

This is a repository copy of Morphology and wall ultrastructure of the Devonian spore Acinosporites macrospinosus Richardson 1965 and its bearing on the origin of the megaspore apical prominence.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/219350/</u>

Version: Accepted Version

Article:

Wellman, C.H. orcid.org/0000-0001-7511-0464 (2022) Morphology and wall ultrastructure of the Devonian spore Acinosporites macrospinosus Richardson 1965 and its bearing on the origin of the megaspore apical prominence. International Journal of Plant Sciences, 183 (6). pp. 441-449. ISSN 1058-5893

https://doi.org/10.1086/720388

© 2022 The University of Chicago. This is an author-produced version of a paper subsequently published in International Journal of Plant Sciences. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	MORPHOLOGY AND WALL ULTRASTRUCTURE OF THE DEVONIAN
2	SPORE ACINOSPORITES MACROSPINOSUS RICHARDSON 1965 AND ITS
3	BEARING ON THE ORIGIN OF THE MEGASPORE APICAL PROMINENCE
4	
5	Charles H. Wellman ¹
6	
7	School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank,
8	Sheffield S10 2TN, United Kingdom
9	
10	¹ E-mail <u>c.wellman@sheffield.ac.uk</u> .
11	
12	The spore Acinosporites macrospinosus Richardson 1965 is common in
13	exceptionally well preserved dispersed spore assemblages recovered from the Middle
14	Devonian (Eifelian) 'Middle Old Red Sandstone' deposits from the Orcadian Basin,
15	Scotland. This paper reports on a detailed light microscope (LM), scanning electron
16	microscope (SEM) and transmission electron microscope (TEM) analysis of these
17	spores. The spores are large and spinose with an apical prominence associated with the
18	trilete mark. TEM analysis reveals that the wall consists of four layers, based on white-
19	line-centred-lamellae (WLCL) that develop into laminae. The spore wall ultrastructure
20	is most similar to that in extant and fossil lycopsids and a lycopsid affinity is proposed
21	for the parent plant. Based on this interpretation a mechanism for spore wall
22	development is presented. The nature and ecology of the parent lycopsid plant is
23	unclear. However, based on similarities with younger bona fide megaspores, it is
24	suggest that A. macrospinosus is probably an incipient megaspore produced by one of
25	the first groups of lycopsids to experiment with heterosporous reproductive strategy.

26	This is the earliest report of an apical prominence on a lycopsid spore, a feature that
27	went on to characterize many later lycopsid megaspores, leading to the development of
28	extensive gulas and massas.
29	
30	Key words: Mid Devonian, Middle Devonian, land plant, lycopsid, spores, gula, massa.
31	
32	Introduction
33	
34	This contribution forms part of a series of papers reporting on exquisitely
35	preserved wall ultrastructure in dispersed spores from the Middle Devonian 'Middle
36	Old Red Sandstone' deposits of Cromarty, Scotland (Wellman 2001, 2002, 2009).
37	Based on material collected from this locality Lang (1925) published a groundbreaking
38	paper that included what is possibly the first description of Devonian dispersed spores
39	released by HF acid maceration. He described and illustrated nine types of dispersed
40	spore ("Spore-type A" to "Spore-type I") and also a number of dispersed sporangia that
41	contained some of these spores in situ. Subsequently, Richardson (1960, 1962, 1965)
42	described the dispersed spore assemblages from this locality in great detail. One of the
43	more interesting spores, Acinosporites macrospinosus Richardson 1965, is of particular
44	interest because it bears a distinct apical prominence reminiscent of the gula/massa
45	characteristic of many younger megaspores from the Late Devonian-Carboniferous
46	(Hemsley et al. 1999). Consequently, it was decided to examine this dispersed spore
47	taxon in more detail in anticipation that it might shed some light on the biological
48	affinities of the spore and the evolutionary origins of the gula/massa. This contribution
49	reports on a combined LM, SEM and TEM investigation of the morphology, gross
50	structure and wall ultrastructure of Middle Devonian A. macrospinosus.

51	
52	Material and Methods
53	
54	Locality and geological setting
55	The material described herein was recovered from Middle Devonian "Middle
56	Old Red Sandstone" deposits from Cromarty, the Black Isle, Scotland. These deposits
57	were selected because of the abundance, excellent preservation and low thermal
58	maturity of the preserved palynomorphs (Lang 1925; Richardson 1960, 1962, 1965).
59	Samples of green siltstones and fine sandstones were collected from strata exposed in
60	Coal Heugh (NH792672), a small stream draining into Miller's Bay, near Cromarty.
61	These strata belong with the Millbuie Sandstone Group (Horne and Hinxman 1914;
62	Johnstone and Mykura 1989). This group comprises predominantly fluviatile deposits,
63	but also contains a fish-bearing horizon that is equivalent to the Achanarras horizon.
64	The Achanarras horizon represents a transgression of the Orcadian Lake that is
65	equivalent to the Kacak Event (Marshall et al. 2007). These strata are considered to be
66	of Eifelian (Mid Devonian) age based on biostratigraphical evidence from spore
67	assemblages (Richardson 1960, 1962, 1965; Richardson and McGregor 1986; Marshall
68	1996; Marshall and Fletcher 2002) and fish (e.g. Blieck et al. 1988). Dispersed spore
69	assemblages from the Achanarras horizon and its correlatives can be equated with the
70	devonicus-naumovii Spore Assemblage Biozone of Richardson and McGregor (1986)
71	and AD Oppel Zone of Streel et al. (1987) (Marshall and Fletcher 2002).
72	
73	Preparation and techniques
74	Numerous samples of sediment were digested using standard HCl-HF-HCl acid
75	maceration. Abundant organic residue was obtained that is dominated by dispersed

76 spores and phytodebris (including entire sporangia). The dispersed spores and 77 phytodebris are extremely well preserved and of low thermal maturity. The organic 78 residue was subjected to heavy liquid separation using zinc chloride and then sieved 79 using a 120 μ m and/or 20 μ m mesh. Strew mounted slides of the residue were prepared 80 for LM analysis. In addition, individual spores were picked from the residue and 81 mounted for SEM and TEM analysis. Material for SEM analysis was prepared by 82 mounting individually picked spores on a double-sided sticky tab attached to a glass 83 coverslip. When a suitable number of specimens had been picked, the coverslip was 84 attached to an SEM stub using another double-sided sticky tab. The stub was then gold 85 coated using a sputter coater, and ready for SEM analysis using a Philips 501B SEM. 86 Material for TEM analysis was prepared by mounting individually picked spores on a 87 block of freshly prepared agar. The specimen was sealed into the block by covering it 88 with molten agar which solidifies on cooling. They were then dehydrated in ethanol and 89 embedded in Spurr resin. Sections were cut on a microtome using a diamond knife, 90 stained with uranyl acetate followed by Reynold's lead citrate, and examined using a 91 Philips CM10 TEM. The embedded individual spores were cut, as near as possible, 92 perpendicular to the plane of compression. Dimensions should therefore provide a 93 reasonably accurate reflection of true thickness. All studies were conducted on 94 unoxidised material. All rock, residue, slides, stubs, blocks and grids are curated at the 95 Centre for Palynology of the University of Sheffield.

- 96
- 97

98

Descriptions

99

LM observations (Fig. 1)

100 The original description by Richardson (1965, p. 579) is: "Colour brown to 101 reddish-brown. Size range, excluding spines, 80 to 160 μ (thirty-five specimens 102 measured). Equatorial outline circular, subcircular, or triangular; hemispherical in 103 lateral compression, flattened at the proximal pole. Exine thick covered by 104 anastomosing ridges which are often convolute and closely packed but on some 105 specimens the ridges form a loose, irregular, reticulate pattern; ridges bear spines 10 to 106 50μ with stout often swollen or bulbous bases, and pointed apices. Ridges fused into 107 tight 'concertina' folds around the contact areas. Triradiate mark with pronounced 108 elevated, membranous ridges which form a distinct apical prominence; 21 to 52 μ high 109 in lateral view; in polar compression the apical prominence forms contorted folds which 110 reach the equatorial margin.". I have little to add to this based on my LM observation of 111 hundreds of specimens from the Coal Heugh locality (see also the taxonomic discussion 112 in McGregor and Camfield 1982). Both of the specimens figured in Fig. 1 are in lateral 113 compression illustrating the nature of the apical prominence.

- 114
- 115

SEM observations (Figs 2-3)

116 The high magnification SEM surface images of A. macrospinosus confirm the 117 LM observations as outlined above, but also provide some supplementary information. 118 Fig. 2 illustrates whole specimens in polar (2A), distal (2B) and lateral (2C) view. Figs 119 2A and 2C clarify the nature of the apical prominence and its relationship with the 120 trilete mark. The apical prominence consists of a circular raised area with a surface of 121 'lumpy' appearance due to an ornament of irregular rugulae and verrucae. This is well 122 seen in the top right of the high magnification image Fig. 3B. The membraneous ridges 123 of the trilete mark arise from this circular raised area. Fig. 3 provides close up images of 124 the ornament. It is clear from these images how the swollen bases of individual spines

merge to form an irregular surface reticulum. It is also evident that the long spines have endings that are either pointed or slightly frayed, though they never form large, fully developed bifurcating anchor-tips or multifurcating grapnel-tips.

- 128
- 129

TEM observations (Figs 4-5)

130 The best sections are from a single specimen and all images and this description 131 are based on this. It is clear from these TEM observations that the spore wall can be 132 divided into four intergrading layers that are arranged concentrically around the lumen. 133 These are termed Layers 1-4 herein, with Layer 1 bordering the lumen and Layer 4 at 134 the outer margin off the spore (forming the ornament). Measurements of layer 135 thicknesses are approximate due to the intergrading nature of the layers. The wall, 136 excluding the spines but including the ridges on which the spines are mounted, is 137 approximately 30 μ m in thickness. 138 The innermost layer (Layer 1) is ca.1.0 μ m in thickness. (Figs 4D-G, 5A-B) It is 139 electron dense and appears dark. It is essentially homogeneous except for the presence of abundant white-line-centred-lamellae (WLCL) and occasional small voids (Figs 4F-140 141 G, 5A-B). The WLCL are concentrically-arranged and are wavy and often bifurcate and 142 merge with one another. There are approximately eight throughout the thickness of this 143 layer. The small voids tend to be elongate lying parallel to the wall layer (Figs 4F-G, 144 5A-B). 145 Layer 1 merges into Layer 2 that consists of concentrically-arranged laminae ca. 146 60 nm in thickness (Figs 4D-F, 5A-B). Elongated voids are developed along the 147 junction between adjacent laminae. This layer measures ca. $0.5 \,\mu$ m in thickness and is

148 less electron dense than Layer 1 appearing paler. It consists of approximately 6 to 8

149 laminae. The junction between Layers 1 and 2 can be taken as the last visible WLCL.

150	Layer 2 merges into Layer 3 (Figs 4A-B). It comprises laminae that are initially
151	similar in size to those of Layer 2. However, moving towards the outside of the spore
152	wall these become increasingly wider (up to 175 nm in thickness) (Figs 4H-I) and
153	increasingly irregular and with more voids. This layer is considerably less electron
154	dense than both Layers 1 and 2 and appears pale in comparison. Initially the laminae are
155	straight, fairly continuous and concentrically arranged. Progressing towards the outside
156	of the spore wall they become wider, increasingly wavy and less continuous with many
157	more voids between them. Eventually this imparts a honeycomb appearance towards the
158	outside of this layer (Figs 4A-B and 4H). Layer 3 comprises the bulk of the spore wall
159	and is 24-28 μ m in thickness.
160	Layer 4 forms the outer layer of the spore wall including the spines (Figs 4A-C).
161	It is essentially a homogeneous layer that appears pale. Occasional lines, particularly on
162	the inside of this layer, are more-or-less concentrically arranged suggesting remnant
163	lamina (Fig. 4J). Elongate voids are present in the centre (core) of some of the spines
164	(Fig. 4B).
165	
166	Discussion
167	
168	Biological affinities of Acinosporites macrospinosus
169	In terms of spore wall ultrastructure in extant plant groups, A. macrospinosus is
170	most similar to that in lycopsids. Wall ultrastructure has been described in extant
171	homosporous lycopsids (e.g. Pettitt 1966; Lugardon 1976; Uehara and Kurita 1991;
172	Rowley 1995) and the heterosporous lycopsids Isoetes (e.g. Lugardon 1973; Robert et
173	al. 1973; Brown and Lemmon 1991; Uehara et al. 1991; Taylor 1992) and Selaginella
174	(e.g. Pettitt 1971; Robert 1971; Sievers and Buchen 1971; Lugardon 1972; Brown and

175	Lemmon 1985; Taylor 1989; Morbelli and Rowley 1993; Uehara et al. 1991; Hemsley
176	et al. 1994; Gabarayeva 2000; Moore et al. 2006; Blackmore et al. 2012). In all of these
177	the wall essentially develops centripetally, based on WLCL that are formed at the
178	plasma membrane. Sporopollenin is accreted onto the WLCL forming laminae which
179	may eventually merge into a homogeneous structure. Additional inner and outer layers
180	may also be present, forming via underplating (often forming a granular layer below
181	proximal regions) or additions of tapetal sporopollenin, respectively (reviewed in
182	Lugardon 1990; Brown and Lemmon 1991; Tryon and Lugardon 1991; Wellman 2004;
183	Wallace et al. 2011). However, neither additional outer or inner layers have been
184	observed in A. macrospinosus.
185	
186	A model for spore wall development
187	Based on interpretation of A. macrospinosus as a lycopsid, it is possible to
188	suggest a likely developmental sequence for its spore wall. The first step most probably
189	involved the folding of the plasma membrane into the final outer shape of the spore (see
190	Uehara and Kurita 1991). From this point the wall developed centripetally based on the
191	formation of WLCL on the plasma membrane. As more WLCL formed, sporopollenin
192	(most likely produced by the tapetum) was progressively accreted onto older WLCL,
193	and they developed into laminae. As development continued the first formed laminae
194	(outermost) began to fold forming a honeycomb pattern. Laminae towards the outside of
195	the spore wall may have been entirely swamped in sporopollenin to the extent that their
196	original laminate structure was obscured. This process produces a four-layered wall: the
197	innermost Layer 1 that consists of newly formed WLCL that are just beginning to
198	accrete sporopollenin as they develop into laminae; Layer 2 that consists of newly
199	formed laminae that are parallel and concentrically arranged around the lumen; Layer 3

consisting of laminae that are regular and parallel arranged toward the inside becoming
more folded and forming a honeycomb pattern towards the outside; the outermost Layer
4 consisting of essentially homogeneous sporopollenin with only very rare and faint
traces of laminae.

204

205

Further evidence from fossil in situ spores

206 The fossil record of *in situ* lycopsid spores has recently been reviewed by Bek 207 (2017). There are relatively few records from the Middle Devonian and earlier. In terms 208 of close relatives of the lycopsids from the Lower Devonian, simple retusoid trilete 209 spores have been reported from a number of zosterophylls (e.g. Gensel et al. 2012) and 210 the Rhynie chert plant Asteroxylon mackiei (Kerp et al. 2013). The dispersed spore 211 taxon Acinosporites lindlarensis has been reported from the homosporous 212 protolepidodendraceaen plant *Leclercqia* from a number of localities ranging in age 213 from Early to Late Devonian (Richardson et al. 1993; Gensel and Albright 2006; Gensel 214 and Kasper 2006; Xu et al. 2011). Poorly preserved spores of Acinosporites-type have 215 also been reported in situ from Mid Devonian Hoxtolgaya robusta (Xu et al. 2012). 216 Other Mid Devonian plants from which *in situ* spores have been reported are clearly 217 heterosporous protolepidodendraceaens with a clear distinction between small 218 microspores and large megaspores: Longostachys latisporophyllus (Cai and Chen 219 1996), Minarodendron cathaysiense (Liu et al. 2013); Mixostrobus givetensis 220 (Senkevitsch et al. 1993). 221 A number of fossil spores have been ultrastructurally analysed that support the 222 interpretation of A. macrospinosus as a lycopsid spore that developed in the postulated 223 manner. In situ spores of Acinosporites lindlarensis have been examined

224 ultrastructurally from the lycopsids *Leclercqia complexa* (Gensel and Albright 2006;

225	Wellman et al. 2009) and Leclercqia andrewsii (Gensel and Kasper 2006; Wellman et
226	al. 2009) from the Lower Devonian of New Brunswick, Canada (Wellman 2018). Wall
227	structure in Leclercqia differs from that in A. macrospinosus because the former has a
228	distinct paraexospore that is separated from a laminar inner layer and is probably
229	tapetally derived. However, it is clear that the inner laminar layer of Leclercqia is very
230	similar to the wall of A. macrospinosus. Unfortunately, our sections of A.
231	macrospinosus did not permit observation of the trilete mark and the potential presence
232	of a proximal, interradial, multilaminate region that has been proposed as a
233	synapomorphy of the ligulate lycopsid clade (Wellman et al. 2009).
234	Other Early-Middle Devonian spores interpreted as lycopsid that have been
235	investigated ultrastructurally include Ancyrospora from the same horizon as the material
236	considered herein (Wellman 2002) and megaspores of Mid Devonian age from Poland
237	(Turnau et al. 2009; Zavialova and Turnau 2012), the USA (Taylor and Gullickson
238	2013) and Yunnan, China (Peng et al. 2016). The spores of Ancyrospora are interpreted
239	as having developed in a similar way to those in A. macrospinosus (Wellman 2002), as
240	was also demonstrated by Telnova (2017) in another species of Ancyrospora (A.
241	melvillensis). Other Middle Devonian spores interpreted as lycopsid that have been
242	ultrastructurally investigated are Corystisporites acutispinosus, Coronospora variabilis,
243	Grandispora ciliata and Pomeranisporites subtriangularis (Zavialova and Turnau
244	2012) and Longhuashanispora reticuloides, Ocksisporites maclarenii and
245	Cereusisporites mirabilis (Peng et al. 2016). All exhibit features of wall ultrastructure
246	that are comparable with that in A. macrospinosus.
247	

248 Coeval plant megafossils

249	Lycopsids were an important component of the Middle Devonian flora (Berry
250	and Fairon-Demaret 2001) and by the early Late Devonian had begun to form forest
251	ecosystems (Berry and Marshall 2015). They can be broadly subdivided into three
252	groups: Pre-lycopsids (Drepanophycales), Protolepidodendrales and Early Arborescent
253	Lycopsids. The terrestrial deposits of the Middle Devonian of the Orcadian Basin,
254	Scotland yield well known plant megafossil assemblages (e.g. Miller 1841; Lang 1925,
255	1926; Perry 1989). However, few lycopsid taxa have been described. The common
256	fossil Thursophyton milleri (Salter) Nathorst 1915 has long been considered to be of
257	lycopsid affinity, although Perry (1989) suggested that it may have zosterophyll
258	affinities based on its elliptical exarch xylem anatomy. It was probably a shrubby plant
259	emerging from a rhizome. Unfortunately fertile parts are unknown. Regarding other
260	potential lycopsid parent plants, rare examples of Protolepidodendron are also known
261	from the Orcadian Basin (Lang 1926).
262	
263	Implications regarding reproductive strategy
264	The size of A. macrospinosus is interesting with regard to the reproductive strategy
265	adopted by the parent plant. Was it homosporous or heterosporous? There has been much
266	debate concerning the evolution of heterospory in the Devonian (e.g. Bateman and
267	DiMichele 1994). These authors demonstrated that a number of different heterosporous
268	reproductive strategies exist and that heterospory evolved independently at least eleven
269	times. Analysis of spore size distribution in the Devonian provides tantalizing clues
270	regarding the evolution of heterospory. Chaloner (1967) and Richardson (1969)
271	demonstrated that maximum spore size increases throughout the Silurian-Devonian. From
272	the Llandovery (early Silurian) to Frasnian (Late Devonian) size distribution is right
273	skewed suggesting that the majority of spores are small but increasingly larger forms are

present. By the Famennian (Late Devonian) spore distribution is bimodal suggesting that
there is a clear distinction between a population of smaller isospores/microspores and
larger megaspores. Prior to this size distribution forms a continuum with no clear
distinction between smaller isospores/microspores and larger megaspores.

278 A boundary of 200 µm is usually used to differentiate between 279 isospores/microspores and megaspores. However, this boundary is arbitrary and there is 280 little scientific reasoning for adopting it. Indeed Hemsley et al. (1999) suggest that the 281 boundary should be at 115 µm based on a study of spore size and efficiency of subaerial 282 dispersal. Spores that exceed the conventional 200 μ m in diameter are known from the 283 latest Pragian-earliest Emsian (Richardson and McGregor 1986) and it is likely that some 284 forms of heterospory was practised by this time. However, the earliest evidence for 285 heterospory from plant megafossils containing in situ spores is not until the late Emsian 286 (Andrews et al. 1974; Bonacorsi et al. 2020). Heterospory almost certainly evolved 287 independently in a number of plant lineages over the course of the Devonian, and this is 288 reflected in the dispersed spore fossil record in the increasing maximum spore size and the 289 increasing number of spores in this larger size range. Different heterosporous reproductive 290 strategies were most likely practised, but it is impossible to identify these based only on 291 evidence from fossil spores. However, by at least the Famennian there were almost 292 certainly heterosporous plants that produced spores of two distinct size ranges that were no 293 doubt very different in morphology. Prior to this it is likely that functional megaspores 294 were present, but size ranges of microspores/megaspores overlapped, and morphology may 295 not have been distinct.

During the Eifelian, there are many spore taxa whose size distibution straddles the 200 μ m boundary. It is unclear whether these are: (i) large isospores of homosporous 208 plants; (ii) large microspores of heterosporous plants with morphologically distinct

299 microspores and megaspores; (iii) small megaspores of heterosporous plants with 300 morphologically distinct microspores and megaspores; (iv) microspores and megaspores of 301 heterosporous plants whose microspore/megaspore size ranges overlap and that are not 302 morphologically distinct. A. macrospinosus measures 80-160 μ m (excluding the spines). 303 This size range is ambiguous (bearing in mind the suggestion of Hemsley et al. (1999) that 304 microspore/megaspore segregation is around 115 µm) and any of the four cases outlined 305 above is possible. However, based on similarities with younger bona fide megaspores, I 306 suggest that A. macrospinosus is probably an incipient megaspore from among the first 307 groups of lycopsids to experiment with heterosporous reproductive strategy.

- 308
- 309

On the origin and nature of the gula

310 One of the most interesting features of the spore A. macrospinosus is the 311 proximal structure that bears the laesurae of the trilete mark. This structure is 312 reminiscent of the apical prominence (often forming a gula or massa) developed on the 313 proximal surface of large lycopsid megaspores, that is a particularly conspicuous feature 314 of Late Devonian-Carboniferous megaspore assemblages. Hemsley et al. (1999) discuss 315 the architecture and functional biology of apical prominences in megaspores. They 316 suggest that extensions of the trilete laesurae and/or proximal contact areas may have 317 acted like a shuttlecock, ensuring that the megaspore descended distal surface down, 318 and in non-ornamented forms possibly also increased speed of descent. Hemsley et al. 319 further suggest that the gula may have functioned in water dispersal, opening up so as to 320 keep the megaspore afloat and aid the capture of microspores. Whatever the function(s) 321 of megaspore apical prominences, it seems that megaspores (or incipient megaspores) 322 were beginning to experiment with such features by the Mid Devonian. As the 323 heterosporous lycopsids first began to appear, changes in reproductive strategy,

324	megaspore function and associated megaspore morphology seem to have evolved hand-
325	in-hand.
326	
327	Conclusions
328	
329	1/ The Middle Devonian dispersed spore Acinosporites macrospinosus Richardson 1965
330	has typical lycopsid spore wall ultrastructure.
331	
332	2/ A. macrospinosus is probably an incipient megaspore from among the first groups of
333	lycopsids to experiment with heterosporous reproductive strategy.
334	
335	3/ The apical prominence of A. macrospinosus is a forerunner of the pronounced apical
336	prominence (gulas and massas) of later megaspores.
337	
338	
339	Acknowledgements
340	
341	This work was supported by various NERC research grants (GR8/03668,
342	NE/E006612/1, NE/J007471/1 and NE/V001639/1). I would like to express my
343	gratitude to Chris Hill and John Proctor (Electron Microscopy Facility, University of
344	Sheffield) who prepared the material for TEM analysis and to Chris Berry my ever
345	reliable sounding board for all things relating to Middle Devonian plants. This
346	contribution is dedicated to the memory of Francis M. Hueber and his meticulous and
347	thought provoking work on early lycopsids.
348	

349	Literature cited
350	
351	Andrews HN, PG Gensel, WH Forbes 1974 An apparently heterosporous plant from the
352	Middle Devonian of New Brunswick. Palaeontol 17:387-408.
353	Bateman RM, WA Dimichele 1994 Heterospory: the most iterative key innovation in
354	the evolutionary history of the plant kingdom. Biol Rev 69:345-417.
355	Bek J 2017 Paleozoic in situ spores and pollen. Lycopsida. Palaeontographica Abt. B
356	296:1-111.
357	Berry CM, M Fairon-Demaret 2001 The Middle Devonian flora revisited. Pages 120-
358	139 in PG Gensel, D Edwards, eds. Plants invade the land: evolutionary and
359	environmental perspectives. Columbia University Press, New York.
360	Berry CM, JEA Marshall 2015 Lycopsid forests in the early Late Devonian
361	paleoequatorial zone of Svalbard. Geology 43:1043-1046.
362	Blackmore S, M Takahashi, K Uehara, AH Wortley 2012 Development of megaspores
363	and microspores in Isoetes japonica A. Br. (Lycopodiophyta: Isoetaceae). Grana
364	51:84-96.
365	Blieck A, E Mark-Kurik, T Marss 1988 Biostratigraphical correlation between Siluro-
366	Devonian invertebrate-dominated and vertebrate-dominated sequences: the East
367	Baltic example. Pages 579-587 in NJ McMillan, AF Ambrey, DJ Glass, eds.
368	Devonian of the world. Canadian Society of Petroleum Geology Memoir 14.
369	Bonacorsi NK, PG Gensel, FM Hueber, CH Wellman, AB Leslie 2020 A novel

R392. 371 372 Brown RC, BE Lemmon 1985 A cytoskeletal system predicts division plane in 373 Selaginella. Protoplasma 127:101-109. 374 Brown RC, BE Lemmon 1991 Sporogenesis in simple land plants. Pages 9-24 in S 375 Blackmore, SH Barnes, eds Pollen and spores: patterns of diversification. 376 Clarenden Press, Oxford. 377 Cai C, L Chen 1996 On a Chinese Givetian lycopod, Longostachys latisporophyllus Zhu, Hu and Feng emend.: its morphology, anatomy and reconstruction. 378 379 Palaontographica Abt. B 238:1-43. 380 Chaloner WG 1967 Spores and land-plant evolution. Rev Palaeobot Palynol 1:83-93. 381 Gabarayeva NI 2000 Principles and current themes in sporoderm development. Pages 1-382 17 in MM Harley, CM Morton, S Blackmore, eds Pollen and spores: 383 morphology and biology. Royal Botanic Gardens, Kew, UK. 384 Gensel PG, VM Albright 2006 Leclercqia complexa from the Early Devonian 385 (Emsian) of northern New Brunswick, Canada. Rev Palaeobot Palynol 142:103-386 121. 387 Gensel PG, AE Kasper 2006 A new species of the Devonian lycopod genus, 388 Leclercgia, from the Emsian of New Brunswick, Canada. Rev Palaeobot Palynol 389 137:105-123. 390 Gensel PG, CH Wellman, WA Taylor 2012 Spore wall ultrastructure in the Lower

reproductive strategy in an Early Devonian plant. Curr Biol 30: R371-

370

391	Devonian zosterophylls Renalia hueberi and Zosterophyllum divaricatum. Int J
392	Plant Sci 174:1302-1313.
393	Hemsley AR, ME Collinson, WL Kovach, B Vincent, T Williams 1994 The role of self-
394	assembly in biological systems: evidence from iridescent colloidal sporopollenin
395	in Selaginella megaspore walls. Phil Trans R Soc London B 345:163-173.
396	Hemsley, AR, AC Scott, ME Collinson 1999 The architecture and functional biology of
397	freely dispersed megaspores. Pages 253-277 in MH Kurmann AR Hemsley, eds
398	The evolution of plant architecture. Royal Botanic Gardens, Kew.
399	Horne J, LW Hinxman 1914 The geology of the area around Beauly and Inverness.
400	Mem Geol Surv Great Britain 83:1-108.
401	Johnstone GS, W Mykura 1989 The northern highlands of Scotland (4 th ed.). British
402	Geological Survey, HMSO, London, 219 pp.
403	Kerp H, CH Wellman, M Krings, P Kearney, H Hass 2013 Reproductive organs and in
404	situ spores of Asteroxylon mackiei Kidston & Lang, the most complex plant
405	from the Lower Devonian Rhynie chert. Int J Plant Sci 174:293-308.
406	Lang WD 1925 Contributions to the study of the Old Red Sandstone flora of Scotland.
407	I. On plant-remains from the fish-beds of Cromarty. II. On a sporangium-bearing
408	branch-system from the Stromness Beds. Trans R Soc Edinburgh 54:253-279.
409	Lang WD 1926 Contributions to the study of the Old Red Sandstone flora of Scotland.
410	III. On Hostimella (Ptilophyton) thomsoni and its inclusion in a new genus
411	Milleria. Trans R Soc Edinburgh 54:785-790.

412	Liu L, DM Wang, JZ Xue, MC Meng, Y Guo 2013 Reinvestigation of the lycopod
413	Minarodendron cathaysiense from the Middle Devonian of South China. N Jb
414	Geol Pal Abh 268:325-339.
415	Lugardon B 1972 Sur la structure fine et la nomenclature des parois microsporales chez
416	Selaginella denticulate (L.) Link et Selaginella selagionoides (L.) Link.
417	Comptes Rendus de l'Academie des Sciences Paris 274:1256-1259.
418	Lugardon B 1973 Nomenclature et structure fine des parois acéto-résistantes des
419	microspores d'Isoetes. Comptes Rendus de l'Academie des Sciences Paris
420	276:3017-3020.
421	Lugardon B 1976 Sur la structure fine de l'exospore dans les divers groupes de
422	Ptéridophytes actuelles. Pages 231-250 in IK Ferguson, J Muller, eds The
423	evolutionary significance of the exine. Linnean Society of London, London.
424	Lugardon B 1990 Pteridophyte sporogenesis: a survey of spore wall ontogeny and fine
425	structure in a polyphyletic plant group. Pages 95-120 in S. Blackmore, RB
426	Knox, eds Microspores: evolution and ontogeny. Academic Press, London.
427	Marshall JEA 1996 Rhabdosporites langii, Geminospora lemurata and Contagisporites
428	optivus: an origin for heterospory within the progymnosperms. Rev Palaeobot
429	Palynol 93:159-189.
430	Marshall JEA, TP Fletcher 2002 Devonian spores from a fluvial dominated lake margin
431	in the Orcadian Basin, Scotland. Rev Palaeobot Palynol 118:195-209.
432	Marshall JEA, TR Astin, JF Brown, E Mark-Kurik, J Lazauskiene 2007 Recognising

433	the Kacak Event in the Devonian terrestrial environment and its implications for
434	understanding land-sea interactions. Pages 133-155 in RT Becker, WT
435	Kirchgasser, eds Devonian events and correlations. Geological Society, London,
436	Special Publicatioons, 278.
437	McGregor DC, M Camfield 1982. Middle Devonian miospores from the Cape de Bray,
438	Weatherall, and Hecla Bay formations of northeastern Melville Island, Canadian
439	Arctic. Geol Surv Can Bull 348:1-105.
440	Miller H 1841 The Old Red Sandstone; or, new walks in an old field. Thomas Constable
441	& Co., Edinburgh.
442	Moore SEM, AR Hemsley, T Borsch 2006 Micromorphology of outer exospore
443	coatings in Selaginella megaspores. Grana 45:9-21.
444	Morbelli MA, JR Rowley 1993 Megaspore development in Selaginella. I "Wicks", their
445	presence, ultrastructure and presumed function. Sexual Plant Reproduction 6:98-
446	107.
447	Peng H, F Liu, H Zhu 2016 Morphology and ultrastructure of Middle Devonian
448	dispersed megaspores from Qujing, Yunnan, Southwest China. Rev Palaeobot
449	Palynol 234:110-124.
450	Perry I 1989 The fossil flora of Shetland and adjacent areas. University of Bristol,
451	Unpublished Ph.D. thesis, 239 pp.
452	Pettitt JM 1966 Exine structure in some fossil and recent spores and pollen as revealed
453	by light and electron microscopy. Bull British Mus (Nat Hist) Geology 13:221-

454		
454		

+33 - 1 Cutu $3191 + 371$ Some uniasi uctural aspects of sporoderm formation in Diemobily in	455	Pettitt JM 1971	Some ultrastructural	aspects of sporoderm	formation in	pteridophyte
--	-----	-----------------	----------------------	----------------------	--------------	--------------

- 456 Pages 227-251 *in* G Erdtman, P Sorsa, eds An introduction to palynology. IV.
- 457 Pollen and spore morphology/plant taxonomy, Pteridophyta. Almqvst &
- 458 Wiksell, Stockholm.

257.

- 459 Richardson JB 1960 Spores from the Middle Old Red Sandstone of Cromarty, Scotland.
- 460 Palaeontol 3:45-63.
- 461 Richardson JB 1962 Spores with bifurcate-tipped processes from the Middle Old Red
- 462 Sandstone of Scotland. Palaeontol 5:171-194.
- 463 Richardson JB 1965 Middle Old Red Sandstone spore assemblages from the Orcadian
 464 basin north-east Scotland. Palaeontol 7:559-605.
- 465 Richardson JB 1969 Devonian spores. Pages 193-221 in RH Tschudy, RA Scott, eds
- 466 Aspects of palynology. Wiley, New York.
- 467 Richardson JB, DC McGregor 1986 Silurian and Devonian spore zones of the Old Red
- 468 Sandstone continent and adjacent regions. Geol Surv Can Bull 364:1-79
- 469 Richardson JB, PM Bonamo, DC McGregor 1993 The spores of *Leclercqia* and the
- 470 dispersed spore morphon *Acinosporites lindlarensis* Riegel: a case of
- 471 gradualistic evolution. Bull Nat Hist Mus London (Geology) 49:121-155.
- 472 Robert D 1971 Étude, en microscopie électronique, des modalities des parois
- 473 microsporales ches *Selaginella selaginoides* (L.). Mise en place du feuillet
- 474 interne. Comptes Rendus de L'Academie des Sciences Paris 273:1933-1936.

475	Robert D, F Roland-Heydacker, J Denizot, J Laroche, P Fougeroux, L Davignon 1973
476	Étude de la paroi siliceuse chez la megaspore d'Isoetes setacea. Adansonia
477	13:313-332.
478	Rowley JR 1995 Are the endexines of pteridophytes, gymnosperms and angiosperms
479	structurally equivalent? Rev Palaeobot Palynol 85:13-24.
480	Senkevitsch MA, AL Jurina, AD Arkhangelskaya 1993 On fructifications, morphology
481	and anatomy of Givetian Lepidophytes in Kazakhstan. Palaontographica B
482	230:43-58.
483	Sievers, A, B Buchen 1971 Contrast between the spore cytoplasm and the growing
484	sporoderm of Selaginella megaspores. Pages 654-659 in J Brooks, RR Grant, M
485	Muir, R Van Gijzel, G Shaw, eds, Sporopollenin. Academic Press, London.
486	Streel M, K Higgs, S Loboziak, W Riegel, P Steemans 1987 Spore stratigraphy and
487	correlation with faunas and floras in the type marine Devonian of the Ardenne-
488	Rhenish regions. Rev Palaeobot Palynol 50:211-229.
489	Taylor WA 1989 Megaspore wall ultrastructure in Selaginella. Pollen et Spores 31:
490	251-288.
491	Taylor WA 1992 Megaspore wall development in Isoetes melanopoda: morphogenetic
492	post-initiation changes accompanying spore enlargement. Rev Palaeobot Palynol
493	72:61-72.
494	Taylor WA, Gullickson KA 2013 Ultrastructure of transitional dispersed megaspores
495	from the Middle Devonian of New York. Int J Plant Sci 174:309-316.

496	Telnova OP 2017 The morphology and ultrastructure of Devonian Ancyrospora
497	melvillensis Owens. Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody
498	Otdel Biologicheskii 122:109-113.
499	Tryon AF, B Lugardon 1991 Spores of the Pteridophyta. Surface, wall structure, and
500	diversity based on electron microscope studies. Springer-Verlag, New York, 648
501	pp.
502	Turnau E, N Zavialova, A Prejbisz 2009 Wall ultrastructure in some dispersed
503	megaspores and seed-megaspores from the Middle Devonian of northern Poland.
504	Rev Palaeobot Palynol 156:14-33.
505	Uehara KS, S Kurita 1991 Ultrastructural study on spore morphogenesis in Lycopodium
506	clavatum (Lycopodiaceae). Am J Bot 78:24-36.
507	Uehara KS, S Kurita, N Sahashi, T Ohmoto 1991 Ultrastructural study of microspore
508	wall morphogenesis in Isoetes japonica (Isoetaceae). Am J Bot 78:1182-1190.
509	Wallace S, A Fleming, CH Wellman, DJ Beerling 2011 Evolutionary development of
510	the plant spore and pollen wall. AoB Plants 2011 plr027.
511	Wellman CH 2001 Morphology and ultrastructure of Devonian spores: Samarisporites
512	(Cristatisporites) orcadensis (Richardson) Richardson, 1965. Rev Palaeobot
513	Palynol 116:87-107.
514	Wellman CH 2002 Morphology and wall ultrastructure in Devonian spores with
515	bifurcate-tipped processes. Int J Plant Sci 163:451-474.
516	Wellman CH 2004 Origin, function and development of the spore wall in early land

- 517 plants. Pages 43-63 *in* AR Hemsley, I Poole, eds The evolution of plant
- 518 physiology: from whole plants to ecosystems. Linnean Society Symposium
- 519 Series No. 21, Elsevier Academic Press, London.
- Wellman CH 2009 Ultrastructure of dispersed and *in situ* specimens of the Devonian
 spore *Rhabdosporites langii*: evidence for the evolutionary relationships of the
 progymnosperms. Palaeontol 52:139-167.
- Wellman CH 2018 The classic Lower Devonian plant-bearing deposits of northern New
 Brunswick, eastern Canada: dispersed spore taxonomy and biostratigraphy. Rev
 Palaeobot Palynol 249:24-49.
- 526 Wellman CH, PG Gensel, WA Taylor 2009 Spore wall ultrastructure in the early
- 527 lycopsid *Leclercqia* (Protolepidodendrales) from the Lower Devonian of North
- 528 America: evidence for a fundamental division in the lycopsids. Am J Bot529 96:1849-1860.
- 530 Xu HH, CM Berry, Y Wang, JEA Marshall 2011 A new species of Leclercqia Banks,
- 531 Bonamo et Grierson (Lycopsida) from the Middle Devonian of North Xinjiang,
- 532 China, with a possible climbing habit. Int J Plant Sci 172:836-846.
- 533 Xu HH, Y Wang, Q Wang 2012 A new homosporous, arborescent lycopsid from the
- 534 Middle Devonian of Xinjiang, Northwest China. Palaeontol 55:957-966.
- 535 Zaviolova N, E Turnau 2012 Morphology and wall ultrastructure of some Middle
- 536 Devonian dispersed megaspores from northern Poland. Rev Palaeobot Palynol537 171:103-123.
- 538

EXPLANATION OF PLATE 1

541	Figs A-C. LM images of dispersed Acinosporites macrospinosus Richardson 1965 from
542	the Millbuie Sandstone Group (Eifelian: Mid Devonian) from Coal Heugh, Miller's
543	Bay, Cromarty, the Black Isle, Scotland. A, Sample ACH2, Slide 1, E.F.No. (P34/4).
544	Lateral view. Note the apical prominence (AP). B-C. Sample ACH2, Slide 1, E.F.No.
545	(J39). Lateral view. Specimen illustrated in different focal planes. Note the apical
546	prominence (AP). Scale bar = $100 \ \mu m$.
547	
548	
549	EXPLANATION OF PLATE 2
550	Figs A-C. SEM images of dispersed Acinosporites macrospinosus Richardson 1965
551	from the Millbuie Sandstone Group (Eifelian: Mid Devonian) from Coal Heugh,
552	Miller's Bay, Cromarty, the Black Isle, Scotland. A, Stub CW006 (Image 0264/99).
553	Proximal view. Note the prominent circular apical prominence (AP) bearing the trilete
554	mark. B. Stub CW015 (Image 0771/99). Distal view. Note the nature of the ornament.
555	C. Stub CW015 (Image 0781/99). Lateral view. Note the nature of the apical
556	prominence (AP). Scale bar = $100 \ \mu m$.
557	
558	
559	EXPLANATION OF PLATE 3
560	Figs A-B. SEM images of dispersed Acinosporites macrospinosus Richardson 1965
561	from the Millbuie Sandstone Group (Eifelian: Mid Devonian) from Coal Heugh,
562	Miller's Bay, Cromarty, the Black Isle, Scotland. A, Stub CW015 (Image 0779/99).
563	High magnification image of distal ornament from specimen illustrated in Pl. 2, fig. B.
564	B. Stub CW015 (Image 0777/99). High magnification image of ornament (bottom left)

565 below apical prominence (AP) (top right) from specimen illustrated in Pl. 2, fig. C. 566 Scale bar = 50 μ m (A) and 25 μ m (B).

- 567
- 568
- 569

EXPLANATION OF PLATE 4

570 Figs A-J. TEM images of an individually picked specimen of the dispersed spore

571 Acinosporites macrospinosus Richardson 1965 from the Millbuie Sandstone Group

572 (Eifelian: Mid Devonian) from Coal Heugh, Miller's Bay, Cromarty, the Black Isle,

573 Scotland. All images are from the same spore (one of three specimens embedded in

574 Block CW023). A, Image R387, illustrating an almost entire spore. Note the lumen (L)

575 near the centre of the section. The apical prominence and trilete mark are not present on

576 this section; B, Image R374, a close up of (A) focussing in on the lumen (L); C, Image

577 R375, a close up of (A) focussing on the ultrastructure of the ornament (Layer 5). V =

578 void; D, Image R379, illustrating the ultrastructure around the lumen (L); E, Image

579 R385, a close up of (D) focussing in on the ultrastructure around the lumen (L); F,

580 Image R380, a close up of the ultrastructure immediately adjacent to the lumen (L) (the

581 junctions between Layers 1-3 are marked with arrows); G, Image 391, a close up of the

582 ultrastructure immediately adjacent to the lumen (L) (the junction between Layers 1-3

are marked with arrows); H, Image R388, a close up of the ultrastructure in Layer 3; I,

Image R377, a close up of the ultrastructure in Layer 3; J, Image R376, a close up of

585 ultrastructure in Layer 4. Scale bar = 54 μ m (A) 32 μ m (B) 17.6 μ m (C) 3.4 μ m (D) 2.1

586
$$\mu$$
m (E) 1.0 μ m (F) 0.9 μ m (G) 1.4 μ m (H) 0.7 μ m (I) 2.9 μ m (J).

- 587
- 588
- 589

EXPLANATION OF PLATE 5

590 Figs A-B. TEM images of an individually picked specimen of the dispersed spore

591 Acinosporites macrospinosus Richardson 1965 from the Millbuie Sandstone Group

592 (Eifelian: Mid Devonian) from Coal Heugh, Miller's Bay, Cromarty, the Black Isle,

593 Scotland. All images are from the same spore (one of three specimens embedded in

- 594 Block CW023). A, Image R381, a close up of the ultrastructure of Layers 1-2
- 595 surrounding the lumen (L) (the junctions between Layers 1-3 are marked with black
- arrows); B, Image R383, a close up of (A) showing the ultrastructure of Layers 1-2
- 597 surrounding the lumen (L) (the junctions between Layers 1-3 are marked with black
- 598 arrows). White arrows indicate examples of White Line Centred Lamellae. Scale bar =
- 599 1000 nm (A) 560 nm (B).