
This is a repository copy of Hybrid Graphical-Textual DSL Editors: Vision, Requirements
and Challenges.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219385/

Version: Accepted Version

Proceedings Paper:
Predoaia, Ionut orcid.org/0000-0002-2009-4054, Kolovos, Dimitris orcid.org/0000-0002-
1724-6563 and Garcia-Dominguez, Antonio orcid.org/0000-0002-4744-9150 (2024) Hybrid
Graphical-Textual DSL Editors: Vision, Requirements and Challenges. In: Proceedings of
the ACM/IEEE 27th International Conference on Model Driven Engineering Languages
and Systems Companion, MODELS-C 2024. 2024 ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems, 22-27 Sep 2024
MODELS Companion '24 . ACM , AUT , pp. 1156-1160.

https://doi.org/10.1145/3652620.3688346

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Hybrid Graphical-Textual DSL Editors:
Vision, Requirements and Challenges

Ionut Predoaia
University of York

York, United Kingdom
ionut.predoaia@york.ac.uk

Dimitris Kolovos
University of York

York, United Kingdom
dimitris.kolovos@york.ac.uk

Antonio García-Domínguez
University of York

York, United Kingdom
a.garcia-dominguez@york.ac.uk

ABSTRACT

Hybrid graphical-textual domain-specific languages can deliver the

best of both worlds of graphical and textual modelling: an intu-

itive graphical syntax for some parts of the language and a concise

textual syntax for others. This paper discusses the requirements

of hybrid graphical-textual domain-specific languages and their

supporting editors, highlighting challenges and potential enhance-

ments. We present our vision for future developments, aiming to

simplify the process of engineering such languages and additionally,

to expand their capabilities.

CCS CONCEPTS

· Software and its engineering → Domain specific languages;

Model-driven software engineering; · Theory of computation

→ Grammars and context-free languages.

KEYWORDS

Hybrid Notations, Graphical-Textual Modelling, Code Generation,

Static Analysis, Grammar, Xtext, Sirius

ACM Reference Format:

Ionut Predoaia, Dimitris Kolovos, and Antonio García-Domínguez. 2024. Hy-

brid Graphical-Textual DSL Editors: Vision, Requirements and Challenges.

In ACM/IEEE 27th International Conference on Model Driven Engineering

Languages and Systems (MODELS Companion ’24), September 22ś27, 2024,

Linz, Austria. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/

3652620.3688346

1 INTRODUCTION

Hybrid graphical-textual domain-specific languages (DSLs) are lan-

guages that have a hybrid notation. They comprise a part-graphical

and part-textual syntax, where the graphical part is commonly used

for the representation of high-level domain concepts and the textual

part is used for capturing complex expressions and behaviour [9, 10].

In essence, they are graphical DSLs containing embedded textual

expressions, where the graphical and textual syntaxes mostly cover

mutually exclusive parts of the abstract syntax, although overlaps

can exist. Hybrid graphical-textual DSLs can deliver the best of both

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion ’24, September 22ś27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688346

worlds of graphical and textual modelling [4], due to the synergies

obtained when combining both notations.

For brevity, the term hybrid will be used instead of the term

hybrid graphical-textual. Hybrid DSLs are effectively used through

hybrid model editors, alternatively called hybrid DSL editors, as

they enable editing a single domain model through graphical and

textual notations.

This paper presents the required capabilities of hybrid DSLs and

their supporting editors, as argued in the literature [4, 9, 10], high-

lighting challenges and potential improvements. We present our

vision for future developments, intending to simplify the process of

engineering hybrid DSL editors. We propose techniques such as the

automatic generation of grammars, compliance validation of gram-

mars, grammar inspection of referenced types, and an approach for

post-processing derived model elements.

Sections 2 and 3 illustrate a running example and the require-

ments of hybrid DSL editors. Sections 4 and 5 present Graphite, a

tool for engineering hybrid DSL editors, and a vision for its develop-

ment. Section 6 presents related work. Finally, Section 7 concludes

the paper, providing future work directions.

2 RUNNING EXAMPLE

This section presents a minimal contrived example that will be used

to showcase requirements, challenges and our vision of hybrid DSL

editors. Listing 1 presents the metamodel of a DSL for modelling

project plans, that has been defined in Emfatic [5], a textual syntax

for Ecore metamodels. The metamodel of the Project Workloads DSL

specifies that the root of the domain is a Project containing lists of

tasks and people. A Task has a name and a list of efforts, where each

Effort is assigned to a person and has a number of months.

For the purpose of this example, we will assume that stakehold-

ers prefer a hybrid syntax for the DSL, where tasks and people are

modelled graphically, but the allocation of efforts is captured us-

ing an embedded textual notation as shown in Figure 1. Figure 1

illustrates a Project in a hybrid DSL editor, containing tasks and

people modelled graphically, and efforts that are modelled through

a YAML-like textual syntax. The edges mark the dependencies and

leader of each task. The efforts are defined on separate lines as

key-value pairs having the form {person}:{months}. Accordingly, the

model elements of type Task and Person represent the graphical

parts of the model, whereas those of type Effort represent the tex-

tual parts of the model. The task named Implementation is selected

in the diagram, therefore its properties, i.e., name and efforts, are

displayed in the properties view. Each line from the efforts textual

expression represents an effort model element, e.g., the second line

is an effort that refers to the person named Bob and has a value of 6

months.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Predoaia et al.

Figure 1: Hybrid DSL Editor [10]

@namespace(uri=" ProjectWorkloadsDSL ")

package workload;

class Project {

val Task [*] tasks;

val Person [*] people;

}

class Task {

attr String name;

val Effort [*] efforts;

ref Person leader;

ref Task [*] dependencies;

}

class Person {

attr String name;

}

class Effort {

ref Person person;

attr int months;

}

Listing 1: Metamodel of the Project Workloads DSL

3 REQUIREMENTS

Hybrid DSL editors should ideally provide the following capabilities,

as argued in the literature [4, 9, 10].

3.1 Smart Textual Editors

Most graphical model editors already support plain textual edi-

tors for editing the textual properties of model elements. When

modelling the properties expressed through a textual syntax (e.g.,

the efforts), it would be ideal to benefit from the developer assis-

tance features that are typically included in most of the modern

integrated development environments (IDEs). Therefore, it is desir-

able to model the efforts through smart textual editors supporting

syntax-aware editing features, such as syntax highlighting, auto-

completion and error detection [4, 9, 10]. For instance, as a user

types łAliž in the smart textual editor used for defining the efforts,

an auto-completion menu should be displayed to show all people

from the diagram whose name starts with łAliž, i.e., Alice.

3.2 Textual-Graphical Cross-Referencing

To be able to define complex expressions and behaviour, the textual

expressions must be able to reference graphical model elements that

have been defined in diagrams [4, 9, 10]. For instance, the efforts

textual expression from Figure 1 references the people defined in

the diagram, i.e., Alice, Bob and Charlie. A desirable feature is to

support navigation from textual expressions to referenced model el-

ements from diagrams. For example, an action such as control-click

performed in the smart textual editor on Charlie should trigger the

navigation to the diagram definition of the person named Charlie.

3.3 Consistency Enforcement

To avoid potential inconsistencies in the model, it is desirable to

have consistency between the graphical and textual parts of the

model automatically enforced by the hybrid DSL editor [9, 10]. To

this end, when a graphical model element from the diagram is

renamed or deleted, all textual expressions that were previously

referencing the respective model element must be updated accord-

ingly. For instance, when in the diagram, the person named Bob

is renamed to Robert, then in the smart textual editor, the second

line from the textual expression should be updated accordingly

by replacing Bob with Robert. Furthermore, the hybrid DSL editor

should tolerate temporary inconsistencies, to be able to save models

when textual expressions are not in a consistent state with the rest

of the model, e.g., when reference resolution fails.

3.4 Uniform Error Reporting

The hybrid DSL editor should uniformly report errors related to

the textual and graphical parts of the model, to inform users about

any existing inconsistencies [4, 9, 10]. Furthermore, it would be

desirable to support navigation to problematic model elements from

a reported error, to avoid the overhead of locating them manually.

For example, the textual expression from Figure 1 references the

person named Charlie from the diagram, however, if this person did

not exist in the diagram, this should trigger the hybrid DSL editor

to report the inconsistency as an error.

3.5 Integrated Abstract Syntax Graph

For the purpose of performing model management over the entire

model, it is required to expose the model as a single unified abstract

syntax graph (ASG) that integrates elements from both its textual

and graphical parts [4, 9, 10]. For instance, the underlying seman-

tic model from Figure 1 must be exposed to model management

programs as a unified ASG that integrates the textual parts of the

model, i.e., the efforts, and the graphical parts, i.e., the tasks and

the people. Consequently, the efforts textual expression must not be

exposed to model management programs as plain text, but rather

as a list of effort model elements that can be accessed, queried and

manipulated as part of a model management operation.

4 GRAPHITE

Our work from [10] presents techniques for addressing the require-

ments from Section 3. The techniques described in [10] have been

implemented in a tool named Graphite1, which streamlines the

development of hybrid DSL editors by using model transforma-

tions. For using the approach described in [10], one must define

1https://github.com/epsilonlabs/graphite

Hybrid Graphical-Textual DSL Editors: Vision, Requirements and Challenges MODELS Companion ’24, September 22–27, 2024, Linz, Austria

class Task {

...

@syntax(grammar =" gEfforts", derive =" efforts ")

attr String effortsExpression;

val Effort [*] efforts;

...

}

Listing 2: Annotated Metamodel

1 grammar gEfforts

2 with org.eclipse.xtext.common.Terminals

3
4 import "ProjectWorkloadsDSL"

5 import "http ://www.eclipse.org/emf /2002/ Ecore"

6
7 Main returns Task:

8 {Task}

9 (efforts += Effort (NEWLINE efforts += Effort)*)?;

10
11 Effort returns Effort:

12 {Effort}

13 (person =[Person])? ':' months=INT;

14
15 terminal NEWLINE:

16 ('␣'|'\t')* '\r'? '\n' ('␣'|'\t')*;

Listing 3: Efforts Grammar of a YAML-like Textual Syntax

the graphical syntax of the DSL through a Sirius Viewpoint Specifi-

cation Model, and the textual syntaxes through Xtext grammars. In

addition, the metamodel of the DSL must be modified, by adding

a string attribute and an annotation for each property from the

metamodel that one would like to express through a textual syntax.

Listing 2 shows how the Task metaclass must be modified to

express the efforts through a textual syntax. The effortsExpression

string attribute has been added to store the textual representation

of the efforts list. Additionally, an annotation has been added to

define the mapping between the added string attribute (i.e., effort-

sExpression) and the underlying model elements (i.e., efforts). The

annotation specifies the grammar that is used for parsing the efforts

textual expression, and the property in which the derived model

elements are stored, i.e., when parsing effortsExpression with the

gEfforts grammar, the derived model elements are assigned to the

efforts property. The properties expressed through a textual syn-

tax and their textual representation remain synchronised, i.e., the

efforts and effortsExpression are bidirectionally synchronised.

The gEfforts grammar from Listing 3 defines the YAML-like tex-

tual syntax used for modelling the efforts. The grammar specifies

that whenever the textual representation of the efforts is parsed, a

Task that contains a list of Effort model elements is derived. There-

fore, when using this approach, grammars must adhere to a struc-

ture that is compatible with the annotated metamodel, as the root

model element that is derived must be an instance of the metaclass

(e.g., Task) that contains the property being expressed through a

textual syntax (e.g., efforts). By following the described approach,

one can finally execute a model-to-text transformation that takes as

input the annotated metamodel for automatically generating code

that configures hybrid DSL editors that meet all requirements from

Section 3.

5 VISION FOR FUTURE DEVELOPMENTS

This section describes our vision for improving Graphite. We pro-

pose a set of techniques that aim to further simplify the process

of engineering hybrid DSL editors, and additionally, enhance their

capabilities.

5.1 Automatic Generation of Grammars

As described in the last paragraph of Section 4, a grammar that

is used for specifying an embedded textual syntax must adhere

to a structure that is compatible with the annotated metamodel.

Specifically, the root model element that is derived when parsing

a textual expression using the grammar must be an instance of

the container metaclass (i.e., Task in our example) of the property

being expressed with a textual syntax (e.g., efforts). Furthermore,

only the property being expressed through a textual syntax must

be populated by the grammar, e.g., only the efforts property of a

Task must be populated, as the other properties of a Task, i.e., name

and effortsExpression, do not need to be set by the grammar.

For creating an Xtext grammar, a new Xtext project from Ecore

must be created, as an existing Ecore metamodel must be imported

and referenced throughout the grammar. Before creating the project,

a user must first select the entry rule that specifies the metaclass of

the derived root model element. Next, Xtext automatically generates

a skeleton of the grammar, containing all grammar rules required

to populate the root model element and all its child model elements

recursively.

One could leverage the capability of Xtext to automatically gener-

ate a grammar for the purpose of generating all grammars specified

in the annotated metamodel. This would simplify the language engi-

neering experience, by having the skeleton of a compliant grammar

as a starting point, which can be customised further at a later point.

To this end, the Xtext API which automatically generates a grammar

must be customised to generate only grammar rules for populating

the property being expressed through a textual syntax (e.g., the

efforts), and ignore all other properties. Then, a model manage-

ment program can be executed to statically analyse the annotated

metamodel, and for each annotation that defines the mapping to a

grammar, the customised Xtext API is called to automatically gen-

erate a grammar with an entry rule that derives a model element

that is an instance of the container metaclass. For instance, with

the annotated metamodel from Listing 2, one grammar would be

automatically generated for specifying the efforts list, which would

contain an entry rule that derives a model element of type Task,

containing only the efforts list (i.e., the grammar rule at lines 7ś9

from Listing 3), as the other properties, i.e, name and effortsEx-

pression remain unset. Furthermore, the generated grammar would

contain a rule for deriving model elements of type Effort (i.e., the

grammar rule at lines 11ś13 from Listing 3), and additional rules

that recursively populate all child elements of an Effort, if any.

5.2 Compliance Validation of Grammars

Graphite can only be applied with a compliant grammar, as de-

scribed previously. Additionally, a compliant grammar must also

populate all non-transient properties of a derived model element,

except for the root (i.e., Task). For instance, the grammar rule (lines

11ś13 from Listing 3) that derives an Effort model element must set

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Predoaia et al.

class PostProcessor implements IPostProcessor {

@Override

public Object transform(EObject object) {

...

}

}

Listing 4: Post-Processor Service

@syntax(grammar =..., postprocess =" PostProcessor ")

attr String effortsExpression;

val Effort [*] efforts;

Listing 5: Annotation Attribute for Post-Processor

all its properties, i.e., person and months. Otherwise, if not all prop-

erties are set, data would be lost when carrying out bidirectional

synchronisation between the efforts and effortsExpression through

serialisation and deserialisation. Furthermore, this also recursively

applies to all child model elements of a derived model element, i.e.,

if an Effort contained any child elements, then all their properties

should have also been set. Therefore, it would be useful to validate

whether a grammar is compliant. For this purpose, a model vali-

dation operation can be used, which confirms the compliance of

a grammar, or informs the language engineer about any changes

that must be made to the grammar to make it compliant.

The model validation operation should take as input two models,

the annotated metamodel and the Xtext grammar, considering that

both are EMF models at their core. The operation first identifies

the metaclass which contains an annotation for the grammar being

validated. For instance, when passing the annotated metamodel

from Listing 2 and the grammar from Listing 3 as input to the model

validation operation, the metamodel would be statically analysed,

by searching for the metaclass which contains an annotation associ-

ated with the grammar named gEfforts. All metaclasses are iterated

until the Task metaclass is identified as being the one containing

the annotation associated with the grammar. Then, the grammar is

statically analysed, by checking whether it contains a grammar rule

returning a model element of type Task, such as the one at lines

7ś9 from Listing 3. The grammar rule must only set the property

specified in the derive attribute of the annotation, i.e., the efforts.

Furthermore, it must be checked whether a grammar rule exists

for instantiating Effort model elements, and whether additional

rules exist for recursively setting their child elements, if any. The

grammar rules instantiating Effort model elements and their child

model elements, are checked to verify whether they set the value

of all their non-transient properties, by taking into account the

structure of the metamodel.

5.3 Grammar Inspection of Referenced Types

Graphite has a limitation in the case of unresolved references. The

way in which consistency is automatically enforced is by attaching

event listeners to referenced model elements whenever a textual

expression is parsed. For example, when the textual expression

from Figure 1 is parsed, the referenced model elements of type

Person are identified, i.e., the persons named Alice, Bob and Charlie,

and an event listener is attached to each. When the name of the

person Alice is changed, then the efforts list is serialised and the

resulting string overwrites the textual expression. However, this

technique does not work in the case of an unresolved reference. For

instance, if the person named Charlie did not exist in the diagram,

reference resolution would fail when parsing the textual expression

from Figure 1. In this scenario, if another person named David,

which is not shown in the diagram, is renamed into Charlie, then

reference resolution should ideally be triggered to resolve the prior

issue, and then to attach an event listener to the person named

Charlie. However, in the current solution, reference resolution is not

triggered in such a case. Nevertheless, an error would be reported,

therefore the user is made aware of how to solve the issue.

To address the mentioned issue that occurs in the case of an

unresolved reference, a naive approach would be to trigger refer-

ence resolution for the efforts list whenever any property of any

model element has changed. An efficient technique would be to

statically analyse the grammar of the efforts, to identify the types

that are referenced in a textual expression. For instance, the gram-

mar rule at lines 11ś13 from Listing 3 defines a reference to model

elements of type Person, at line 13. By using a model transformation

that takes as input the grammar, we could identify the referenced

types of model elements from the grammar rules, to automatically

generate code for setting event listeners tailored to Person model

elements. Therefore, when the name of a model element of type

Person changes, this would trigger a reference resolution opera-

tion for the efforts list. In our running example, there is only one

property expressed through a textual syntax, and one grammar is

used, however, multiple grammars could exist that are associated

with numerous properties. With this technique, mappings must be

defined between the grammars and referenced types, to know for

which properties of the metamodel to trigger reference resolution.

5.4 Post-Processing of Derived Model Elements

One could benefit from applying a post-processing operation over

the derived model elements, to leverage complex business logic to

transform the model elements into another form, that could have

not been carried out through the grammar’s parser. For instance,

when parsing effortsExpression, we might wish to remove all derived

effort model elements that have a value of 0 months. To this end,

one could define a post-processor service as the one from Listing 4,

and then store a reference to the post-processor service in an at-

tribute (i.e., postprocess) of the annotation, as in Listing 5. Then, the

model-to-text transformation from Graphite which automatically

generates code for configuring hybrid DSL editors [10], would have

to be modified such that it takes into account the postprocess anno-

tation attribute from Listing 5, to apply the post-processor service

over the derived model elements.

6 RELATED WORK

Hybrid DSLs. In addition to Graphite, hybrid DSLs could alterna-

tively be engineered using projectional editors such as JetBrains

MPS [6]. The works from [1, 3, 8, 12] present techniques for engi-

neering hybrid DSLs and their supporting editors, however, unlike

our work, they heavily rely on hand-written code and have lim-

itations regarding consistency enforcement and error reporting.

Hybrid Graphical-Textual DSL Editors: Vision, Requirements and Challenges MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Other related works are based on blended modelling [2], which

focuses on providing several graphical and textual notations for the

same concepts of the abstract syntax, while keeping the different

notations synchronised. However, hybrid DSLs are concerned with

using graphical and textual notations for different concepts of the

abstract syntax, while maintaining the consistency of the references

between the graphical and textual parts.

Grammar Inspection and Generation. The work from [11] pro-

poses a technique based on model transformations and static anal-

ysis to transform an Xtext grammar into a Java library for Sonar-

Qube, used for evaluating the quality of programs written with

Xtext-designed DSLs. An approach involving grammar transforma-

tions is presented in [13], which loads a default Xtext-generated

grammar into memory as a model, and then applies transformation

rules on it to transform it into an expert grammar. An alternative

to the grammar post-processing technique from [13] is to directly

customise the grammar generator of Xtext, as presented in [7],

similarly to how we described in our vision. Other related works

concern the co-evolution between metamodels and generated gram-

mars [13, 14].

7 CONCLUSIONS AND FUTUREWORK

This paper presented a set of requirements for hybrid DSLs and their

supporting editors, highlighting what can be achieved at present

and what challenges remain. We described our vision for future

developments, proposing techniques such as the automatic genera-

tion of grammars, compliance validation of grammars, grammar

inspection of referenced types, and finally, post-processing of de-

rived model elements. In future work, we plan to investigate unified

searching capabilities across the textual and graphical parts of the

model.

ACKNOWLEDGMENT

The work in this paper has been funded through NetApp, the HI-

CLASS InnovateUK project (contract no. 113213), and the SCHEME

InnovateUK project (contract no. 10065634).

REFERENCES
[1] Altran. 2022. Xtext Sirius integration. [Online]. Available: https://altran-mde.

github.io/xtext-sirius-integration.io, (Last Accessed: 2024-08-15).
[2] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns. 2019.

Blended Modelling - What, Why and How. In 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE, 425ś430.

[3] Justin Cooper. 2018. A Framework to Embed Textual Domain Specific Languages
in Graphical Model Editors. Master’s thesis. University of York.

[4] Justin Cooper and Dimitris Kolovos. 2019. Engineering Hybrid Graphical-Textual
Languageswith Sirius andXtext: Requirements andChallenges. In 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE, 322ś325.

[5] Eclipse. 2024. Emfatic. [Online]. Available: https://eclipse.org/emfatic, (Last
Accessed: 2024-08-15).

[6] JetBrains. 2024. JetBrainsMPSWebsite. [Online]. Available: https://www.jetbrains.
com/mps, (Last Accessed: 2024-08-15).

[7] Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer, Javier Troya, and
ManuelWimmer. 2015. XMLText: fromXML schema to Xtext. In Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering.
71ś76.

[8] Obeo and TypeFox. 2017. Xtext Sirius integration - white paper. [Online].
Available: https://www.obeodesigner.com/resource/white-paper/WhitePaper_
XtextSirius_EN.pdf, (Last Accessed: 2024-08-15).

[9] Ionut Predoaia. 2023. Towards Systematic Engineering of Hybrid Graphical-
Textual Domain-Specific Languages. In 2023 ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-C).
IEEE, 153ś158.

[10] Ionut Predoaia, Dimitris Kolovos, Matthias Lenk, and Antonio García-Domínguez.
2023. Streamlining the Development of Hybrid Graphical-Textual Model Editors
for Domain-Specific Languages. Journal of Object Technology 22, 2 (2023).

[11] Iván Ruiz Rube, Tatiana Person, and Juan Manuel Dodero. 2020. Static analysis
of textual models. XXI Jornadas de Ingeniería del Software y Bases de Datos 219
(2020), 269.

[12] Markus Scheidgen. 2008. Textual Modelling Embedded into Graphical Modelling.
In European Conference onModel Driven Architecture-Foundations and Applications.
Springer, 153ś168.

[13] Weixing Zhang, Jörg Holtmann, Daniel Strüber, Regina Hebig, and Jan-Philipp
Steghöfer. 2024. Supporting meta-model-based language evolution and rapid
prototyping with automated grammar transformation. Journal of Systems and
Software 214 (2024), 112069.

[14] Weixing Zhang, Jan-Philipp Steghöfer, Regina Hebig, and Daniel Strüber. 2023. A
Rapid Prototyping Language Workbench for Textual DSLs based on Xtext: Vision
and Progress. arXiv preprint arXiv:2309.04347 (2023).

	Abstract
	1 Introduction
	2 Running Example
	3 Requirements
	3.1 Smart Textual Editors
	3.2 Textual-Graphical Cross-Referencing
	3.3 Consistency Enforcement
	3.4 Uniform Error Reporting
	3.5 Integrated Abstract Syntax Graph

	4 Graphite
	5 Vision for Future Developments
	5.1 Automatic Generation of Grammars
	5.2 Compliance Validation of Grammars
	5.3 Grammar Inspection of Referenced Types
	5.4 Post-Processing of Derived Model Elements

	6 Related Work
	7 Conclusions and Future Work
	References

