boundary data from

1985 to 2023 can be downloaded from the National Tibetan Plateau/Third

Pole Environment Data Center, Institute of Tibetan Plateau Research,

Chinese Academy of Sciences at https://data.tpdc.ac.cn/en/data/77528408-

ee3e-4322-88ce-0d69f68c5a63.
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