
This is a repository copy of Towards Processing YAML Documents with Model 
Management Languages.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219380/

Version: Accepted Version

Proceedings Paper:
Predoaia, Ionut orcid.org/0000-0002-2009-4054, Kolovos, Dimitris orcid.org/0000-0002-
1724-6563, Garcia-Dominguez, Antonio orcid.org/0000-0002-4744-9150 et al. (3 more 
authors) (2024) Towards Processing YAML Documents with Model Management 
Languages. In: Proceedings of the ACM/IEEE 27th International Conference on Model 
Driven Engineering Languages and Systems Companion, MODELS-C 2024. 2024 
ACM/IEEE 27th International Conference on Model Driven Engineering Languages and 
Systems, 22-27 Sep 2024 MODELS Companion '24 . ACM , AUT , pp. 970-979. 

https://doi.org/10.1145/3652620.3688219

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards Processing YAML Documents
with Model Management Languages

Ionut Predoaia
University of York
United Kingdom

ionut.predoaia@york.ac.uk

Dimitris Kolovos
University of York
United Kingdom

dimitris.kolovos@york.ac.uk

Antonio García-Domínguez
University of York
United Kingdom

a.garcia-dominguez@york.ac.uk

Matthias Lenk
Upstream Security

Germany
matthias.lenk@posteo.net

Wolfram Ebel
NetApp
Germany

wolfram.ebel@netapp.com

Jan Burkl
NetApp
Germany

jan.burkl@netapp.com

ABSTRACT

YAML is a widely used textual format for capturing structured

data. Despite its widespread use by software engineering practi-

tioners, there is little support for YAML in model management (e.g.

model-to-text, model-to-model) languages. This paper proposes an

approach for bridging the conceptual gap between contemporary

model management languages and YAML. A technical solution is

presented for enabling the use of model management tasks over

models captured in YAML. Our solution is evaluated in an industrial

case study on cloud infrastructure automation, involving the use

of model transformations that transform EMF models into YAML

models, with the goal of producing Infrastructure as Code through

Ansible Playbooks.

CCS CONCEPTS

· Software and its engineering → Model-driven software en-

gineering; · Computer systems organization→ Cloud com-

puting.

KEYWORDS

Model Management, YAML, MDE, EMF, Infrastructure as Code,

Ansible, Eclipse Epsilon, EMC Driver, Cloud Automation

ACM Reference Format:

Ionut Predoaia, Dimitris Kolovos, Antonio García-Domínguez, Matthias

Lenk, Wolfram Ebel, and Jan Burkl. 2024. Towards Processing YAML Docu-

ments with Model Management Languages. In ACM/IEEE 27th International

Conference on Model Driven Engineering Languages and Systems (MODELS

Companion ’24), September 22ś27, 2024, Linz, Austria. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3652620.3688219

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion ’24, September 22ś27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688219

1 INTRODUCTION

YAML is one of the most widely used languages for configuration

files and data storage, largely due to its simplicity and readabil-

ity. Many technologies and tools rely on YAML for DevOps (e.g.,

Kubernetes, Docker Compose, GitHub Actions, AWS CodeBuild,

Microsoft Azure Pipelines), for infrastructure management (e.g.,

Ansible, Terraform, AWS CloudFormation, Google Cloud Deploy-

ment Manager), and for API specification (e.g., OpenAPI, Swagger

UI), among other uses.

Many research efforts have involved domain-specific modelling

languages expressed through a YAML-based syntax, e.g., for cloud

provisioning [5], web services [9], DevOps configurations [3, 30],

data science workflows [8], functional decomposition [17], graph-

learning processes [33] and performance assessment [13]. Further-

more, YAML documents have been the object of research in many

works involving model-driven engineering (MDE) workflows. Ex-

amples of such works involve model transformations producing

DevOps artefacts [3, 6], the automatic code generation of software

systems [23], web services [9, 36] and schemas [7], and bidirectional

model transformations in the context of the 2023 Transformation

Tools Contest [2, 4, 15, 16].

This paper proposes an approach for treating YAML documents

as first-class models in MDE languages, by providing support to

seamlessly integrate them in MDE processes alongside traditional

models such as EMF-based models. Despite the fact that from an

MDE technical perspective, YAML is inferior compared to MOF

and Ecore for elaborating object-oriented metamodelling architec-

tures (see Section 2), due to its simplicity and popularity, it has the

potential to lower the entry barrier and can widen the adoption

of automated model management and MDE. This work aims to

make model management languages and MDE techniques more

accessible to YAML-literate engineers, by contributing a driver that

enables the management of schema-less YAML documents within

Eclipse Epsilon [11], a mature and well-established family of model

management languages and tools. We evaluate our approach on an

industrial case study related to cloud infrastructure automation, by

using model transformations for transforming EMF-based models

into (YAML-based) Ansible Playbooks.

Section 2 introduces the necessary background. Section 3 pro-

poses an approach to provide first-class support for YAML docu-

ments in model management languages. Section 4 illustrates an

industrial case study in which the proposed approach is evaluated.



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Predoaia et al.

Section 5 presents related work and, finally, Section 6 concludes

the paper, and provides directions for future work on this subject.

2 BACKGROUND

YAML1 is a case-sensitive data serialisation language designed to

be human-friendly and to improve readability by minimising the

amount of structural characters, and allowing data to be struc-

tured in a natural and meaningful way through indentation. In the

absence of a schema, it is technically inferior compared to contem-

porary metamodelling architectures such as EMF and MOF, as it

lacks support for types. However, a YAML schema can be used to

remedy this limitation, by defining the general structure to which

the document must adhere.

Three basic primitives are supported by YAML: scalars, map-

pings (hashes or dictionaries) and sequences (arrays or lists). Scalars

are used to represent a single atomic value (e.g., string, integer).

Mappings represent unordered collections of unique key-to-value

associations, similar to a dictionary or a map. The key-value pairs

of a mapping can either be written on separate lines, or they can be

written using an abbreviated form, as a comma-separated single line

enclosed within curly braces. Sequences are used to represent an

ordered list of nodes. Each entry from a list is defined on a separate

line with a dash at the same indentation level, or alternatively, a list

can be defined using an abbreviated form, as a comma-separated

single line enclosed within square brackets.

YAML also supports more advanced features such as tags, an-

chors and aliases. Tags are used to associate metadata to nodes [39].

Anchors and aliases provide the ability to reference and use the

same data multiple times within a single YAML document.

3 MANAGING YAML DOCUMENTS

This section presents an approach to provide support for model

management of models captured in YAML within Eclipse Epsilon.

Listing 1 will be used as a running example, representing a YAML

document that defines a project plan, describing the involved people,

tasks and effort allocation.

3.1 Eclipse Epsilon

Eclipse Epsilon [11, 18] is a framework of interoperable Java-based

languages and tools that aim to simplify model-based software

engineering tasks. Epsilon supports multiple types of model man-

agement operations, such as model-to-model transformation via the

Epsilon Transformation Language (ETL) [20], model-to-text trans-

formation via the Epsilon Generation Language (EGL) [34] and

model validation via the Epsilon Validation Language (EVL) [21],

among others.

The Epsilon Object Language (EOL) [19] is the core expression

language used by Epsilon languages, and can additionally be used

as a general-purpose standalone model management language for

automating other tasks than the ones handled by the previously

specified Epsilon languages. EOL provides features such as model

modification, multiple model access, conventional programming

constructs (e.g., variables, loops, branches), user interaction, profil-

ing, and support for transactions [22].

1https://yaml.org/

Figure 1: The Epsilon Model Connectivity Layer

The Epsilon Model Connectivity (EMC) [10] layer provides an

interface for uniformly interacting with models conforming to a

wide variety of technologies, e.g., the Eclipse Modelling Framework

(EMF), XML, CSV, MATLAB Simulink. The concrete implemen-

tations that enable Epsilon to support various technologies are

called EMC drivers, which are essentially classes that implement

the IModel interface presented in the class diagram from Fig-

ure 1. Epsilon-based programs can perform model management on

models of any technology for which an EMC driver is implemented.

3.2 EMC YAML Driver

An EMC driver has been implemented for YAML [12], allowing

Epsilon-based programs to performmodel management over YAML-

based models. The implementation of the EMC driver relies on the

SnakeYAML library [37]. Through the driver, a YAML document

from the file system is loaded into memory as a model, which

is then accessed, queried and modified. Finally, the in-memory

representation of the model is serialised back to the file system as

a YAML document, overwriting the original YAML document.

The EMC YAML driver supports the basic primitives of YAML:

scalars, mappings and sequences. Note that the driver does not

support more advanced features such as tags, anchors and aliases,

in the sense that it ignores them and does not permit their manipu-

lation. The driver follows the convention that each node consists of

a key-value pair separated by a colon, where the type of the value

dictates the type of the node. Therefore, a scalar node is a key-value

pair having a value of type scalar, a mapping node is a key-value

pair having a value of type mapping, and a list node is a key-value

pair having a value of type list. For instance, line 2 from Listing 1

represents a scalar node, lines 3ś5 represent a list node, and line 14

represents a mapping node. The root is considered a node with an

empty key and its value is the entire YAML document. The value

of the root node can be of type scalar, mapping, or list. The value of

a list node is a list comprising either scalar values or other nodes.



Towards Processing YAML Documents with Model Management Languages MODELS Companion ’24, September 22–27, 2024, Linz, Austria

In the following, we illustrate how Epsilon-based programs (e.g.,

EOL scripts) can use the EMC YAML driver to query andmanipulate

the YAML document in Listing 1. We consider the name of a node

to be its key, e.g., the scalar node from line 2 has the name of title.

1 project:

2 title: IoT Home Automation

3 people:

4 - name: Alice

5 - name: Bob

6 tasks:

7 - title: Implementation

8 duration: 3

9 effort:

10 - person: Bob

11 percentage: 60

12 - person: Alice

13 percentage: 40

14 metadata: {year: 2024, reviewed: true}

Listing 1: Running Example — YAML Document

1 Node.all.println ();

2 ScalarNode.all.println ();

3 MappingNode.all.println ();

4 ListNode.all.println ();

Listing 2: Accessing all nodes

1 // last scalar node named "title"

2 s_title.all.last (). println ();

3
4 // first mapping node named "metadata"

5 m_metadata.all.first (). println ();

6
7 // first list node named "effort"

8 l_effort.all.first (). println ();

Listing 3: Accessing nodes by key and type

1 var node = s_duration.all.first ();

2 node.name.println (); // duration

3 node.type.println (); // ScalarNode

4 node.value.println (); // 3

5 (node.s_value + 1). println (); // 31

6 (node.i_value + 1). println (); // 4

7 (node.d_value + 1). println (); // 4.0

8 (node.f_value + 1). println (); // 4.0

9 node.b_value.println (); // false

Listing 4: Accessing node properties

1 // name=Alice

2 var nameNode1 = new ScalarNode("name", "Alice");

3 var nameNode2 = new s_name("Alice");

4
5 // project ={}

6 var projectNode1 = new MappingNode("project");

7 var projectNode2 = new m_project;

8
9 // tasks =[{}, {}]

10 var tasksNode1 = new ListNode("tasks", 2);

11 var tasksNode2 = new l_tasks (2);

Listing 5: Creating nodes

Accessing All Nodes. Listing 2 shows how to access all nodes of a

specific type from a YAML document. Line 1 retrieves and prints a

sequence containing all nodes from the YAML document, regardless

of their type. Line 2 retrieves and prints a sequence containing all

scalar nodes, i.e., the ones with the key of title, name, duration,

person, percentage, year and reviewed. Note that line 2 does not

retrieve the atomic scalar values inside a list node, as they are not

considered nodes by the driver. To access the scalar values from a

list node, one has to retrieve the list node and then iterate its value

property. Line 3 prints all mapping nodes, i.e., those with the key of

project and metadata. Line 4 prints all list nodes, i.e., those having

the key of people, tasks and effort.

Accessing Nodes by Key and Type. Listing 3 shows how to query

nodes by their key and type. The s_ prefix followed by the key of

the node is used to query all scalar nodes with the specified key.

Similarly, them_ prefix is used for mapping nodes, and the l_ prefix

for list nodes, to query nodes with the specified key. Line 2 from

Listing 3 prints the last scalar node named title (line 7 from List-

ing 1), as follows: łtitle=Implementationž. Line 5 prints the

first mapping node named metadata (line 14 from Listing 1), as fol-

lows: łmetadata={year=2024, reviewed=true}ž. Line 8

prints the first list node named effort (lines 9ś13 from Listing 1):

łeffort=[{person=Bob, percentage=60},

{person=Alice, percentage=40}]ž.

Accessing Node Properties. Listing 4 presents a set of properties

that can be accessed on a node: name, type, value, s_value, i_value,

d_value, f_value and b_value. The comments from the listing repre-

sent the output of each line. Line 1 from Listing 4 fetches the first

scalar node named duration (line 8 from Listing 1). The name of the

node is printed at line 2 from Listing 4. Line 3 prints the type of the

node, i.e., ScalarNode. Line 4 prints the value of the node, whereas

lines 5ś9 fetch the value and then convert it to a different data type.

Respectively, line 5 converts the value to a string, line 6 converts

it to an integer, line 7 converts it to a double, line 8 converts it

to a float and line 9 converts it to a boolean. If the value of the

node named duration would have been a non-numeric string (e.g.,

łweeksž), casting it to the incorrect type would not have broken

the program, e.g., casting the string to an integer would return a

value of 1, or casting it to a boolean would return a value of false.

The conversion prefixes from lines 5ś9 are necessary for managing

schema-less YAML documents, as they have no typing information.

Creating Nodes. Listing 5 creates nodes of each type and the com-

ments represent the output of printing each node. To instantiate

a new node, the new operator must be used, followed by the type

of the node, either ScalarNode, MappingNode or ListNode. Alterna-

tively, the convention for accessing and querying nodes can be used

for creating nodes. For example, using the new operator followed

by s_name creates a scalar node with the key of name. Lines 2ś3

create two identical scalar nodes with the key of name and value of

Alice. Lines 6ś7 create two identical mapping nodes with the key of

project and an empty value. Finally, lines 10ś11 create two identical

list nodes named tasks containing two empty entries. The created

mapping nodes and list nodes can be populated programmatically

at a later point.



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Predoaia et al.

1 var s = new ScalarNode("status", "complete");

2
3 // set scalar node value

4 s_duration.all.first (). value = 5;

5
6 // add scalar node to mapping node

7 m_metadata.all.first (). value.appendNode(s);

8
9 // add scalar node to list node

10 l_tasks.all.first (). value.addRow ();

11 l_tasks.all.first (). value.at(1). appendNode(s);

Listing 6: Modifying nodes

1 // delete all scalar nodes named "name"

2 delete s_name.all;

3
4 // delete the first mapping node named "metadata"

5 delete m_metadata.all.first ();

6
7 // delete the first list node named "effort"

8 delete l_effort.all.first ();

Listing 7: Deleting nodes

Modifying Nodes. Listing 6 presents a way for modifying a scalar

node, a mapping node and a list node. Line 4 from Listing 6 sets the

value of the first scalar node named duration (line 8 from Listing 1)

to 5. Line 7 from Listing 6 appends the scalar node s, which was

defined at line 1, to the mapping node named metadata (line 14

from Listing 1). Line 10 from Listing 6 adds a new entry to the first

list node named tasks (lines 6ś13 from Listing 1), and line 11 from

Listing 6 appends the scalar node s to the newly added entry.

DeletingNodes. Listing 7 deletes scalar nodes, a mapping node and

a list node by using the delete operator. Line 2 from Listing 7 deletes

all scalar nodes with the key of name (lines 4 and 5 from Listing 1).

Line 5 from Listing 7 deletes the first mapping node namedmetadata

(line 14 from Listing 1). Finally, line 8 from Listing 7 deletes the first

list node named effort (lines 9ś13 from Listing 1). Note that deletion

occurs by value and not by reference, e.g., if the same scalar node

is appended to multiple list nodes, and then one of those list nodes

is deleted, then all other list nodes will still contain the appended

scalar node.

Creating complete YAML documents. Listing 8 programmat-

ically creates from scratch the complete YAML document from

Listing 1. Note that at(index:Integer) is an operation2 that

returns the element at a specific index from a collection. Line 2

sets the YAML document to be a mapping node. Lines 5ś20 from

Listing 8 create all nodes corresponding to the data of the YAML

document from Listing 1. Lines 23 and 24 populate the list node

named people, lines 27ś30 populate the list node named effort and

lines 33ś35 populate the list node named tasks. Lines 38 and 39 pop-

ulate the mapping node named metadata and lines 42ś45 populate

the mapping node named project. Finally, line 48 adds the mapping

node named project to the YAML document.

2Epsilon supports a range of built-in operations on collections and sequences:
https://eclipse.dev/epsilon/doc/eol/#collections-and-maps

1 // set the YAML document as a mapping node

2 YAMLDoc.setRootAsMap ();

3
4 // create all nodes from the YAML document

5 var project = new m_project;

6 var title0 = new s_title("IoT Home Automation");

7 var people = new l_people (2);

8 var name1 = new s_name("Alice");

9 var name2 = new s_name("Bob");

10 var tasks = new l_tasks (1);

11 var title = new s_title("Implementation");

12 var duration = new s_duration (3);

13 var effort = new l_effort (2);

14 var person1 = new s_person("Bob");

15 var person2 = new s_person("Alice");

16 var percentage1 = new s_percentage (60);

17 var percentage2 = new s_percentage (40);

18 var metadata = new m_metadata;

19 var year = new s_year (2024);

20 var reviewed = new s_reviewed(true);

21
22 // populate the "people" list node

23 people.value.at(0). appendNode(name1);

24 people.value.at(1). appendNode(name2);

25
26 // populate the "effort" list node

27 effort.value.at(0). appendNode(person1 );

28 effort.value.at(0). appendNode(percentage1 );

29 effort.value.at(1). appendNode(person2 );

30 effort.value.at(1). appendNode(percentage2 );

31
32 // populate the "tasks" list node

33 tasks.value.at(0). appendNode(title);

34 tasks.value.at(0). appendNode(duration );

35 tasks.value.at(0). appendNode(effort );

36
37 // populate the "metadata" mapping node

38 metadata.value.appendNode(year);

39 metadata.value.appendNode(reviewed );

40
41 // populate the "project" mapping node

42 project.value.appendNode(title0 );

43 project.value.appendNode(people );

44 project.value.appendNode(tasks);

45 project.value.appendNode(metadata );

46
47 // add the "project" node to the YAML document

48 YAMLDoc.getRoot (). value.appendNode(project );

Listing 8: Creating a complete YAML document from scratch

4 CASE STUDY

The use case is an industrial case study provided by NetApp [29], a

global software company that delivers hybrid cloud data services

and data management services. Note that a part of this case study

has been briefly presented in [32].

4.1 Description

Infrastructure automation can be enabled using a DevOps practice

called Infrastructure as Code (IaC). The management and provi-

sioning of infrastructure is performed through definition files that

contain declarative code. Once the infrastructure is defined using

code, it is rolled out to systems through automated processes [24].

The main benefit of IaC is automation, as it automates the deploy-

ment, configuration, and management of infrastructure, and this

prevents unforeseen issues that can be caused by human errors.

One of the most widely used infrastructure automation technolo-

gies today is Ansible [1]. Ansible is an automation and orchestration



Towards Processing YAML Documents with Model Management Languages MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 2: Case Study — Model Transformations

tool used for software provisioning, configuration management,

and application deployment that delivers IaC. One describes the

desired end state of a system, and then Ansible’s processes reliably

configure the system to the desired end state [38]. Ansible Play-

books are the core component of Ansible, and their syntax is based

on YAML.

For infrastructure automation, NetApp uses Ansible Playbooks,

among other technologies. NetApp’s Ansible Playbooks comprise

data of infrastructure components and are consumed by Python-

based scripts which deploy the described infrastructures to the

cloud. Ansible Playbooks often contain hundreds of lines of code,

therefore it can be time-consuming to get a clear high-level mental

image of an infrastructure environment. Note that documenta-

tion and examples of concrete Ansible Playbooks of NetApp are

publicly available in [25]. Although Ansible Playbooks use the

human-readable syntax of YAML, professionals without a technical

background often have difficulties in fully understanding them. As

such, there is some collective hesitation and lack of trust in the

adoption of automation, therefore, manual operations are generally

preferred when planning for complex infrastructure environments.

The design and configuration of hybrid multi-cloud infrastruc-

ture environments is complex and requires specialist cloud comput-

ing expertise. When planning enterprise data storage environments,

a multitude of parties are involved, such as security experts, cloud

and storage architects, and operational and legal teams. Due to

the involvement of some non-technical professionals, there is of-

ten a lack of shared understanding of the described infrastructure

between these parties. Therefore, instead of using Ansible Play-

books for the automation of infrastructure environments, it would

be beneficial to use a set of higher-level abstractions that could

potentially be understood by all parties involved and can lower

the entry barrier to the adoption of cloud services. To this end, a

dedicated hybrid graphical-textual DSL has been developed, that

covers a set of higher-level abstractions over NetApp’s Public Cloud

Services (PCS). Note that a hybrid graphical-textual DSL operates

over a single semantic model through a part-graphical and part-

textual syntax [31]. Such DSLs are effectively used through hybrid

graphical-textual model editors, as they allow for editing some parts

of the model through graphical representations and other parts of

the model through textual representations.

The DSL is used for modelling infrastructure specifications, as it

provides a graphical syntax for the abstraction of high-level infras-

tructure components and textual syntaxes for defining behaviour

and additional lower-level details. NetApp’s staff and customers

that are involved in the planning phase of enterprise infrastructure

environments can quickly get a high-level understanding of an en-

vironment by looking at the modelled infrastructure specification.

The workflow of the desired solution for the case study is illus-

trated in Figure 2. The solution is divided into a forward engineering

process, a reverse engineering process, and a round-trip engineer-

ing process. The rationale of the desired solution is to leverage

model transformations for automatically generating IaC (i.e., an

Ansible Playbook) that is equivalent to the infrastructure specifica-

tion defined in the hybrid graphical-textual model editor, and vice

versa.

In the forward engineering process, a storage designer will model

the infrastructure environment using the hybrid graphical-textual

DSL. The modelled infrastructure specification will be used to gen-

erate a corresponding Ansible Playbook. Optionally, a DevOps en-

gineer may manually edit the Ansible Playbook for fine-grained

adjustments or for including sensitive credentials. Next, the Ansible

Playbook is executed, and the corresponding infrastructure compo-

nents will be automatically deployed and configured in the cloud.

In the reverse engineering process, an Ansible Playbook is de-

rived according to the infrastructure components managed in the

cloud. As in the forward engineering process, a DevOps engineer

can optionally edit the Ansible Playbook. Finally, by using the

Ansible Playbook as input, an infrastructure specification will be

derived and displayed in the hybrid graphical-textual model editor.

The round-trip engineering process is an ongoing and bidirec-

tional process, as each change in the modelled infrastructure envi-

ronment will be directly reflected in the Ansible Playbook, and each

change in the Ansible Playbook will be reflected in the modelled in-

frastructure environment displayed in the hybrid graphical-textual

model editor.



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Predoaia et al.

Figure 3: Metamodel Excerpt of the Infrastructure Services DSL

4.2 Infrastructure Services DSL

The DSL is used for modelling the infrastructure services and com-

ponents that will be deployed to the cloud using IaC. Figure 3

illustrates a metamodel excerpt of the developed DSL, which con-

tains the domain’s core abstractions. The DSL is based on EMF:

accordingly, for the solution of the case study we interact with EMF-

based models conforming to the Ecore metamodel that is described

below.

OpenNetwork Technology for Appliance Products (ONTAP) [28]

is NetApp’s proprietary operating system that provides optimised

storage functions, and it can be deployed on physical or virtual

appliances. Cloud Volumes ONTAP (CVO) [27] is a cloud instance

of ONTAP. A Deployment configuration contains a SnapshotPolicy

and a list of infrastructure services of type PCS that are deployed

to an Environment (e.g., NetApp BlueXP [26]), in a specific public

cloud (e.g., AWS). The types of infrastructure services are: CVO,

CloudBackup, CloudTiering, ReplicationPolicy and SnapMirror. A

CVO instance contains a list of volumes that define logical storage

areas. A CloudBackup service provides a single control plane that

facilitates the implementation of custom and efficient backup and

recovery strategies. A CloudTiering service automatically tiers inac-

tive data from on-premises ONTAP clusters to cloud object storage.

SnapMirror is a proprietary protocol that replicates data from a

source volume to a target volume of a CVO instance, based on a

SnapshotPolicy. A ReplicationPolicy defines a replication strategy

comprising replication mappings of type SnapMirror.

4.3 Model Transformations

In the context of the case study, we implemented the forward engi-

neering process by leveraging the EMC YAML driver. The reverse

and round-trip engineering processes have not been implemented

yet in our work. Accordingly, we demonstrate how the driver en-

ables model management, by using a model-to-model transforma-

tion to transform an EMF-based model conforming to the meta-

model of the DSL into a YAML model, representing an Ansible

Playbook. By using a model-to-model transformation such as the

one from Listing 9, we are able to transform an EMF model as the

one from Listing 10, into the YAML model from Listing 11, which

represents an Ansible Playbook used by NetApp engineers to create

and deploy CVO instances to the cloud. Note that Listing 9 does

not represent the complete model-to-model transformation, but

rather a relevant excerpt. Likewise, Listing 10 does not represent

the complete EMF model, as it includes only the relevant model

elements and attributes for showcasing the model transformation

from Listing 9.

Listing 9 is written in ETL, containing a set of transformation

rules that specify how to transform EMF model elements into their

YAML counterparts. The transformation rule at lines 1ś13 specifies

that a Deployment model element, i.e., the root of the EMF model,

must be transformed into a list node representing the root of the

YAML model, containing one entry for each CVOConfiguration. The

EMF model contains two CVOConfiguration model elements (CVO

and CVO_HA are subtypes of CVOConfiguration), therefore, the list

node representing the root of the YAML model is populated with

two entries: lines 1ś16 from Listing 11 represent the first entry and

lines 17ś24, the second.

The transformation rules at lines 15ś69 specify how EMF model

elements of type CVO_HA, AWSNetworkingHA, CloudBackup and

CloudTiering are transformed into corresponding mapping nodes,

whose entries are appended to the root list node of the YAMLmodel.

For brevity, Listing 9 does not include the transformation rules for

the EMF model elements of type CVO and AWSNetworking, as they

are similar to the ones for CVO_HA and AWSNetworkingHA. Note



Towards Processing YAML Documents with Model Management Languages MODELS Companion ’24, September 22–27, 2024, Linz, Austria

1 rule Deployment_Rule

2 transform x : Emf!Deployment

3 to y : Yaml!ListNode {

4 if (x.pcs.isDefined ()) {

5 for (pcs_item in x.pcs) {

6 if(pcs_item.isKindOf(Emf!CVOConfiguration )) {

7 y.value.addRow ();

8 y.value.last (). appendEntries(pcs_item.equivalent (). value);

9 }

10 }

11 }

12 Yaml.root.value = y;

13 }

14
15 rule CVO_HA_Rule

16 transform x : Emf!CVO_HA

17 to y : Yaml!MappingNode {

18 y.value.appendNode(new Yaml!s_name("Create NetApp CVO for AWS HA"));

19 var configuration_node = new Yaml!`m_netapp.cloudmanager.na_cloudmanager_cvo_aws `;

20 configuration_node.value.appendNode(new Yaml!s_is_ha(true ));

21 if (x.name.isDefined ())

22 configuration_node.value.appendNode(new Yaml!s_name(x.name ));

23 if (x.awsnetworkingha.isDefined ())

24 configuration_node.value.appendEntries(x.awsnetworkingha.equivalent (). value);

25 if (x.backup_volumes_to_cbs.isDefined ())

26 configuration_node.value.appendEntries(x.backup_volumes_to_cbs.equivalent (). value);

27 if (x.capacity_tier.isDefined ())

28 configuration_node.value.appendEntries(x.capacity_tier.equivalent (). value);

29 y.value.appendNode(configuration_node );

30 }

31
32 rule AWSNetworkingHA_Rule

33 transform x : Emf!AWSNetworkingHA

34 to y : Yaml!MappingNode {

35 if (x.region.isDefined ())

36 y.value.appendNode(new Yaml!s_region(x.region ));

37 if (x.vpc_id.isDefined ())

38 y.value.appendNode(new Yaml!s_vpc_id(x.vpc_id ));

39 if (x.node1_subnet_id.isDefined ())

40 y.value.appendNode(new Yaml!s_node1_subnet_id(x.node1_subnet_id ));

41 if (x.node2_subnet_id.isDefined ())

42 y.value.appendNode(new Yaml!s_node2_subnet_id(x.node2_subnet_id ));

43 if (x.failover_mode.isDefined ())

44 y.value.appendNode(new Yaml!s_failover_mode(x.failover_mode ));

45 if (x.mediator_subnet_id.isDefined ())

46 y.value.appendNode(new Yaml!s_mediator_subnet_id(x.mediator_subnet_id ));

47 if (x.mediator_key_pair_name.isDefined ())

48 y.value.appendNode(new Yaml!s_mediator_key_pair_name(x.mediator_key_pair_name ));

49 if (x.cluster_floating_ip.isDefined ())

50 y.value.appendNode(new Yaml!s_cluster_floating_ip(x.cluster_floating_ip ));

51 if (x.data_floating_ip.isDefined ())

52 y.value.appendNode(new Yaml!s_data_floating_ip(x.data_floating_ip ));

53 if (x.data_floating_ip2.isDefined ())

54 y.value.appendNode(new Yaml!s_data_floating_ip2(x.data_floating_ip2 ));

55 if (x.svm_floating_ip.isDefined ())

56 y.value.appendNode(new Yaml!s_svm_floating_ip(x.svm_floating_ip ));

57 }

58
59 rule CloudBackup_Rule

60 transform x : Emf!CloudBackup

61 to y : Yaml!MappingNode {

62 y.value.appendNode(new Yaml!s_backup_volumes_to_cbs("yes"));

63 }

64
65 rule CloudTiering_Rule

66 transform x : Emf!CloudTiering

67 to y : Yaml!MappingNode {

68 y.value.appendNode(new Yaml!s_capacity_tier("S3"));

69 }

70
71 operation Native("java.util.LinkedHashMap") appendEntries(source : Native("java.util.LinkedHashMap")) {

72 for (entry in source.entrySet ())

73 self.appendNode(entry);

74 }

Listing 9: Model-to-Model Transformation in ETL from an EMF Model to a YAML Model



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Predoaia et al.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <pcs:Deployment xmi:version="2.0" xmlns:xmi="http ://www.omg.org/XMI" xmlns:pcs="pcs.netapp.org">

3 <environment name="BlueXP"/>

4 <snapshotPolicy name="snapshotPolicyDefault"/>

5 <pcs xsi:type="pcs:CloudBackup" name="CloudBackupMain" cloudstorage="CVO_1"/>

6 <pcs xsi:type="pcs:CloudTiering" name="CloudTieringDev" cloudstorage="CVO_HA_2"/>

7 <pcs xsi:type="pcs:CVO" name="CVO_1" backup_volumes_to_cbs="CloudBackupMain" awsnetworking="04674988 - a733".../>

8 <pcs xsi:type="pcs:CVO_HA" name="CVO_HA_2" capacity_tier="CloudTieringDev" awsnetworkingha="604aae99 -e8e8".../>

9 <awsconfiguration xsi:type="pcs:AWSNetworking" region="UK West" vpc_id="2fd70595 -653d" subnet_id="04674988 - a733"

10 cvo="CVO_1"/>

11 <awsconfiguration xsi:type="pcs:AWSNetworkingHA" region="US North" vpc_id="4d0ad751 -ae69" cvo_ha="CVO_HA_2"

node1_subnet_id="604aae99 -e8e8" node2_subnet_id="c0136b8f -ee50" failover_mode="PrivateIP" mediator_subnet_id=

12 "0301dedc -d542" mediator_key_pair_name="mediator_key" cluster_floating_ip="237.95.233.7" data_floating_ip=

13 "6.118.90.145" data_floating_ip2="6.118.90.146" svm_floating_ip="234.119.77.179"/>

14 ...

15 </pcs:Deployment >

Listing 10: EMF Model in XMI Format Conforming to the Metamodel of the DSL

1 - name: Create NetApp CVO for AWS HA

2 netapp.cloudmanager.na_cloudmanager_cvo_aws:

3 is_ha: true

4 name: CVO_HA_2

5 region: US North

6 vpc_id: 4d0ad751 -ae69

7 node1_subnet_id: 604aae99 -e8e8

8 node2_subnet_id: c0136b8f -ee50

9 failover_mode: PrivateIP

10 mediator_subnet_id: 0301dedc -d542

11 mediator_key_pair_name: mediator_key

12 cluster_floating_ip: 237.95.233.7

13 data_floating_ip: 6.118.90.145

14 data_floating_ip2: 6.118.90.146

15 svm_floating_ip: 234.119.77.179

16 capacity_tier: S3

17 - name: Create NetApp CVO for AWS single

18 netapp.cloudmanager.na_cloudmanager_cvo_aws:

19 is_ha: false

20 name: CVO_1

21 region: UK West

22 vpc_id: 2fd70595 -653d

23 subnet_id: 04674988 - a733

24 backup_volumes_to_cbs: 'yes'

Listing 11: Ansible Playbook for Creating CVO Instances

that model element types with łHAž as a suffix are related to high

availability. Furthermore, lines 71ś74 define a utility method that

appends the entries of a mapping node to the value of another

mapping node, which is called by the transformation rules from

lines 1ś30.

Some data is lost during the forward engineering process, e.g.,

the transformation rule at lines 65ś69 from Listing 9 produces from

a model element of type CloudTiering, a scalar node with a hard-

coded value (i.e., capacity_tier:S3), therefore the properties

of the CloudTieringmodel element are lost. For the reverse engineer-

ing process, an opposite transformation of the one from Listing 9

would be required, to transform a YAML model into an EMF model.

However, the reverse transformation must recover any data that

was lost during the forward engineering process, e.g., a scalar node

with the key of capacity_tier would have to be transformed into a

CloudTiering model element having empty or predefined values for

its properties. A challenge that we may encounter in the implemen-

tation of the round-trip engineering process is to maintain constant

identifiers in the EMFmodel, to avoid losing visual information (e.g.,

diagram coordinates) of a model element displayed in a graphical

diagram. Moreover, a challenge related to synchronisation could

also arise, as merging the EMF model with the previously generated

YAML model can be non-trivial in the case they both have been

modified simultaneously.

5 RELATED WORK

YAML Documents as Models. At the 2023 edition of the Trans-

formation Tools Contest, the case described in [15] presented the

challenge of implementing asymmetric and directed bidirectional

transformations between a YAML model and a model of Docker

Compose specifications. An EMF-based reference solution is pro-

posed in [15], which consists of model-to-model transformations

that transform a model conforming to a Containers DSL metamodel

to a model conforming to a metamodel of a simplified YAML spec-

ification, and vice versa. The implementation relies on a utility

function based on SnakeYAML [37] for converting YAML docu-

ments into EMF models. Three papers proposed solutions to the

challenge presented in [15], implementing asymmetric and directed

bidirectional transformations involving YAML documents, by us-

ing YAMTL and EMF-Syncer [2], BXtendDSL [4], and the .NET

Modelling Framework (NMF) [16]. However, the approaches from

[2, 4, 15, 16] do not describe a generic and uniform technique for

interacting with YAML documents, such as the EMC YAML driver.

The work from [3] adopts the Topology and Orchestration Spec-

ification for Cloud Applications (TOSCA) standard for modelling

cloud resources in a technology-independent way. To this end,

Xtext is used to define YAML-like textual syntaxes that are used to

represent underlying models conforming to the TOSCAmetamodel,

a Docker Compose-inspired metamodel and a Dockerfile-inspired

metamodel. This work proposes a model-driven translation tech-

nique that transforms TOSCA artefacts into native DevOps-specific

artefacts, by using model-to-model and model-to-text transforma-

tions for transforming TOSCAmodels into Compose and Dockerfile

models stored in YAML format. A similar model-driven approach

is implemented in [6], which involves in addition to TOSCA, the

Open Cloud Computing Interface (OCCI), a standardised interface

for managing cloud resources that aims to avoid cloud provider



Towards Processing YAML Documents with Model Management Languages MODELS Companion ’24, September 22–27, 2024, Linz, Austria

lock-in. In this work, the YamlBeans [40] library is used for trans-

lating YAML documents into TOSCA models, which are used in a

model-driven cloud orchestration process involving OCCI models.

EMC Drivers. Similar research efforts have been carried out in

[14, 22, 35, 41], by implementing EMC drivers to extend Eclipse

Epsilon to support a wider range of metamodelling technologies.

The methodology behind these works is similar to ours, as they

essentially enable model management over models captured in a

different representation format.

In the work from [22], an EMC driver has been implemented

to enable the interaction with schema-less XML documents. As a

result, Epsilon-based programs can perform model management

operations on top of plain XML documents. The driver has com-

parable capabilities to the EMC YAML driver, and it uses a similar

convention for accessing and querying nodes, by using prefixes

followed by names.

An EMC driver has been implemented in [14], with the aim

of treating spreadsheets as models in MDE processes. Therefore,

Epsilon-based programs can access, query and modify spreadsheets

as if they were models. The driver treats worksheets as model

element types, columns as their properties and rows as concrete

model elements.

Additional support has been added to Epsilon for managing

MATLAB Simulink models [35] and PTC Integrity Modeller (IM)

models [41], to avoid the need to first transform them into EMF-

compatible representations.

6 CONCLUSIONS AND FUTUREWORK

We advocated in this paper for the importance of adding support for

YAML documents to the MDE toolkit, as a means of lowering the

entrance barrier for newcomers in MDE. We proposed an approach

to add first-class support for YAML to the Eclipse Epsilon framework

such that schema-less YAML documents can seamlessly be used

in model management operations. Our approach was evaluated

in an industrial case study on cloud infrastructure automation, by

implementing a forward engineering process that generates YAML

models from EMF models, to produce Ansible Playbooks.

In future work, we plan to implement the reverse and round-trip

engineering processes, in the context of the case study, which will

involve tackling challenges related to synchronisation and constant

model element identifiers. In addition, we plan to evaluate our ap-

proach with other MDE tasks such as model validation, comparison

and code generation.

ACKNOWLEDGMENT

The work in this paper has been funded through NetApp, the HI-

CLASS InnovateUK project (contract no. 113213), and the SCHEME

InnovateUK project (contract no. 10065634).

REFERENCES
[1] Ansible. 2024. Website. [Online]. Available: https://www.ansible.com, (Last

Accessed: 2024-08-15).
[2] Artur Boronat. 2023. Asymmetric and Directed Bidirectional Transformation for

Container Orchestrations with YAMTL and EMF-Syncer. In 15th Transformation
Tool Contest (TTC) part of the Software Technologies: Applications and Foundations
(STAF).

[3] Hayet Brabra, Achraf Mtibaa, Walid Gaaloul, Boualem Benatallah, and Faiez
Gargouri. 2019. Model-Driven Orchestration for Cloud Resources. In 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE, 422ś429.

[4] Thomas Buchmann. 2023. A BXtendDSL Solution to the TTC2023 Asymmetric
and Directed Bidirectional Transformation for Container Orchestrations Case. In
15th Transformation Tool Contest (TTC) part of the Software Technologies: Applica-
tions and Foundations (STAF).

[5] Domenico Calcaterra, Vincenzo Cartelli, Giuseppe Di Modica, and Orazio Tomar-
chio. 2018. A Framework for the Orchestration and Provision of Cloud Services
Based on TOSCA and BPMN. In International Conference on Cloud Computing
and Services Science (CLOSER). Springer, 262ś285.

[6] Stéphanie Challita, Fabian Korte, Johannes Erbel, Faiez Zalila, Jens Grabowski,
and Philippe Merle. 2021. Model-based cloud resource management with TOSCA
and OCCI. Software and Systems Modeling (2021), 1ś23.

[7] Alberto Hernández Chillón, Diego Sevilla Ruiz, Jesus García Molina, and Sev-
erino Feliciano Morales. 2019. A Model-Driven Approach to Generate Schemas
for Object-Document Mappers. IEEE Access 7 (2019), 59126ś59142.

[8] Robert A DeLine. 2021. Glinda: Supporting Data Science with Live Programming,
GUIs and a Domain-specific Language. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1ś11.

[9] Amirhossein Deljouyi and Raman Ramsin. 2022. MDD4REST: Model-Driven
Methodology for Developing RESTful Web Services. In Proceedings of the 10th
International Conference on Model-Driven Engineering and Software Development
- Volume 1: MODELSWARD,. INSTICC, SciTePress, 93ś104.

[10] Eclipse Epsilon. 2024. EMC Layer. [Online]. Available: https://eclipse.dev/epsilon/
doc/emc, (Last Accessed: 2024-08-15).

[11] Eclipse Epsilon. 2024. Website. [Online]. Available: https://eclipse.dev/epsilon,
(Last Accessed: 2024-08-15).

[12] EMC YAML Driver. 2022. Repository. [Online]. Available: https://github.com/
epsilonlabs/emc-yaml, (Last Accessed: 2024-08-15).

[13] Vincenzo Ferme and Cesare Pautasso. 2017. Towards Holistic Continuous Soft-
ware Performance Assessment. In Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering Companion. 159ś164.

[14] Mārtin, š Francis, Dimitrios S Kolovos, Nicholas Matragkas, and Richard F Paige.
2013. Adding Spreadsheets to the MDE Toolkit. In Proceedings of the 16th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS).
Springer, 35ś51.

[15] Antonio Garcia-Dominguez. 2023. Asymmetric and Directed Bidirectional Trans-
formation for Container Orchestrations. In 15th Transformation Tool Contest
(TTC) part of the Software Technologies: Applications and Foundations (STAF).

[16] Georg Hinkel. 2023. An NMF Solutions to the TTC2023 Containers to MiniYAML
Case. In 15th Transformation Tool Contest (TTC) part of the Software Technologies:
Applications and Foundations (STAF).

[17] Pierre Kelsen, Qin Ma, and Christian Glodt. 2020. A Lightweight Modeling
Approach Based on Functional Decomposition. Journal of Object Technology 19,
2 (2020).

[18] Dimitrios Kolovos. 2008. An Extensible Platform for Specification of Integrated
Languages for Model Management. Ph. D. Dissertation. University of York.

[19] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. The Epsilon Ob-
ject Language (EOL). InModel Driven Architecture ś Foundations and Applications
(ECMDA-FA). Springer, 128ś142.

[20] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2008. The Epsilon
Transformation Language. In Theory and Practice of Model Transformations: First
International Conference, ICMT 2008. Proceedings 1. 46ś60.

[21] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2009. On the Evolution
of OCL for Capturing Structural Constraints in Modelling Languages. In Rigorous
Methods for Software Construction and Analysis: Essays Dedicated to Egon Börger
on the Occasion of His 60th Birthday. 204ś218.

[22] Dimitrios S Kolovos, Louis M Rose, James Williams, Nicholas Matragkas, and
Richard F Paige. 2012. A Lightweight Approach for Managing XML Documents
with MDE Languages. In Modelling Foundations and Applications: 8th European
Conference, ECMFA 2012. Proceedings 8. 118ś132.

[23] YA Mensah, M Agbaje, A Izang, OF Ajayi, O Bamidele, and AI Amusa. 2023.
Reactive Code Generation for Modular Web Engineering (MWE) Framework.
International Journal of Scientific Research and Engineering Development 6, 5
(2023).

[24] Kief Morris. 2016. Infrastructure as Code: Managing Servers in the Cloud, Part I.
Foundations. "O’Reilly Media".

[25] NetApp. 2024. Ansible Playbooks Collection. [Online]. Available: https://docs.
ansible.com/ansible/latest/collections/netapp, (Last Accessed: 2024-08-15).

[26] NetApp. 2024. BlueXP. [Online]. Available: https://www.netapp.com/bluexp,
(Last Accessed: 2024-08-15).

[27] NetApp. 2024. Cloud Volumes ONTAP. [Online]. Available: https://bluexp.netapp.
com/ontap-cloud, (Last Accessed: 2024-08-15).

[28] NetApp. 2024. ONTAP. [Online]. Available: https://www.netapp.com/data-
management/ontap-data-management-software, (Last Accessed: 2024-08-15).

[29] NetApp. 2024. Website. [Online]. Available: https://www.netapp.com, (Last
Accessed: 2024-08-15).



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Predoaia et al.

[30] Bruno Piedade, João Pedro Dias, and Filipe F Correia. 2020. An empirical study
on visual programming docker compose configurations. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings (MODELS-C). 1ś10.

[31] Ionut Predoaia. 2023. Towards Systematic Engineering of Hybrid Graphical-
Textual Domain-Specific Languages. In Proceedings of the 26th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings (MODELS-C). IEEE, 153ś158.

[32] Ionut Predoaia, Dimitris Kolovos, Matthias Lenk, and Antonio García-Domínguez.
2023. Streamlining the Development of Hybrid Graphical-Textual Model Editors
for Domain-Specific Languages. Journal of Object Technology 22, 2 (2023), 1ś14.

[33] Zahra Rajaei, Shekoufeh Kolahdouz-Rahimi, Massimo Tisi, and Frédéric Jouault.
2021. A DSL for Encoding Models for Graph-Learning Processes. In 20th Interna-
tional Workshop on OCL and Textual Modeling.

[34] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. 2008.
The Epsilon Generation Language. InModel Driven ArchitectureśFoundations and
Applications: 4th European Conference, ECMDA-FA 2008. Proceedings 4. 1ś16.

[35] Beatriz Sánchez, Athanasios Zolotas, Horacio Hoyos Rodriguez, Dimitris Kolovos,
and Richard Paige. 2019. On-the-fly Translation and Execution of OCL-like

Queries on Simulink Models. In Proceedings of the 22nd IEEE/ACM International
Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE,
205ś215.

[36] Anthony Savidis and Constantine Stephanidis. 2006. From requirements to
source code: a Model-Driven Engineering approach for RESTful web services.
Automated Software Engineering 13, 2 (2006), 303ś339.

[37] Snake YAML. 2024. Repository. [Online]. Available: https://bitbucket.org/
snakeyaml/snakeyaml, (Last Accessed: 2024-08-15).

[38] Sesto Vincent. 2020. Practical Ansible: Configuration Management from Start to
Finish. Apress.

[39] YAML. 2021. Specification v1.2.2. [Online]. Available: https://yaml.org/spec/1.2.2,
(Last Accessed: 2024-08-15).

[40] YamlBeans. 2024. Repository. [Online]. Available: https://github.com/
EsotericSoftware/yamlbeans, (Last Accessed: 2024-08-15).

[41] Athanasios Zolotas, Horacio Hoyos Rodriguez, Stuart Hutchesson, Beatriz
Sanchez Pina, Alan Grigg, Mole Li, Dimitrios S Kolovos, and Richard F Paige.
2020. Bridging proprietary modelling and open-source model management tools:
the case of PTC Integrity Modeller and Epsilon. Software and Systems Modeling
19 (2020), 17ś38.


	Abstract
	1 Introduction
	2 Background
	3 Managing YAML Documents
	3.1 Eclipse Epsilon
	3.2 EMC YAML Driver

	4 Case Study
	4.1 Description
	4.2 Infrastructure Services DSL
	4.3 Model Transformations

	5 Related Work
	6 Conclusions and Future Work
	References

