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MORPHOLOGY AND WALL ULTRASTRUCTURE OF THE DEVONIAN 1 

SPORE ACINOSPORITES MACROSPINOSUS RICHARDSON 1965 AND ITS 2 

BEARING ON THE ORIGIN OF THE MEGASPORE APICAL PROMINENCE 3 
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 11 

The spore Acinosporites macrospinosus Richardson 1965 is common in 12 

exceptionally well preserved dispersed spore assemblages recovered from the Middle 13 

Devonian (Eifelian) ‘Middle Old Red Sandstone’ deposits from the Orcadian Basin, 14 

Scotland. This paper reports on a detailed light microscope (LM), scanning electron 15 

microscope (SEM) and transmission electron microscope (TEM) analysis of these 16 

spores. The spores are large and spinose with an apical prominence associated with the 17 

trilete mark. TEM analysis reveals that the wall consists of four layers, based on white-18 

line-centred-lamellae (WLCL) that develop into laminae. The spore wall ultrastructure 19 

is most similar to that in extant and fossil lycopsids and a lycopsid affinity is proposed 20 

for the parent plant. Based on this interpretation a mechanism for spore wall 21 

development is presented. The nature and ecology of the parent lycopsid plant is 22 

unclear. However, based on similarities with younger bona fide megaspores, it is 23 

suggest that A. macrospinosus is probably an incipient megaspore produced by one of 24 

the first groups of lycopsids to experiment with heterosporous reproductive strategy. 25 

mailto:c.wellman@sheffield.ac.uk
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This is the earliest report of an apical prominence on a lycopsid spore, a feature that 26 

went on to characterize many later lycopsid megaspores, leading to the development of 27 

extensive gulas and massas. 28 

 29 

Key words: Mid Devonian, Middle Devonian, land plant, lycopsid, spores, gula, massa. 30 

 31 

Introduction 32 

 33 

This contribution forms part of a series of papers reporting on exquisitely 34 

preserved wall ultrastructure in dispersed spores from the Middle Devonian ‘Middle 35 

Old Red Sandstone’ deposits of Cromarty, Scotland (Wellman 2001, 2002, 2009). 36 

Based on material collected from this locality Lang (1925) published a groundbreaking 37 

paper that included what is possibly the first description of Devonian dispersed spores 38 

released by HF acid maceration. He described and illustrated nine types of dispersed 39 

spore (“Spore-type A” to “Spore-type I”) and also a number of dispersed sporangia that 40 

contained some of these spores in situ. Subsequently, Richardson (1960, 1962, 1965) 41 

described the dispersed spore assemblages from this locality in great detail. One of the 42 

more interesting spores, Acinosporites macrospinosus Richardson 1965, is of particular 43 

interest because it bears a distinct apical prominence reminiscent of the gula/massa 44 

characteristic of many younger megaspores from the Late Devonian-Carboniferous 45 

(Hemsley et al. 1999). Consequently, it was decided to examine this dispersed spore 46 

taxon in more detail in anticipation that it might shed some light on the biological 47 

affinities of the spore and the evolutionary origins of the gula/massa. This contribution 48 

reports on a combined LM, SEM and TEM investigation of the morphology, gross 49 

structure and wall ultrastructure of Middle Devonian A. macrospinosus. 50 
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 51 

Material and Methods 52 

 53 

Locality and geological setting 54 

The material described herein was recovered from Middle Devonian “Middle 55 

Old Red Sandstone” deposits from Cromarty, the Black Isle, Scotland. These deposits 56 

were selected because of the abundance, excellent preservation and low thermal 57 

maturity of the preserved palynomorphs (Lang 1925; Richardson 1960, 1962, 1965). 58 

Samples of green siltstones and fine sandstones were collected from strata exposed in 59 

Coal Heugh (NH792672), a small stream draining into Miller’s Bay, near Cromarty. 60 

These strata belong with the Millbuie Sandstone Group (Horne and Hinxman 1914; 61 

Johnstone and Mykura 1989). This group comprises predominantly fluviatile deposits, 62 

but also contains a fish-bearing horizon that is equivalent to the Achanarras horizon. 63 

The Achanarras horizon represents a transgression of the Orcadian Lake that is 64 

equivalent to the Kacak Event (Marshall et al. 2007). These strata are considered to be 65 

of Eifelian (Mid Devonian) age based on biostratigraphical evidence from spore 66 

assemblages (Richardson 1960, 1962, 1965; Richardson and McGregor 1986; Marshall 67 

1996; Marshall and Fletcher 2002) and fish (e.g. Blieck et al. 1988). Dispersed spore 68 

assemblages from the Achanarras horizon and its correlatives can be equated with the 69 

devonicus-naumovii Spore Assemblage Biozone of Richardson and McGregor (1986) 70 

and AD Oppel Zone of Streel et al. (1987) (Marshall and Fletcher 2002). 71 

 72 

Preparation and techniques 73 

Numerous samples of sediment were digested using standard HCl-HF-HCl acid 74 

maceration. Abundant organic residue was obtained that is dominated by dispersed 75 
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spores and phytodebris (including entire sporangia). The dispersed spores and 76 

phytodebris are extremely well preserved and of low thermal maturity. The organic 77 

residue was subjected to heavy liquid separation using zinc chloride and then sieved 78 

using a 120 m and/or 20 m mesh. Strew mounted slides of the residue were prepared 79 

for LM analysis. In addition, individual spores were picked from the residue and 80 

mounted for SEM and TEM analysis. Material for SEM analysis was prepared by 81 

mounting individually picked spores on a double-sided sticky tab attached to a glass 82 

coverslip. When a suitable number of specimens had been picked, the coverslip was 83 

attached to an SEM stub using another double-sided sticky tab. The stub was then gold 84 

coated using a sputter coater, and ready for SEM analysis using a Philips 501B SEM. 85 

Material for TEM analysis was prepared by mounting individually picked spores on a 86 

block of freshly prepared agar. The specimen was sealed into the block by covering it 87 

with molten agar which solidifies on cooling. They were then dehydrated in ethanol and 88 

embedded in Spurr resin. Sections were cut on a microtome using a diamond knife, 89 

stained with uranyl acetate followed by Reynold’s lead citrate, and examined using a 90 

Philips CM10 TEM. The embedded individual spores were cut, as near as possible, 91 

perpendicular to the plane of compression. Dimensions should therefore provide a 92 

reasonably accurate reflection of true thickness. All studies were conducted on 93 

unoxidised material. All rock, residue, slides, stubs, blocks and grids are curated at the 94 

Centre for Palynology of the University of Sheffield. 95 

 96 

Descriptions 97 

 98 

LM observations (Fig. 1) 99 
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The original description by Richardson (1965, p. 579) is: “Colour brown to 100 

reddish-brown. Size range, excluding spines, 80 to 160 μ (thirty-five specimens 101 

measured). Equatorial outline circular, subcircular, or triangular; hemispherical in 102 

lateral compression, flattened at the proximal pole. Exine thick covered by 103 

anastomosing ridges which are often convolute and closely packed but on some 104 

specimens the ridges form a loose, irregular, reticulate pattern; ridges bear spines 10 to 105 

50 μ  with stout often swollen or bulbous bases, and pointed apices. Ridges fused into 106 

tight ‘concertina’ folds around the contact areas. Triradiate mark with pronounced 107 

elevated, membranous ridges which form a distinct apical prominence; 21 to 52 μ high 108 

in lateral view; in polar compression the apical prominence forms contorted folds which 109 

reach the equatorial margin.”. I have little to add to this based on my LM observation of 110 

hundreds of specimens from the Coal Heugh locality (see also the taxonomic discussion 111 

in McGregor and Camfield 1982). Both of the specimens figured in Fig. 1 are in lateral 112 

compression illustrating the nature of the apical prominence. 113 

 114 

SEM observations (Figs 2-3) 115 

The high magnification SEM surface images of A. macrospinosus confirm the 116 

LM observations as outlined above, but also provide some supplementary information. 117 

Fig. 2 illustrates whole specimens in polar (2A), distal (2B) and lateral (2C) view. Figs 118 

2A and 2C clarify the nature of the apical prominence and its relationship with the 119 

trilete mark. The apical prominence consists of a circular raised area with a surface of 120 

‘lumpy’ appearance due to an ornament of irregular rugulae and verrucae. This is well 121 

seen in the top right of the high magnification image Fig. 3B. The membraneous ridges 122 

of the trilete mark arise from this circular raised area. Fig. 3 provides close up images of 123 

the ornament. It is clear from these images how the swollen bases of individual spines 124 
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merge to form an irregular surface reticulum. It is also evident that the long spines have 125 

endings that are either pointed or slightly frayed, though they never form large, fully 126 

developed bifurcating anchor-tips or multifurcating grapnel-tips. 127 

 128 

TEM observations (Figs 4-5) 129 

The best sections are from a single specimen and all images and this description 130 

are based on this. It is clear from these TEM observations that the spore wall can be 131 

divided into four intergrading layers that are arranged concentrically around the lumen. 132 

These are termed Layers 1-4 herein, with Layer 1 bordering the lumen and Layer 4 at 133 

the outer margin off the spore (forming the ornament). Measurements of layer 134 

thicknesses are approximate due to the intergrading nature of the layers. The wall, 135 

excluding the spines but including the ridges on which the spines are mounted, is 136 

approximately 30 µm in thickness. 137 

The innermost layer (Layer 1) is ca.1.0 µm in thickness. (Figs 4D-G, 5A-B) It is 138 

electron dense and appears dark. It is essentially homogeneous except for the presence 139 

of abundant white-line-centred-lamellae (WLCL) and occasional small voids (Figs 4F-140 

G, 5A-B). The WLCL are concentrically-arranged and are wavy and often bifurcate and 141 

merge with one another. There are approximately eight throughout the thickness of this 142 

layer. The small voids tend to be elongate lying parallel to the wall layer (Figs 4F-G, 143 

5A-B). 144 

Layer 1 merges into Layer 2 that consists of concentrically-arranged laminae ca. 145 

60 nm in thickness (Figs 4D-F, 5A-B). Elongated voids are developed along the 146 

junction between adjacent laminae. This layer measures ca. 0.5 µm in thickness and is 147 

less electron dense than Layer 1 appearing paler. It consists of approximately 6 to 8 148 

laminae. The junction between Layers 1 and 2 can be taken as the last visible WLCL. 149 
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Layer 2 merges into Layer 3 (Figs 4A-B). It comprises laminae that are initially 150 

similar in size to those of Layer 2. However, moving towards the outside of the spore 151 

wall these become increasingly wider (up to 175 nm in thickness) (Figs 4H-I) and 152 

increasingly irregular and with more voids. This layer is considerably less electron 153 

dense than both Layers 1 and 2 and appears pale in comparison. Initially the laminae are 154 

straight, fairly continuous and concentrically arranged. Progressing towards the outside 155 

of the spore wall they become wider, increasingly wavy and less continuous with many 156 

more voids between them. Eventually this imparts a honeycomb appearance towards the 157 

outside of this layer (Figs 4A-B and 4H). Layer 3 comprises the bulk of the spore wall 158 

and is 24-28 µm in thickness. 159 

Layer 4 forms the outer layer of the spore wall including the spines (Figs 4A-C). 160 

It is essentially a homogeneous layer that appears pale. Occasional lines, particularly on 161 

the inside of this layer, are more-or-less concentrically arranged suggesting remnant 162 

lamina (Fig. 4J). Elongate voids are present in the centre (core) of some of the spines 163 

(Fig. 4B). 164 

 165 

Discussion 166 

 167 

Biological affinities of Acinosporites macrospinosus 168 

In terms of spore wall ultrastructure in extant plant groups, A. macrospinosus is 169 

most similar to that in lycopsids. Wall ultrastructure has been described in extant 170 

homosporous lycopsids (e.g. Pettitt 1966; Lugardon 1976; Uehara and Kurita 1991; 171 

Rowley 1995) and the heterosporous lycopsids Isoetes (e.g. Lugardon 1973; Robert et 172 

al. 1973; Brown and Lemmon 1991; Uehara et al. 1991; Taylor 1992) and Selaginella 173 

(e.g. Pettitt 1971; Robert 1971; Sievers and Buchen 1971; Lugardon 1972; Brown and 174 
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Lemmon 1985; Taylor 1989; Morbelli and Rowley 1993; Uehara et al. 1991; Hemsley 175 

et al. 1994; Gabarayeva 2000; Moore et al. 2006; Blackmore et al. 2012). In all of these 176 

the wall essentially develops centripetally, based on WLCL that are formed at the 177 

plasma membrane. Sporopollenin is accreted onto the WLCL forming laminae which 178 

may eventually merge into a homogeneous structure. Additional inner and outer layers 179 

may also be present, forming via underplating (often forming a granular layer below 180 

proximal regions) or additions of tapetal sporopollenin, respectively (reviewed in 181 

Lugardon 1990; Brown and Lemmon 1991; Tryon and Lugardon 1991; Wellman 2004; 182 

Wallace et al. 2011). However, neither additional outer or inner layers have been 183 

observed in A. macrospinosus. 184 

 185 

A model for spore wall development 186 

 Based on interpretation of A. macrospinosus as a lycopsid, it is possible to 187 

suggest a likely developmental sequence for its spore wall. The first step most probably 188 

involved the folding of the plasma membrane into the final outer shape of the spore (see 189 

Uehara and Kurita 1991). From this point the wall developed centripetally based on the 190 

formation of WLCL on the plasma membrane. As more WLCL formed, sporopollenin 191 

(most likely produced by the tapetum) was progressively accreted onto older WLCL, 192 

and they developed into laminae. As development continued the first formed laminae 193 

(outermost) began to fold forming a honeycomb pattern. Laminae towards the outside of 194 

the spore wall may have been entirely swamped in sporopollenin to the extent that their 195 

original laminate structure was obscured. This process produces a four-layered wall: the 196 

innermost Layer 1 that consists of newly formed WLCL that are just beginning to 197 

accrete sporopollenin as they develop into laminae; Layer 2 that consists of newly 198 

formed laminae that are parallel and concentrically arranged around the lumen; Layer 3 199 
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consisting of laminae that are regular and parallel arranged toward the inside becoming 200 

more folded and forming a honeycomb pattern towards the outside; the outermost Layer 201 

4 consisting of essentially homogeneous sporopollenin with only very rare and faint 202 

traces of laminae. 203 

 204 

Further evidence from fossil in situ spores 205 

 The fossil record of in situ lycopsid spores has recently been reviewed by Bek 206 

(2017). There are relatively few records from the Middle Devonian and earlier. In terms 207 

of close relatives of the lycopsids from the Lower Devonian, simple retusoid trilete 208 

spores have been reported from a number of zosterophylls (e.g. Gensel et al. 2012) and 209 

the Rhynie chert plant Asteroxylon mackiei (Kerp et al. 2013). The dispersed spore 210 

taxon Acinosporites lindlarensis has been reported from the homosporous 211 

protolepidodendraceaen plant Leclercqia from a number of localities ranging in age 212 

from Early to Late Devonian (Richardson et al. 1993; Gensel and Albright 2006; Gensel 213 

and Kasper 2006; Xu et al. 2011). Poorly preserved spores of Acinosporites-type have 214 

also been reported in situ from Mid Devonian Hoxtolgaya robusta (Xu et al. 2012). 215 

Other Mid Devonian plants from which in situ spores have been reported are clearly 216 

heterosporous protolepidodendraceaens with a clear distinction between small 217 

microspores and large megaspores: Longostachys latisporophyllus (Cai and Chen 218 

1996), Minarodendron cathaysiense (Liu et al. 2013); Mixostrobus givetensis 219 

(Senkevitsch et al. 1993). 220 

A number of fossil spores have been ultrastructurally analysed that support the 221 

interpretation of A. macrospinosus as a lycopsid spore that developed in the postulated 222 

manner. In situ spores of Acinosporites lindlarensis have been examined 223 

ultrastructurally from the lycopsids Leclercqia complexa (Gensel and Albright 2006; 224 
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Wellman et al. 2009) and Leclercqia andrewsii (Gensel and Kasper 2006; Wellman et 225 

al. 2009) from the Lower Devonian of New Brunswick, Canada (Wellman 2018). Wall 226 

structure in Leclercqia differs from that in A. macrospinosus because the former has a 227 

distinct paraexospore that is separated from a laminar inner layer and is probably 228 

tapetally derived. However, it is clear that the inner laminar layer of Leclercqia is very 229 

similar to the wall of A. macrospinosus. Unfortunately, our sections of A. 230 

macrospinosus did not permit observation of the trilete mark and the potential presence 231 

of a proximal, interradial, multilaminate region that has been proposed as a 232 

synapomorphy of the ligulate lycopsid clade (Wellman et al. 2009). 233 

Other Early-Middle Devonian spores interpreted as lycopsid that have been 234 

investigated ultrastructurally include Ancyrospora from the same horizon as the material 235 

considered herein (Wellman 2002) and megaspores of Mid Devonian age from Poland 236 

(Turnau et al. 2009; Zavialova and Turnau 2012), the USA (Taylor and Gullickson 237 

2013) and Yunnan, China (Peng et al. 2016). The spores of Ancyrospora are interpreted 238 

as having developed in a similar way to those in A. macrospinosus (Wellman 2002), as 239 

was also demonstrated by Telnova (2017) in another species of Ancyrospora (A. 240 

melvillensis). Other Middle Devonian spores interpreted as lycopsid that have been 241 

ultrastructurally investigated are Corystisporites acutispinosus, Coronospora variabilis, 242 

Grandispora ciliata and Pomeranisporites subtriangularis (Zavialova and Turnau 243 

2012) and Longhuashanispora reticuloides, Ocksisporites maclarenii and 244 

Cereusisporites mirabilis (Peng et al. 2016). All exhibit features of wall ultrastructure 245 

that are comparable with that in A. macrospinosus. 246 

 247 

Coeval plant megafossils 248 
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 Lycopsids were an important component of the Middle Devonian flora (Berry 249 

and Fairon-Demaret 2001) and by the early Late Devonian had begun to form forest 250 

ecosystems (Berry and Marshall 2015). They can be broadly subdivided into three 251 

groups: Pre-lycopsids (Drepanophycales), Protolepidodendrales and Early Arborescent 252 

Lycopsids. The terrestrial deposits of the Middle Devonian of the Orcadian Basin, 253 

Scotland yield well known plant megafossil assemblages (e.g. Miller 1841; Lang 1925, 254 

1926; Perry 1989). However, few lycopsid taxa have been described. The common 255 

fossil Thursophyton milleri (Salter) Nathorst 1915 has long been considered to be of 256 

lycopsid affinity, although Perry (1989) suggested that it may have zosterophyll 257 

affinities based on its elliptical exarch xylem anatomy. It was probably a shrubby plant 258 

emerging from a rhizome. Unfortunately fertile parts are unknown. Regarding other 259 

potential lycopsid parent plants, rare examples of Protolepidodendron are also known 260 

from the Orcadian Basin (Lang 1926). 261 

 262 

Implications regarding reproductive strategy 263 

 The size of A. macrospinosus is interesting with regard to the reproductive strategy 264 

adopted by the parent plant. Was it homosporous or heterosporous? There has been much 265 

debate concerning the evolution of heterospory in the Devonian (e.g. Bateman and 266 

DiMichele 1994). These authors demonstrated that a number of different heterosporous 267 

reproductive strategies exist and that heterospory evolved independently at least eleven 268 

times. Analysis of spore size distribution in the Devonian provides tantalizing clues 269 

regarding the evolution of heterospory. Chaloner (1967) and Richardson (1969) 270 

demonstrated that maximum spore size increases throughout the Silurian-Devonian. From 271 

the Llandovery (early Silurian) to Frasnian (Late Devonian) size distribution is right 272 

skewed suggesting that the majority of spores are small but increasingly larger forms are 273 
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present. By the Famennian (Late Devonian) spore distribution is bimodal suggesting that 274 

there is a clear distinction between a population of smaller isospores/microspores and 275 

larger megaspores. Prior to this size distribution forms a continuum with no clear 276 

distinction between smaller isospores/microspores and larger megaspores. 277 

A boundary of 200 µm is usually used to differentiate between 278 

isospores/microspores and megaspores. However, this boundary is arbitrary and there is 279 

little scientific reasoning for adopting it. Indeed Hemsley et al. (1999) suggest that the 280 

boundary should be at 115 m based on a study of spore size and efficiency of subaerial 281 

dispersal. Spores that exceed the conventional 200 µm in diameter are known from the 282 

latest Pragian-earliest Emsian (Richardson and McGregor 1986) and it is likely that some 283 

forms of heterospory was practised by this time. However, the earliest evidence for 284 

heterospory from plant megafossils containing in situ spores is not until the late Emsian 285 

(Andrews et al. 1974; Bonacorsi et al. 2020). Heterospory almost certainly evolved 286 

independently in a number of plant lineages over the course of the Devonian, and this is 287 

reflected in the dispersed spore fossil record in the increasing maximum spore size and the 288 

increasing number of spores in this larger size range. Different heterosporous reproductive 289 

strategies were most likely practised, but it is impossible to identify these based only on 290 

evidence from fossil spores. However, by at least the Famennian there were almost 291 

certainly heterosporous plants that produced spores of two distinct size ranges that were no 292 

doubt very different in morphology. Prior to this it is likely that functional megaspores 293 

were present, but size ranges of microspores/megaspores overlapped, and morphology may 294 

not have been distinct. 295 

 During the Eifelian, there are many spore taxa whose size distibution straddles the 296 

200 µm boundary. It is unclear whether these are: (i) large isospores of homosporous 297 

plants; (ii) large microspores of heterosporous plants with morphologically distinct 298 
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microspores and megaspores; (iii) small megaspores of heterosporous plants with 299 

morphologically distinct microspores and megaspores; (iv) microspores and megaspores of 300 

heterosporous plants whose microspore/megaspore size ranges overlap and that are not 301 

morphologically distinct. A. macrospinosus measures 80-160 µm (excluding the spines). 302 

This size range is ambiguous (bearing in mind the suggestion of Hemsley et al. (1999) that 303 

microspore/megaspore segregation is around 115 m) and any of the four cases outlined 304 

above is possible. However, based on similarities with younger bona fide megaspores, I 305 

suggest that A. macrospinosus is probably an incipient megaspore from among the first 306 

groups of lycopsids to experiment with heterosporous reproductive strategy. 307 

 308 

On the origin and nature of the gula 309 

One of the most interesting features of the spore A. macrospinosus is the 310 

proximal structure that bears the laesurae of the trilete mark. This structure is 311 

reminiscent of the apical prominence (often forming a gula or massa) developed on the 312 

proximal surface of large lycopsid megaspores, that is a particularly conspicuous feature 313 

of Late Devonian-Carboniferous megaspore assemblages. Hemsley et al. (1999) discuss 314 

the architecture and functional biology of apical prominences in megaspores. They 315 

suggest that extensions of the trilete laesurae and/or proximal contact areas may have 316 

acted like a shuttlecock, ensuring that the megaspore descended distal surface down, 317 

and in non-ornamented forms possibly also increased speed of descent. Hemsley et al. 318 

further suggest that the gula may have functioned in water dispersal, opening up so as to 319 

keep the megaspore afloat and aid the capture of microspores. Whatever the function(s) 320 

of megaspore apical prominences, it seems that megaspores (or incipient megaspores) 321 

were beginning to experiment with such features by the Mid Devonian. As the 322 

heterosporous lycopsids first began to appear, changes in reproductive strategy, 323 
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megaspore function and associated megaspore morphology seem to have evolved hand-324 

in-hand. 325 

 326 

Conclusions 327 

 328 

1/ The Middle Devonian dispersed spore Acinosporites macrospinosus Richardson 1965 329 

has typical lycopsid spore wall ultrastructure. 330 

 331 

2/ A. macrospinosus is probably an incipient megaspore from among the first groups of 332 

lycopsids to experiment with heterosporous reproductive strategy. 333 

 334 

3/ The apical prominence of A. macrospinosus is a forerunner of the pronounced apical 335 

prominence (gulas and massas) of later megaspores. 336 

 337 
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EXPLANATION OF PLATE 1 540 

Figs A-C. LM images of dispersed Acinosporites macrospinosus Richardson 1965 from 541 

the Millbuie Sandstone Group (Eifelian: Mid Devonian) from Coal Heugh, Miller’s 542 

Bay, Cromarty, the Black Isle, Scotland. A, Sample ACH2, Slide 1, E.F.No. (P34/4). 543 

Lateral view. Note the apical prominence (AP). B-C. Sample ACH2, Slide 1, E.F.No. 544 

(J39). Lateral view. Specimen illustrated in different focal planes. Note the apical 545 

prominence (AP). Scale bar = 100 μm. 546 

 547 

 548 

EXPLANATION OF PLATE 2 549 

Figs A-C. SEM images of dispersed Acinosporites macrospinosus Richardson 1965 550 

from the Millbuie Sandstone Group (Eifelian: Mid Devonian) from Coal Heugh, 551 

Miller’s Bay, Cromarty, the Black Isle, Scotland. A, Stub CW006 (Image 0264/99). 552 

Proximal view. Note the prominent circular apical prominence (AP) bearing the trilete 553 

mark. B. Stub CW015 (Image 0771/99). Distal view. Note the nature of the ornament. 554 

C. Stub CW015 (Image 0781/99). Lateral view. Note the nature of the apical 555 

prominence (AP). Scale bar = 100 μm. 556 

 557 

 558 

EXPLANATION OF PLATE 3 559 

Figs A-B. SEM images of dispersed Acinosporites macrospinosus Richardson 1965 560 

from the Millbuie Sandstone Group (Eifelian: Mid Devonian) from Coal Heugh, 561 

Miller’s Bay, Cromarty, the Black Isle, Scotland. A, Stub CW015 (Image 0779/99). 562 

High magnification image of distal ornament from specimen illustrated in Pl. 2, fig. B. 563 

B. Stub CW015 (Image 0777/99). High magnification image of ornament (bottom left) 564 
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below apical prominence (AP) (top right) from specimen illustrated in Pl. 2, fig. C. 565 

Scale bar = 50 μm (A) and 25 μm (B). 566 

 567 

 568 

EXPLANATION OF PLATE 4 569 

Figs A-J. TEM images of an individually picked specimen of the dispersed spore 570 

Acinosporites macrospinosus Richardson 1965 from the Millbuie Sandstone Group 571 

(Eifelian: Mid Devonian) from Coal Heugh, Miller’s Bay, Cromarty, the Black Isle, 572 

Scotland. All images are from the same spore (one of three specimens embedded in 573 

Block CW023). A, Image R387, illustrating an almost entire spore. Note the lumen (L) 574 

near the centre of the section. The apical prominence and trilete mark are not present on 575 

this section; B, Image R374, a close up of (A) focussing in on the lumen (L); C, Image 576 

R375, a close up of (A) focussing on the ultrastructure of the ornament (Layer 5). V = 577 

void; D, Image R379, illustrating the ultrastructure around the lumen (L); E, Image 578 

R385, a close up of (D) focussing in on the ultrastructure around the lumen (L); F, 579 

Image R380, a close up of the ultrastructure immediately adjacent to the lumen (L) (the 580 

junctions between Layers 1-3 are marked with arrows); G, Image 391, a close up of the 581 

ultrastructure immediately adjacent to the lumen (L) (the junction between Layers 1-3 582 

are marked with arrows); H, Image R388, a close up of the ultrastructure in Layer 3; I, 583 

Image R377, a close up of the ultrastructure in Layer 3; J, Image R376, a close up of 584 

ultrastructure in Layer 4. Scale bar = 54 μm (A) 32 μm (B) 17.6 μm (C) 3.4 μm (D) 2.1 585 

μm (E) 1.0 μm (F) 0.9 μm (G) 1.4 μm (H) 0.7 μm (I) 2.9 μm (J). 586 

 587 

 588 

EXPLANATION OF PLATE 5 589 
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Figs A-B. TEM images of an individually picked specimen of the dispersed spore 590 

Acinosporites macrospinosus Richardson 1965 from the Millbuie Sandstone Group 591 

(Eifelian: Mid Devonian) from Coal Heugh, Miller’s Bay, Cromarty, the Black Isle, 592 

Scotland. All images are from the same spore (one of three specimens embedded in 593 

Block CW023). A, Image R381, a close up of the ultrastructure of Layers 1-2 594 

surrounding the lumen (L) (the junctions between Layers 1-3 are marked with black 595 

arrows); B, Image R383, a close up of (A) showing the ultrastructure of Layers 1-2 596 

surrounding the lumen (L) (the junctions between Layers 1-3 are marked with black 597 

arrows).  White arrows indicate examples of White Line Centred Lamellae. Scale bar = 598 

1000 nm (A) 560 nm (B). 599 

 600 


