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• Collection of evidence for why and how particle shape matters.
• Review of how shape description and measurement have changed in the past 30 years.
• Review of shape embracing computer models for particulates.
• Review of how AI has helped and speculation of how AI can help in the future.
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A B S T R A C T

The goal of seeking advanced solutions to the descriptions of particle shape, packing and tomographic mea-
surement were key areas promoted by Professor Reg Davies. In this paper we review and reflect on the revolution
that has taken place over the last 30 years in our ability to describe and measure particle shape going beyond
simple shape factors to their real morphologies of complex particles and particulate assemblies. The paper
presents a comprehensive review of how shape has been described and some critical analyses in the form of
extended tabulations. We show how digital approaches to particle descriptions can be used to predict the
properties of particles and assemblies and their use in simulations of particle processing. We note the current
status and prospects for the continued development of microtomographic systems to enable the measurement of
particle shape in 3D and also the 3D imaging of complex particulate structures to enable property and processing
predictions. Examples of these developments and critical appraisal of their utility will be given.

1. Introduction

Size and shape are the defining parameters of particulate materials.
As Reg Davies was keen to point out at his numerous lectures, the in-
dustry had been making a good use of the single-number quantity
commonly referred as ‘particle size’, starting to cope with particle size
distribution (PSD), but having trouble to embrace particle shape infor-
mation. This was in the early years of the 21st century. There were good
reasons for this since commercial shape analysers were scarce in com-
parison with sizing devices, especially for real-time and/or inline use.
Also shape was (and still is) more difficult to quantify by a single number
for use in theoretical/empirical relationships and in correlations that
underline quality assurance and control in powder handling and pro-
duction. This is because within the same size range (e.g., classified by

sieves), there can be many different shapes in the powder sample; par-
ticles can behave very differently depending on their shape; and which
single-number shape factor is meaningful depends on what behaviour is
of interest. It has long been recognised that for non-spherical particles,
the measured ‘size’ is strongly dependent on how and along which di-
rection the ‘size’ is measured, so much so that it would be idiotic (to
paraphrase Reg’s phrase) to talk about particle ‘size’without referring to
particle ‘shape’ at the same time! Otherwise, one runs the risk of
nonsensical comparisons between sizes. Twenty years on, has the situ-
ation changed? The answer is a slowly but surely yes. In this review
paper we present a brief and selective account of some major changes –
how they happened and what impact they have brought – with an
emphasis on computational models.

The foundational years of particle technology placed much emphasis
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on establish robust methods to characterise what were obviously very
complex systems. In the 1970s computational resources did not provide
a practical basis for more complex approaches to be feasible. The
approach was to seek to simplify the systems by reducing complexity
through utilisations of equivalency to simpler forms. Shape character-
istics were undertaken by equivalency to fixed know shape (sphere,
rectangles) and distributions were fitted to convenient logarithmic and
other known functions. On this basis classic books [1] and a range of US
and British Standards for describing shape and size (described later in
the paper), and instruments to measure these, were evolved. Systems
behaviour was also taxonomised, for example in terms of the ways
powder were fluidised [2–6]. Higher degrees of variations were recog-
nised adopting more complexity science the 1990s with the use of fractal
concepts, such as those of Kaye [7]. The famous trio of Davies, Scarlett
and Kaye were ardent pioneers for the subject. Their passion and
intellect gave rise to a strong academic and industrial legacy. The cre-
ation of standard based on simplification did, as is often the case, tend to
cause drag on adoption of newer approaches since, naturally, new ap-
proaches needed to be calibrated with respect to existing and accepted
standards. It may be argued that this has caused slowness of adoption
and use of advanced methods presented in this paper, such arguments
are not unique to particle science but a reality of engineering practice.

The review covers the following main topics. Section 2 exemplifies
why and how shape matters. Section 3 reviews how shape is quantified
while Section 4 focuses on how shapes are measured. Section 5 shows
how shape info can be used in advanced computer models. Section 6
looks at AI prospect before conclusions in Section 7.

2. Why and how shape matters

It is a cliché to say that size matters. Given the inextricable link be-
tween size and shape, it is a fair statement that where size matters, shape
too. If 30 years ago this was more a conviction, quantitative supporting
evidence has expanded so much, especially in recent years, that, to
paraphrase Reg’s words again, one would be ignoring particle shape at
one’s own peril. Examples are abundant of how particle shape affects
packing structure of particulates and hence properties that are structure-
dependent. Since there are few – if any – properties that do not depend
on the underlying structure, it is fair to say that, shape is as fundamental
as size in determining particulate and powder behaviours. If we define
‘particle’ as “any entity that is small in the context or compared to its
surrounding” and ‘packing’ simply as “putting together or arrangement
(of particles) in a confined space”, the concepts and applications of
particle and packing go well beyond the traditional field of powder
technology. Table 1 shows some examples where particle shape plays a
direct role or an indirect role through its effects on the underlying
structures, and also examples where shape affects properties at different
levels simultaneously.

Unlike pure solids or fluids, for which scientists and engineers have
by the first half of the last century been able to calculate and predict
their properties, to a high enough degree of accuracy that design of
equipment and plants can be done largely based on calculations and
models, even though many are empirical correlations. The same cannot
be said for particulate materials, despite that fact that over 2/3 of all
industrial products are in this form at some stage of their product life
[246]. The complexity and unpredictability are akin to social science in
that behaviours of individuals matter, individual behaviours are so
varied, causal relationships are often non-linear, and the worst of all, the
number of individuals involved is so huge that it is impractical to include
everyone with high fidelity in any (computer) model – existing or
imagined. The pragmatic way to deal with this situation has been, and
likely to continue to be, to focus on a small and manageable subset and
hope that the subset is in a meaningful way sufficiently ‘representative’.

For particle sizing, the concept of “equivalent size” makes size-
related applications and comparisons easier, because the underlying
shape is sphere – the most computationally friendly shape for particle-

level analysis and modelling. There is no such concept as “equivalent
shape”, however, because if size was fixed, equivalent shape could be
anything but spherical and it would only complicate things even further.
If all particles were of the same shape, say spheres, the complexity and
unpredictability would be lessened by many orders of magnitude. Given
the importance of particle shape and its less-developed status quo
(compared to particle size), it is perhaps fair to call particle shape a (if
not the) last frontier of particle technology (PT).

3. Shape descriptors

Even twenty years ago, by some account (the authors of this review
paper collected and counted shape descriptors in preparation for a
training course on particle shape) no fewer than 100 shape descriptors
had been proposed in publications. This is far more than the number of
‘sizes’ in use, and is a reflection of two facts. First, shape was (and still is)
far more complicated and involved to quantify than size. Secondly, there
was no standardised approach to quantitative shape description,
everyone could define their own shape descriptors for the problems at
hand if existing ones were deemed not fit for purpose. As a result, and for
example, there are half a dozen definitions of “roundness” alone (see
Table 2) and even more definitions of “sphericity” [247]. Note that some
standards had been in circulation for qualitative terms (i.e., words) to
describe shapes (see Table 3).

In fact, most of the shape descriptors used for powder particles today
came from two groups outside the PT community: the geologists and the
computer graphics scientists. They had the needs and, more importantly,
the convenient means to do so. For example, geologists can often hold
and measure the real and physical samples by hand; while computer
scientists can have the virtual samples as computer graphics/images and
of course the software to work with [338,371–379]. Since then, some
new shape descriptors have been proposed [62,380–382]. Broadly, a
descriptor describes shape at one of three scales, or level of details: the
overall form, roundness/angularity, and surface texture/roughness, as
indicated in Fig. 1. Table 2 categorises and summarises some of the
shape descriptors. It is not meant to be an exhaustive list, the aim instead
is to show diversity and variety. And wide diversity and variety are
characteristic of a discipline still in its infancy.

Regarding the purpose and use of shape descriptors, four colloquial
views are common:

1. Why bother at all, just use a nominal size. Such a view was prevailing
among some practitioners, and indeed computer modellers, in the
early days. Not because they did not realise the importance of shape,
but more out of frustration for lack of convenient tools to make use of
shape information.

2. The actual shape is unimportant, all that is required is a number for
comparison purposes. This is a common, and valid, view among de-
signers and users of process controls. Indeed, so long as a well-
behaved correlation can be established, the relationship between
the target and the control parameter need not be a causal one. Many
publications on shape factors are in fact devoted to establishing
correlations between shape factor(s) and properties of interest
[382,62].

3. It should be possible to regenerate the original shape from the descriptors.
People with this view tend to be computer modellers dealing with
computer graphics, image processing and particle level simulations
who can use a relatively small set of descriptors to recreate the
original shape, and its variants.

4. Why bother with shape descriptors, just use shapes as they are measured.
This view is held by the authors of this paper in the context of using
3D digital images as input to particle simulations (more details in
Section 5). This is akin to using PSD: use of PSD makes mean size
redundant since it is embedded in PSD.

The above list is broadly in chronological order. Examples for
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approaches 2 and 3 are given in Table 2.
Many shape descriptors are calculated based on analysis of digital

images. It should be emphasised that shape descriptors calculated from
2D projections can be very different from those calculated directly from
3D measurements of the same objects, although the two are often
correlated [384–388]. It is easy to see why with an example: a cylinder’s
2D projection can vary from circle to ellipse to pill-shape to rectangle;
light scattering pattern depends on orientation of the cylinder at the
time of measurement; and unless the cylinder is travelling in vacuum
particle-fluid interaction means that the cylinder has a tendency to
adopt a particular orientation while passing the sensing zone, e.g.,
parallel to the main flow in laminar flow regime and perpendicular in
turbulent regime. Shape distribution in the same sample may be size
dependent and the relationship can be indicative of the provenance,
history and method of production of the sample (e.g., [389,390,391]). It
should also be realised geometrically shape descriptors are invariant
under translation, rotation and scaling but precise values of descriptors
(and perimeter or surface area) calculated using (either 2D or 3D) image
analysis (IA) obviously depend on the resolution (in other words, par-
ticle dimension measured in pixels or voxels) and, as a result and to some
extent, on orientation of the shape in an image [392–398]. For example,
a 3-pixel triangle cannot be treated as anything other than an equal sided
right-angle triangle, regardless of the true shape of the particle or a spike
in the particle’s surface contour the 3 pixels represent. For this reason,
manufacturers of particle sizers usually recommend a threshold (e.g., at
least 5 pixels across) to reduce the impact of small ambiguous clusters;
for shape analysis even larger threshold values (e.g., 20–50 pixels) have
been suggested [399,400]. In practice, the threshold is obviously
dependent on the shape and method of analysis. So long as the method
(including shape representation, dimensionality and resolution) is
consistent, the results are compatible and comparable.

When simple shape factors are used, there is usually a significant loss
of information. A factor can only represent one aspect of the shape.
Another problem is that for a given shape factor the same value may be
obtained for widely different shapes. Hentschel and Page [401] have
suggested that at least two shape factors are required, one for form (e.g.,
aspect ratio, DminDm ne for surface texture (e.g., surface factor,

4πA
P2 ). Each is

sensitive to a different attribute of shape: elongation and ruggedness.
Many more [24,371,383,382,196] favour classification of shape de-
scriptors into the three scale-dependent categories (i.e., sphericity for
overall shape at large scale, roundness for corners at intermediate scale,
and roughness for surface texture at small scale) or even four categories
[385]. One from each category, or some combinatorial approach, should
be used.

While there have been a long list of international and national
standards for particle sizing [402], some progress has been made to-
wards standardisation for shape description and only in specific areas.
Table 3 lists some of the standards for particle shapes. It is worth noting
that these standards are meant for some specific industries or materials,
and their emphasis is on standardising the method, apparatus and pro-
cedure of measurement. This fragmented nature of the standards is again
a reflection that shape is far more complicated and involved to quantify
than size. This situation is likely to remain until, perhaps, advancements
of advanced mathematical tools such as mathematical morphology
[349,374,403–407] can give us a more unified way to describe all
shapes.

In particle sizing, the question how many particles need to be
measured for the obtained PSDs to be reliable and stable is usually
answered by the equipment manufacturers (as the minimum amount by
volume or weight) if the equipment is a purpose-built particle sizer.
Various standards also recommend such numbers for different situations
or applications and the minimum number is usual several hundreds.
Lopez-Sanchez [408] demonstrated that the arithmetic mean, which
many users so often automatically quote to report their results, may not
always be the best one. For a specific application, when the means are

correlated to some other property of interest and compared, the answer
can reveal itself (e.g., [409]). The same questions are also legitimate for
shape distributions, but the answers are far from being clear. The second
question, which for shapes becomes which shape factor to use, is less of
an issue because the user must make a conscious decision anyway since
there are so many to choose from and none of them is a standard. To the
first question, there is no standard answer although the number is likely
to be higher than for sizing (103 vs 102). A pragmatic answer is to keep
analysing more until the distribution curve no longer changes, or a
preset statistical confidence is reached. In one example [410], 500 was
quoted as the minimum and 1000–1500 was “the best”. In another
example [411], >6400 particles per sample were measured to obtain a
99% statistical confidence; this number is 10 times more than the usual
for sizing. This is clearly tedious and time consuming but nonetheless
robust.

One noteworthy use of shape descriptors is to help generate, either
randomly or parametrically, a large number of model particles that
retain certain pre-defined shape characteristics of the original real par-
ticles (or their packing structure) for simulations [277,412–419]. Fig. 2a
& 2b show some examples. Thus, between the two extremes of using
spheres for everything and using real shapes for all in the particle as-
sembly [420], there is a mid-way house approach which is realistic to
some degrees, yet fast, easy and free of noises often present in real-shape
measurements, and hence currently more commonly used. It helps us to
study shape effects through simulations [421–424]. Parallel to computer
simulations, 3D printed model objects satisfying pre-defined shape de-
scriptors and other properties have been used to study shape effects
[425,46,426,427,184].

Like particle size, shape factors are often used for product quality
control [438–446]; as part of product design and specifications
[447–450]; and for industrial or medical diagnostic purposes
[62,451–454].

4. Shape measurement techniques

Traditional shape factors such as aspect ratio and sphericity, and
indeed sizes such as Feret diameters, also tended to originate from ge-
ologists – people dealing with rocks and pebbles – because they could
easily hold, examine and measure the samples by hand. For powder
technologists, their samples are small and they frequently have to resort
to microscopy (optical, SEM or TEM) to examine the particles, thus
shape descriptors they proposed tended to be image based to describe 2D
projection areas. The issue of normalising the measured parameters
according to the number of particles measured vs weight or volume is
also key. The literature has examples of researchers who may use a
descriptor sourced from particle counting and trying to compare with
one derived from averaging volume, for which the results are very
different. Later on, since the turn of the 21st century, X-ray CT tech-
nology allowed small particles to be scanned and reconstructed in full
3D, so characterisation can again be based on 3D forms. More recently,
various 3D cameras or scanners have come on the market and be
increasingly used to characterise 3D objects from a few mm upwards,
they are not perfect but is the best thing one can hope for when imaging
objects in-situ and in (almost) real-time. Examples of CT and laser
scanned objects are given in Fig. 2c & 2d. and Table 4 summarises
measurement techniques and associated shape descriptors.

It can be seen that particle shape characterisation has experienced
three stages: it started with direct measurements of large 3D physical
objects, then moved to analysis of 2D projections or images of small
particles, and now coming back to computer aided measurement of 3D
virtual objects (or reconstructed 3D images). From 3D to 2D back to 3D
again, it is not exactly a full circle, but a spiral-up in terms of mea-
surement techniques.

Computer modellers require real 3D shapes to be readily available in
convenient formats, AI and advances in measurement technique and
hardware make this possible. Therefore, it can be expected that the trend
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of moving away from spheres towards using real/realistic particle
shapes in computer models will continue. Section 5.1 demonstrates this
trend, and shows that there is ample room for this trend to grow.

In the UK, the CCPi (Collaborative Computational Project in tomo-
graphic imaging) (https://ccpi.ac.uk) has been ongoing for years,
providing access to CT scanners or synchrotron beamtime, user training
and more importantly development of software toolbox (CIL – the open-
source Core Imaging Library) for reconstruction and data analysis and
visualisation. A similar CT user network NoCTURN (Non-Clinical To-
mography Users Research Network) (https://nocturnetwork.org) exists
in the USA. Its website maintains a list of CT labs around the world and
the number currently (May 2024) is 197, and >80% of which are in
Europe and North America. This is likely to be a fraction of the actual
number. In the UK, in 2001 there were single digit number of CT ma-
chines for non-medical use, now the number is around 100. This is a
reflection of how popular and commonplace CT has become as a means
of material characterisation.

5. Shape-embracing computer models

5.1. General trends

With regard to particle shape, the advancement of shape-embracing
computer models dwarfs the progress in the uptake of shape information
in other areas (e.g., industrial control/production of particulate mate-
rials). Two snapshots of publications in the journal of Powder Tech-
nology from 2003 and 2023 can be used to illustrate the trends. When
searching for a specific term, “shape” in this case (entered in two fields
in the search form, “Find articles with these terms”, and “Title, abstract
or author-specified keywords”), on the journal’s website, we have the
following results. The search produced 30 articles from 2003 with only
one paper containing the word “shape” in its title, whereas there were
103 hits from 2023 and 14 with titles containing “shape”. Details are
summarised in Table 5 below. In the table, “particle shape” is used to
encompass form/morphology and surface roughness/texture of solid
particulates, bubbles and even pores in structures made of particulates.
Other quoted terms (namely, “characterisation”, “modelling” and “ef-
fects”) have particle shape either as an input (i.e., particle shape being a
determining factor of a property) or as an output (i.e., particle shape or
change in particle shape is a result of variations of process conditions).
The statistics contain overlaps: a paper may appear simultaneously in
more than one category, although most do not.

The trends are clear from Table 5. First, the number of publications
pertaining to particle shape have quadrupled in the past 20 years, from
19 to 81. The increase in simulations that involve non-spherical shapes is
even more dramatic, nearly 7-fold, from 6 to 41. There is also an
increasing trend to investigate effects of particle shape on properties of
interest by means of computer modelling. Indeed, most modelling pa-
pers were not about developing a model’s capability to handle irregular
shapes, but about using particles of more realistic shapes when simu-
lating a behaviour or calculating a property. As we shall see later (Sec-
tion 5.2), the number of computer models capable of dealing irregular
shapes has not actually changed, only the popularity of some has
increased, mainly in the form of commercial software packages.

The most notable change is the number of DEM simulations that use
non-spherical shapes. In 2003, there were 9 DEM papers in Powder
Technology, only one of which [550] used irregular shapes; in 2023,
there were 160 DEM papers in the same journal, at least 26 of which
involved non-spherical shapes. In percentage terms, however, the
change is much less dramatic, 11% vs 14%. In a 2016 survey paper,
Windows-Yule et al. [73] showed statistics, obtained from Google
Scholar using keywords “discrete element method” or “discrete particle
simulation”, of DEM publications: In 2006 the number was close to 1000
and in 2014 just over 3000. Using the same search keywords for 2023,
the number of hits is 10,475 (excluding citations and patents).

DEM (Discrete Element Method) [551], as the method of choice for

particle-level simulations of particulate systems, has seen some notable
advances. There appears to be a race towards realism in the following
terms:

• Scale – Instead of thousands, it is possible to run DEM simulations
with 2.4 billion particles (identical spheres of 100 μm diameter, in a
real-scale, 1 m × 1 m × 2 cm, sandbox experiment) [552]. Real-time
or quasi-real-time DEM codes that run on GPUs were developed soon
after GPUs had showed their potentials for general purpose compu-
tations [553–556]. GPU based DEM simulations are very common
now, routinely involving 105 or more particles and often of irregular
shapes [557–559]. However, not everyone can afford, or have access
to, the computing platforms and specialist software capable of fast
handling so many particles. Thus, a more common approach to scale
up is by coarse graining (or upscaling). Essentially, this approach
uses a larger (super) particle to represent a group of smaller ones so
that the number of (super) particles stays within a manageable range
while simulating a dynamic process at a scale otherwise unattainable
or too slow [560–565]. Like using equivalent-size or multi-sphere
approaches for non-spherical shapes, upscaling is also using one
thing to represent something else it is not, thus compromises must be
made. There is no single standard way to upscale – howmany smaller
particles a super particle can represent, what properties or behaviour
to preserve when deciding coarse graining parameters and how to
calibrate are all case dependent and the choices can affect accuracy
of the results [566–571]. Regardless of shape representation
methods and computer models, it remains a challenge to simulate
systems involving a very large (>1000) size ratio (e.g., refractory
materials and concrete consisting of cement, sand and aggregates,
with a size ranging from nano to cm, and with chemical reactions).

• Shape – The change, in both speed (of adoption) and variety, from
sphere-only to irregular shapes has been dramatic in recent years.
The need to cope with irregular shapes has also seen a rise in
popularity of non-sphere based DEM simulators, as shown in Table 6.
How shape is represented (Fig. 3) is fundamental as it has an impact
on different aspects of the computer model, from shape fidelity,
contact/overlap detection algorithm, coding complexity, run time or
speed, to parameter calibration, and finally accuracy of the simula-
tions [572–580].

• Multiscale morphology – Surface roughness has now been explicitly
incorporated in DEM simulations for rough walls [581–583] as well
as rough particles [584,585,421,586].

• Multiphysics – In addition to dynamic mechanical behaviour, other
physical properties or effects of particles are being incorporated such
as heat transfer [587,40,588] and charge transfer [589,590,591].
Most commercial and open-source DEM codes have some Multi-
physics capabilities. The coupling of DEM with another computer
method, chiefly CFD/FEM but also LBM/FDM, to model beyond
spheres is on the rise [592,593], to incorporate in more detail of
inter-particle forces and particle-fluid interactions [594–601],
dissolution of moving particles [602–604], etc.

• AI involvement – AI is being used in several aspects of DEM type
particles simulations, including drag force and terminal velocity es-
timations, collision/overlap detection, and possibly non-spherical
shape reconstruction (see Section 6 for more details).

Extrapolating the above advances, and assuming computing power
(or more importantly accessibility of the high computing power) is
increasing at the current rate, with the help of AI to tackle the most time
consuming parts of DEM modelling, including shape generation and
reconstruction (see Section 6), contact/overlap detection (e.g., [563])
and estimation of contact force and drag force (e.g., [773]), it is not
difficult to imagine that 10 years from now, simulations with real par-
ticle shapes will be as common as, if not more common than, the sphere-
only ones. Therefore, the so-called last frontier of particle technology
will have been broken down.
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Quantum computing is particularly suited to many-body problems
[782], albeit at present only of quantum-scale particles. Quantum-
inspired laser computing is reportedly even more effective than both
GPU supercomputing and quantum computing for some specific
computational tasks (e.g., matrix multiplication, sorting through com-
binations) [783]. It may just be possible that one day equal-sphere based
DEMs can, following the success story of GPU based DEM, be portable to
run on quantum or optical computers.

5.2. Comparison shape-embracing computer models

Computer models capable of incorporating particle shape (among
other particle properties) are broadly divided, by way of how particles
are moved, into two groups: deterministic and stochastic. The former,
which includes DEM, is by far the largest and typically for simulating a
dynamic (time-dependent) process. Models can also be grouped ac-
cording to how particle shape information is represented or incorpo-
rated in the model. It may be implicit or “unresolved” (e.g., DEM can use
rolling friction for spheres to mimic in certain aspect the behaviour of
non-spherical particles) or explicit or “resolved” (i.e., particles actually
have non-spherical shapes). Table 6 shows pros and cons of different
models in the context of simulating dynamic and quasi-static behav-
iours, formation of packing structures and structure-property relation-
ships of particulate systems.

6. Prospect of AI

AI is making waves in every field of research and to everyday life,
particle shape characterisation is no exception. Thus, no review can be
complete without a look at AI contributions. The emphasis of this section
is on shape recognition and reconstruction, leaving out AI generative
design and content creation involving particle shapes (e.g., [416,784])
or AI property prediction based on shape/size metrics (e.g., [785]).

Using AI for face recognition/reconstruction is maturing and a major
success story for AI [786–789]. There are billions of people, each with a
distinct face. Face recognition has two parts. The first part is to tell a
human face from the rest in a photo, this is equivalent to recognising a
particular shape/texture from any other shape/texture in images of
particles. The second part is to attach an ID to a face. An equivalent of
this part is doing detailed shape/texture calculations about the particles.
Comparing to the task of particle shape/texture recognition, face
recognition is perhaps an easier task in the sense that all (normal)
human faces conform to one basic template (i.e., the shapes and relative
sizes of face outline, two ears, two eyes, one nose and onemouth are well
defined), but the legal consequence of wrong identification is much
more serious. Apparently, there are several quintillions (1018) of sand
grains [790], probably many times more particulates, on Earth. Strictly
speaking, no two are identical in every aspect. However, precision and
accuracy required for particle shape/texture recognition may be much
less than required for human face recognition because the purposes are
different. Also, AI does not need to recognise something in order to
reconstruct it. It is therefore hopefully that a similar success can be ex-
pected for particle shape recognition, provided that sufficient and
similar effort can be put in. AI developed for other disciplines or ap-
plications [500] could well be adaptable and useful for particle shape
and structure.

Table 7 gives some examples of using machine learning (ML) for
shape recognition and reconstruction. None of them is ready-to-use for
powder particles but they show potentials and inspirations for the shape
of things to come.

For computer modellers, a dream has been that putting a pinch or
handful of particles (deemed enough for a typical particle-level simu-
lation) through a machine, by the time the particles pass through and
come out of the machine, we would already have them characterised
and reconstructed in full 3D, ready for use as input to our models. In
principle, it is possible for a parallel CT setup with hardware

reconstruction to achieve this in real-time. An example for large objects
is 920 CT – a RTT® (Real-Time Tomography) device for airport security
(RapidScan [844]). However, the cost would simply be too high for
routine particle shape measurements. On the other hand, most image-
analysis (IA) based particle sizers can capture and analyse thousands
of particle images in a matter of seconds (i.e., as good as real-time). Can
such images be used to reconstruct the particles in 3D? Mathematically,
a key difference between CT projections and particle sizer captured
images is that the former are from known or preset angles but the latter
are unknown or random. Nevertheless, looking at the images before the
shading/texture information is removed (e.g., Fig. 4a), human eyes and
brain can often form a good idea of what the particles look like in 3D,
although human brain is not as good at assigning precise values to
describe the shapes. If the former ability is acquired through a machine
vision technique such as SfS (shape from shading) and/or ML (machine
learning) (as exemplified in Table 7), and the latter is automatically
taken care of by the use of computers (since the computer assigns
numbers to everything it works on), it may be possible, to use AI to
reconstruct 3D shapes out of the images captured by existing particle
sizers. Then, the computer modeller’s dream is realisable in the fore-
seeable future!

7. Concluding remarks

The review suggested a number of conclusions that embrace prac-
tical actions, cautions and opportunities, as follows:
The speed of advance has been remarkable in the last decade: At

fundamental and methodology levels, none of the advances reviewed
here has come as a surprise, since they all existed 20 years ago. However,
the speed at which the advances, especially in tomographic imaging and
GPU assisted DEM, have been taken up and applied in recent years is
nothing short of ‘astonishing’.
Shape description and its application is diverging rather than converging:

On the one hand, it continues to develop along the conventional path of
determining explicitly one or a few numbers to describe shapes for a
particular purpose (e.g., for comparison, product specification, quality
control, etc). On the other hand, with the help from AI and increased
computing power, image based recognition and/or reconstruction of
shapes are expected to be used more and more. The latter does not
require preexisting and explicit shape factor values to work, the required
statistics can be obtained from raw input data through an AI tool trained
for a particular purpose.
Forward facing standards that embrace modern digital standards are

needed: One might argue with the diversity of approaches enabled by
digital methods there is a need to revisit the issue of modern digital
standards for shape definition for industrial application. The situation
with standardisation is likely to remain for the foreseeable future, but
new mathematical tools (e.g., mathematical morphology) and/or
increased prevalence of simulations involving real shapes, may give rise
to fresh ways to characterise shapes such that standardisation may be
possible.
New and/or faster measurement techniques can be expected to continue

to appear: For example, femto-photography, with its trillion frames per
second camera, can capture the light as it travels [845,846], and has
been demonstrated to be able to capture and recover 3D shape around a
corner (i.e., out of the direct line of sight, using light reflected off walls/
obstacles). It is conceivable that one day such technique could be used to
validate contact force models by imaging an evolving particle contact at
a single DEM time step (≤ nano-second) level.
Sphere based DEM models will continue to dominate and scale-out: For

example, EDEM and PFC-3D are expected to expand in the range and
scale of applications and the use of sphere-composites for non-spherical
shapes will be even more prevalent, especially if the process of opti-
mising sphere composite to represent shapes can be automated (and
even standardised). Mesh-based DEM is catching on, as evidenced by the
recent acquisition of Rocky DEM (once an academic niche) by Ansys (a
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global engineering software company). Image or voxel based DEM-style
models (e.g., DigiDEM) or physics engines (e.g., Atomontage Engine) are
finding niche applications such as packaging of nuclear waste and vir-
tual reality computer games. With so many different models to handle
shapes, a set of standard benchmark test cases would be really helpful,
but it will be difficult since it cuts across so many disciplines or interest
groups. Dosta et al. [592] made a start but more should be done.
Although there is still no hope for particle-level simulations to match
industrial scales except for some special cases [847], with (near)
real-time 3D shape reconstruction to provide 3D particle input to DEM
style models, a DT (digital twin), possibly implemented in VR (virtual
reality) environment, can be expected in the not too distant future, to
match lab scale setups. DEM has already been used to create a DT, albeit
in a time-delayed fashion in most cases, at small (lab) scales [848–855];
and VR representation for particle systems is also not unheard of [856,
857]. This (lab-scale DT/VR) is still a huge triumph for particle-level
models because they can then replace expensive physical tests, espe-
cially in difficult-to-reach or extreme conditions, and they can provide
much more info than physical measurements can usually manage.
Therefore, the best of DEM with real particle shapes has yet to come.
Use of AI so far has been geared towards consumer and high value ap-

plications: Its use in particle technology, or shape measurement/recon-
struction, is still limited. This is a challenge but also a great opportunity
academically and commercially. AI’s ability to cope with shape
complexity is beyond doubt. While real-world training datasets are
difficult and/or time consuming to obtain, artificial or synthetic training
sets are relatively easy to generate using software (e.g., DigiPac), with
3D graphics, for singular, clustered, or packed particles. Proof of concept
should be easy to do. Real-world applications will require large datasets
of real particles, taken with real equipment. It is only a matter of time
before this happens – once people realise its potential. Following

AlphaGo which demonstrated that machines can outperform humans in
highly skilled (but trainable) games, we now have AlphaFold 2 [858] to
help solve the protein-folding problem and AlphaFold 3 [859] to
generate biomolecular complexes (e.g., DNAs, RNAs and even ligands)
to accelerate progress of solving real-world problems such as breaking
down single-use plastics [860] and creating newmalaria vaccines [861].
With millions of users globally, Google estimates that its free and easy-
to-use AlphaFold Server can potentially save many millions of research-
years in time and trillions of dollars in cost (https://deepmind.google/
technologies/alphafold/). Perhaps one day, something similar will
appear to help particle technologists the way AlphaFold Server helps
biologists: give a description of the requirements, AI will generate the
shape to meet the requirements and, what’s more, predict its in-
teractions with others (e.g., collisions, contact forces, drag forces, etc),
taking over the most difficult and computationally expensive part of
DEM, or evenmaking DEM as we know it redundant if AI can rapidly and
correctly predict the properties or phenomena that DEM is used to
investigate in the first place. Earlier this year (March 2024), Devin – the
first AI software engineer – has been released (https://www.cognition.
ai/introducing-devin) by a start-up company for free access to create
computer code for some real-world software problems collected from
GitHub, beating GitHub’s own Copilot, Anthropic’s Claude 2 and
OpenAI’s GPT-4. In the future, DEM software will no longer be the
purview of (specialist) computer programmers, everyone can have their
ideas coded up by AI and tested on the (cloud) computer. GPT-4o, which
to ChatGPT is equivalent to adding GUI to a batch DEM program, and
alike will make it easier for humans to use AI as a helping tool. From now
on, prompting skills (or prompt engineering) will be the new and must-
have (human-machine) communication skills. With AI, things will
happen much faster, if they happen at all, at a pace unseen in the human
technological history.

Table 1
Examples of direct and indirect influence of particle shape on properties of interest.

Properties of interest Roles of particle shape Examples

Packing & structure-property
relationships

• Shape is a determining factor for the maximum packing efficiency.
Random close packing (RCP) of equal spheres has a generally accepted
maximum bulk packing fraction of 0.64 [8,9]. With a finite (and
relatively small) number, or in a given container, the answer is more
complicated even for equal spheres [10,11].

• If the spheres are slightly squashed to become spheroids with a height/
width ratio of 0.7, the maximum packing fraction increases to 0.72
[12]. This is close to the limit by ordered sphere packings such as HCP
(hexagonal close packing) and FCC (face-centred cubic packing), both
have a packing efficiency of 0.74 [13]. This level of packing efficiency
can also be reached by RCP of some spheropolyhedra of high (~0.9)
sphericity [14] or in polydispersed packing [15].

• Most physical properties are structure-dependent. Indeed, in our own
experience in providing people with packing structures (either simu-
lated and/or CT scanned), more than half the people who are interested
in packing structure are interested because of the properties of interest
that they know or believe are structure-dependent in some way.

• Shape affects microstructure of the packing including packing density
and details of contacts [16–21], which in turn affect mechanical and
thermal/electrical conductivity properties. For example, packing of
round particles are more resistant to compression while packing of
angular particles to shear.

• Porous media made of particulates are examples of packing structure.
Particle shape affects morphology of the pores and topology of the pore
network, which in turn affects pass-ability of fluids and/or particles
through the pores.

• RCP principles are useful guide for designing metal alloys since
achieving optimal packing of atoms or ions is essential for desired
material properties [22].

• The shape of particles influences mechanical strength, compressibility,
shear resistance, thermal conductivity of particle assemblies as powder,
sand or soil 23–66.

• Shape of filler particles (and volume fraction) can substantially change
electrical and magnetic properties of nickel/polyethylene composites
[67].

• Flowability of granular material is affected by particle shape
[25,68–75].

• In granular materials, random packing of spheres plays a role in
understanding jamming transitions [76–79].

• RCP concepts help explain transition from liquid-like state to a rigid
solid in amorphous materials like glass [80].

• Bin packing and packing optimisation help optimise container
utilisation in shipping containers, product packaging, storage bins and
silos, and nuclear decommissioning [82–92].

• In civil engineering and geotechnical studies, how granular materials
packing is crucial, affecting construction, foundation design and
stability [27,93–99].

• Slusser [100] listed five ways particle size affect pharmaceutical
product quality: compression, dissolution, bioavailability, flowability
and shelf life. Particle shape is involved directly or indirectly in all five.
In pharmaceutical manufacturing, achieving optimal packing density of
powders used for pills and tablets impacts drug dissolution rates,
bioavailability, and dosage consistency [101–106].

• Colloidal particles in suspensions exhibit RCP behaviour [107,10].
Understanding their packing density is essential for designing stable
emulsions, paints and coatings.

• Biological cells, tissues and organelles often exhibit random packing.
RCP informs our understanding of cell packing in tissues, blood vessels
and organs [108,109].

• Designer cells can be made to act like self-renewing living machines (e.
g., Xenobots), and a crucial step is tissue layering and shaping

(continued on next page)
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Table 1 (continued )

Properties of interest Roles of particle shape Examples

[110,111]. Making synthetic particles or cells to mimic living cells is a
hot topic [112,113].

• In 3D printing, two aspects are closely related to shape. Particle shape
affect flow-ability and spread-ability of the powder [114,70], which
impacts quality of the printed parts. The second aspect is efficient use of
the print tray space to maximise the number of parts printed in one
batch [115,116], which is a special packing problem and linked to the
cost of the printed parts. The special requirements include: parts should
not be in an arbitrary orientation, and there must be gaps between the
parts.

• Permeability and performance of filters (as porous media) are affected
by the shape of particulates that are in the suspension or making up the
cake and/or the filter itself [117,118].

• In solid-fluid separation (e.g., in a cyclone), particle shape plays an
important part in performance [119].

• Solids fraction, contact statistics, uniformity or voids distribution, pore
shape and pore network structure, tortuosity and permeability of
packing as porous medium are all particle shape related [120–134].

Segregation & Mixing • Segregation can happen due to any difference that affects relative
mobility of particles when they are in relative motion. Although size
difference is the most cited cause, differences in shape, density,
composition, cohesion, etc. can all induce segregation.

• Mixing is the opposite of segregation and is more often the desired state
than segregation. Segregation is a major contributor to the "meagre"
(60%) operating efficiency of most solids processing operations in
industry [135].

• The two usually co-exist and are easily turned to one another. The two
are so related that mixing can be, and frequently is, described by scale
and intensity of segregation [136,137].

• The Brazil nut effect (and its reverse) is synonymous to size-segregation
[138–144]. However, particles of the same ‘size’ but different shapes
can also segregate [145,146].

• Separation by means of jigging is an example of segregation by density
and/or by size/shape and other properties that affect hindered settling
velocity of particles [147–150].

• Segregation in heaps and silos is another example where shape, among
other things, matters [145,25,151,152].

• More simulation and experimental studies of segregation of non-
spherical particles can be found in the literature [153–164].

• Powder mixing usually involve non-spherical particles and has been
extensively studied for decades experimentally and numerically
[74,165–184].

Size measurement • It is because of shape that different sizing techniques can produce
different results for the same powder [185–197].

• Sizing by sieving is not a robust method for a mixture of very different
shapes. For example, needle-shaped particles can pass through the
same mesh as round particles, so long as they have the same second
largest linear dimension, but the two groups clearly have different sizes
and behave differently.

• Sizing by light diffraction method [198] can show apparent bimodal
size distribution for mono-sized needle-like particles [199,200] or a
broadened peak for rod-like particles [201].

• Shape-dependency of sizing techniques can cause confusion,
uncertainty, or wrong interpretation, especially when dealing with a
mixture of different sizes and shapes [202–204].

• In sieving, the 2nd highest dimension determines if a particle can pass
through a given mesh [1].

• Obviously, irregular shapes generally are more difficult, or take longer,
to pass through the sieve than round particles [205]. In other words, the
volume of particles retained on a sieve varies with shape as well as size
[206].

• Single particle optical counters used to be popular for PSD
measurement. For particles much smaller than the wavelength of light,
the measured size is very close to volume-equivalent diameter; whereas
for particles much larger than the wavelength, the measured size is
more correlated with the particle’s projected area [207].

Particle-particle (P–P)
interaction related
properties or phenomena

• Even among particles of the same material, shape affects the nature (e.
g., point contacts vs surface contacts) and the number of contacts in
powders.

• Effective thermal conductivity is affected by particle shape in a packing.
• Thermal conductivity of nanofluids depends on shape of nanoparticles.
• Chemical reaction kinetics depend on exposed surface area and its
distribution in confined space (e.g., packed column reactors).

• In 3D printing, flowability or spread-ability of powder critically affects
quality of the printed parts [208].

• Shear resistance at the initial (re-arrangement) stage mainly depends on
characteristics of particle (surface) contacts.

• Irregular shaped river rocks lose their angularity due to abrasion faster
than the rocks lose their size – the so-called shape-size paradox [209].

• Irregularly shaped particles in chocolate affects its texture and
mouthfeel.

• In concrete production, particle shape affects aggregate properties,
impacting the final product’s strength [99,210].

Particle-surface (P–S)
interaction related
properties and phenomena

• P-S may be considered an extension of P–P interaction if the two are
made of the same material; but more often they are of different
materials.

• P–S interaction gives rise to the so-called “wall effect”, meaning the
packing structure (and hence structure-related properties) near the
wall is different from that of the bulk. How thick this wall-effect layer is
depends on particle shape (and whether it is a mixture).

• Shape and surface characteristics of virus particles affect their affinity
to membrane of tissues, thus toxicity.

• Asbestos are cancerous because their fibrous shape makes them easily
trapped in the lung once inhaled, causing long term damage.

• Particle shape impacts the sensory experience of food products.

• It is well known that inhalation of fibrous particles (e.g., asbestos) can
cause respiratory diseases and lung cancer [211].

• All virions consist of a nucleic acid genome and a protective layer of
proteins (called a capsid). By shape or morphology, viruses are
classified into four groups: filamentous (i.e., long and cylindrical),
isometric or icosahedral (i.e., roughly spherical), enveloped (having a
membrane surrounding the capsid), and head and tail. The shape of a
virus play an important role in determining if and how it can infect the
host [212].

• Shape of nanoparticles is a determining factor of their cytotoxicity
[213,214].

• While particle size has long been recognised to affect mouthfeel of
chocolate (e.g., particles below 20 um give a silky feel and 2–3 um
particle size difference can be detectable by the tongue as a different
level of smoothness) [215], the shape of the chocolate piece has also
been shown to have an impact on its oral perception [216].

• Coating uniformity is affected by particle shape.

(continued on next page)
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Table 1 (continued )

Properties of interest Roles of particle shape Examples

• Particle deposition rate, detachment rate, and surface coverage are
shape dependent. Spheres differ significantly from other shapes (e.g.,
rod-like particles, spheroids) in these terms [217–224].

Particle-fluid (P–F)
interaction related
properties and phenomena

• Particle shape is a determining factor for drag force. Also, asymmetry
in shape means that drag force on a particle is (relative) flow direction
dependent.

• Particle shape influences dissolution (and more generally chemical
reaction) kinetics because from mass transfer point of view spatial
distribution of the exposed surface (where dissolution/reaction occurs)
affects how quickly the dissolved phase is dispersed, through diffusion
and/or convection, away from the reaction sites. For facetted crystals,
growth and dissolution rates are different for different facets, thus not
only the overall dissolution speed is shape dependent but also the
shape itself changes during growth/dissolution.

• Drag coefficients are shape dependent [225,226].
• Particle motion and settling in fluid is shape-dependent [227–234].
• Overall rate of dissolution is particle shape dependent [235–237].
• If the dissolution rate is directional or facet-dependent, as is usually the
case for crystals, different faces recede at different velocities [238].

• Particle shape affects drug delivery efficiency [239,240].
• Particle shape also affects functionality of dietary fibre concentrates
[241].

• Particle shape affects heat transfer performance of particle laden
nanofluids [242,243] or heat loss of particles or even buildings
[244,245].

Table 2
Particle shape descriptors.

Terms Category Purposes and links with properties Comments

Acicular, angular, crystalline, dendritic, fibrous, flaky, granular,
irregular, modular, spherical.

Qualitative General terms used for powder particles as defined in
BS 2955 Glossary of terms [1,248].

Qualitative terms are descriptive and
easy for the reader to perceive the
shape being referred to. However, they
are subjective, ambiguous and
arbitrary, and need to be used in
conjunction with some quantitative
terms to make comparative sense.

Platy, rod-like, blocky, cubical, needle-like, prismoidal, sponge,
rounded, tabular, equant, columnar, blade, etc.

Qualitative Additional descriptive terms suggested for powder
particles [249].

Lamellar, tabular, equant, columnar, acicular.
Paired up with
Isometric, tetragonal, hexagonal, etc.

Qualitative Used in pairs, for crystalline particles in
pharmaceutical context [250].

Shape factors based on Feret, Martin and project area diameters
[251–254]

Feret diameter (dF), also called calliper diameter, is the
distance between two parallel planes that bound the particle
in any given direction. For 2D projection of the particle, it is
the distance between two parallel tangential bounding lines.
For a 2D convex projection, the average Feret diameter over

all directions is dF =
P
π by Cauchy’s theorem, where P is the

perimeter of the area.

Martin diameter, for a 2D projection area, is the chord length
that bisects the area along any given direction.

Projection area diameter is the diameter of a circle with the

same area (A) as the projection: da =

̅̅̅̅̅̅
4A
π

√

These relationships always hold: dFmax > da and dFmin < da

Aspect ratio: ψA =
dFmin
dFmax

Straightness (for fibres):
dFmax

fibre length

Curl index (for fibres):
fibre length
dFmax

− 1

Quantitative

Geometrical

2D

• Particle sizing based on image analysis (IA), but
many commercial particle sizers and shape analysers
use these to report shape factors along with PSD.

• Feret diameter is also called calliper
diameter. It is easy to hand measure
with a calliper but not unique.

• Martin diameter is logical as a
geometrical concept, but not as easy
to hand measure, and cannot be
precisely determined if the particle
image has a low resolution (while
the other two can still be precisely
determined).

• Feret and Martin diameters are
direction dependent and not
unique, their maxima and minima
are more often used.

• Projected area diameter is
calculated from solid-pixel count,
thus in practice the most well-
defined among the three.

• Although Feret diameter applies to
3D, all three are generally used to
describe 2D projections of the 3D
particles.

Wadell series [255–257]

Sphericity or Carman’s shape factor:
surface of equal volume sphere

surface of the particle
=

(
dv
ds

)2

Circularity:
perimeter of equal area circle
perimeter of particle projection

=
da
dp

Roundness:
1
N

∑N
i=1

(ri
R

)

where ri is radius of curvature at corners, R radius of the
maximum inscribed circle, and N the number of edges
(corners).

Lees [258] defines degree of angularity in a similar way –
summing up the contribution from each corner, but instead of
local curvature of the corner, angle of the corner (αi) and
distance (xi) of the corner tip from the centre of the maximum

Quantitative

Geometrical

3D and 2D

Proposed in the context of geology but widely applied
in other fields as well.

• In practice, roundness and
sphericity values had typically been
estimated using charts that were
developed in the 1940s–1950s.
Studies [260–262] showed that only
with proper training and experience
can users obtain correct and
consistent results. This would be as
expected for any manual operated
measurements. They demonstrate
the needs for developing automated
computer methods and
standardisation.

• Computer methods, based on image
analysis, for shape factor
calculations, usually for specific
types of particles, and of course not
limited to traditional shape factors,
have indeed been developed

(continued on next page)
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Table 2 (continued )

Terms Category Purposes and links with properties Comments

inscribed circle is used:

(180 − αi)
xi
R

An evenmore detailed definition of shape factor was proposed
by Podczeck [259]. Using image analysis of a particle’s
projected outline, it is easy to calculate the area (A), the
perimeter (P), the minimum Feret diameter (dFmin), Feret
diameter

(
dsp

)
perpendicular to (dFmin), the maximum Feret

diameter (dFmax), deviation from square H1 =
A

dFmindsp
, from

circle H2 =
A

(π
4

)
d2sp
, from triangle H3 =

2A
dFmindsp

and

elongation H4 =
P
dFmax

. The shape factor is then defined as

NS = NC+ H4H3 − H2H1

where NC is the number of characteristic corners. Using IA, NS
and PSD can be obtained at the same time and NS is more
sensitive to small shape changes than other commonly used
factors, but it does not evaluate sharpness of the corners and
does not work well if the shape is irregular and has more than
a few (say 5) corners.

(sometimes with modified or new
definitions), bundled with
equipment, and continue to be
improved (e.g., [259,263–294].

• Corresponding to “mean size”, a
definition of “mean shape” has been
proposed [295]. Yu et al. [105]
showed that active pharmaceutical
ingredients (API) with a low
molecular weight (<500 Da) have a
typical median aspect ratio between
0.6 and 0.8. This corroborates the
concept of mean shape. Using a
mean size/shape obviously makes
comparisons simpler and easier, but
beware the pitfalls of using averages
– they hide the range and variability
of the raw data thus can be
misleading or misinterpreted.

Krumbein [296,297]

Sphericity: φ =

(
C
B

)(
B
L

)2

Roundness:

Surface texture:

where L = longest dimension of the particle, B = breath
measured perpendicular to L, C = thickness of the particle

Quantitative

Geometrical

3D

• Zingg’s classification of pebble shapes was described
by Krumbein [297].

• The dimensions are different from
Heywood’s definitions.

Heywood series [298]

Elongation ratio: n =
L
B

Flakiness ratio (or flatness): m =
B
T

Projection area: A =
π
4
d2 = αBL

Volume: V = βd3 = pAT = pαBLT

Shape factor: β =

(
π

̅̅̅
π

√

8
p̅
̅̅
α

√

)(
1
m

̅̅̅
n

√

)

Zingg’s index: F =
LT
B2

Space-filling factor: fv =
LTB
V

Schulz’s index: k = 100
(
L2B
V

− 1
)

= 100
(
L
T
− 1

)

All expressed in terms of Heywood’s limiting dimensions: L =
length, B = breath, T = thickness of the bounding box of the
particle lying on the side of maximum stability.

Quantitative

Geometrical

3D

• Angular and tetrahedral when α = 0.5 − 0.8 and p =

0.4 − 0.53
• Angular and prismoidal when α = 0.5 − 0.9 and p =

0.53 − 0.9
• Sub-angular when α = 0.65 − 0.85 and p = 0.55 −
0.8

• Rounded when α = 0.72 − 0.82 and p = 0.62 − 0.75
• Shape factor β has two bracketed terms, the first
describes form, the second proportion.

• Zingg’s is the most widespread classification system
for pebble shapes in geology [299,300]. For
example, pebbles on the seaside tend to have F < 1
(oblate), whereas stones on river banks tend to have
F > 1 (prolate), spheres or blades have F = 1.

• Space-filling factor is linked to resistance to fracture
of grinder particles.

• Schulz’s index is linked to ballast for roads and blast
furnace clinker.

• Originally designed to quantify
shapes of rocks and pebbles – those
that can be hand-held and hand-
measured. The dimensions are
uniquely defined if the particle has
only one side of maximum stability.

• In particle imaging devices, such as
Malvern G3, particles also tend to
land on a side of some stability – not
necessarily side of maximum
stability if adhesion is strong
compared to particle weight – these
shape factors can be similarly
defined and calculated.

Hausner [301]

Elongation ratio:
L
W

Bulkiness factor:
A
LW

Surface factor:
C2

4πA

Contour ratio:
C

πD

where L and W are length and width of the enveloping
rectangle of minimum area. A is the project area of the
particle, C its perimeter, D the area diameter of the projection.

Quantitative

Geometrical

2D

Surface factor is square of contour
ratio. Contour ratio is reciprocal of
circularity.

Sugimoto et al. [302]

Degree of circularity (form):

Quantitative

Geometrical

Used in pair to form a matrix to describe projections
ranging from smooth circle (ϕ = 1 and ς = 1) to rough
edged ellipses (e.g., ϕ = 0.75 and ς = 0.825)

Can simultaneously describe form and
texture, albeit in 2D only. The concept
should be extendable to 3D.

(continued on next page)
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Table 2 (continued )

Terms Category Purposes and links with properties Comments

ϕ =
diameter of equal area circle

major axis length of equal area ellipse

Surface roughness (texture):

ς =
perimeter

perimeter of equal area ellipse

2D
The real shapes are forced to conform
to some underlying templates which
are regular and symmetrical shapes (i.
e., ellipses).

Tsubaki and Jimbo [303,304]

Ψac =
da
dc

ΨaF =
da
dF

ΨaR =
da
dR

ΨcF =
dc
dF

ΨcR =
dc
dR

ΨFR =
dF
dR

ΨFa =
dF
da

ΨStv =
dSt
dv

κ =

(
dv
dSt

)2

dF =
dFmin + dFπ/2

2

E(dR) =
1
π

∫2π

0

RdθR σR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

E
(
R2

)
−
E2(R)
E(R)

]√

E(dF) =
1
π

∫π

0

dFdθR σF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

E
(
d2F
)
−
E2(dF)
E(dF)

]√

where da is project area diameter, dc perimeter diameter,
dFFeret’s diameter, and dR unrolled diameter.

Quantitative

Geometrical

2D

Nine new parameters in three groups are defined to
describe 2D projections of particles. When two or three
of them are used together in a diagram, fine details or
small changes in shape can be distinguished.

Very detailed, and with image analysis
software tools, they should be easily
calculatable. Yet, they have not caught
on and widely used in the set’s
entirety.

Mikli et al. [305]

Aspect ratio: AS =
a
b

Elongation: EL = log2
(a
b

)

Dispersion: DP = log2(πab)

Roundness: RN =
P2

4πA

Roundness factor: RNF =
P
dA

Irregularity parameter: IP =
D
d

Spike value: SV = h cos
(

θ
2

)

Spike parameter – linear fit:

SP =
1
n
∑ 1
m
∑ SVmax

hmax

Spike parameter – quadratic fit:
SPQ = SVav
where a and b are major and minor diameters of Legendre
ellipse that fit the particle’s project, dA diameter of equal area
circle, d and D diameters of inscribed and escribed circles, θ is
angle of a spike in the contour, h protrusion height of the
spike, m number of valid SV for a given step size, and n
number of different step sizes used.

Quantitative

Geometrical

2D

• For metal powder particles produced by mechanical
methods such as milling. Angularity factors
characterising the spikes are linked to particles’
ability to abrade and erode.

• Precise values of shape factors can
be worked out using image analysis
tools. Each shape can be described
by multiple factors for different
aspects.

• For example, a perfect ellipse
corresponds to DP = 0; a star
shaped particle with an elliptical
fitting profile has DP = 0.732; a
twig like particle has EL = 3.818; a
square has RN = 1.273,RNF =

1.128, IP = 1.414 and SPQ =

0.707.

Russ [306]

Form factor: 4π Area
Perimeter2

Roundness:
4 Area

π MaxDiameter2

Aspect ratio:
MaxDiameter
MinDiameter

Elongation:
FibreLength
FibreWidth

Curl:
Length

FibreLength

Convexity:
ConvexPerimeter
Perimeter

Solidity:
Area

ConvexArea

Quantitative

Geometrical

2D

• For shapes in the context of computer image
analysis.

• With digital (binary) images of
isolated shapes, precise values of
shape factors can be worked out
using image analysis tools. Again,
each shape is describable by
multiple factors for different
aspects.

(continued on next page)
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Table 2 (continued )

Terms Category Purposes and links with properties Comments

Compactness:

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4
Area

π

√

MaxDiameter

Modification ratio:
InscribedDiameter
MaxDiameter

Extent:
NetArea

BoundingRectangle
Sneed & Folk [307]; Benn & Ballantyne [308]; Graham &
Midgley [309]

A shape is a point in a TRI-PLOT which is a three-axis triangle
with “Blocks” (sphere), “Slabs” (oblate) and “Rods” (prolate)

at the three vertices, and ratios
c
a
,
b
a
,
a − b
a − c

as axes. Here a,

b and c are bounding box dimensions. It shows how close a
shape is to the three typical shapes (sphere, oblate spheroid
and prolate spheroid).

Kaye et al. [310] Plotting chunkiness and fractal dimension
against particle size in a 3D plot, powders with different
characteristics are visually and easily separated into cluster(s)
in the plot.

Quantitative

Geometrical

2D/3D

• The widespread Zingg diagram [300] is simple and
easy to use but limited to 4 classes (blade, disc, rod
and sphere). Sneed and Folk [307] used a triangular
diagram to include 10 shape classes.

• Making it easier to visually separate particles of
different properties or to group them according to
properties.

• Interesting way to describe shapes,
can simultaneously show 3 ratios in
one plot.

• Ratios vary linearly, resulting in
even distribution of particle forms
across the diagram without
distorting the shape continuum.

• Simultaneously show different
aspects of particles, makes it easy to
visually separate particles into
groups, and see the correlation or
interdependency between them
[283,311].

E-classification [312]

Instead of measuring lengths, this method involves hand
experiment (with the shape and a flat surface) and counting
the numbers of stable (S), unstable (U) and saddle type (H)
equilibria. Given the Poincare-Hopf relationship, S+U-H= 2,
for convex shaped pebble shapes, only two of which need to
be counted.

Quantitative

Geometrical

2D/3D

• Based on static equilibrium points, for pebble and
crystal shapes, the so-called E-classification is “more
sophisticated” yet “considerably faster in practice
than the classical Zingg method”.

• Extendable for crystals where the number of faces
(F), vertices (V) and edges (E) satisfy the Euler’s rule,
F-V-E = 2.

• Works with whole numbers
(counts).

• Field-work friendly and quick.
• Can cover polyhedral shapes which
cannot be extracted from the Zingg
system.

• There can be many more E-classes
(depending on S and U numbers),
but a simplified version involves
only 4 E-classes (e.g., flat shapes
belong to E(I), elongated shapes to E
(IV)).

• Hand-sized, convex shaped objects
only.

Miscellaneous, a collection from Powder Technology Handbook
by Gotoh et al. [313]

Volume shape coefficient: V = ϕvd3

Surface shape coefficient: S = ϕsd2

Specific surface shape coefficient: ϕ =
ϕs
ϕv

Carman’s surface coefficient: Sv =
6

ϕcdv

where Sv is volume specific surface area, dv equivalent volume
diameter.

Centroid aspect ratio (CAR):
MaxLengthThroughCentroid

PerpendicularDimensionThroughCentroid

Anisometry: axial ratio of equivalent ellipsoid

Rugosity:
Perimeter

PerimeterOfSmoothCircumscribingProfile

Surface factor:
Perimeter2

4π Area

Bulkiness:
Surface

MinAreaOfEnvelopingRectangle

Bulkiness factor:
VolumeOfEquivalentEllipsoid

ParticleVolume

Quantitative

Geometrical

2D and 3D

• A diverse range, complementary to other existing
shape factors.

• Not attributed to a specific pioneer
but in common use.

Fractal dimensions and fractal based descriptors

If a property A (e.g., mass, perimeter) of a structure is
measured using a yardstick B (e.g., radius of gyration, stride),
and the relationship follows a power law as A∝Bδ and δ is not
a whole number, then the structure can be described as fractal
and δ is the so-called fractal dimension.

Quantitative

Geometrical

2D and 3D

• For self-similar, finger-like structures, e.g., aggre-
gates of colloidal particles [314,71,315], viscous
finger in a Hele-Shaw-Cell [316], manganese oxide
at the joint surfaces in sedimentary rocks [317].

• Powerful tool to describe certain
type of complex structures.

• Mass based fractal dimensions and
perimeter based fractal dimensions
are different in value for the same
fractal structures, mass fractal
dimensions are usually larger.

• Based on the fractal concept, a 2D
fractal structure has a defined area

(continued on next page)
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Table 2 (continued )

Terms Category Purposes and links with properties Comments

but not perimeter; a 3D fractal has a
defined volume but not surface. The
implication is that measurement
results for perimeter length or
surface area are scale-dependent.
Such measurements should be re-
ported together with the measure-
ment conditions, much like how
‘size’ should be reported for irreg-
ular shapes.

Fourier analysis, spherical harmonics, Hilbert-Huang
transforms

[268,290,318–337]

In the simplest form, the (R, θ) Fourier method [318,319] can
describe, in closed form, a 2D profile as:

R(θ) = a0 +
∑N
n=1 [ancos(nθ) + bnsin(nθ) ]

provided that the radius R is uniquely defined for every angle
θ (i.e., there is no re-entrant angle where the profile doubles
back on itself) and the centroid, acting as the origin of (R, θ)
coordinates, can be accurately determined. Both restrictions
can be relaxed or removed if complex Fourier analysis is used
[338], which in effect replaces (R, θ) with a (x, y) pair of
coordinates:

xm + iym =
∑N

2
n=−

N
2
(an + ibn)

[

cos
(
2πnm
M

)

+ isin
(
2πnm
M

)]

In the above n = 1,2, 3,…,N is the index number of
descriptors, m = 1,2, 3,…,M the index number of (x, y)
points. In practice, M is chosen to be a power of 2.

Garboczi [322,339] proposed a 3D equivalent of the Fourier
series, using a truncated spherical harmonic (SH) series
defined on a unit sphere, to describe the contour of a particle
in 3D:

R(θ,ϕ) ≈
∑N
n=1

∑n
m=− nanmYnm(θ,ϕ)

Ynm(θ,ϕ) is called a spherical harmonic function, easily
calculable for given (n,m, θ,ϕ). Once R(θ,ϕ) is determined
from 3D image of the particle, the coefficient anm can be
calculated as an integral using R(θ,ϕ) and complex conjugate
of Ynm(θ,ϕ). In most cases, N up to 30 is considered sufficient
[340]. SH is a very popular method for describing shape and
shape distribution and for mass production of shapes for
simulations.

Liu et al. [341] adapted the so-called Hilbert-Huang transform
(HHT) to decompose particle geometry into a HHT series that
(like a Fourier series) represent geometry at different scales.
Based on this, they proposed a “complete and generic”
descriptor system to characterise irregular shapes, covering
sphericity, roundness, fractal dimension and a new structural
index. The math and computational process behind it are
complicated but a free software is made available on GitHub
(https://github.com/yfliu088/GMAP).

Quantitative

Geometrical

2D and 3D

• A relatively small set of Fourier descriptors are
required to reconstruct shape to a varying degree of
accuracy: more descriptors mean more details.

• Lower order descriptors (n = 1 to 4) describe the
overall shape, while higher ones are for texture or
local roughness details. N = 10 to 15 are usually
sufficient for a highly complex shape [342] and N =

3 may be enough to approximate morphology of a
sand particle [268].

• Fourier analysis formulation is clearly limited to 2D
profiles (i.e., 2D images or projections of 3D
particles).

• SH is designed to describe surface contour of a solid
3D object, i.e., small holes – if they present – should
be should be filled before the analysis.

• SH representation has been used to help with in-
depth comparison of different angularity indices for
irregular particle shapes and surface roughness
[343,344].

• These transforms work best for
smooth contours, not so well for
contours with sharp angles since
more parameters are required and
the fitting is only approximate.

• Can be used to recover shapes [330]
as well as characterising them.

• Pena et al. [345] extended 2D
Fourier descriptor theory to 3D and
used it to reconstruct individual
particles for use in simulations.

Polygonal harmonics and facetted crystals ([346,347])
Recognising the difficulty of Fourier analysis in dealing with
“very jagged and highly reentrant” particle cross-sections,
Young et al. [348] used polygonal harmonics to characterise
such particles.

In the second half of 1990’s, a French group proposed at least
half a dozen descriptors specifically to describe crystal shapes
(in 2D and pseudo-3D), based on results from a series of
morphological dilation and erosion [349,350] or from
Apollonian packing of squares to completely cover the surface
of faceted particles observed by reflection [351].

Using the concept of Minkowski addition, Reinhold and
Briesen [352] showed that a complex crystal shape can be
decomposed into a set of simpler shapes for which any

Quantitative

Geometrical

2D and 3D

Specifically for facetted shapes that are best described
as polygons or polyhedrons (e.g., crystals and faceted
objects)

• Like all modern shape descriptors,
they tend to be only obtainable by a
computer program (i.e., not easily
done by hand), and not as intuitive
as the traditional shape factors. On
the other hand, they tend to be
much more quantitatively
discriminating for the shapes they
are designed to use.

• Reinhold and Briesen [352]
commented that “Although the
concepts are developed for faceted
crystals only, the framework may
apply to a much broader class of
convex particles.” Could the idea be

(continued on next page)
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Table 2 (continued )

Terms Category Purposes and links with properties Comments

geometric measure (e.g., volume, surface area, sizes) can
readily be computed. The original crystal is a linear
(algebraic) sum of the simpler shapes.

developed to cover non-convex or
more general shapes?

Dynamic shape factors
Davies [353] defined a dynamic shape factor based on
terminal velocity ratio and demonstrated, for falling
spheroids in viscous flow, how the shape factor is related to
aspect ratio:

R =
a
b
and K =

Vs
V

where a is major axis, b minor axis of a spheroid, V Stokes
velocity of the spheroid, Vs Stokes velocity of equal volume
sphere.

Furuuchi et al. [354] proposed a method to use measured
electrical conductivities of the continuous phase (Kc) and of
the suspension (Ks) of known solids fraction (ϕ) to determine
dynamic shape parameter (M) defined in terms of geometric
aspect ratio and demonstrated their method for disks and
needles.

Kc − Ks
Ks

=
3M+ 2

3M(2 − M)

ϕ
1 − ϕ

(for ϕ between 0.05 and 0.1)

M =
(2y − sin2y)
2sin3y

cosy
a
b
= cosy (for a < b)

M =
1
sin2x

−
cos2x
2sin3x

ln
(
1+ sinx
1 − sinx

)
b
a
= cosx (for a > b)

Quantitative

Dynamic

3D

• As R increases from 1, K lines become increasingly
separated in a K-R plot for prolate and oblate
spheroids.

• In (a/b) vs M plot, different shapes (e.g., disks,
cylinders, oblate and prolate spheroids) show clear
separations in trend curves.

• Effects of particle-fluid interactions
are the most exploited when deter-
mining dynamic shape factors.
More examples are given in
[355–358].

• Like aerodynamic size, these
parameters can better capture or
link particle shape with a dynamic
response. However, they cannot be
used, like static geometry-based
shape factors, out of the context
where they are determined.

Geometry descriptors for pores in porous media [129]

Porosity: complement of packing fraction
Pore size distribution: particle size distribution
Mean empty space: average pore size
Constrictivity: depends on the ratio of diffusing particle size to
pore size but defined for the entire porous medium rather than
a single pore
Tortuosity: definition varies according to context (e.g.,
hydraulic, electrical, diffusion, thermal) but all used to
predict transport properties of porous media

Quantitative

Geometrical

2D and 3D

• Porosity, constrictivity and tortuosity are three
parameters often used in empirical relationships to
describe transport processes like diffusion, fluid flow
(permeability), and thermal conductivity
[127,359,360,218,361,362,363,63].

• Another way to geometrically
quantify a particle assembly (or
packing or agglomerate or cluster)
is to treat it as a porous medium and
focus on the voids (pores) instead of
the solids. In concept, since the
porous structure can be inverted
such that pores become particles
and particles voids, the pores can be
quantified just like particles. In
practice, the pores are in most cases
so interconnected that there is often
no natural boundaries to separate
individual pores apart for analysis.
Thus, separate sets of descriptors
are used to describe the pores and
the particles. Nevertheless, the two
are highly correlated or equivalent
to each other. For example, packing
fraction and porosity are
complementary and so are
correlation functions (e.g., radial
distribution function); particle and
pore size distributions are related
and so as mean particle size and
mean empty space; specific surface
area is identical; tortuosity
distribution for the pores and force
chains for the solids are both a
reflection of their respective
connectivity.

• Much like particle size for irregular
shapes, pore size is not a well or
uniquely defined quantity, because
pores have irregular shapes and
because except for the closed pores
the boundaries that separates the
pores are somewhat artificial and
arbitrary and so what constitutes a
pore can vary from one analysis to
another. Thus, like PSD, pore size
distribution depends on how the
pore size is defined, measured and
calculated [364,365].

• Given a 3D image of a piece of
porous medium, calculating

(continued on next page)
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Table 2 (continued )

Terms Category Purposes and links with properties Comments

tortuosity [364,366] using
simulated MIP (mercury intrusion
porosimetry) may not be less effort/
runtime than simulating flow
through the medium using LBM
[367,368,369], but the latter gives
much more information. Thus,
tortuosity as a means to estimate
permeability is no longer as
prevalent as it used to be.

• Voronoi tessellation as tool to create
pore network in sphere packing has
been extended to deal with packing
of arbitrary shapes [370].

Table 3
Standards for particle shape description.

Standard Year Coverage

Qualitative
BS2955 1993 A list of terms for general particle technology including types of particles, particle size and shape. Also methods for measuring suspensions,

emulsions, surface area, and porosity.
ISO 9276-6:2008 2008 Rules and nomenclature for the description and quantitative representation of particle shape and morphology.
ASTM standard
F1877–16

2016 Procedures for characterising particles with specific focuses on the morphology, number, size, and size distribution of particles. An appendix in
the standard includes a classification scheme for describing particle morphology.

Glossary of terms Various Terms used for particle shape. NIST used to have a glossary available on their website, but not anymore. Some portals have booklets or lists of
commonly used terms for particle shapes (e.g., https://www.bulksolids-portal.com/pdfs/8431-pdfUK.pdf)

Quantitative
BS EN ISO 19749:2023 2023 Methods for determining nanoparticle size and shape distributions using SEM.
EN ISO 14688-1:2017 2017 Geotechnical investigation and testing – Identification and classification of soil. Contains a section for particle shape.
ASTM D 2488-09a 2016 Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Very strict about what terms to use and when to use (or

not to use) them. Only three terms are defined for shape (flat, elongated, flat and elongated).
BS EN 933–3:2012 2012 Reference method for determining flakiness index of aggregates. This is a European Standard on tests for geometrical properties of aggregates.
BS EN 933–4:2008 2008 Reference method for type testing and dispute resolution when determining the shape index of coarse aggregates.
ASTM D8090–17 2017 Standard test method for particle size and shape analysis of paints and pigments using dynamic imaging methods.
ASTM F3571–22 2022 Standard Guide for Additive Manufacturing – Feedstock – Particle Shape Image Analysis by Optical Photography to Identify and Quantify the

Agglomerates/Satellites in Metal Powder Feedstock
ASTM D4791–10 2010 Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate
ASTM D3398–00 2000 Determination of particle index of aggregates as an overall measure of particle shape and texture characteristics.

Table 4
Shape measurement techniques.

Technique Typical
resolution

Applicable
sample size
range

Purposes and applications Comments Typical cost of hardware

Direct measurement of (often) static sample for geometrical description
Hand
measurement
(3D)

0.5 mm mm – m Static, geometrical, 3D based, descriptors such
as the Heywood series in Table 3.

Shape descriptors started with geologists
using hand measurements. It remains their
method of choice for field work in many
cases.

A ruler can be had for less than $1 and a
calliper for as little as $10 (although
$10K+ callipers are also available).

Optical
microscopy or
imaging (2D)

μm μm – mm • Geometrical descriptors, mostly 2D but can
be 3D if operated in stereo or tomographic
mode.

• For particle size/shape analysis, dynamic
and/or digital image analysis is more
common now. Imaging and analysing
moving particles makes the equipment more
expensive but the saving in time and effort is
well worth the extra cost.

• Examples of using optical tomography for
shape characterisation are available
[455,267].

• Tomographic phase microscopy [456] uses
phase shifting laser with variable
illumination angle to map refractive index in
cells and tissues. It can be used to track cells
structural changes over time.

• A favourite tool for people dealing with
powders or granular materials [457].
Inner structures are missed unless the
particles are semi-transparent and con-
taining sufficient contrast.

• Automated IA is the norm among
commercial particle sizers and shape
analysers [276,458].

• Simultaneous sizing, specific surface area
and shape characterisation through image
analysis (IA) [459].

• Using structural light can help eliminate/
reduce errors due to textures/shadows in
image-based particle sizing and shape
characterisation [460].

• There had been attempt to make use of
light diffraction pattern, with Fourier
analysis, to obtain shape information
[461].

A size measurement microscope can easily
cost $6K or more.

(continued on next page)
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Table 4 (continued )

Technique Typical
resolution

Applicable
sample size
range

Purposes and applications Comments Typical cost of hardware

• Using a CFD model based design, Weirich
et al. [462] developed a 3D light scattering
sensor to measure sphericity index of
aerosol particles (0.5–5 μm) in a setup not
so different in concept from Coulter
counter – allowing only one particle to
pass the sensing zone at time.

SEM (2D) and
FIB-SEM (3D)

0.5 nm nm – mm • SEM is a surface imaging technique, relying
on reflected electrons from the sample
surface. It can be used provide information
about surface morphology, topology and
roughness of solids [463,464]. The outlines
of particles can be analysed as if they are
project areas to calculate static, geometrical,
2D based, shape descriptors.

• Stereo SEM takes images from different
sample tilt angles. It is possible to
reconstruct a digital elevation model from
these stereo images to allow 3D
characterisation of irregular shaped
particles [465,466] or structures [467].

• Some SEMs can have a focused ion beam
(FIB) in addition to electron beam. Ions
(typically gallium ions) are much heavier
than electrons and can cut through the
surface of a sample, allowing FIB-SEM
combo to image inside the sample up to
nanoscale depth [468]. For a thicker sample,
the process involves layer-by-layer milling
and imaging. Compared to X-ray μCT, FIB-
SEM offers higher resolutions (nm vs μm)
and often used to image porous structures
[469,470]. When data from both CT and
FIB-SEM are fused, larger samples can be
imaged with more details and better accu-
racy than either alone can provide
[471,472].

• Can be used for size/shape
characterisation of pores as well as
particles.

• SEM photos may look like real (optical)
photos, containing shades and contrast
variations resembling shadows, to reveal
surface morphology, but it must be
realised that surfaces react to photons and
electrons differently.

• SEM images do not have focal depth like
normal photos, as SEM images are
essentially maps of depth-integrated
response to electrons of surface points, but
they have something equivalent, depth of
field, and it is narrow, meaning surface
features being imaged cannot be more
than several pixels in height. This is usu-
ally a problem but can be taken advantage
of, by fusing images taken at different
depth, for 3D analysis of particles [473].

• Combining stereo images and shape-from-
shading (SfS), it may be possible to
reconstruct at least the visible part of the
3D structure [474–480].

An SEM can cost anything between $10K
and a few millions.

TEM (2D) and ET
(3D)

0.5 Å Å - μm • TEM uses transmitted electrons to create an
image, thus can provide information about
the inner structure of the sample. Typically
used for studying crystal defects, impurities
and nanoscale structures.

• Stereo TEM, like stereo SEM, takes multiple
images to obtain 3D information of smaller
(e.g., nm) structures [481,482]. More often
used in STEM (scanning transmission
electron microscopy) mode [483,484,485].
By exploiting 1D crystalline defects, STEM
can be used in tilt-less mode, which is orders
of magnitude faster than the standard title-
arc mode, for reconstruction of complex
curvilinear structures [486].

• ET (electron tomography) can be used to
image 3D structure of macromolecular and
cellular sized particles [487].

• Reconstruct structure in 2.5D from a tilt
series of 2D projections.

• Real-time reconstruction and 3D data
analysis are now possible using tomviz - an
open-source, cross-platform software
(tomviz.org) [488].

A TEM can cost anything between $500K
and several millions.

X-ray μCT (3D) μm μm – cm • CT uses penetrative X-rays to create 3D
images of density since attenuation through
the material being imaged is related to
atomic number of chemical compositions in
the material.

• With full 3D virtual sample available,
particle sizing as well as shape descriptors
can be calculated, provided the resolution is
high enough for the sample being analysed
[489,490,491,329].

• In terms of 3D shape/morphology analysis
of real powder particles, CT provides the
gold standard or ground truth, for others to
use for AI training and for shape validation
purposes. The 3D-CNN in Table 7 is an
example.

• Sub-micron resolution, or nano-CT, is avail-
able [492].

• Overall form, surface texture as well as
internal structure can all be obtained at
once. Internal structural info is useful for
predicting body based properties such as
heat transfer, breakage, etc.

• Measure pores [501–507] as well as
particles; and help build pore network
models [508].

• Usually for static images, but can in
principle be used to track dynamic process
if X-ray shadow images (rather than
reconstructed tomograms) can be used,
since each projection takes milli-seconds
to acquire. Some CT scanners (e.g., Nano-
tom) are designed to be easily set up to
operate in this mode.

• For particle sizing and shape analysis, it is
important to ensure that particles are
physically and adequately separated. A

A desktop or lab scale CT scanner for
material characterisation (i.e., non-
medical use) usually costs $400K or more.

(continued on next page)
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Table 4 (continued )

Technique Typical
resolution

Applicable
sample size
range

Purposes and applications Comments Typical cost of hardware

• Phase contrast X-ray CTmaps the real part of
the refractive index of the material being
imaged, making it more suitable for imaging
relatively low density materials such as
crystals, soft tissues [493,494].

• Multi-energy or multi-tube voltage X-ray CT
[495] can help when dealing with difficult-
to-detect material contrast in samples.

• A more recent development [496] combines
CT with XRD (X-ray diffraction) to create
images with enhanced ability to identify
materials (e.g., explosives and narcotics)
that have similar densities as benign
everyday materials (e.g., plastics, light
metals).

• A latest development [497] makes it
possible to use synchrotron X-ray scanning
tunnelling microscopy (SX-STM) to capture
signature of a single atom. This could
possibly be developed to image particles in
terms of chemical composition as well as
geometrical structure.

• ML (machine learning) is a promising tool to
help reduce the time and effort for analysing
the samples as particle assembly [498,499]
or as porous medium [500].

usual trick is to sprinkle particles on a
cotton ball or a polymer foam spacer or
graphite nanoparticles as spacers, so that
they can be easily distinguished in the
tomograms [509,340]. Otherwise,
segmentation and extraction of individual
particles from the tomograms (of a packed
bed of particles) can easily be more time
consuming than sample mounting and
scanning combined. There are tools to
help with this task, but their effectiveness
is shape dependent. Watershed based
segmentation methods work best for
convex shapes and can cope with mildly
concave shapes [510,511]. Markov chain
template matching method can be used for
any shape in a mono-shape packing (e.g.,
DigiUtility) but extremely time
consuming. Other specialist tools are
available [512–517]. Machine learning
(ML) tools are also becoming available
[498,518–523].

• Commercial CT scanners now come
bundled with, or at least allow their raw
CT data to be processed by third-party,
GPU-enabled reconstruction software,
reducing reconstruction time from hours
to minutes.

Synchrotron
tomography
(3D)

μm - mm • Maybe an overkill for shape
characterisation, more useful for in-situ
tracking time evolution or dynamics of a
particulate system in close to real-world
environments [524,525]. Its X-ray source
purity and power, and parallel beam (as
opposed to fan or cone beam), mean faster
and higher quality imaging compared to
those from cheaper desktop CT scanners
[526,527].

• Real time reconstruction on GPUs is a
reality but the high cost of computing
hardware means that it is only available at
present in some synchrotron and medical
facilities [528,529,530]. Deep learning
based reconstruction has the potential to
make real-time reconstruction more
widely spread [531].

Phase 1 of UK’s Diamond Light Source
costed $330M (£263M). Only one of its
several beamlines is required for
tomographic imaging. Beamtime or access
is by application and free for scientific use.

NMR or MRI (3D) μm - mm mm - cm • NMR or MRI (nuclear magnetic resonance
imaging) is a useful tool for monitoring
chemical reactions or dissolution in flow
through a porous medium or packing [532-
535].

• NMR specifically applies to nuclei with
odd number of nucleons, typically 1H and
13C, thus best suited to bio (carbon) or
water based samples.

Partial capture of
shapes (3D)

μm - mm mm - cm • Several techniques exist to allow particles
(or more generally a geometric scene) to be
scanned from one side. The working
principles are diverse and varied, but the
devices are all designed to capture only a
half of the particle’s geometry at a time, thus
often referred to as 2.5D techniques.
Examples include confocal microscopy
[536–539] structured light microscopy and
tomographic phase microscopy for small
particles, profilometry and laser scanning
for large particles. Zheng et al. [540]
showed how to correct shape factors
obtained from half particle geometry.

• Bujak & Bottlinger [541] described a
method to capture free-falling particles from
three orthogonal directions and reconstruct
particle in 3D sense.

• Ziegel et al. [542] developed statistical
procedures for estimating shape and
orientation of arbitrary 3D particles, via
volume tensors, from sections of the
particles.

• The method demonstrated by Bujak &
Bottlinger [541] may be regarded as a
simplistic parallel optical tomography
with just 3 projections. Many details are
missed, but it should still provide more
information than from IA of a single 2D
projections.

• Sectioning and histology are often used for
biological and mineralogical analyses
where size and shape are a by-product
rather than the main purpose.

• Optical means (e.g., holography, confocal
and other microscopy) that require focus
suffer from limited depth of field.

• Unless the hidden side is known to be
different (e.g., from a depth image of a
human face to 3D head reconstruction),
symmetry is frequently assumed when
reconstructing a full 3D object from the
2.5D data.

A holographic microscope can cost as little
as $250.

(continued on next page)
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Table 4 (continued )

Technique Typical
resolution

Applicable
sample size
range

Purposes and applications Comments Typical cost of hardware

• Digital holographic tomography (DHT)
[543,544] is an optical tomography
technique. Imaging is based on contrast in
absorption and refractive index in the
sample. Unlike a X-ray μCT where the
sample rotates, in DHT the sample is
stationary but the illumination light beam
rotates on top of the sample, thus it is 2.5D
but much faster than X-ray μCT. It is useful
for imaging small, light, semi-transparent
particles – the kind that X-ray μCT may
struggle with.

Full 3D scanners
and cameras
(3D)

0.1 mm cm – m • 3D cameras and scanners are commercially
available to allow 3D object, structure or
scene to be captured. Depending on the
model, mode of operation and object size,
sub-mm resolution can be achieved.

• Turchiuli & Castillo-Castaneda [455]
showed a make-shift 3D scanner for diary
powder particles.

• Smartphone photogrammetry, based on
techniques such as SfM (structure-from-
motion), has been used to capture and
characterise, in field conditions, 3D cm-
sized particles [545,546,396] or rock joint
roughness [547,548].

• With Apps like polycam (https://poly.cam/
), any smartphone with a camera can be used
to capture images around an object and
reconstruct it when operated in photo
(grammetry) mode, or scan and reconstruct
a 3D scene when operated in LiDARmode on
phones equipped with a LiDAR sensor (e.g.,
iPhone Pro).

• Point clouds tend to be imperfect (noisy)
and incomplete (missing surfaces) as it can
capture visible surfaces. It is possible to
patch missing parts up in some situations
using AI [549].

• Can easily be turned into voxels, thus can
be used directly as input to voxel-based
computer models.

• Tools exist, often bundled with hardware,
to extract geometry from point clouds,
thus computer models (e.g., FEM, FDM)
that take CAD data for structure input can
also use them.

• Limited to exposed (i.e., optically
accessible) surfaces.

3D camera/scanner costs $500 or more.

Table 5
Classification of “shape” relating publications in Powder Technology in 2003 and 2023 respectively.

2003 2023

Number of hits from the search 30 103
Total number of papers in the year in Powder Technology 316 932
Number of hits with a title containing the word “shape” 1 14
Number of hits not directly relating to “particle shape” 11 22
Number of hits focusing on “characterisation” 5 10
Number of hits focusing on “modelling” – DEM related 1 26
Number of hits focusing on “modelling” – Others 5 15
Number of hits focusing on “effects” 10 46
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Table 6
Comparison of particle-shape embracing computer models.

Model basis Shape representation Typical use Features Comments Software examples

Dynamic models for particulate systems/processes
DEM (sphere based) Spheres, other shapes are

approximated by clumping spheres
together.

Dynamic behaviour of powder
particles

• Sphere is the simplest (fastest) shape for collision/overlap detection in a
particle-level simulation.

• Sphere based DEM has multiple, well established contact force models
for different situations.

• Relatively easy to parallelise (as a typical particle-based system).
Commercial software can now run on GPUs, thus significantly reduces
the running time.

• Very large user base and excellent user support.
• A small number of primary spheres can be used to approximate almost
any shapes [605–613]

• Multi-sphere model vs bonded-particle model: spheres can be clamped
together to represent a rigid body, or the primary particles can be
grouped using intra-granular bonds which can handle tension,
compression, tangential forces, bending torque, and torsion torque. The
former is faster but the latter can deal with soft, flexible, deformable or
crushable objects [614–617]. Grohn et al. [618] presented a compara-
tive case study between the two models for powder compression under
cyclic loading.

• Difficult to truly represent sharp corners or
edges, or flat and smooth surfaces.

• Shape fidelity is increased by using more
spheres but more spheres means more
computing time.

• Contact force models used in DEM usually
assume small overlaps between the
spheres. Using many small spheres to
represent a (large) shape can reduce the
amount of overlaps the simulation can
handle, unless special measures are in
place to deal with large (e.g., larger-than
primary sphere) overlaps. There may also
be discrepancies in the nature of contact
(e.g., point contact vs line contact vs face
contact) and number of contacts. There-
fore, simply using more primary spheres
does not automatically guarantee more
accurate results [573,619–623].

• Finding the optimal balance between the
two conflicting requirement is still largely
a trial-and-error exercise by the user.

• If used to simulate breakage of
agglomerates, the results are affected by
the initial composition since primary
spheres do not break, only the bonds
between them are allowed to break.

• Before conducting a full-scale DEM, it is
necessary to calibrate, through essentially
a retrofitting optimisation process, some
micro-parameters (e.g., rolling and sliding
friction, and restitution coefficients,
Young’s modulus, Poisson’s ratio) so that
sphere-based DEM can match certain key
macro-properties (e.g., angle of repose) of
the real (non-spherical) thing at a small
scale. Given its importance, the issue has
been addressed and re-addressed many
times and the latest developments appear
to be towards standardisation, automation
and use of machine learning techniques
[572,624–631].

EDEM
(www.altair.
com/edem)

PFC-3D
(www.itascainternat
ional.com)

Granularworks®
(www.granuleworks.
com)

ThreeParticle/CAE
(www.becker3d.com)

MercuryDPM
(www.mercurydpm.
org)

DEM (non-spherical,
equation described
shapes)

Primary building blocks are non-
spherical but still equation-based
and parametrically defined.

Introduced to DEM by Williams and
Pentland [632] in 2D and extended
to 3D by Cleary et al [633,634],
superquadrics [635], including
superellipsoids and supertoroids,
have become a common method to
represent different shapes in DEM
simulations. In its general form, it is
defined as

Dynamic behaviour of a mixture
of different shapes. Particle
packing.

• YADE is a generic DEM code [636], featuring object-oriented pro-
gramming thus easier to plug-in user’s own simulation code. SudoDEM
[637] is built on YADE but include non-spherical primary building
blocks such as poly-superellipsoids, superellipsoids, cylinders, cones,
polyhedrons.

• SDEM [638,433] can deal with a wide range of shapes represented
using superquadric (symmetrical and convex), multi-superquadric
(clamping together several superquadric shapes), poly-superquadric
(splicing together parts of superquadric shapes) and level-set method
(for shapes with sharp corners and cracks).

• There are numerous examples of superquadrics based DEM simulations
[639,640). In comparison, SH based DEM examples [641,642,643,644]
are not as many. There is a practical reason for that, most SH based

• While flexible, open-source codes do have
a steep learning curve compared to com-
mercial ones.

• Require specialist contact detection
algorithms [645–658].

• May be less computationally efficient than
sphere based models for similar shapes
[659].

• Superquadrics can have sharp corners/
edges but the ones used in DEMs tend to be
limited to smooth surfaced with rounded
corners and edges.

YADE-OPEN DEM
(open-source)
(www.yade-dem.org)

SudoDEM (open-
source)
(www.sudodem.
github.io)
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Table 6 (continued )

Model basis Shape representation Typical use Features Comments Software examples
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⃒
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⃒
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+

⃒
⃒
⃒
z
c

⃒
⃒
⃒
t
= 1

where (r,s,t) are positive real
numbers. They cover a very wide
range of shapes that resemble
cubes, octahedrons, cylinders,
tablets, capsules, doughnut.

Spherical harmonics (SH),
developed by Garboczi [322] for
star-shaped particles (see also
Table 2), is another popular means
to represent shapes in DEM
simulation.

simulations are for real particles and they need to be digitised first (e.g.,
by CT scans).

• Alaniz et al. [660] has demonstrated an
iterative re-composition method to turn
multi-views of an 3D object into a poly-
superquadric model. Liu et al, [430]
showed a probabilistic approach to fit
point clouds to superquadric models. The
reconstructed models can be used in
superquadric DEM simulations.

• Soltanbeigi et al. [661] showed howmulti-
sphere and superquadric representations
compare in DEM simulations.

DEM (3D image based)
[662,663,664]

Voxel based, 3D images as from CT
scans or computer generated

Dynamic behaviour of particles
of different shapes. Particle
packing.

• Can use real particle shapes, as real as machines can measure.
• Collision/overlap detection is as simple as checking for double (or
multiple) occupancy in the underlying lattice grid.

• Contact force is proportional to overlap volume which can be calculated
at sub-voxel level if required.

• Computing time is not dependent on shape complexity, but on number
of solid voxels. Thus, a fractal structure can be handled as quickly as
equal-volume spheres.

• Use voxels as the basic building blocks, and relationships between
voxels in a simulation are easier and faster to handle than spheres (or
any other building block shapes). A flat panel TV screen can display any
moving objects or scene but the pixels never change their locations,
only their colours. Image based DEM models like DigiDEM operate in
the sameway in a 3D lattice grid. When particles move/rotate, grid cells
do not move/rotate, only the voxels change their locations in the grid.
This is a key difference between voxel-based approach and others (that
use building blocks to make arbitrary shapes), and the main reason why
it is faster in handling complex shapes.

• Output (packing structure) can be used directly as input for grid based
property calculation programs such as FDM and LBM.

• Even modest scale simulations routinely
involve 40–50 million voxels.

• Extremely demanding of computer
resources especially RAM.

• Poor scalability: doubling the size of a sub-
group of particles in a vector or geometry
based DEMmakes no difference in RAM or
CPU requirements, but 8× more voxels
will need to be used in DigiDEM with the
pro-rota increase in computing time and
RAM.

• Unlike a typical particle-based or grid-
based system for which parallelisation
paradigms are well-developed, DigiDEM
algorithm works in a mishmash of both,
and cannot make effective use of either to
parallelise.

• For packing simulations, DEM models
need to run for orders of magnitude more
(time) steps, but do not necessarily take
proportionally more CPU time, than
stochastic models. This is because, (1)
stochastic models need to take remedial
steps to correct for trial moves that end up
in overlaps, thus their per step CPU time is
much longer than DEM’s; and (2) with
interaction forces being the guide, DEM is
more efficient in finding resting positions
for particles than models that move
particles randomly.

• Using voxels also makes it easy to handle
multi-component particles, as each voxel
can be assigned different properties.

• The image based DEM (iDEM) by Zhang &
Tahmasebi [664] uses nodal points on
particle surface to calculate overlaps, so it
is not a voxel-based one.

DigiDEM
(www.structurevision.
com)
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X.Jia
and

R.A
.W
illiam

s
Powder Technology 447 (2024) 120109 

19 

http://www.structurevision.com
http://www.structurevision.com


Table 6 (continued )

Model basis Shape representation Typical use Features Comments Software examples

• While DigiDEM couples with LBM when
needed, iDEM with conventional CFD.

DEM (polyhedron based) Polyhedrons (both convex and non-
convex shapes, or cluster of
polyhedrons)

Dynamic behaviour of particles
of different shapes. Particle
packing.

• Excels when true sharp edges or corners and flat surfaces need to be
preserved.

• Easy to link with existing CAD programs since the underlying data
structures are compatible (both for grouped vertices).

• Vertex based, thus also relatively easy to parallelise and can run on
GPUs (e.g., [171]).

• Cannot faithfully represent curved smooth
surfaces.

• Requires special methods to detect and
process collisions and overlaps [665–667,
171,668,669].

• More time consuming than sphere-based
DEM for similar situations.

• To reduce the computational burden,
Illana et al. [670] use fully resolved shape
where shape effects are critical (e.g., at
narrow orifice) and volume-equivalent,
property adjusted spheres elsewhere (e.g.,
in the bulk), and achieved 340% speedup
in their hopper flow test case without ac-
curacy loss. This is however only useful for
cases where shape-critical regions are
small relative to the domain. Otherwise,
the speed advantage is lost.

• However, a ray tracing DEM scheme may
come to the rescue to speed up mesh based
DEMs [671].

Rocky
(www.ansys.com)

BlazeDEM-GPU (open-
source)
(github.com/erfanr
azi/blazedemGPU)

DEM (NURBS-based) Arbitrary rounded shapes Dynamic behaviour of particles
of different shapes.

• NURBS stands for non-uniform rational B-splines, consists of control
points connected by curves rather than straight line segments (as in
mesh), thus can more accurately describe shapes with curved surfaces.

• NURBS is already used by some commercial software (e.g., Aviso,
Simpleware) for CT data processing, so shape models from CT data can
be easily imported to NURBS DEM [672,673].

• NURBS based DEM models have been reported in the literature (e.g.,
[674–676].

• It used to be a popular method in computer
graphics due to its smaller memory
requirement and superior scalability
(compared to mesh), but subdivision
surfaces (i.e., finer mesh) have made
NURBS obsolete because mesh is easier to
create and process.

DEM (element based) Varied (spheres, super-quadrics,
polyhedrons)

Particle fracture and breakage • FRM (fragment replacement method) [677,678,679] starts with whole
particles, then use stress or force distribution to decide where fracture
or breakage should take place, and replace the broken parts with
discrete elements (of spherical or irregular shapes).

• BEM (bonded element method) ([680], 2001) can bond polyhedral
elements to form particles and simulate their fracture/breakage.

• Image based DEM [681] can simulate all three modes of breakage
(splitting, chipping, and fragmentation) with non-planar fracture sur-
faces because the breakage criteria are applied at voxel level in 3D
image.

• FRM is more computationally efficient
than BEM because the number of
fragments only increases when breakage
happens, but the result is dependent on
failure criterion used.

• BEM elements do not fracture or break
(although they are allowed to change
shape), thus the results are dependent on
size/shape of the elements and how they
bond. Also, BEM carries a rather high
computational cost.

DEM (Miscellaneous) Various (e.g., sets of points or
curves)

Dynamic behaviour of particles
of different shapes.

• Level-set (LS) based DEM examples include [682–688] for arbitrary
shapes with sharp corners and/or changing topology; NURBS (non-
uniform rational B-splines) DEM [672,673] which can seamlessly
incorporate CT scanned irregular particle shapes as CT data processing
programs (e.g., Aviso, Simpleware) output resolved shapes in this
format; Metaball-Imaging DEM [689] for blobby looking objects.

• Shape representing models in this category
are common in compactness,
sophistication, complication and
versatility for hard to describe, naturally
occurring shapes, compared to other DEM
models. They all originated from early
days of computer graphics, aiming to
accurately represent irregular shapes with
a minimal set of parameters.

• Good at accurate representation of shapes
with smooth and curved surfaces but
complicated collision and overlap
detection, and can be computationally
expensive (e.g., demonstration cases
generally involve a small number of
particles).

LS-DEM (level-set
DEM)

(continued on next page)
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Table 6 (continued )

Model basis Shape representation Typical use Features Comments Software examples

MD and pulse-based DEM
(sphere based)

Sphere Hard sphere • In the early days of DEM, MD (molecular dynamics) style model [690]
was a strong competitor. Both used spheres, although soft spheres in
DEM and hard spheres in MD. Both now can use spheres to assemble
non-spherical shapes in simulations.

• LAMMPS [691] is an open-source, user-extendable, MD based particle
simulator, well-known for its massive parallelisation and ability to
handle large numbers (e.g., billions) of particles, with a few built-in
non-spherical shapes (e.g., ellipsoidal and polyhedral, line, and trian-
gular particles) and can of course use rigid assembly of spheres for other
shapes.

• LIGGGHTS is another open-source code, based on LAMMPS but, as the
name suggests, specifically improved for general granular and granular
heat transfer simulations. User-extendable, can work with other simu-
lation engines for co-simulation (e.g., CFDEM for CFD-DEM; ParScale
for intra-particle transport). Now includes superquadric shapes. Can
also be used to simulate particle growth or shrinkage [692].

• Steep learning curve, especially if code
modification is required, for specific
applications.

• Not designed to be user-interactive, GUI-
based, and do not have built-in sophisti-
cated tools for data analysis of results.

• Aspherix® is a successor of LIGGGHTS,
commercial, with GUI and post-processing
tools hence easier to use. Includes both
multi-sphere and bonded particle models
for non-spherical shapes. Includes Multi-
physics models, can simulate mass transfer
and chemical reactions.

LIGGGHTS (open-
source)
(www.cfdem.com/li
ggghtsr-open-source-
discrete-element-me
thod-particle-simula
tion-code)

LAMMPS (open-
source)
(www.lammps.org)

Aspherix
(www.aspherix-dem.
com)

MPM (point based) and
Peridynamics (PD)

Points Particle deformation, breakage
and fracture

• FEM and MPM share the same continuum mechanics framework and
constitutive models, MPM can simulate what FEM can, with less
accuracy or otherwise more time consuming, but without the problems
associated with mesh distortion and the need for remeshing, making it
particularly suited for simulation large deformations of objects
[693–700].

• Peridynamics [701–706] is also point based, and specially formulated
to deal with fractures of solids such as particles [701,707].

• Both methods are mass point based thus
compatible and convertible, their relative
strengths can be combined and exploited
by a hybrid such that PD deals with the
cracks while MPM the rest [708,709,710].

• MPM has the same flexibility as 3D image
based DEM in handling arbitrary shapes.
DEM and MPM are complementary, the
former is well suited for problems with
large displacements (and can handle large
number of particles), the latter with large
deformations. A hybrid of the two has the
potential to handle a large number of
deformable irregular shapes with DEM
efficiency and MPM accuracy. In fact,
examples of DEM-MPM combination have
already been reported, where MPM is used
at individual particle level [699,711], or to
represent the surrounding continuum me-
dium [712,713,714,715].

• Similarly, PD and DEM can combine to
take advantages of both for breakage
problems [716,].

PeriLab (open-source)

(https://github.
com/ElsevierSoftwar
eX/SOFTX-D
-24-00031)

Models for packing of irregular shapes
DEM
[717–723,647]

Any Packing is a by-product of
dynamic simulation of particle
assembly – when particles are
allowed to naturally settle down
(i.e., virtually lose all their
kinetic energy).

• Can simulate any shape.
• Can easily study influence of process conditions (e.g., vibration,
stirring, or in a rotating drum).

• DEM can be used in a hybrid mode to increase the runtime efficiency for
packing [724]. Randomly placed particles are allowed to grow and
move around. The DEM procedure identifies, deals with and reduces the
overlaps more efficiently than the traditional MC procedure.

• Tend to take longer than specialist packing
models.

• DEM relies on overlaps for contact forces,
and overlaps tend to result in an
overestimate of the packing fraction.

• Overlaps also makes it difficult for the
packing structure to be used directly for
CFD/FEM simulations as their re-meshing
routines often require input geometric
entities to be air-tight and non-
overlapping.
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Table 6 (continued )

Model basis Shape representation Typical use Features Comments Software examples

DigiPac
[725,726,727,728,729]

Voxel, or
poly-cubes

Stochastic, purpose-built packing
model for arbitrary shapes

• DigiPac is voxel-based packing model for arbitrary shapes using
random-walks to move particles around.

• A similar model described by Byholm et al. [727] with better speed
performance.

• Remond& Gallias [726] compared full and semi-digital packing models
and show that the semi-digital approach performed better when parti-
cles were small (as measured in pixels).

• DigiDEM is a DEM version of DigiPac.
• The main difference between full and
semi-digital models is that in semi-digital
model, particle positions are real numbers
rather than integers.

• Real number positions and displacements
are also employed in DigiDEM.

Other non-DEM models Varied Non-DEM based models for
packing

• Examples of non-DEM packing models for non-spherical shapes include
Nolan & Kavanagh [730] using sphere-composite, Lee et al. [731] for
ellipsoids, Abreu et al. [732] for spherocylinders, Lee et al. [733] for
convex polyhedrons, Pérez Morales [734] for spherocylinders but
extendable to general shapes, Liu et al. [713] for superellipsoids, Salemi
& Wang [735] for asphalt aggregates using an image-based FEM
approach, Rémond et al. [728] for non-convex cut pieces of a hollow
cylinder.

• Non-DEM models had been popular, but
are now giving way to DEM models.

Models for property-structure relationships
FEM Mesh Calculation of contact forces

between non-spherical particles
[736,737,738,210].

• Compared to FDM, FEM is typically much more computationally
efficient because it employs non-uniform sized mesh grid (fine grid
where it matters and coarse grid for the rest) resulting in much fewer
grid cells to compute.

• Remeshing entailed by structural
deformation/fracture can be expensive.

• Detailed but limited to a small number of
contacting objects.

LS-DYNA
(www.ansys.com)

FDM Grid cells or voxels Various (e.g., heat transfer,
dissolution)

• Relatively easy to formulate and to code by anyone with engineering
training, and to incorporate multi-physics.

• DigiDiss is a dissolution model for irregular shapes or complex
structures [236,739].

• DigiTherm calculates effective conductivity of packing of arbitrary
shapes or CT scanned porous media [740].

• Natural fit with lattice grid, or voxel based,
structure models from CT scans or
simulations.

SPH Particles • Meshless, Lagrangian particle-based, good at simulating free-surface
flow in confinement of complex geometry and through porous media;
solid mechanics; multi-phase flow; and fluid-structure interactions
[741].

LS-DYNA
(www.ansys.com)

LBM Lattice grid cells or voxels Flow in/around complex
geometries such as porous media
[742,743]

• Being a lattice grid based numerical model, Lattice Boltzmann Method
(LBM) can easily handle any shape or structure which is voxel-
represented.

• Often used to calculate permeability of
porous media [744,368] or drag force in
LBM-DEM simulations, but LBM alone can
simulate particles suspended or settling in
fluid [745,746,747].

OpenLB (open-source)
(www.openlb.net)

DEM coupling with another model
FEM-DEM or FDEM (mesh
based)

Mesh Deformation and fracture of geo-
objects (e.g., rocks). Packing.

• Can simulate fracture and fragmentation without the need to seed
(whereas a pure FEM model would need to).

• Open-source, general purpose, 2D and 3D, FEM-DEM solid mechanics
codes are available [748,749,750].

• Can deal with arbitrary shapes [751,752,753,754,755].

• Not easily extendable to powders
(involving 103 or more objects) due to
computational costs.

Solidity (open-source)
(www.solidityproject.
com)

OpenFDEM
(openfdem.com)

PFC/FLAC3D
(www.itascacg.com/)

CFD-DEM coupling Mesh for CFD Particle-fluid interactions • The are a large number of examples of CFD-DEM coupling for a variety
of applications [756,757,758,596,759,760,761,762,763,764,765,748].

• The most common instances of DEM
coupling with another model is with CFD.

• The vast majority of CFD-DEM simulations
use CFD cells that are large enough to
contain several DEM particles

EDEM+Fluent

(continued on next page)
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Table 6 (continued )

Model basis Shape representation Typical use Features Comments Software examples

LBM-DEM and DNS-DEM
coupling

Lattice grid based LBM is a FDM style, grid based,
numerical model for fluid flow,
suitable for cases involving
boundaries of complex geometry
such as porous media and
irregular shapes [766,689].

DNS is similar in resolution and
capability in dealing with
arbitrary shapes, but based on
different (and more conventional
CFD style) formulation [767].

• Both LBM and DNS operate at a sub-particle resolution, i.e., an indi-
vidual particle is usually represented by many grid cells, thus can easily
deal with arbitrary shapes.

• Drag force is calculated as a result of LBM or DNS, thus effects of
particle shape, (relative) flow speed, regime and direction are all taken
care of automatically.

• of relative there is no need to employ any shape-dependent drag force
formula.

• LBM is a FDM style implementation of the kinetic theory ideas to
compute fluid flow at a scale closer to DNS than CFD. A DEM-LBM
model of particles typically operates with a 2 to 4 orders of magnitude
finer mesh grid than DEM-CFD. In DEM-LBM a particle is divided into
10s–100s grid cells (voxels) across, whereas in DEM-CFD, a CFD cell
contains multiple particles. Thus, DEM-LBM embeds particle shapes
explicitly but typical DEM-CFD considers shape effects implicitly.
However, there has been examples where CFD is used at a sub-particle
scale [768].

• Extremely computationally demanding
• In DigiDEM example, the LBM part takes

>95% of the total runtime, even with GPU
support.

• There is a conflict that needs special
resolution: while DEM is dependent on
overlaps to calculate contact forces, LBM
must have a gap between colliding
particles to properly calculate flow and
drag forces.

• If LBM alone is used for particles in fluid
(e.g., [745,746]), this would not be an
issue since particles do not overlap.

• Examples of LBM and DEM coupling
include [600,769–771].

DigiDEM
(www.structurevision.
com)

AI involvement
AI involvement Varied If there is a pattern to exploit, AI

can possibly help.
[772]

• AI can potentially help reconstruct 3D shapes from single or multiple
views of the objects (see Table 7 for examples).

• In particle simulations, collision/overlap detection is usually the most
computationally expensive step. CNN (convolutional neural network)
has been shown to help with this step and achieved a speedup by orders
of magnitude for spheres [773]. Lai et al. [774] gave an example for
irregular shapes.

• CNN has also been used to predict constrained modulus for granular soil
[775].

• ANN (artificial neural network) has been trained to predict drag force
on individual particles in suspension [776] or terminal velocity [777],
which should be useful for DEM simulations.

• It is possible to predict fluid-particle flow fields using ANN and LSTM
(long short-termmemory) with significant (~40%) saving in simulation
time [778].

• Chen et al. [779] gave an example where ML is used to predict what is
happening inside a hopper from limited discharge data, thus doing the
job that DEM is typically used for. Admittedly, DEM in this case
provided the training dataset.

• Requires a large amount of data and huge
amount computing power for the training.

• Making such data available often means
that the problem being helped with by the
AI must already be solvable (for
simulations) or measurable (for
experiments) another way.

• Like empirical correlations, training and
thus application of AI is usually case
specific.

• Similarities between DEM and NN (Neural
Network) in AI are striking. Particles in
DEM correspond to perceptrons (neurons)
in NN, each controlled by its own set of
parameters (properties) and each plays a
small yet non-negligible role, in a defined
and non-linear way (particles by Newton’s
laws, perceptrons by say sigmoid func-
tion). Particles interact with each other, so
do neurons. And it is the interactions that
determine their respective collective be-
haviours. Applied forces (including grav-
ity) in DEM correspond to input data to
NN. DEM simulated powder behaviour
corresponds to AI predicted pattern. Both
are good at finding and exploit (hidden)
patterns, and both can be used gen-
eratively. Even their advancement paths
are similar (i.e., sluggish for decades then
growing exponentially), albeit not to the
same scale. A crucial difference is that
while neurons and their links are fixed,
particles move and interact dynamically.
Thus, after training AI is quick to respond
but DEM takes hours if not days to run. It
remains to be seen if the similarities could
be exploited to create a new breed of DEM.

MFiX (for training data
provision)
(mfix.netl.doe.gov)

TensorFlow (for AI
model building and
training)
(www.tensorflow.org)

PyTorch (a popular
alternative to
Tensorflow)
(www.pytorch.org)
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Table 7
Machine Learning methods useful for characterising and reconstructing 3D particle shapes.

Model Features Comments

Conventional (geometric model-based)
3D reconstruction methods that may
be helped or replaced by AI
[791]

• SfS (shape-from-shading): Assuming that the light conditions
are known and the object has a smooth and continuous
Lambertian surface (i.e., reflecting light equally in all
directions), with a single image, SfS algorithms estimate, from
pixel intensity gradients, surface normals at each pixel, then
integrate the normals to recover depth information, and obtain
a 3D representation of the shape [792,793].

• SfM (structure-from-motion): Given a sequence of images taken
from different viewpoints, SfM involves feature extraction,
feature matching across the images, estimating camera poses,
triangulating the features to create a 3D point cloud [545,396].

• SLAM (simultaneous localisation and mapping): This in a way
is an extension of SfM but attempts to work out camera pose
and create a 3D map of the environment simultaneously, often
in real-time, with details and accuracy being increased by
processing successive images of the same environment as the
camera moves around [794,795].

• The emphasis here is not how the images are obtained in the first
place, but on how they can be processed to obtain 3D shape
information.

• SfS can fail if the Lambertian assumption is not met or due to
ambiguities arising from non-ideal lighting conditions. Although
SfS is not on its own a ML model, it has increasingly found help
from AI [796,797,798,799]. SfS can also be used in conjunction
with stereo imaging to obtain shapes [800], as also exemplified in
Table 4 under SEM.

• SLAM is typically used in robotics applications but could
conceivably be used for autonomous 3D images of large rocks etc.

3D-R2N2
[801]

Pix2Vox
[802,803]

• Voxelised reconstruction of 3D object from a single or multiple
(photo) images from arbitrary (random) viewpoints. (http://3d
-r2n2.stanford.edu/)

• 3D-R2N2 stands for 3D recurrent reconstruction neural
network. It “learns a mapping from images of objects to their
underlying 3D shapes from a large collection of synthetic data
using 3D-Convolutional LSTM which allows attention mecha-
nism to focus on visible parts in 3D”.

• An improvement of 3D-R2N2, in terms of consistency of output,
long-term memory of important features in early input images,
and training speed, has been made by Xie et al. [802], called
Pix2Vox (https://github.com/hzxie/Pix2Vox). Its follow-up,
Pix2Vox++ [803], is not only context-aware (i.e., objects do
not need to be isolated from the background first) but also
multi-scale (i.e., not fixed at 323 as 3D-R2N2 is, and can be
easily extended to 643 or 1283).

• Training and testing datasets are available from ShapeNet – a
huge collection of well-categorised images of some everyday ob-
jects such as chairs, tables, cars, aircrafts, etc.

• One can make one’s own training/testing datasets for powder
particles from CT scans, CAD or some specialist particle
generators (e.g., DigiUtility, Matlab Fourier analysis shape
generator, etc), and store the data in the open-standard format
used by ShapeNet.

• The original 3D-R2N2 was implemented based on a particular
Python library (Theano) which is out of date now. Implementa-
tions based on newer libraries (e.g., PyTorch, TensorFlow) are
available from GitHub, all with GPU support.

• Since the output is in voxel format, it can be directly used by 3D
image based particle-level simulation models such as DigiPac and
DigiDEM.

• According to Xie et al. [802], ML methods based on RNNs
(recurrent neural networks), including 3D-R2N2, suffer from
three problems: (i) permutation variance, i.e., quality of output is
dependent on the order of input images; (ii) long-term memory
loss, i.e., important features from early input images may be
forgotten; and (iii) time-consuming training because input images
are processed sequentially rather than in parallel. Newer models
(e.g., Pix2Vox, DeepMVS and AttSets) overcome or lessen the
above problems by adopting different approaches.

• Other networks proposed for reconstruction of 3D object from a
single or multiple images include LSM [804], 3DensiNet [805],
DeepMVS [806], RayNet [807], AttSets [808].

NeRF [809,810]

NeuS & NeuS2 [811–813]

Geo-NeuS [814]

Depth-NeuS [815]

SDFusion [816]

• Introduced by Mildenhall et al. [809], NeRF (neural radiance
field) models quickly gained popularity as a view synthesis
method. It uses volume rendering with typically implicit neural
scene representation to learn the geometry and lighting of a 3D
scene [810]. NeRF is self-supervised (i.e., needing only
multi-view images of a scene as input, 3D/depth supervision
not required); the poses can be estimated using SfM; and the
result is photo-realistic.

• However, extracting high-quality surfaces from NeRF repre-
sentation is difficult because of insufficient surface constraints
in the representation. To resolve this problem, NeuS [811]
represents surface as a zero-level set of a signed distance
function (SDF) and uses a new volume rendering method to
train a neural SDF. The result is better quality surface recon-
struction, especially for objects or scenes with complex struc-
ture and self-occlusion. NeuS2 [813] is a significant
improvement in accuracy and speed over NeuS.

• NeRF and NeuS lack explicit multi-view geometry constraints,
meaning they usually fail to generate geometry consistent
surface reconstruction. Geo-NeuS [814] fills this gap by
directly locating the zero-level set of SDF network and explic-
itly perform multi-view geometry optimisation. This gives re-
sults that look cleaner and smoother.

• NeuS predicts depth information, which is not required by
NeRF, by learning RGB image features through a network. Geo-
NeuS uses interpolation and SfM supervision to help with the
prediction. Inevitably the predictions contain errors. Depth-
NeuS adds the depth information as input to improve surface
reconstruction.

• Note that, on its own, NeRF is a view generator but it does not
explicitly reconstruct the surface of an object/scene.

• Self-supervision of NeRF and NeuS is particularly attractive
feature if these methods are used for 3D reconstruction of
particles.

• Due to high demand of computing resources, many ML based 3D
reconstruction networks limit the output to 32x32x32 volume,
which is restricting for particle simulations.

• Cheng et al. [816] proposed SDFusion that uses a new encoder-
decoder to compress 3D shape information, thus making it easy to
scale up to 128x128x128 resolution.

• Zheng et al. [817] addressed this problem by using depth SDF
representation and incorporating an implicit template shape so
that shape prior contained in the template can be utilised for the
reconstruction to retain more complex topology and shape details
than pre-existing networks like 3D-R2N2 or Mesh R-CNN.

• NeuS combines implicit surface representation and radiance field
to achieve surface reconstruction through volume rendering
without the need to calculate the exact surface. Since it represent
the entire space within a single network, large scale
reconstruction is not feasible. Li et al. [521] proposed Vox-Surf, a
hybrid of a neural implicit surface representation and an explicit
voxel representation to overcome the limitation. However, the
method requires multi-view images, and the trained network is
scene specific and cannot be used for other scenes without
retraining.

(continued on next page)
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Table 7 (continued )

Model Features Comments

ShapeClipper [818] • This method “learns high-quality reconstruction through
single-view supervision without known viewpoint and can
reconstruct shapes of various objects”. It is based on CLIP, a
neural network that learns visual concepts from natural lan-
guage supervision [819].

• The paper [818] also listed several other single-view methods
for object shape reconstruction. They differ in supervision
(fully-supervised, weakly supervised, image supervision, shape
supervision), whether it is view point free or not, and how
shape is represented: by occupancy function [820], by point
cloud [821], by depth [822], by SDF [823], by mesh
[824–827].

• CLIP allows useful information to be extracted from natural
langue text such as “round table” is not just a tag but both the
adjective and the noun give clues about the shape and such
additional information can be made use of. For example, it makes
it easier to find similar shapes to the input across the whole
training dataset and use them to regulate shape learning.

• According to the creators of ShapeClipper, it does not work as well
for occluded or deformable shapes.

3D-CNN [828,781] • Can generate 3D shapes from a limited number of 2D
projections [781] or 2D slices/sections [516].

• Examples of using 3D-CNN (and other AI techniques) to extract
bio shapes are given by Esteva et al. [829] and Li et al. [830].

• Mask R-CNN has been used to reconstruct 3D rocks from video
tracking of 2D random projections [831], or to track 3D rod-
like particles in a suspension [499].

• Using AI to reconstruct 3D porous structures from 2D slices
have been demonstrated [832–834].

• Results from IA of 2D images are not the same as from 3D
reconstruction (e.g., circularity vs sphericity).

• This latest development shows that AI can not only reconstruct 3D
objects from 2D projections but also characterise the 3D objects in
terms of shape descriptors (sphericity, elongation, aspect ratio,
flatness, etc), requiring much fewer 2D projections than
traditional CT method (e.g., 8 for AI vs 1440 for CT). On the other
hand, AI relies on learned experience through training (usually
with a huge amount of data), only works for shape categories it
has been trained for and only produces an approximation,
whereas CT works for any (new) shapes and provides ground-
truth quality result.

• AI is almost 6× as fast as Fourier method (4 min vs 23 min to
generate 220 particles). However, if the results are used as input
for DEM simulations, the time difference at the particle generation
stage is negligible because the runtime of DEM is often many
hours if not days; and the Fourier method is actually preferred
because it provides the ground truth in the first place.

ResNet [835] and derivatives • Introduced byMicrosoft Research, ResNet and its variants (e.g.,
ResNet50) are among the most popular (with over 230,540
citations in under 8 years) CNN architectures because they ease
the training of deep networks. Deep networks often suffer from
the vanishing gradient problem (i.e., as the gradient is
backpropagated through layers, it can become so small as to
slow or even prevent convergence during training). ResNet
residual learning framework addresses this problem by
allowing gradients to flow through the layers without
significant attenuation.

Examples of networks that use ResNet as the backbone, for 3D
reconstruction from a single image, include:

• PPR-CNet for face reconstruction [836].
• PushNet to reconstruct 3D shapes in point cloud format from a
single colour image [837].

• Mesh R-CNN from Facebook [838] combines voxel generation and
triangular mesh reconstruction to generate 3D mesh structure of
an object from a 2D single-view image. Mesh R-CNN-LS adds a
Laplacian smoothing to it to constrain triangular deformation for
a better and smoother 3D mesh [839].

• Hybrid 3DU-GNet [840] uses VGG-ResNet framework for depth
analysis. The hybrid 3D U-Net and graph network generates a
point cloud of an object from a single-view object image and
accurately predicts its volume.

NVIDIA Kaolin tools
(https://developer.nvidia.
com/kaolin)

• Not an AI 3D shape reconstructor per se but the toolkit allows
3D shapes to be represented and rendered in an AI friendly
way, to help others develop AI tools for 3D shape
reconstruction.

• One example is DIB-R (an interpolation-based differentiable
rendering framework) that can be used to reconstruct 3D object
with realistic geometry, texture and colour (lighting/shading)
from a single image [841].

• Another example is NGLOD (neural geometric level of detail),
which combines neural networks, SDF (signed distance
function) based shape representation, and efficient rendering
techniques, for real-time rendering with high-fidelity surface
details of difficult structures such as 3D fractals (Fig. 4b) [842].

• Open source, free for research use.
• Optimised for NVIDIA GPUs.

NVIDIA Neuralangelo
[843]

• Turns images from a video clip into a detailed 3D
reconstruction of the object or the scene, using NVDIA Instant
NeRF to help capture fine textures.
(https://blogs.nvidia.com/blog/neuralangelo-ai-research

-3d-reconstruction/).

• A sequence of images from a video clip can be used to work out
relative positioning of viewpoints from an arbitrary starting point.

• Can make use of textures of complex materials in its
reconstruction, and works with video clips captured using
smartphones. This means that anyone with a smartphone can start
to digitise, in-situ, rocks or any sizeable objects in front of them.

• It is a 3D surface rendering tool and excels in capturing surface
geometry or texture. Could be useful for model validation and for
digital twin setup, given its 3D scene rendering ability.
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Fig. 1. Three scales that shape descriptors are used to describe (a) in 2D (following examples of [62,383]) and (b) in 3D (from [282]).
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Fig. 2. Examples of shapes that particle-level simulation models can handle. (a) Superquadrics based. A typical single-superquadric shape is smooth, symmetrical,
either rounded or sharp edged, either solid or toroidal. They can be combined (as in multi- or poly-superquadrics) to represent more complex shapes. (b) Spherical
harmonics based. Typically star-shaped, smooth but textured. The ripples are more often an artefact of using high order terms than a representation of real surface
roughness. (c) X-ray CT scanned. The raw data are voxelated (and directly usable by DigiPac/DigiDEM) but can be meshed up and smoothed in post-processing (for
input to other DEM models). (d) Point clouds from 3D camera or laser scanning. They are typically imperfect and incomplete. The raw form can be used directly by
DigiPac/DigiDEM, or usable as template for multi-sphere approximation, or meshed up for others. (Sources of images [29,340,428–437].
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Fig. 2. (continued).
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Fig. 2. (continued).
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Fig. 2. (continued).

Fig. 3. Shape representations used in computer models (a) 3D image or voxel-based (directly from a CT scan), used in DigiPac/DigiDEM; (b) multi-sphere repre-
sentation, usable by EDEM/PFC3D; (c) a mesh representation, usable by Rocky; (d) a smoothed version by SH or superquadric, usable by SDEM or SuperDEM.
(Sources of images: [780,781]).
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[321] T. Réti, I. Czinege, Shape characterization of particles via generalized Fourier
analysis, J. Microsc. 156 (1989) 15–32, https://doi.org/10.1111/j.1365-
2818.1989.tb02903.x.

[322] E.J. Garboczi, Three-dimensional mathematical analysis of particle shape using X-
ray tomography and spherical harmonics: application to aggregates used in
concrete, Cem. Concr. Res. 32 (2002) 1621–1638, https://doi.org/10.1016/
S0008-8846(02)00836-0.

[323] P.M. Raj, W.R. Cannon, 2-D particle shape averaging and comparison using
Fourier descriptors, Powder Technol. 104 (1999) 180–189.

[324] M.C. Thomas, R.J. Wiltshire, A.T. Williams, The use of Fourier descriptors in the
classification of particle shape, Sedimentology 4 (42) (1995) 635–645, https://
doi.org/10.1111/j.1365-3091.1995.tb00397.x.

[325] R. Wettimuny, D. Penumadu, Application of Fourier analysis to digital imaging
for particle shape analysis, J. Comput. Civ. Eng. 18 (1) (2004) 2–9, https://doi.
org/10.1061/(asce)0887-3801(2004)18:1(2).

[326] H. Zhu, B.G. Goodyear, M.L. Lauzon, R.A. Brown, G.S. Mayer, A.G. Law,
L. Mansinha, J.R. Mitchell, A new local multiscale Fourier analysis for medical
imaging, Med. Phys. 30 (2003) 1134–1141, https://doi.org/10.1118/1.1576931.

[327] R.A. Brown, R. Frayne, A comparison of texture quantification techniques based
on the Fourier and S transforms, Med. Phys. 35 (2008) 4998–5008, https://doi.
org/10.1118/1.2992051.

[328] P. Stroeven, Huan He, Shape assessment in concrete technology by Fourier
analysis, in: A.M. Brandt, J. Olek, M.A. Glinicki, C.K.Y. Leung (Eds.), Brittle
Matrix Composites 10 2012, Woodhead Publishing, 2012, pp. 233–242. ISBN
9780857099884, https://doi.org/10.1533/9780857099891.233.

[329] M.A. Taylor, E.J. Garboczi, S.T. Erdogan, D.W. Fowler, Some properties of
irregular 3-D particles, Powder Technol. 162 (1) (2006) 1–15, https://doi.org/
10.1016/j.powtec.2005.10.013.

[330] D. Zhang, G. Lu, Study and evaluation of different Fourier methods for image
retrieval, Image Vis. Comput. 23 (1) (2005) 33–49, https://doi.org/10.1016/j.
imavis.2004.09.001.
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[477] Q. Shi, Stéphane Roux, Félix Latourte, François Hild, Dominique Loisnard,
Nicolas Brynaert, Measuring topographies from conventional SEM acquisitions,
Ultramicroscopy 191 (2018) 18–33, https://doi.org/10.1016/j.
ultramic.2018.04.006.
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S. Aferka, M. Crine, A. Léonard, D. Toye, P. Marchot, Simulations of structures in
packed columns and validation by X-ray tomography, Ind. Eng. Chem. Res. 48 (1)
(2009) 202–213, https://doi.org/10.1021/ie800033a.

[664] X. Zhang, Pejman Tahmasebi, Investigation of particle shape and ambient fluid on
sandpiles using a coupled micro-geomechanical model, Powder Technol. 409
(2022) 117711, https://doi.org/10.1016/j.powtec.2022.117711.

[665] Ruaidhr’i M. O’Connor, John R. Torczynski, Dale S. Preece, Justin T. Klosek, John
R. Williams, Discrete element modeling of sand production, Int. J. Rock Mech.
Min. Sci. 34 (3–4) (1997) 231.e1–231.e15, https://doi.org/10.1016/S1365-1609
(97)00198-6. ISSN 1365-1609.

[666] E.G. Nezami, Y.M. Hashash, D. Zhao, J. Ghaboussi, A fast contact detection
algorithm for 3-D discrete element method, Comput. Geotech. 31 (7) (2004)
575–587.

[667] S. Amir Reza Beyabanaki, Roozbeh Geraili Mikola, Kianoosh Hatami, Three-
dimensional discontinuous deformation analysis (3-D DDA) using a new contact
resolution algorithm, Comput. Geotech. 35 (3) (2008) 346–356, https://doi.org/
10.1016/j.compgeo.2007.08.006.

[668] A.G. Neto, Framework for automatic contact detection in a multibody system,
Comput. Methods Appl. Mech. Eng. 403 (A) (2023) 115703, https://doi.org/
10.1016/j.cma.2022.115703.

[669] B. Smeets, Tim Odenthal, Simon Vanmaercke, Herman Ramon, Polygon-based
contact description for modeling arbitrary polyhedra in the discrete element
method, Comput. Methods Appl. Mech. Eng. 290 (2015) 277–289, https://doi.
org/10.1016/j.cma.2015.03.004.

[670] E. Illana, Klidi Qyteti, Maik Scharnowski, Maximilian Brommer, Siegmar Wirtz,
Viktor Scherer, Shape-changing particles for locally resolved particle geometry in
DEM simulations, Particuology 89 (2024) 185–190, https://doi.org/10.1016/j.
partic.2023.11.003.

[671] S. Zhao, Jidong Zhao, Revolutionizing granular matter simulations by high-
performance ray tracing discrete element method for arbitrarily-shaped particles,
Comput. Methods Appl. Mech. Eng. 416 (2023) 116370, https://doi.org/
10.1016/j.cma.2023.116370.

[672] J.E. Andrade, K.-W. Lim, C.F. Avila, I. Vlahini’c, Granular element method for
computational particle mechanics, Comput. Methods Appl. Mech. Eng. 241
(2012) 262–274, https://doi.org/10.1016/j.cma.2012.06.012.

[673] K.-W. Lim, J.E. Andrade, Granular element method for three-dimensional discrete
element calculations, Int. J. Numer. Anal. Methods Geomech. 38 (2014) 167–188,
https://doi.org/10.1002/nag.2203.

[674] M.V. Craveiro, Alfredo Gay Neto, Peter Wriggers, Contact between rigid convex
NURBS particles based on computer graphics concepts, Comput. Methods Appl.
Mech. Eng. 386 (2021) 114097, https://doi.org/10.1016/j.cma.2021.114097.

[675] Shiwen Liu, Feiguo Chen, Wei Ge, Philippe Ricoux, NURBS-based DEM for non-
spherical particles, Particuology 49 (2020) 65–76, https://doi.org/10.1016/j.
partic.2019.04.005. ISSN 1674-2001.

[676] M.V. Craveiro, A. Gay Neto, P. Wriggers, DEM simulations using convex NURBS
particles, Comp. Part. Mech. 11 (2024) 1087–1118, https://doi.org/10.1007/
s40571-023-00675-x.

[677] R.D. Morrison, P.W. Cleary, Using DEM to model ore breakage within a pilot scale
SAG mill, Miner. Eng. 17 (2004) 1117–1124, https://doi.org/10.1016/j.
mineng.2004.06.016.

[678] Jens Lichter, King Lim, Alex Potapov, Dean Kaja, New developments in cone
crusher performance optimization, Miner. Eng. 22 (7–8) (2009) 613–617, https://
doi.org/10.1016/j.mineng.2009.04.003. ISSN 0892-6875.
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