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ABSTRACT

For a sequence of random structures with n-element domains over
a relational signature, we define its FO complexity as a certain
subset in the Banach space ℓ∞/c0. The well-known FO zero-one
law and FO convergence law correspond to FO complexities equal
to {0, 1} and a subset of R, respectively. We present a hierarchy
of FO complexity classes, introduce a stochastic FO reduction that
allows to transfer complexity results between different random
structures, and deduce using this tool several new logical limit laws
for binomial random structures. Finally, we introduce a conditional
distribution on graphs, subject to a FO sentence φ, that generalises
certain well-known random graph models, show instances of this
distribution for every complexity class, and prove that the set of all
φ validating 0ś1 law is not recursively enumerable.
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1 INTRODUCTION

Let σ be a relational signature. A random n-structure over the signa-
ture σ is a random element of the set of all structures with domain
[n] := {1, . . . ,n} and over σ . Commonly it is supported by a set of
σ -axioms F , i.e. it is assumed that with probability 1 the random
n-structure models F . Let σ = {P1, . . . , Ps }, where Pi has arity
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di (we adopt a usual convention that σ includes the equality rela-
tion whose axioms are part of the logic). We denote the random
n-structure uniformly distributed over all n-structures over σ by
Dσ (n | F ) or D(d1, ...,ds )(n | F ).

For example, the well known binomial random graphG(n,p) is a
random n-structure over σ = {=,∼}, where = represents the coin-
cidence of vertices, and ∼ represents the graph adjacency relation.
The axioms in

F = {∀x∀y (x ∼ y) ⇔ (y ∼ x), ∀x ¬(x ∼ x)}
allow to define the distribution on the set of undirected graphs
without loops. The distribution ofG(n,p) is defined as follows: for a
fixed n-structureG that models F (that is,G is an undirected graph

without loops), its probability equals p |E(G) |(1−p)(n2)−|E(G) | , where
E(G) is the set of unordered pairs {x ,y} such that x ∼ y, (that is,
the set of edges of G). In other words, edges appear independently
with probability p.

Another example is a binomial random n-structure

Dσ (n,p1, . . . ,ps ) = D(d1, ...,ds )(n,p1, . . . ,ps )
over σ = {=, P1, . . . , Ps } that does not have any predefined ax-

ioms: each interpretation appears with probability pN1
1 . . .p

Ns
s (1 −

p1)n
d1−N1 . . . (1 − ps )n

ds −Ns , where Ni is the number of di -tuples
satisfying Pi . In other words, D(d1, ...,ds )(n,p1, . . . ,ps ) is the bino-
mial random hypergraph with hyperedges (ordered multisets) of
cardinalities d1, . . . ,ds , where each hyperedge of łtype Pi ž appears
with probability pi independently of all the others. In particular,
for a signature consisting of one predicate P of arity d , we get a
binomial random directed d-uniform hypergraph D(d )(n,p).

The following fundamental result in finite model theory, known
as the first order (FO) 0ś1 law, was proven by Glebskii, Kogan,
Liogonkii, Talanov [7] and independently by Fagin [5]: for a fixed
finite relational signature σ , any FO sentence φ over σ is either
true on asymptotically almost all n-structures or false. In other
words, Pr(D(d1, ...,ds )(n, 1/2, . . . , 1/2) |= φ) converges either to 0
or to 1 as n → ∞. Same arguments can be used to show that
D(d1, ...,ds )(n,p1, . . . ,ps ) obeys the FO 0ś1 law for all constant
p1, . . . ,ps ∈ (0, 1). Fagin [5] also proved that the same is true for
graphs, i.e. G(n,p) obeys the FO 0ś1 law.

Since then, the validity of the FO 0ś1 law was studied for many
other random structures (binomial randomgraphswithp = p(n) [21,
29, 31], random regular graphs [9], random trees [26], recursive
random graphs [15, 22], random geometric graphs [25], random
graphs embeddable on a surface [11], and many others [30, 32,
35]). However, no methods have been developed to transfer logical
limit laws between different random structures. In particular, Fagin
applied the same proof as for D(d1, ...,ds )(n,p1, . . . ,ps ) to G(n,p)
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instead of transferring the law. One of the main contributions of our
paper is such a transferring tool. In particular, it allows to transfer
the FO 0ś1 law from D(2)(n,p) to the binomial random graph as
well as to the binomial random directed graph without loops.

Before moving on to a more detailed discussion of our results, let
us notice an important application of logical limit laws to the study
of hierarchy of logics and time complexity. Indeed, if a random
structure satisfies the 0-1 (or convergence) law for a language L1
while it does not satisfy the law for L2 ⊇ L1, then the inclusion
L2 ⊃ L1 is strict. This simple observation was used in [33, 34]
to show the lower bound on the minimum quantifier depth and
the minimum number of variables of a FO sentence describing the
property of containing an induced subgraph isomorphic to a fixed
given graph F . The latter fact implies certain limitations of the
respective method of solving the induced subgraph isomorphism
decision problem: the validity of a FO sentence with k variables on
an n-vertex graph is decidable in time O(nk ), see details in [33, 34].

For G(n,p) with p = p(n) = o(1), a breakthrough achievement
was obtained by Shelah and Spencer. First of all note that the above
mentioned classical FO 0ś1 law forG(n,p) can be generalised to all
p = p(n) such that min{p, 1 − p}nα → ∞ as n → ∞ for all α > 0
(see [31]). So it is natural to further consider p = n−α , α > 0. Shelah
and Spencer [29] proved the following:

• If α ∈ (0, 1] is rational, then G(n,n−α ) does not obey the FO
0ś1 law.

• If α ∈ (0, 1] is irrational, then G(n,n−α ) obeys the FO 0ś1
law.

• If α = 1 + 1
k
for some k ∈ N, then G(n,n−α ) does not obey

the FO 0ś1 law.
• If either p = o(n−2), or for some k ∈ N, n−1−1/k ≪ p ≪
n−1−1/(k+1), then G(n,p) obeys the FO 0ś1 law.

Our tool can be also used to show that the FO 0-1 law does not hold:
for example, for α > 1, the failure of the FO 0ś1 law for G(n,n−α )
transfers to the failure of the FO 0ś1 law forD(d+1)(n, (d+α−2) lnnn )
for every integer d ≥ 2.

Remark 1.1. The random graph G(n,n−α ) for α > 1 is very
sparse: with asymptotical probability 1 (with high probability or,
for brevity, whp in what follows) it is a forest consisting only
of tree components of bounded sizes (see, e.g., [12]). In contrast,
D(d+1)(n,Θ(lnn/n)) is weakly connected whp [28]. Since the valid-
ity of the FO 0ś1 law forG(n,n−α ) in this case follows immediately
from standard properties of the logical equivalence (see, e.g., [27,
Section 4.2]), so it is not surprising that our tool does not transfer
the validity of FO 0ś1 laws from G(n,n−α ) to D(d+1)(n,Θ(lnn/n)).

A special interest in combinatorial and probabilistic community
was chained to properties of specifically G(n, c/n) for constant c
because of so-called phase transition phenomenon [4] Ð in particu-
lar, the emergence of a giant component. Lynch [21] proved that
G(n, c/n) obeys the FO convergence law (i.e. for every FO sentence
the probability of its truth on G(n, c/n) converges to some number
in [0, 1] as n → ∞), however the FO 0ś1 law does not hold. Note
that Shelah and Spencer [29] disproved even the FO convergence
law for G(n,n−α ) when α ∈ (0, 1) is rational. Larrauri, Müller, and
Noy [18] described possible limits of truth probabilities of FO sen-
tences onG(n, c/n). They proved that the closure of the set of limits

in [0, 1] consists of a finite number of segments and determined
the minimum constant c0 for which this segment is unique and
coincides with [0, 1]. Also, they generalised this result to d-uniform
unoriented hypergraphs.

We transfer the upper bound for this threshold c0 fromd-uniform
unoriented hypergraphs to d-uniform H -hypergraphs, where H is
an arbitrary subgroup of the symmetry group Sd (i.e. a hyperedge
is an orbit under the action of H on d-tuples (x1, . . . ,xd ) of dis-
tinct elements from a fixed d-element set). For example, unoriented
hypergraphs correspond to the case H = Sd . Regarding the lower
bound, which coincides with the upper bound, it can be transferred
from oriented hypergraphs (i.e. H = {id}) to H -hypergraphs for
any H . Luckily, the same proof method as from [18] can be applied
to prove the tight lower bound for oriented hypergraphs as well.
Thus, the problem of finding the threshold c0 for any way of assign-
ing an orientation to hyperedges can be reduced to two extreme
cases H = Sd and H = {id}.

Our tool is a certain preorder on sequences of random n-structu-
res, n ∈ N, which we call the stochastic FO reduction. This preorder
expresses a hierarchy of sequences of random structures: for higher
sequences in this preorder, their FO limit behaviour is more com-
plex. In particular, for each pair of sequences A and B such that A
is reducible to B and B obeys the FO 0ś1 law (convergence law), A
obeys FO 0ś1 law (convergence law) as well. Besides the above men-
tioned applications of the stochastic FO reduction to transferring
logical laws, we prove that the stochastic FO reduction preorder
defines stable equivalence classes ofG(n,p): a little change of p does
not change the equivalence class. For example, this observation
allows to transfer the absence of the FO 0ś1 law from D(1)(n, cn ) to
D(d+1)(n, d lnn

n ). The stochastic FO reduction is defined in Section 3.
The notion of stochastic FO reduction as well as different as-

ymptotic logical behaviour of different random structures naturally
lead to a concept of FO complexity of a sequence of random struc-
tures Dn . The FO complexity has to generically describe the limit
behaviour of Pr(Dn |= φ) over all FO sentences φ in such a way that
if A stochastically reduces to B, then B is at least as complex as A.

The FO complexity is defined in Section 2. Formally, we define it
asD/c0, whereD ⊂ ℓ∞ is exactly the set of all sequences (Pr(Dn |=
φ))n∈N, and c0 is the set of sequences converging to 0. In particular,
if a sequence of random structures obeys the FO 0ś1 law, then its
FO complexity is {0, 1} (for brevity, we identify a constant sequence
with its element), and, if it obeys the FO convergence law, then its
FO complexity is exactly the set of all limits of probabilities of FO
sentences. Note that the above mentioned result of Larrauri, Müller,
and Noy [18] guarantees that the closure of the FO complexity of
G(n, c/n) consists of finitely many segments. However, it is not hard
to see that there are binomial random structures such that their FO
complexities are even not totally bounded. In particular, this is the
case for the binomial random graphG(n,n−α ) for rational α < 1 as
we show in Section 2.2. It is also possible to definep(n) in a way such
that the FO complexity of G(n,p(n)) spans an infinite-dimensional
subspace as well, but the complexity is totally bounded.

Finally, we consider the random graph

G(n | φ) := D2(n | φ ∧ symmetric ∧ anti-reflexive)
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chosen uniformly at random from the set of all undirected graphs
without loops that satisfy a given FO axiom φ. This model gener-
alises the well-studied binomial random graph G(n, 1/2), random
regular graphs [9, 36], random union of disjoint cliques [8], and
random permutations [16]. For every complexity class, we show the
existence of the respective axiom φ: the FO complexity of G(n | φ)
may be trivial (i.e. the FO 0ś1 law holds), may span a 1-dimensional
subspace of ℓ∞/c0 (the FO convergence law holds), may span a
k-dimensional subspace for every positive integer k , may be totally
bounded but span an infinite-dimensional subspace, and may not
be totally bounded. These examples are given in Sections 2.3, 5.

Note that the FO 0ś1 law holds for G(n | φ) whenever φ is true
onG(n, 1/2) with probability bounded away from 0. The latter may
only happen when probability Pr(G(n, 1/2) |= φ) approaches 1.
Since the FO almost sure theory ofG(n, 1/2) can be axiomatised by
extension axioms (see, e.g., [30]) and probability thatG(n, 1/2) does
not satisfy the k-th extension axiom is at most nk (1− 2−k )n−k , it is
easy to see that the problem of determining whether Pr(G(n, 1/2) |=
φ) approaches 1 is decidable. Nevertheless, we show in Section 4
that the problem of determining, for an arbitrary input φ, whether
G(n | φ) obeys the FO 0ś1 law is even not recursively enumerable.

2 FO COMPLEXITY

In Section 2.1, we define the FO complexity of a sequence of random
structures that generalises the FO 0ś1 law and the FO convergence
law. After that, we show a strict hierarchy of FO complexity classes
of binomial random graphs (Section 2.2) and conditional random
graphs subject to FO sentences (Section 2.3). The most essential
part of the main theorem in Section 2.3 that asserts the existence
of a FO φ such that the complexity of G(n | φ) is totally bounded
and infinite dimensional is proved in Section 5. This proof develops
a method of constructing FO sentences that define isomorphism
classes of certain asymmetric graphs and may be of its own interest.

2.1 Definition of complexity and hierarchy of
random structures

Let us recall necessary definitions. The Banach space ℓ∞ is the lin-
ear space of all bounded sequences of real numbers x = (x1,x2, . . . )
with the norm ∥x ∥ = supn∈N |xn |. The Banach space c0 is a sub-
space of ℓ∞, which consists of all vectors x such that limn→∞ |xn | =
0. The Banach space c is a subspace of ℓ∞, which consists of all vec-
tors x such that limn→∞ |xn | exists. Norms on c0 and c are induced
from ℓ∞. The Banach space ℓ∞/c0 is a quotient space, which con-
sists of classes x+c0 with the norm lim supn→∞ |xn |. The canonical
projection π : ℓ∞ → ℓ∞/c0 maps each x ∈ ℓ∞ to x + c0 ∈ ℓ∞/c0.
We denote by X/c0 the image of a subset X ⊂ ℓ∞ under π .

Definition 2.1. Let Dn , n ∈ N, be a sequence of random n-struc-
tures. The FO complexity FOC(Dn ) of Dn is the set D/c0, where
D ⊂ ℓ∞ is the set of all sequences (Pr(Dn |= φ))n∈N over all FO
sentences φ.

Due to the next straightforward proposition (we give a proof
for the sake of completeness), the validity of the FO 0ś1 law or the
validity of the FO convergence law are the cases of the smallest
FO complexities. For brevity, for any real λ, we denote vectors
(λ, λ, . . . ) ∈ ℓ∞ and π (λ, λ, . . . ) ∈ ℓ∞/c0 by λ. Note that c/c0 � R,

and there exists an isomorphism that maps λ ∈ c/c0 to λ ∈ R.
Therefore, we identify any subset of c/c0 with the set of respective
numbers in R.

Claim 2.2. Let Dn , n ∈ N, be a sequence of random structures.

(i) Dn satisfies the FO 0ś1 law iff FOC(Dn ) = {0, 1}.
(ii) Dn satisfies the FO convergence law iff FOC(Dn ) ⊂ R.
(iii) The set of limits of sequences (Pr(Dn |= φ))n∈N coincides with

FOC(Dn ) ∩ R.

Proof. Let x ∈ ℓ∞. From the definition, π (x) − λ = 0 is equiv-
alent to limn→∞ |xn − λ | = 0, i.e. limn→∞ xn = λ. Since there is
an isomorphism between c/c0 and R that maps any π (x), x ∈ c , to
limn→∞ xn , we have (iii). Therefore, FOC(Dn ) ⊂ c/c0 is equivalent
to the fact that each sequence (Pr(Dn |= φ))n∈N converges, i.e. we
have (ii). Similarly, we get (i). □

Examples of random structures with these smallest FO complexi-
ties are well known: (1) FOC(Dn ) = {0, 1} for the uniformly random
structure Dn = Dσ (n, 1/2, . . . , 1/2), as well as for the uniformly
chosen random graph Dn = G(n, 1/2) [5, 7]; (2) FOC(Dn ) = {0, 1}
for the binomial random graph Dn = G(n,p) with pnα → ∞ for
all α > 0 [31] or p = n−α , where α is either irrational or bigger
than 1 and not equal 1 + 1/m for any positive integerm [29]; (3)
FOC(Dn ) ⊂ R for the binomial random graph Dn = G(n,n−α ) for
α = 1 + 1

m [29]; (4) FOC(Dn ) ⊂ R for the binomial random graph
Dn = G(n, cn ) for c > 0 [21], and the closure of FOC(Dn ) consists
of finitely many segments [18]. In the next section, we present
random structures with d-dimensional, infinite dimensional but
totally bounded, as well as not totally bounded FO complexities.

2.2 Complexity of G(n,p)
We first show that it is possible to construct very sparse binomial
random graphs (consisting of only isolated vertices and isolated
edges whp) G(n,p) with all the properties of FO complexities men-
tioned in Section 1. However, the respective sequences p = p(n) are
quite artificial and far from being ‘smooth’. So, later in this section
we show that the FO complexity ofG(n,n−α ) for rational α ∈ (0, 1)
is not totally bounded, and that all the properties are achievable
by G(n | φ) for appropriately chosen FO sentences φ. We shall use
the following technical claim that follows from the fact that whp
G(n,p = o(n−3/2)) consists of isolated vertices and isolated edges,
and the number of isolated edges can be approximated by Poisson
random variables Pois(λn = p

(n
2

)
) (see, e.g., [12, 30]).

Claim 2.3. Letp = o(n−3/2), λn = p(n)
(n
2

)
, and, for everyk ∈ Z≥0,

xk = π

(
( λ

k
n

k ! e
−λn )n∈N

)
. Then FOC(G(n,p)) is a union of the set X

of all finite sums of vectors xk and the set 1 − X := {1 − x , x ∈ X }.

Proof. Let a FO sentence φ≥k express the property of being a
disjoint union of at least k edges. The sentence φk = φ≥k ∧¬φ≥k+1
expresses the property of being a disjoint union of exactly k edges.
Each FO sentence ψ ∧ φ≥0 is tautologically equivalent either to
φi1 ∨ · · · ∨ φis or to φi1 ∨ · · · ∨ φis ∨ φ≥is+1 for some non-negative

integers i1 < · · · < is < is+1. Since p = o(n− 3
2 ), the sequence

of probabilities (Pr(G(n,p) |= φ≥0))n∈N converges to one (see [30,
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Theorem 3.6.2]). Hence, Pr(G(n,p) |= ψ ) − Pr(G(n,p) |= ψ ∧ φ≥0)
converges to zero.

Let us show that for φi , the equality π (Pr(G(n,p) |= φi )) =
xi holds. It is easier to compute the probability that the graph
has exactly i edges without any restriction on overlapping edges.
Luckily, these two probabilities are asymptotically equal. Let a FO
sentence φ̂i express the property of containing exactly i edges (not
necessary disjoint). So, the FO sentence φ̂i ∧ φ≥0 is tautologically
equivalent to φi . Since φ≥0 is true whp, we get

π (Pr(G(n,p) |= φi )) = π (Pr(G(n,p) |= φ̂i ∧ φ≥0))
= π (Pr(G(n,p) |= φ̂i )).

Now, it is sufficient to prove that π (Pr(G(n,p) |= φ̂i )) = xi .

Pr(G(n,p) |= φ̂i ) =
( (n

2

)
i

)
pi (1 − p)(

n
2)−i

= (1 + o(1)) 1
i!

(
n

2

)i
pie(

n
2) ln(1−p)(1 − p)−i = λin

i!
e−λn + o(1)

as needed.
Since φi contradicts φ j for each j , i , π (Pr(G(n,p) |= φi1 ∨ · · · ∨

φis )) = xi1 + · · · + xis . Therefore, we get X ⊂ FOC(G(n,p(n))). For
the sentenceψ = φi1 ∨ · · · ∨ φis ∨ φ≥is+1 , we consider a sentence
¬ψ , for which π (Pr(G(n,p) |= ¬ψ )) = 1 − π (Pr(G(n,p) |= ψ )). Note
that the sentence ¬ψ ∧φ≥0 is equivalent to

∨
j<is+1, j,i1, ...,is φ j . So,

π (Pr(G(n,p) |= ψ )) ∈ 1−X , and we have FOC(G(n,p)) = X∪(1−X ),
completing the proof. □

Theorem 2.4. For p = p(n), we let Gn ∼ G(n,p).
(ii) For each d ≥ 1, there is a sequence p(n) ∈ [0, 1] such that

FOC(Gn ) spans a d-dimensional subspace of ℓ∞/c0.
(ii) There is a sequence p(n) ∈ [0, 1] such that FOC(Gn ) is totally

bounded but spans an infinite-dimensional subspace of ℓ∞/c0.
(iii) There is a sequence p(n) ∈ [0, 1] such that FOC(Gn ) is not

totally bounded.

Proof. To prove (i), consider p = λn/
(n
2

)
, where λn equals n

modulo d . The sequence ( λ
k
n

k ! e
−λn )n∈N is d-periodic, i.e. its (n + d)-

th element equals the n-th element. The subspace Ld of d-periodic
sequences in ℓ∞ is d-dimensional. Consider the following basis in
Ld : let er be the vector with ones on (dt + r )-th positions, t ∈ Z+,
and zeros on all others. Let us prove that the system of vectors

fk = ( λ
k
n

k ! e
−λn )n∈N for 0 ≤ k ≤ d − 1 is also a basis in Ld . The

vector fk equals
d−1∑
r=0

rk

k ! e
−r er , and

det

((
i j

j!
e−i

)
0≤i, j≤d−1

)
= det

(
(i j )0≤i, j≤d−1

) ∏
i

e−i
∏
j

1

j!

=

∏
i<i′

(i ′ − i)
∏
i

e−i
∏
j

1

j!
, 0.

Then, fk , 0 ≤ k ≤ d − 1, is a basis in Ld . Since xk = π (fk ) for
all k , we have that ⟨xk , k ≥ 0⟩ coincides with the subspace π (Ld )
in ℓ∞/c0. The intersection of Ld and c0 is trivial because each d-
periodic vector in c0 is zero. Therefore, the space π (Ld ) is also
d-dimensional. Note that ⟨X ⟩ = π (Ld ) and 1 ∈ π (Ld ) implying that
⟨1 − X ⟩ = π (Ld ). Since fk ∈ X for all 0 ≤ k ≤ d − 1, by Claim 2.3,

we get that ⟨FOC(G(n,p))⟩ = π (Ld ) completing the proof.

To prove (ii), consider p = 2λn
n(n−1) , where λn equals 1

r if n is

divisible by 2r , but not divisible by 2r+1. We will denote r (n)
the maximum r such that n is divisible by 2r . Thus, λn =

1
r (n) .

Let er be the vector with ones on 2r (2t + 1)-th positions, and ze-

ros on all others. The vector ( λ
k
n

k ! e
−λn )n∈N equals

∞∑
r=0

1
rkk !

e−
1
r er .

Vectors π (er ) are nonzero and linearly independent. Therefore,

xk =
∞∑
r=0

1
rkk !

e−
1
r π (er ). Similarly, as for (i), xk are linearly inde-

pendent. So, the set X spans an infinite-dimensional subspace.

Let us show that the sum
∞∑
k=0

∥xk ∥ converges.

∥xk ∥ = lim sup
n

1

(r (n))kk!
e
− 1
r (n) ≤ lim sup

n

1

(r (n))kk!
=

1

k!
.

Since the sum
∞∑
k=0

1
k ! converges, we get the convergence of the con-

sidered sum. For each positive ε , we can choose an integer N such

that
∞∑

k=N+1
∥xk ∥ < ε . Then, for each vectorv = xi1+xi2+· · ·+xis ∈

X consider a vectorv ′ = xi1+xi2+· · ·+xis′ , where is ′ is the greatest
number among i j such that i j ≤ N . Since v − v ′ is expressible as
a sum of vectors xk with k > N , we get ∥v − v ′∥ ≤ ε . Therefore,
the set X can be covered by finitely many balls of radius ε because
there is finitely many sums of vectors xk with k ≤ N . Similarly for
1 − X . Hence, X ∪ (1 − X ) is totally bounded.

To prove (iii), consider p = 2λn/(n(n − 1)), where λn equals
m(r (n)), andm(r ), r ∈ Z+, is defined in such a way that, for some
k(r ), vectors yr = x0 + · · · + xk (r ) are at distances at least 1

3 from
each other. Let us construct such m(r ) and k(r ). For every non-
negative integer k , consider a function дk : R → R defined as
follows: дk (λ) = (1+λ+ · · ·+λk/k!)e−λ . This sequence of functions
satisfies two properties: (a) lim

λ→∞
дk (λ) = 0 for every fixed k ; (b)

lim
k→∞

дk (λ) = 1 for every fixed λ. Let m(0) = 0 and k(0) = 0.

For each r ≥ 1, we define m(r ) as the least integer M such that
∀m ≥ M : дk (r−1)(m) ≤ 1

3 . Such an integer M exists due to the
property (a). Next, we define k(r ) as the least integer K such that
∀k ≥ K : дk (m(r )) ≥ 2

3 . Such an integer K exists due to the

property (b). The vector yr equals π
(
(дk (r )(m(r (n))))n∈N

)
. So, yr

and ys , r ≥ s + 1, are at distance

∥yr − ys ∥ = lim sup
n

����дk (r )(m(r (n))) − дk(s)(m(r (n)))
����

≥ дk (r )(m(s + 1)) − дk (s)(m(s + 1)) ≥ 2

3
− 1

3
=

1

3
.

Since there is a sequence of vectors yr ∈ X such that ∥yr −ys ∥ ≥ 1
3

for each pair of distinct positive integers r and s , the set X ∪ (1−X )
is not totally bounded. □

Theorem 2.6 stated below claims thatG(n,n−α ) has a not totally
bounded complexity for every rational α ∈ (0, 1). We derive it using
a construction of a FO sentence introduced by Shelah and Spencer
in [5] to disprove the convergence law.



First order complexity of finite random structures LICS ’24, July 8–11, 2024, Tallinn, Estonia

Lemma 2.5 (Shelah, Spencer [29]). Let Gn ∼ G(n,n−α ). For
every integer d ≥ 100, there exists a FO sentence φd such that

(i) if log∗ n ≡ ⌊ d4 ⌋(mod d) then Gn |= φd whp;

(ii) if log∗ n ≡ ⌊ 3d4 ⌋(mod d) then Gn |= ¬φd whp,

where log∗ denotes the iterated logarithm, i.e. the number of times

the logarithm need to be applied to the number to make it one or less.

In the original paper [29] Lemma 2.5 was formulated only for
d = 100, but literally the same proof works for any d ≥ 100 (the
lower bound 100 could be sufficiently improved, though it is not
important for us).

Theorem 2.6. For any rational α ∈ (0, 1), FOC(G(n,n−α )) is not
totally bounded.

Proof. For every prime number p ≥ 100, let us consider the sen-
tence φp whose existence is claimed by Lemma 2.5. Let xp (n) be the
probability Pr(G(n,n−α ) |= φp ). Then, vectors xp = π

(
(xp (n))n∈N

)
are in FOC(G(n,n−α )). Let (yp (n))n∈N ∈ ℓ∞ be the sequence such
that

(i) if log∗ n ≡ ⌊ p4 ⌋(mod p) then yp (n) = 1;

(ii) if log∗ n ≡ ⌊ 3p4 ⌋(mod p) then yp (n) = 0;
(iii) yp (n) = xp (n), otherwise.

The sequence xp (n) − yp (n) converges to zero because, for each

n such that log∗ n ≡ ⌊ p4 ⌋(mod p) or log∗ n ≡ ⌊ 3p4 ⌋(mod p), we
have the required convergence due to the properties of φp given
by Lemma 2.5, and xp (n) − yp (n) = 0 for all other n.

Thus, vectors xp and π
(
(yp (n))n∈N

)
are equal. By the Chinese

remainder theorem, for each pair of distinct primes p and q there
exists an integer numberm such thatm ≡ ⌊ p4 ⌋(mod p) andm ≡
⌊ 3q4 ⌋(mod q). Therefore, for each n such that log∗ n ≡ m(mod
pq), we have yp (n) − yq (n) = 1. Since there are infinitely many
n such that log∗ n ≡ m(mod pq), we have ∥xp − xq ∥ ≥ 1. Hence,
we have infinitely many vectors in the set FOC(G(n,n−α )), which
are at distances at least 1 from each other, i.e. FOC(G(n,n−α )) is
not totally bounded. □

So, indeed, FOC(G(n,n−α )) is not totally bounded when α ∈
(0, 1)∩Q. We are not able to present a łnicež p so that FOC(G(n,p))
is either d-dimensional, d > 1, or infinite-dimensional and totally
bounded. However, this appears to be possible for G(n | φ).

2.3 Complexity of G(n | φ)
First of all, note that for any FO sentence φ, if lim inf

n→∞ Pr(G(n, 12 ) |=
φ) > 0 (it actually may only happen when the limit is 1), then
FOC(G(n | φ)) = {0, 1} due to the FO 0ś1 law for G(n, 12 ). More-
over, there is a FO sentence φ such that G(n | φ) obeys the FO
convergence law but not the FO 0ś1 law. For example, consider φ
which expresses the property of consisting of isolated vertices and
exactly one connected component of size 3. Then, probability of
containing a triangle converges to 1

4 .

Theorem 2.7. For a FO sentence φ, we let Gn ∼ G(n | φ).
(i) There is a FO sentence φ such that FOC(Gn ) is a dense subset

of [0, 1].
(ii) For each d ≥ 1, there is a FO sentence φ such that FOC(Gn )

spans a d-dimensional subspace of ℓ∞/c0.

(iii) There is a FO sentence φ such that FOC(Gn ) is totally bounded
but spans an infinite-dimensional subspace of ℓ∞/c0.

(iv) There is a FO sentence φ such that FOC(Gn ) is not totally
bounded.

We postpone the proof of (iii) to Section 5: it is long enough
to interrupt the flow of the paper and it requires an additional
background that we outline in the beginning of Section 5.

Proof of parts (i), (ii) and (iv) of Theorem 2.7. Toprove (i),

consider a FO sentence φ which expresses the property of being
2-regular. For the respective random graph G(n | φ), the FO con-
vergence law was proven by Lynch in [20]. Then, FOC(G(n | φ)) is
a subset of [0, 1]. To prove that this subset is dense, we refer to the
result proven by Bollobás and Wormald [1, 37, 38].

Lemma 2.8 (Bollobás,Wormald [1, 37, 38]). Fix an integerd ≥ 2
andC > 0. In random uniform d-regular graphs on [n], the vectors of
numbers of cycles of length ℓ ≤ C converge in distribution to a vector

of independent Poisson random variables Pois
(
(d − 1)ℓ/(2ℓ)

)
.

Let a FO sentenceψℓ express the property of containing a cycle of
length ℓ. For a {0, 1}-wordW of lengthw , letψW be a conjunction
of sentences ψℓ ifW (ℓ − 2) = 1, and ¬ψℓ ifW (ℓ − 2) = 0. For
each pair of distinct wordsW andW ′ of lengthw ,ψW contradicts
ψW ′ . Also, the disjunction ofψW over all wordsW of lengthw is a
tautology. Therefore, for an arbitrary labellingW1,W2, . . . ,W2w of
all such words, we have that

qs := lim
n→∞ Pr

(
G(n | φ) |=

s∨
i=1

ψWi

)
=

s∑
i=1

lim
n→∞ Pr(G(n | φ) |= ψWi

).

Note that q0 = 0 and q2w = 1. Also, from Lemma 2.8, we have that

qs − qs+1 = lim
n→∞ Pr(G(n | φ) |= ψWs

) =

=

∏
Ws (ℓ−2)=1

(1 − e− 1
2ℓ )

∏
Ws (ℓ−2)=0

e−
1
2ℓ ≤

w+2∏
ℓ=3

e−
1
2ℓ <

e
3
2

√
w + 2

.

Therefore, qs is an increasing sequence of numbers in [0, 1] such
that q0 = 0, q2w = 1 and qs − qs−1 < e

3
2 /
√
w + 2. Hence, for each

number x ∈ [0, 1], there is an element of this sequence such that

|x − qs | < 1
2e

3
2 /
√
w + 2. Since qs are limiting probabilities for FO

sentences, andw can be chosen arbitrary large, FOC(G(n | φ)) is a
dense subset of [0, 1] as needed.

To prove (ii), consider a FO sentence φ which expresses the
property of being a disjoint union of d-cliques and at most one
r -clique for some 0 ≤ r < d . Note that, for each n, this property
defines a single isomorphism class. Fix a FO sentenceψ . Since for
any graphs A, B, there existsm0 ∈ N such that, for anym ≥ m0,
graphsm0A ⊔ B andmA ⊔ B are not distinguishable byψ (see [2])
we get that there exists t0 such that for all t ≥ t0 graphs on [dt0 +r ]
and [dt + r ] that satisfy φ are not distinguishable byψ . Then, the
sequence (Pr(G(n | φ) |= ψ ))n∈N consists only of zeros and ones
and is d-periodic for n large enough. Therefore, FOC(G(n | φ)) is
a set of projections of d-periodic sequences of ones and zeros, i.e.
is contained in the d-dimensional subspace π (Ld ) ⊂ ℓ∞/c0, where
Ld is the d-dimensional space of all d-periodic sequences in ℓ∞.

For each 0 ≤ r < d consider a FO sentenceψr which expresses
the property of containing an isolated r -clique. The n-th element
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of the sequence Pr(G(n | φ) |= ψr ) equals one if n ≡ r (mod d), and
zero otherwise. Projections of (Pr(G(n | φ) |= ψr )n∈N, 0 ≤ r < d ,
generate the space π (Ld ). Thus, FOC(G(n | φ)) does not span a
(d − 1)-dimensional subspace of ℓ∞/c0.

To prove (iv), we need the following definition.

Definition 2.9. LetG and H be two graphs. The Cartesian product

G□H is the graph on V (G) ×V (H ) with adjacency relation (u,v) ∼
(u ′,v ′) ⇔ ((u ∼ u ′) ∧ (v = v ′)) ∨ ((u = u ′) ∧ (v ∼ v ′)). In
other words, every edge of the Cartesian product belongs either
to an induced subgraph Gv � G on {(u,v) | u ∈ V (G)} for some
v ∈ V (H ) or to an induced subgraphHu � H on {(u,v) | v ∈ V (H )}
for some u ∈ V (G).

The property of being isomorphic to Ks□Kt , for some s, t > 0,
is FO. Let φ be a FO sentence that describes this property. Let, for
n ∈ Z>0, D(n) be the set of all divisors of n. Let µd = 2, if d =

√
n,

and µd = 1, otherwise. For each d ∈ D(n) there are µdd!
(
n
d

)
!

automorphisms of the graphKd□K n
d
. Therefore, there are n!

µdd !
(
n
d

)
!

graphs on [n] isomorphic to Kd□K n
d
. The probability that G(n | φ)

is isomorphic to Kd□K n
d
equals

n!/µd
d!

(
n
d

)
!
/
©­­«

∑
d ′∈D(n)

n!

2d ′!
(
n
d ′

)
!

ª®®¬
=

1/µd
d!

(
n
d

)
!
/
©­­«

∑
d ′∈D(n)

1

2d ′!
(
n
d ′

)
!

ª®®¬
where we have 2 in the denominator of the normalisation factor
instead of µd ′ since we count twice every graph Kd ′□Kn/d ′ when
d ′ ,

√
n.

Letψd be a FO sentence which expresses the property of contain-
ing an inclusion-maximal clique of sized , i.e. a clique of sized which
is not included in any clique of size d+1. If a graph on [n] satisfies φ
then it is isomorphic toKd□K n

d
if and only if it satisfiesψd . Consider

d1 < d2, let us prove that, for each ε > 0 there are infinitely many
numbersn such that Pr(G(n | φ) |= ψd1 )−Pr(G(n | φ) |= ψd2 ) > 1−ε .
Let n = d1p, where p is a prime number bigger than d2. Therefore, n
is not divisible byd2, and Pr(G(n | φ) |= ψd2 ) = 0. Sinced1 < d2 < p,
each divisorm of n such thatm ≤ √

n cannot be divisible by p >
√
n.

Hence, such divisors are divisors of d1. Thus, we can estimate the
normalisation factor for the probability Pr(G(n | φ) |= ψd1 ) in the
following way:∑
d ′∈D(n)

1/2
d ′!

(
n
d ′

)
!
=

∑
d ′∈D(d1)

1

d ′!
(
n
d ′

)
!
≤ 1

d1!
(
n
d1

)
!
+

|D(d1)| − 1(
2n
d1

)
!

≤

1

d1!
(
n
d1

)
!

(
1 +

(d1 + 1)!p!
(2p)!

)
≤ 1

d1!
(
n
d1

)
!

(
1 +

p!p!

(2p)!

)
≤ 1 + 2−p

d1!
(
n
d1

)
!
.

Therefore, for all primes p such that (1 + 2−p )−1 > 1 − ε , we have
Pr(G(n | φ) |= ψd1 ) > 1 − ε . So, each pairψd1 andψd2 defines a pair
of vectors in FOC(G(n | φ)) at distance at least 1, and FOC(G(n | φ))
is not totally bounded. □

3 STOCHASTIC FO REDUCTION

In this section we define a stochastic FO reduction and describe its
useful properties (in Section 3.1). Then we show its effectiveness
by using it to derive certain logical limit laws for dense (in Sec-
tion 3.2) and sparse (in Section 3.3) relational structures as well

as to transfer higher FO complexities between random relational
structures. Finally, in Section 3.4 we use the stochastic FO reduc-
tion to generalise the result of Larrauri, Müller, and Noy about the
closure of FO complexity of binomial random d-hypergraphs with
p = c/nd−1 from undirected hypergraphs to directed hypergraphs
for any possible way to choose an orientation of hyperedges.

3.1 Definition and main properties

Let σ ,σ ′ be two signatures; Dn and D ′
n be the sets of all finite

structures on [n] over σ and σ ′ respectively; D = ⊔n∈NDn and
D ′
= ⊔n∈ND ′

n ; Dn ,D
′
n be random relational n-structures over

σ ,σ ′ respectively. Moreover, for any two FO sentences φ,φ ′ over
σ ,σ ′ respectively, let D(φ) ⊂ D and D ′(φ ′) ⊂ D ′ be sets of all
structures satisfying φ and φ ′ respectively. Finally, let us consider
algebras A = {D(φ)}, A ′

= {D ′(φ ′)} (recalling that an algebra

is closed under finite unions in contrast to a σ -algebra). For an
(A | A ′)-measurable function f : D → D ′ and a FO sentence
φ ′, we denote by f −1(φ ′) =: φ a FO sentence such that D(φ) =
f −1(D ′(φ ′)).

Definition 3.1. A stochastic FO reduction from D ′
= (D ′

n )n∈N
to D = (Dn )n∈N is an (A | A ′)-measurable function f : D → D ′

such that, for every n ∈ N, f maps n-structures to n-structures, and
lim
n→∞ |Pr(Dn |= f −1(φ ′)) − Pr(D ′

n |= φ ′)| = 0 for every FO sentence

φ ′ over σ ′.

If there is a stochastic FO reduction from D ′ to D, we say that
D ′ is reducible to D (or sometimes we say that D ′

n is reducible to
Dn meaning of course a reduction of the entire sequences) and
denote it as D ′ ⪯ D (or D ′

n ⪯ Dn ). Let us first observe that the
basic property of being a preorder, that holds for reductions in the
computational complexity theory, holds for our reduction as well.

Claim 3.2. The stochastic FO reduction relation ⪯ is a preorder.

The proof is straightforward, it can be also found in the extend
version of the paper [? ].

Next, we show key property of stochastic FO reductions which
allow us to transfer FO complexities between different random
relational structures.

Claim 3.3. Suppose D ′
n ⪯ Dn . Then, FOC(D ′

n ) ⊆ FOC(Dn ).

Proof. Let f : D → D ′ be a reduction fromD ′
n toDn . Consider

a vector v ∈ FOC(D ′
n ). There is a FO sentence φ in the signature of

D ′
n such that v = (Pr(D ′

n |= φ))n∈N + c0. Since f is the stochastic
FO reduction, there is a FO sentence f −1(φ) in the signature of Dn
such that lim

n→∞ |Pr(Dn |= f −1(φ)) − Pr(D ′
n |= φ)| = 0. Therefore,

v = (Pr(D ′
n |= φ))n∈N + c0 = (Pr(Dn |= f −1(φ)))n∈N + c0 ∈

FOC(Dn ). □

Corollary 3.4. Suppose D ′
n ⪯ Dn .

(i) If Dn obeys the FO 0ś1 law, then D ′
n obeys the FO 0ś1 law as

well.

(ii) If Dn obeys the FO convergence law, then D ′
n obeys the FO

convergence law as well.

Proof. By Claim 2.2 and Claim 3.3, we have that FOC(D ′
n ) ⊆

FOC(Dn ) ⊆ {0, 1}, for the case (i), and FOC(D ′
n ) ⊆ FOC(Dn ) ⊆ R,
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for the case (ii). Then, by Claim 2.2, we obtain the assertion of the
corollary. □

3.2 Application to FO zero-one laws for dense
structures

Let us now use stochastic FO reductions to transfer FO 0-1 laws.
We consider the signature {=,→}, where→ has arity 2, and denote
by ®G(n,p) the binomial random directed graph without loops on
the set of vertices [n], i.e. every directed edge (out of the set of
n(n − 1) possible edges) appears independently of the others with
probability p.

Theorem 3.5. Let p ∈ (0, 1) (not necessarily a constant). There

are stochastic FO reductions G(n,p2) ⪯ ®G(n,p) ⪯ Dσ (n,p), where
σ = {=, P}. In particular, for a constant p ∈ (0, 1), ®G(n,p) obeys the
FO 0ś1 law.

Proof. Define the reduction from ®G(n,p) toDσ (n,p) as the func-
tion f which deletes loops from a directed graph. This mapping
can be łdefined" by the FO formulaψ→(x ,y) = P(x ,y) ∧ ¬(x = y).
So, for each FO sentence φ over signature {=,→}, the FO sentence
f −1(φ) is constructed from φ by replacing each x → y byψ→(x ,y).
Note that f (Dσ (n,p)) d

= ®G(n,p). Thus, Pr(Dσ (n,p) |= f −1(φ)) =
Pr( ®G(n,p) |= φ) and f is indeed a stochastic FO reduction.

From Corollary 3.4 and the fact that Dσ (n,p) obeys the FO 0ś1
law, we have that ®G(n,p) obeys the FO 0ś1 law as well.

Let д be a mapping from directed graphs without loops to undi-
rected graphs which replaces pairs of directed edges (x ,y) and
(y,x) by an undirected edges {x ,y} and deletes all the other di-
rected edges. The mapping д can be defined by the FO formula
ψ∼(x ,y) = (x → y) ∧ (y → x). Then, as in the previous case,
the FO sentence д−1(φ) is obtained by replacing all x ∼ y by ψ∼.

Furthermore, д( ®G(n,p)) d= G(n,p) because the presence of an undi-
rected edge {x ,y} depends only on the presence of two directed
edges (x ,y) and (y,x), and the probability that both of them are
presented is p2. So, we have the equality Pr( ®G(n,p) |= д−1(φ)) =
Pr(G(n,p2) |= φ) which finishes the proof. □

Let us stress once again that in [5] 0-1 law for the binomial
random graph and for Dσ (n,p) are proven separately. Due to Theo-
rem 3.5, the validity of the FO 0-1 law for Dσ (n,p) for all constant
p implies its validity for G(n,p) for all constant p as well.

Actually, Theorem 3.5 admits a generalisation to arbitrary signa-
tures and distributions. We state it below, and then use for other
particular reductions. It is straightforward that Theorem 3.5 follows
immediately from this claim.

As above, we consider two relational signatures σ ,σ ′ and re-
spective sequences of random structures D,D ′. For every P ∈ σ ′

of arity a, assume that we are given with a FO formulaψP of arity
a over σ . Let f : D → D ′ be defined as follows: for every P ∈ σ ′

and every X ∈ D, we set f (X ) |= P(x1, . . . ,xa ) if and only if
X |= ψP (x1, . . . ,xa ). We call f a reduction defined by (ψP , P ∈ σ ′).

Claim 3.6. Let D be a random structure over σ , and let f be a

reduction defined by (ψP , P ∈ σ ′). Letting D ′ d
= f (D), we get that

D ′ ⪯ D and f reduces D ′ to D.

Proof. In order to see that f is (A | A ′)-measurable, it is
sufficient to observe that, for every FO φ ′ over σ ′, f −1(φ ′) is ob-
tained from φ ′ by replacing each P by ψP . Since the distribution
of D ′ coincides with the distribution of f (D), we have the equal-
ity lim

n→∞ |Pr(D |= f −1(φ)) − Pr(D ′ |= φ)| = 0 which finishes the

proof. □

A similar to f object which is called a FO translation appeared
in [14] and was used for reductions between languages (for more
details, we refer a reader to the book [13], where the concept of FO
reductions is introduced and its properties are described).

We denote byGloop (n,p) the binomial random undirected graph
which allows loops on the set of vertices [n], i.e. every edge (out of

the set of n(n+1)2 possible edges) appears independently of the others
with probability p. We consider this structure over the signature
{=,∼}. The proof by reduction of the FO 0ś1 law for this random
structure (with constant p) is not as straightforward as for ®G(n,p).
Indeed, if we apply a reduction to the Dσ (n,√p) defined by the FO
formula P(x ,y) ∧ P(y,x), then we get a random undirected graph
which allows loops, but the probability of the presence of a loop is
p, while a non-loop edge has the emergence probability p2 , p.

Let us denote by G ′
loop

(n,p,q) the random undirected graph

which allows loops on the set of vertices [n], but over the signature
{=,∼′,L}, where ∼′ has arity 2 and L has arity 1. The predicate ∼′

expresses the presence of non-loop undirected edges, the predicate
L expresses the presence of loops. The distribution ofG ′

loop
(n,p,q)

is such that each edge appears independently with probability q if it
is a loop, and p otherwise. To prove the FO 0ś1 law for Gloop (n,p),
we prove the equivalence between this structure and G ′

loop
(n,p,p).

The next claim is a generalisation of this statement.
Since stochastic FO reductions define a preorder, they induce an

equivalence relation on random relational structures: we call Dn
and D ′

n equivalent if Dn ⪯ D ′
n and D ′

n ⪯ Dn . For our purposes, it
is useful to have a łlooplessž representative in every equivalence
class, which is defined below.

Definition 3.7. Let σ = {=, P1, . . . , Ps } be a signature, where Pi
is a predicate symbol of arity ai . Let Dn be a random n-structure
over the signature σ . The random structure Dn is called loopless

if, for all 1 ≤ i ≤ s and 1 ≤ j < k ≤ ai , the following equality holds:

Pr(Dn |= ∀x1 . . . ∀xai (x j = xk ) ⇒ ¬Pi (x1, . . . ,xai )) = 1.

Claim 3.8. For each random relational structure Dn over the sig-

nature σ , there is a loopless random relational structure D∗
n which is

equivalent toDn . Moreover,Gloop (n,p) is equivalent toG ′
loop

(n,p,p).

The proof of Claim 3.8 is technical and based on a explicit con-
struction of the distribution of D∗

n , stochastic FO reductions, and
application of Claim 3.6. Its proof can be found in the extended
version of the paper [? ].

Let τ be a signature {=, P ,L} where P has arity 2 and L has arity
1. There is a stochastic FO reduction G ′

loop
(n,p,q) to Dτ (n,√p,q)

defined by the FO formulae P(x ,y) ∧ P(y,x) ∧ ¬(x = y) and L(x).
Hence, by Corollary 3.4, Claim 3.2 and Claim 3.8, we have
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Theorem 3.9. Letp ∈ (0, 1) be a constant. The binomial undirected

random graph which allows loops Gloop (n,p) obeys the FO 0ś1 law.

We now switch to randomd-uniform hypergraphs. It is known [5,
7] that oriented random hypergraphs obey the FO 0-1 law. Using the
stochastic FO reduction, we show that this is also the case for unori-
ented random hypergraphs. Note that an unoriented hypergraph
can be considered as an oriented hypergraph where all hyperedges
that can be obtained from each other via a permutation σ ∈ Sd are
identified. Naturally, one may consider partially oriented hyper-
graphs by identifying hyperedges that belong to an H -orbit of an
oriented hyperedge for some subgroup H of Sd . Using reductions
we prove the FO 0ś1 law for all these hypergraphs too. Let us give
an accurate definition.

Let Sd be the group of permutations of [d].We define the action of
Sd on a hyperedge {v1, . . . ,vd } in the natural way: д(v1, . . . ,vd ) =
(vд−1(1), . . . ,vд−1(d )), д ∈ Sd . Let H be a subgroup of Sd .

Definition 3.10. A d-uniform H -hypergraph on [n] is an ori-
ented hypergraph without loops which is invariant under the ac-
tion of H on [n]d , where [n]d is the set of all d-tuples of distinct
vertices from [n]. An H -hyperedge of this graph is an orbit of
its hyperedge under the action of H . A binomial d-uniform H -

hypergraph GH (n,p) is a random structure over the signature
σH = {=, PH }, where PH has arity d , where every H -hyperedge is
presented independently with probability p.

A generalisation of the notion of H -oriented hypergraphs for
structures with arbitrary number of relations was introduced in [17]
and studied in the context of convergence laws in sparse regimes.

Theorem 3.11. Let H be a subgroup of Sd , K be a subgroup of

H , and p ∈ (0, 1) (not necessarily a constant). There is a stochastic

FO reduction GH (n,p[H :K ]) ⪯ GK (n,p). In particular, for a constant

p ∈ (0, 1), GH (n,p) obeys the FO 0ś1 law.

Proof. A reduction f is defined by the formula∧
д∈H

PK (xд−1(1), . . . ,xд−1(d )).

Indeed, f (GK (n,p)) d= GH (n,p[H :K ])
• because the presence of an H -hyperedge (x1, . . . ,xd ) in
f (GK (n,p)) depends only on the presence of K-hyperedges
(xд−1(1), . . . ,xд−1(d )) in GK (n,p), for д ∈ H ;

• the probability that all of them are presented is p[H :K ] as,
for each coset дK ⊆ H , the hyperedge (xд−1(1), . . . ,xд−1(d ))
is presented with probability p, and there are exactly [H : K]
such cosets.

Moreover, we have a reduction G {id }(n,p) ⪯ Dσ (n,p), where
σ = {=, P} and P has an arity d . In the same way, as in the proof of
Theorem 3.5, this reduction is defined by the formula

P(x1, . . . ,xd ) ∧
∧
i,j

(xi , x j ).

Therefore, for each subgroup H of Sd , there is a reduction from

GH (n,p) to Dσ (n,p |H |−1 ). Since Dσ (n,p |H |−1 ) obeys the FO 0ś1
law, for constant p, by the Corollary 3.4,GH (n,p) obeys the FO 0ś1
law as well. □

Remark 3.12. In order to give a better flavour of the FOC-hierar-
chy of random H -hypergraphs, we note that conjugate subgroups
of Sd define the same random structure up to equivalence. That is,
for any p ∈ (0, 1) (not necessarily a constant), any subgroup H of

Sd , and any д ∈ Sd , random structures GH (n,p) and GдHд−1 (n,p)
are equivalent.

3.3 Application to FO limit laws for sparse
structures

For technical reasons, we will require a claim stating that a small
shift of the probability parameter of a binomial random structure
does not affect its equivalence class. Let σ be a relational signature,
and recall that Dn is the set of all finite structures on [n] over σ .
For every n, consider a non-negative integer sn and an arbitrary
mapping rn : {0, 1}sn → Dn . Let B(rn ,p) be a random structure
over the signature σ defined as B(rn ,p) = rn (ξ1, . . . , ξsn ), where
ξi are independent random variables with Bernoulli distribution
with the parameter p. Note that the binomial random graphG(n,p)
is distributed as B(rn ,p), where rn maps a sequence of

(n
2

)
ones

and zeros into the graph with edges corresponding to ones in the
sequence. Similarly, binomial random d-uniform H -oriented hyper-
graphs and binomial random oriented hypergraphs with loops are
distributed as B(rn ,p) with an appropriately chosen rn . We shall
use the following assertion about the total variation distance be-
tween Bernoulli random variables (though we believe that it might
be known, its proof can be found in the extended version of the
paper [? ]).

Lemma 3.13. Let p,q ∈ [0, 1], pmin = min{p,q, 1 − p, 1 − q}, and
sn be a sequence of non-negative integers. Consider random vectors

(ξ1, . . . , ξsn ) and (η1, . . . ,ηsn ), where ξi and ηi are independent ran-
dom variables with Bernoulli distribution with the parameter p and

q respectively. If lim
n→∞

√
sn
pmin

|p − q | = 0, then the total variation

distance between the distributions of (ξ1, . . . , ξsn ) and (η1, . . . ,ηsn )
converges to zero.

Corollary 3.14. Let p,q ∈ [0, 1], pmin = min{p,q, 1 − p, 1 − q},
and rn : {0, 1}sn → Dn be a sequence of arbitrary mappings. If

lim
n→∞

√
sn
pmin

|p − q | = 0, then B(rn ,p) is equivalent to B(rn ,q).

Proof. Consider the identity mapping id : D → D. Let us
prove that it is a stochastic FO reduction. Consider a FO sentence
φ. It is eligible to set id−1(φ) := φ. Let An = r−1n (D(φ)).Then

Pr(B(rn ,p) |= φ) = Pr((ξ1, . . . , ξsn ) ∈ An ),
Pr(B(rn ,q) |= φ) = Pr((η1, . . . ,ηsn ) ∈ An ).

Since the total variation distance between vertors (ξ1, . . . , ξsn ) and
(η1, . . . ,ηsn ) converges to zero, we immediately get the statement
of the corollary. □

This corollary advances our tool to prove logical limit laws using
reductions. In order to demonstrate its efficiency, we prove the
following.

Theorem 3.15. Let r be a nonnegative integer.

(i) The random structure D(r+2)(n, (r + 1) lnn/n) does not obey
the FO 0ś1 law.
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(ii) For any positive integer k , D(r+3)(n, (1 + 1
k
+ r ) lnn/n) does

not obey the FO 0ś1 law.

(iii) For any rational β ∈ ( 23 , 1), FOC(D(r+3)(n, (β + r ) lnn/n)) is
not totally bounded.

Proof. We will use two FO reductions encapsulated in the two
claims stated below that follow from Corollary 3.14 and reductions
defined by formulae (see the extended version of the paper [? ] for
their proofs).

Claim 3.16. For any α > d
3 and each nonnegative integer r , we

have D(d )(n, cnα ) ⪯ D(d+r )(n, c
nα+r ).

Claim 3.17. For any α > d − 2, D(d )(n,n−α ) ⪯ D(d+1)(n, α lnn
n ).

Let us finish the proof of Theorem 3.15. We start from (i). The FO
0ś1 law fails for D(1)(n, 1n ), since the number of elements satisfying
the unary predicate from the signature of this random structure
converges in distribution to Pois(1). Using Claim 3.16 for parameter
α = 1 > 1

3 =
d
3 , we get a reductionD

(1)(n, 1n ) ⪯ D(r+1)(n, 1
nr+1

). Us-
ing Claim 3.17 for parameter α = r+1 > r−1 = d−2, we get a reduc-
tion D(r+1)(n, 1

nr+1
) ⪯ D(r+2)(n, (r+1) lnnn ). Then, we transfer the

absence of the FO 0ś1 law from D(1)(n, 1n ) to D(r+2)(n, (r+1) lnnn ).
Next, let us prove (ii). By Theorem 3.5, there is a reduction

G(n, (1 − n−1− 1
k )2) ⪯ D(2)(n, 1 − n−1− 1

k ). Since the inversion of all
edges defines equivalences betweenG(n,p) andG(n, 1 − p), and be-

tweenD(2)(n,p) andD(2)(n, 1−p), we haveG(n, 2n−1− 1
k −n−2− 2

k ) ⪯
D(2)(n,n−1− 1

k ). Using Claim 3.16 for parameter α = 1+ 1
k
> 2

3 =
d
3 ,

we get a reduction D(2)(n,n−1− 1
k ) ⪯ D(r+2)(n,n−1− 1

k
−r ). Using

Claim 3.17 for parameterα = 1+ 1
k
+r > r = d−2, we get a reduction

D(r+2)(n,n−1− 1
k
−r ) ⪯ D(r+3)(n, (1+ 1

k
+r ) lnn/n). Then, we obtain

a reduction G(n, 2n−1− 1
k − n−2− 2

k ) ⪯ D(r+3)(n, (1 + 1
k
+ r ) lnn/n).

From [29], we have an absence of the FO 0ś1 law for G(n,p) with
p ∼ cn−1−

1
k , and then for D(r+3)(n, (1 + 1

k
+ r ) lnn/n) as well.

Finally, we prove (iii). By Theorem 3.5, there is a reduction
G(n, 2n−β − n−2β ) ⪯ D(2)(n,n−β ). Using Claim 3.16 for parameter
α = β > 2

3 =
d
3 , we get a reductionD

(2)(n,n−β ) ⪯ D(r+2)(n,n−β−r ).
Using Claim 3.17 for parameter α = β+r > r = d−2, we get a reduc-
tion D(r+2)(n,n−β−r ) ⪯ D(r+3)(n, (β + r ) lnn/n). Then, we obtain a
reduction G(n, 2n−β − n−2β ) ⪯ D(r+3)(n, (β + r ) lnn/n) which im-
plies that FOC(G(n, 2n−β −n−2β )) ⊆ FOC(D(r+3)(n, (β +r ) lnn/n)).

The proof of Theorem 2.6 and the proof of Lemma 2.5 in [29] do
not rely on the exact equality p = n−α but rather works for every
p ∼ cn−α . Then, FOC(G(n, 2n−β − n−2β )) is not totally bounded,
and it finishes the proof of the theorem by Claim 3.3. □

3.4 First order complexity of random
H -hypergraphs around the connectivity
threshold

For a subgroup H of Sd , the random hypergraph GH (n,p) is de-
fined in Section 3.2. In particular, GSd (n,p) is the well-studied and
commonly considered binomial unoriented hypergraph. Larrauri,
Müller, and Noy [18] proved the following.

Theorem 3.18 (Larrauri, Müller, Noy [18]). The set of limiting

probabilities limn→∞ Pr(GSd (n, c
nd−1

) |= φ) over all FO sentences

φ is dense in [0, 1] if and only if c ≥ c
Sd
0 , where c

Sd
0 is the unique

positive solution of the equation

1

2
ln

1

1 − c
(d−2)!

− c

2(d − 2)! = ln 2.

Using stochastic FO reductions, we generalise this result to all
possible orientations.

In [17] it was proven thatGH (n, c
nd−1

) obeys the FO convergence

law. For c > 0, let LHc be the set of lim
n→∞ Pr(GH (n, c

nd−1
) |= φ) over

all FO sentences φ. Let us denote by cH0 the infimum of the set of

positive numbers c such that LHc is dense in [0, 1]. In this section,
we prove the following.

Theorem 3.19. Let H be a subgroup of Sd , c > 0, and let d ≥ 2 be

an integer. Then, cH0 =
|H |
d ! c

Sd
0 . Moreover, for c ≥ cH0 , LHc is dense.

Proof. Theorem 3.19 follows from the next two claims.

Claim 3.20. Let H be a subgroup of Sd , K be a subgroup of H ,

c > 0, and let d ≥ 2 be an integer. Then, cH0 ≥ [H : K]cK0 . Moreover,

for any c ≥ |H |
d ! c

Sd
0 , the set LHc is dense.

Proof. Note that GH (n,p) is equivalent to GH (n, 1 − p) due to
reductions defined by negations. From Theorem 3.11 and Corol-
lary 3.14, we have the following reductions

GH (n, [H : K]cn1−d ) ⪯ GH (n, 1 − [H : K]cn1−d ) ⪯
GH (n, (1 − cn1−d )[H :K ]) ⪯ GK (n, 1 − cn1−d ) ⪯ GK (n, cn1−d ).

We immediately get

Proposition 3.21. GH (n, [H : K]c/nd−1) ⪯ GK (n, c/nd−1).

By Proposition 3.21, for all c > 0, LH[H :K ]c ⊆ LKc . Therefore, if

LH[H :K ]c is dense in [0, 1], then LKc is dense in [0, 1] as well. Hence,
cH0 ≥ [H : K]cK0 . Applying this inequality for Sd and H , we

get |H |
d ! c

Sd
0 = [Sd : H ]−1cSd0 ≥ cH0 . Also, for each c ≥ |H |

d ! c
Sd
0 ,

L
Sd
d !c/ |H | is dense in [0, 1] by Theorem 3.18. By Proposition 3.21,

GSd (n,d!c/(|H |nd−1)) ⪯ GH (n, c/nd−1). Therefore, the set LHc is
dense in [0, 1] as well, completing the proof. □

The next claim can be proved in the same way as the analogous
statement in [18] using a Poisson limit theorem for the number of
small cycles in random hypergraphs and the validity of the FO 0ś1
law subject to the absence of cycles, see the proof in the extended
version of the paper [? ].

Claim 3.22. For c < c
Sd
0 /d!, the set L{id }c is not dense in [0, 1].

By Claim 3.22, c {id }0 ≥ c
Sd
0 /d!. Combining with Claim 3.20, we

get |H |
d ! c

Sd
0 ≥ cH0 ≥ |H |c {id }0 ≥ |H |

d ! c
Sd
0 . Thus, cH0 =

|H |
d ! c

Sd
0 . More-

over, due to Claim 3.20, for each c ≥ c0, LHc is dense, completing
the proof of Theorem 3.19.

□
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4 DECISION PROBLEM

In this section, we prove that the problem of determining whether,
given an input FO sentence φ,G(n | φ) obeys the FO 0ś1 law is not
recursively enumerable. In what follows, we refer to this decision
problem as 0ś1LAW.

Theorem 4.1. 0ś1LAW is not recursively enumerable.

Proof. It is enough to reduce the problem of deciding whether
a Diophantine equation has a solution (DE in what follows) to the
complement of 0ś1LAW. Indeed, DE is complete in the class of
recursively enumerable languages due to Matiiasevich [24] (see
also [23] for a survey on the negative solution of Hilbert’s 10th
problem), then its complement DE is not recursively enumerable,
and therefore from the reduction we would get that 0ś1LAW is not
recursively enumerable as well.

So, for each integer polynomial P(x1, . . . ,xk )we shall compute a
FO sentence φP such that P(x1, . . . ,xk ) = 0 has an integer solution
if and only if G(n | φP ) does not obey the FO 0ś1 law.

We first reduce the problem for integer solutions to a problem
for positive integer solutions. For integer polynomial P(x1, . . . ,xk ),
there is a solution of P(x1, . . . ,xk ) = 0 in integers if and only if
P(y1 − z1, . . . ,yk − zk ) = 0 has a solution in positive integers. Also,
we can move all monomials with negative coefficients in P(y1 −
z1, . . . ,yk −zk ) = 0 to the right-hand side of the equality. Then, we
get an equation Q(y1, z1, . . . ,yk , zk ) = R(y1, z1, . . . ,yk , zk ), where
Q and R have nonnegative integer coefficients.

Let us now consider a system of equations S that has a solution
in positive integers if and only ifQ = R has such a solution. Initially
we denote occurrences of all variables in P or Q by t1, . . . , ts Ð
here s is the total number of occurrences of variables, taking into
account their powers. Then for every i ∈ [2, s], we add ti = tj to
the system, if there exists j < i such that ti and tj denote exactly
the same variable. Then, for each of the two polynomials Q and P ,
we consider the sequence of arithmetic operations that are applied
to compute them. Observe that the j-th operation can be written
as either ts+j = ti ti′ or ts+j = ti + ti′ for certain i, i ′ ≤ s + j − 1.
For each of the operations, we add the respective equation to the
system. Let us assume that Q and P are computed at steps q and p
respectively (that is, tq = Q and tp = P ). The last equation in the
system is tq = tp . Let us observe that indeed the initial Diophantine
equation has a solution in integers if and only if the constructed
system of equations S has a solution in positive integers.

Sequence of computations of P and Q encoded in S can be rep-
resented also by a FO sentenceψP (an explicit construction of this
sentence is presented in the extended version of the paper [? ])
with the following properties: (1)ψP has finite models if and only
if P = Q has solutions in positive integers; (2) if G |= ψP , then G
has even number of vertices and a graph obtained from G by the
addition of an isolated edge satisfiesψP as well.

We define the desired sentenceφP as Empty∨ψP , where Empty =
∀x∀y ¬(x ∼ y) describes the property of being empty. If there
are no integer solutions of P(x1, . . . ,xk ) = 0, then there are no
graphs satisfyingψP . Therefore, any G satisfying φP is empty. We
immediately get that G(n | φP ) obeys the FO 0ś1 law. On the other
hand, if there is an integer solution of P(x1, . . . ,xk ) = 0, then there
is a solution of S in Zs

>0. LetG0 be a graph satisfyingψP . LetGi be

obtained fromG0 by adding i isolated edges. Obviously,Gi |= ψP for
all i , and |V (Gi )| = 2i+|V (G0)|. For oddn, Pr(G(n | φP ) |= Empty) =
1 because there are no graphswith odd number of vertices satisfying
ψP . In contrast, for all even n ≥ |G0 |, this probability is at most
1/2, because there is at least one nonempty graph satisfying ϕP .
Therefore, Pr(G(n | φP ) |= Empty) does not converge, and so
G(n | φP ) does not obey the FO 0ś1 law, completing the proof. □

Remark 4.2. Actually, we proved that 0ś1LAW is Π1-hard. On
the other hand, φ ∈ 0ś1LAW if and only if

∀M∀ψ ∃N ∀n > N Pr(G(n | φ) |= ψ ) < (1/M, 1 − 1/M).
Since the property Pr(G(n | φ) |= ψ ) < (1/M, 1 − 1/M) is decidable,
we have that 0ś1LAW ∈ Π3. Unfortunately, we do not manage to
find the level of 0ś1LAW in the arithmetical hierarchy.

5 PROOF OF PART (III) OF THEOREM 2.7

This section is divided into four parts. In Section 5.1, we recall
the necessary background used in the proof. In Section 5.2 we
show the general scheme of the proof and reduce the theorem to
a construction of two FO sentences φ1 and φ2 that have to satisfy
certain properties. After that, in Section 5.3 and Section 5.4 we
construct the desired FO sentences and verify their properties.

5.1 Preliminaries

GraphsG and H are (elementary) k-equivalent (we writeG �k H ) if
there is no FO sentence of quantifier depth k that distinguishes be-
tweenG and H (quantifier depth is the maximum number of nested
quantifiers in the sentence, see the formal definition in [19]). We
have to recall a combinatorial approach to proving the elementary
equivalence, this tool is widely known as the EhrenfeuchtśFraïssé
game. For simplicity of presentation (and this is also enough for
our purposes), we recall the definition of this game for graphs; for
arbitrary relational structures see [3, 6, 19].

Definition 5.1. In the EhrenfeuchtśFraïssé game on graphs G and
H with k rounds, there are two players, Spoiler and Duplicator. In
round i ∈ [k], Spoiler chooses a vertex in one of the graphs and then
Duplicator chooses a vertex in the other graph. After k rounds are
played, there are two tuples of k not necessarily different vertices
(x1, . . . ,xk ) chosen inG and (y1, . . . ,yk ) chosen inH are chosen by
both players (the i-th vertex is chosen in the i-th round). Duplicator
wins if (xi = x j ) ⇔ (yi = yj ) and (xi ∼ x j ) ⇔ (yi ∼ yj ), for each
pair 1 ≤ i < j ≤ k , that is the map xi → yi is a partial isomorphism
between G and H .

Theorem 5.2 (Ehrenfeucht, Fraïssé [3, 6]). For two graphs G

and H , Duplicator has a winning strategy in the EhrenfeuchtśFraïssé

game on graphs G and H in k rounds if and only if G �k H .

For constructing winning strategies in the EhrenfeuchtśFraïssé
game, we need the following auxiliary simple claims, their proofs
are presented in the extended version of the paper [? ].

Claim 5.3. Let Spoiler has no winning strategy in k moves on

graphsG1 andG2. Then, for each graphH , there is no winning strategy

for Spoiler in k moves on graphs G1□H and G2□H .

Claim 5.4. LetY ,G ,H be a triple of graphs with induced subgraphs

X0 ⊂ Y , X1 ⊂ G, X2 ⊂ H and isomorphisms f : X0 → X1, д :
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X0 → X2. Denote by GX and HX relational structures with the

usual adjacency relation in G and H and a unary relation Ix for

each vertex x ∈ X0 such that Ix (y) ⇔ (y = f (x)) for y ∈ G and

Ix (z) ⇔ (z = д(x)) for z ∈ H . LetG ∪f Y be the graph obtained from

G by identifying every x ∈ X0 with f (x) ∈ X1 and adding the rest of

Y vertex-disjointly. Similarly define H ∪д Y . Assume that Duplicator

has a winning strategy in k moves on GX and HX , then Duplicator

has a winning strategy in k moves on G ∪f Y and H ∪д Y as well.

Claim 5.5. Let G, H be graphs with an additional unary relation

I . Let GI , HI be graphs obtained from G, H by attaching exactly

one leaf to each vertex x satisfying I (x). Assume that Duplicator has

a winning strategy in k rounds on G and H equipped with I , then

Duplicator has a winning strategy in k rounds on GI and HI as well.

Moreover, we need a well-known fact that FO sentences express
only łlocalž properties in the following sense.

Theorem 5.6 (Hanf locality theorem [10]). For a positive

integer r and a graphG , denote by nr (x ,G) the number of vertices x ′

inG such that r -neighbourhoods of x and x ′ are isomorphic. For every

positive integer k there exist positive integers r (k) and s(k) such that

the following implication holds true for any two graphsG andH . If, for

every vertex x ∈ G ⊔ H , min{s(k),nr (x ,G)} = min{s(k),nr (x ,H )},
then G �k H .

Finally, we make use of the following theorem about the distri-
bution of the number of cycles in a uniformly random permutation.

Theorem 5.7 ([16], Theorem 8). Let n be a positive integer, and

let Yi be the number of cycles of length i in a uniformly random

permutation from Sn . Then, (Y1, . . . ,Yn )
d→ (ξ1, . . . , ξn ), where ξi

are independent Pois(1/i) random variables.

5.2 Overview of the proof and basic properties
of φ

We define the desired sentence φ as a disjunction of three sentences
φ0, φ1 and φ2, such that the following holds:

(a) any graph satisfies at most one sentence from φ0, φ1 and φ2;
(b) φ0 expresses the property of graph being empty;
(c) for eachn divisible by 6, there aren! graphs on [n] that satisfy

φ1, while, for any n which is not divisible by 6, any graph
on [n] does not satisfy φ1;

(d) for each FOψ , the limit lim
m→∞ Pr(G(6m | φ1) |= ψ ) exists;

(e) there is a family of FO sentences φ2,d , d ≥ 3, such that φ2
and

∨
d≥3 φ2,d are not distinguished by any finite graph,

and φ2,d ∧ φ2,d ′ are contradictions for all distinct d,d ′;
(f) for every d ≥ 3 and every n = 6dm2 for some integerm , 0,

there are exactly n!/d! graphs on [n] that satisfy φ2,d , while
for all other n, any graph on [n] does not satisfy φ2,d ;

(g) for all FO ψ and d ≥ 3, lim
m→∞ Pr(G(6dm2 | φ2,d ) |= ψ ) is

either 0 or 1.

Let us first show that these seven assumptions are enough for ob-
taining the desired properties of FOC(G(n | φ)) and then construct
this sentence.

Claim 5.8. If φ = φ0 ∨ φ1 ∨ φ2 satisfies assumptions (a)-(g), then

FOC(G(n | φ)) is totally bounded but spans an infinite-dimensional

subspace of ℓ∞/c0.

Proof. Consider any positive integer n. The number of graphs
that satisfy φ equals

• 1, if n is not divisible by 6;

• 1 + n!
©­«
1 +

∑
d ∈Z,d≥3,d= n

6m2

1
d !

ª®¬
, if n is divisible by 6.

Consider a FO sentenceψ . Due to (b), (d), and (g), there exist

• βψ := lim
n→∞ Pr(G(n | φ0) |= ψ ) ∈ {0, 1},

• p1,ψ := lim
m→∞ Pr(G(6m | φ1) |= ψ ) ∈ [0, 1],

• βd,ψ := lim
m→∞ Pr(G(6dm2 | φ2,d ) |= ψ ) ∈ {0, 1}.

Let us define the sequence pψ (n), n ∈ N, in the following way: if
6 | n, then

pψ (n) =
©­­«
p1,ψ +

∑
d ∈Z,d≥3,d= n

6m2

βd,ψ

d!

ª®®¬
/ ©­­«

1 +
∑

d ∈Z,d≥3,d= n

6m2

1

d!

ª®®¬
;

otherwise, pψ (n) = βψ . Then, we have

lim
n→∞

���Pr(G(n | φ) |= ψ ) − pψ (n)
��� = 0. (1)

Indeed, due to (b), (c), (e), and (f), the number of graphs on [n] that
satisfy φ0 ∧ψ is βψ , for sufficiently large n; the number of graphs
on [n = 6m] that satisfy φ1 ∧ψ is p1,ψn!(1 + o(1)); the number of

graphs on [n = 6dm2] that satisfy φ2,d ∧ψ is βd,ψ
n!
d ! (1 + o(1)), and

is bounded from above by n!
d ! . Then, 6 ∤ n implies Pr(G(n | φ) |=

ψ ) = βψ for sufficiently large n, and 6 | n implies

Pr(G(n | φ) |= ψ ) =

p1,ψ +
∑

d ∈Z,d≥3,d= n

6m2

βd,ψ
1
d !

1 +
∑

d ∈Z,d≥3,d= n

6m2

1
d !

+ o(1). (2)

For any d ′ ≥ 3, let us considerψd ′ := φ2,d ′ . From (a), (c), and (f),
observe that

pψd′ (n) =




©­«
d ′! ©­«

1 +
∑

d ∈Z,d≥3,d= n

6m2

1
d !

ª®¬
ª®¬
−1

, if n
6d ′ is a square;

0, otherwise.

Let D be the set of all square-free integers d ′ ≥ 3. Vectors

π
((
pψd′ (n)

)
n∈N

)
, d ′ ∈ D, are linearly independent since, for each

d ′ ∈ D, the sequence n = 6d ′m2 satisfies pψd′ (n) >
1

d ′!e , and,

for each d ′′ ∈ D such that d ′′ , d ′, and n = 6d ′m2, we have
that pψd′′ (n) = 0. So, any finite non-trivial linear combination of(
pψd′′ (n)

)
n∈N

involving
(
pψd′ (n)

)
n∈N

does not equal 0. Due to (1),

FOC(G(n | φ)) spans an infinite-dimensional space.
Next, we prove that FOC(G(n | φ)) is totally bounded. Consider

ε > 0. Since all βd,ψ are at most 1, there is a d0 such that, if we
restrict the summation in the definition of pψ (n) to d ≤ d0, then
we get an ε

2 -approximation, i.e.��������
pψ (n) −

p1,ψ +
∑

d ∈Z, d0≥d≥3, d=n/(6m2)

βd,ψ
d !

1 +
∑

d ∈Z, d≥3, d=n/(6m2)
1
d !

��������
<
ε

2
.
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Let us construct a finite ε-covering for the set of all sequences pψ (n)
in ℓ∞. Let N be a positive integer such that 1

N <
ε
2 . The desired

ε-covering is the set of all sequencesvk,b(n) indexed by k ∈ [N ] and
b = (b,b3,b4, . . . ,bd0 ) ∈ {0, 1}d0−1 and defined in the following
way: if 6 | n, then

vk,b(n) =
©­«
k

N
+

∑
d0≥d≥3, d=n/(6m2)

bd
d!

ª®¬
/ ©­«

1 +
∑

d≥3, d=n/(6m2)

1

d!

ª®¬
;

otherwise, vk,b(n) = b. Thus, this family of sequences is indeed the
desired ε-covering. Due to (1), FOC(G(n | φ)) is totally bounded,
completing the proof. □

To finish the proof of (iii), we construct the FO sentences φ1 in
Section 5.3 and φ2 in Section 5.4.

5.3 Definition of φ1 and verification of its
properties

Let ∆m be the set of all digraphs on [m] with all in-degrees and
out-degrees equal 1. In particular, a loop contributes 1 both to
the in-degree and the out-degree of the respective vertex. Such
digraphs are disjoint unions of oriented cycles and there are ex-
actly m! digraphs in ∆m . For each class of isomorphism D of di-
graphs on m vertices we construct a class of isomorphism G(D)
of simple graphs on 6m vertices in the following way. We re-
place every edge (u,v) ∈ D with a graph on the set of vertices
{u,v,wi (u,v), i ∈ [5]}, where all vertices wi (u,v) are different,
comprising edges {u,w1(u,v)}, {w1(u,v),w3(u,v)}, {w3(u,v),v},
{w1(u,v),w2(u,v)}, {w3(u,v),w4(u,v)}, and {w4(u,v),w5(u,v)}.

Let φ1 be a FO sentence describing the property
⋃
m

Γm , where

Γm = {G(D),D ∈ ∆m }. Let us check the condition (c). For eachm,
the set Γm consists only of graphs of size 6m. Then, there are no
graphs that satisfy φ1 of size not divisible by 6. Let D1, . . . ,Dt be
all classes of isomorphism of digraphs in ∆m . Then, we have 1 =∑
Di

1
|Aut(Di ) | . Also, |Aut(Di )| = |Aut(G(Di ))|. Then the number of

graphs on [6m] that satisfy φ1 equals
∑
Di

(6m)!
|Aut(G(Di ))|

=

∑
Di

(6m)!
|Aut(Di )|

= (6m)!
∑
Di

1

|Aut(Di )|
= (6m)!.

Let us finally verify the condition (d). Fix a FO sentence ψ of
quantifier depth d . By Theorem 5.6, for D,D ′ ∈ Γm with equal
numbers of components of all sizes at most 6 · 2d , ψ does not
distinguish between D and D ′. For every i ≤ 2d , let Xi be the
number of components in G(n | φ1) of size 6i; let Yi be the number
of components of size i in a uniformly random digraph from ∆m .

Note that (X1, . . . ,X2d )
d
= (Y1, . . . ,Y2d ), and that (Y1, . . . ,Y2d )

d→
(ξ1, . . . , ξ2d ) due to Theorem 5.7, where ξi are independent Pois( 1i )
random variables. Then,

Pr(G(6m | φ1) |= ψ ) =
∑

Pr(X1 = x1, . . . ,X2d = x2d )

= (1 + o(1))
∑

Pr(ξ1 = x1, . . . , ξ2d = x2d )

completing the proof of (d).

5.4 Definition of φ2 and verification of its
properties

Next, we construct the FO sentence φ2 and sentences φ2,d . Let us
first, for every integerm ≥ 2, define an auxiliary graph Lm . This
graph consists of vertices ui , for 1 ≤ i ≤ 6m; vi, j , for j ∈ [m − 1],
6j + 1 ≤ i ≤ 6m; and wi, j , for j ∈ [m − 1], 6j + 1 ≤ i ≤ 6m; and
edges

• {ui−1,ui }, for 2 ≤ i ≤ 6m;
• {ui ,vi, j }, {vi, j ,wi, j }, for j ∈ [m − 1], 6j + 1 ≤ i ≤ 6m;
• {vi−1, j ,vi, j }, for j ∈ [m − 1], 6j + 2 ≤ i ≤ 6m.

The graph Lm consists of 6m + 6m(m−1)
2 + 6m(m−1)

2 = 6m2 ver-
tices and has no nontrivial automorphisms. Let φL be a FO sentence
expressing the property of being isomorphic to Lm for somem ≥ 2.
Consider the family of graphs Kd□Lm , for d ≥ 3 andm ≥ 2, where
G□H is the Cartesian product of graphs, see Definition 2.9. We
construct a FO sentence φ2 that expresses the property of being
isomorphic to Kd□Lm for some d ≥ 3 andm ≥ 2 and, for every
d ≥ 3, we construct a FO sentence φ2,d that expresses the property
of being isomorphic to Kd□Lm for somem ≥ 2. We first set

φ2 = TEquiv ∧ TGraph ∧ φT L ∧ TCommute,

where the clauses are defined in the following way. Let

Triangle(x ,y) = (x = y) ∨ (∃z (x ∼ y) ∧ (y ∼ z) ∧ (z ∼ x))
express the property of distinct x , y to belong to a triangle. For FO
formulaeψ1,ψ2 with a free variable x , let

Matchingx [ψ1,ψ2] =∀x ¬(ψ1(x) ∧ψ2(x))∧(
ψ1(x) ⇒ ∃! x ′(x ∼ x ′) ∧ψ2(x ′)

)
∧(

ψ2(x) ⇒ ∃! x ′(x ∼ x ′) ∧ψ1(x ′)
)

say that sets {x | ψ1(x)} and {x | ψ2(x)} are disjoint and edges
between them form a perfect matching.

• TEquiv is a FO sentence saying that Triangle(x ,y) is an
equivalence relation and each equivalence class has size at
least 3 (or, in other words, every vertex belongs to a triangle).

• TGraph is a FO sentence saying that for each pair y,y′ such
that ¬Triangle(y,y′) holds, either there are no edges be-
tween their Triangle-equivalence classes, or TEdдe(y,y′) :=
Matchingx [Triangle(x ,y),Triangle(x ,y′)] holds.

• φT L is the sentence φL with all predicates x = y replaced by
Triangle(x ,y), and all x ∼ y replaced by TEdge(x ,y).

• TCommute is a FO sentence saying that, for each four ver-
tices x ,x ′,y,y′ such that TEdge(x ,x ′) ∧ TEdge(y,y′) and
TEdge(x ,y) ∧ TEdge(x ′,y′), the subgraph induced on their
Triangle-equivalence classes is a disjoint union of cycles of
length 4 with one vertex from each class.

Finally, φ2,d is the conjunction of φ2 and a FO sentence saying that
there is a clique on d vertices but no cliques on d + 1 vertices. So,
we immediately have (e).

Let us show thatφ2 andφ2,d express the proper sets of graphs. As
usual, we omit the straightforward verification thatKd□Lm |= φ2,d .
Assume G |= φ2. By TEquiv ∧ TGraph, the set of vertices of G
is partitioned into Triangle-equivalence classes; edges between
vertices of two different equivalence classes B,C in G appear if
and only if representatives x ∈ B, y ∈ C satisfy TEdge(x ,y). Let
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us consider an auxiliary graph G̃ whose vertices are the Triangle-
equivalence classes of G; two vertices B,C are adjacent in G̃ if and
only if there are edges between them in G (and, in this case, these
edges in G between B and C compose a perfect matching). Due
to φT L , G̃ is isomorphic to some Lm . Since Lm is connected, all
Triangle-equivalence classes in G have the same size d . Moreover,
for a certain d ≥ 3, these classes induce cliques Kd because, for
distinct vertices x ,y, Triangle(x ,y) implies x ∼ y. So, G |= φ2,d .

For two different Triangle-equivalence classes B and C , the per-
fect matching between them defines two bijections fBC : B → C

and fCB : C → B in the natural way: for x ∈ B, y ∈ C , the ad-
jacency x ∼ y implies fBC (x) = y and fCB (y) = x . Note that
fBC ◦ fCB = idC and fCB ◦ fBC = idB . By TCommute we have
that, for each cycle BB′C ′C of length 4 in G̃, fCC ′ ◦ fBC = fB′C ′ ◦
fBB′ . Note that the 2-dimensional CW-complex obtained by łfill-
ingž all 4-cycles of Lm is simply connected. Or, in algebraic lan-
guage, for a certain spanning subtree L̂m ⊂ Lm , the group pre-
sented by ⟨fBC , BC ∈ E(Lm ) | fBC , BC ∈ E(L̂m ), fBC fCB , BC ∈
E(Lm ), fB′B fC ′B′ fCC ′ fBC , BB

′CC ′ is 4-cycle in Lm⟩ is trivial. So,
for every two walks between B,C ∈ V (G̃), compositions of respec-
tive bijections along the walks are equal. This fact legitimises the
definition of fBC for any pair of B,C ∈ V (G̃): let BP0 . . . PkC be
a path in G̃, then fBC := fPkC ◦ fPk−1Pk ◦ · · · fP0P1 ◦ fBP0 . Next,
fix a Triangle-equivalence class B = {b1, . . . ,bd }. For each bi , let
Si = { fBC (bi ),C ∈ V (G̃)}. By the definition of fBC , there are no
edges { fBC (bi ), fBC ′(bj )} for i , j and C , C ′, i.e. each G̃-edge
{C,C ′} is presented by G-edges { fBC (bi ), fBC ′(bi )}, 1 ≤ i ≤ d .
Therefore, the induced subgraph on Si is isomorphic to Lm and,
consequently, the graph G itself is isomorphic to Kd□Lm . So, φ2
and φ2,d express desired properties of finite graphs.

The number of vertices in Kd□Lm is 6dm2. For each n , 6dm2,
there are no graphs that satisfy φ2,d . For n = 6dm2, there is exactly
one graph under isomorphism that satisfy φ2,d . The graph Kd□Lm
has exactly d! automorphisms. We conclude that the number of
graphs that satisfy φ2,d equals n!

d ! , completing the proof of (f).
To finish the proof, it remains to show (g). Due to Ehrenfeucht’s

theorem [3, 6], we know that there is a FO sentence of quantifier
depth k that distinguishes between two graphsG and H if and only
if Spoiler has a winning strategy in k moves in the Ehrenfeuchtś
Fraïssé game on G and H . Suppose, there is a FO sentence ψ of
the quantifier depth k such that Pr(G(6dm2 |φ2,d ) |= ψ ) does not
converge to either 0 or 1. This means that there are infinitely many
m such thatKd□Lm |= ψ and infinitelymanym such thatKd□Lm ̸ |=
ψ . Therefore, it is enough to show that, for every fixed positive
integer k and every fixed integer d ≥ 3, in the EhrenfeuchtśFraïssé
game Spoiler has nowinning strategy ink moves, on graphsKd□Lm
and Kd□Lm′ , for large enoughm andm′. Due to Claim 5.3, we may
get rid of the Cartesian product and prove the same fact for graphs
Lm and Lm′ .

For a < b ≤ m, let us consider the following induced subgraphs
of Lm :

• L(a,b] = Lm
[
{ui ,vi, j ,wi, j | 6a + 1 ≤ i ≤ 6b, 6j + 1 ≤ i}

]
;

• Z(a,b] = Lm
[
{ui ,vi, j ,wi, j | 6a + 1 ≤ i ≤ 6b, j ≤ a}

]
;

• Z̃(a,b] = Lm
[
{ui ,vi, j | 6a + 1 ≤ i ≤ 6b, j ≤ a}

]
.

Consider mappings fa,b of paths Xb−a = u1 . . .u6(b−a) to Z(a,b]
such that fa,b (ui ) = u6a+i . Note that L(a,b] � Z(a,b] ∪fa,b L(0,b−a].

Let Starr be a star graph with r leaves. So, Z̃(a,b] � Xb−a□Stara .
For two numbers a,a′ > k , Duplicator has a winning strategy in
the EhrenfeuchtśFraïssé game with k moves on graphs Stara and
Stara′ , this winning strategy preserves central vertices of stars. By
Claim 5.3, Duplicator has a winning strategy in the Ehrenfeuchtś
Fraïssé game in k round on graphs Z̃(a,b] and Z̃(a′,b′], where b−a =
b ′ − a′. Next, note that Za,b is obtained from Z̃(a,b] by attaching a
leaf to each vertex vi, j . Since the winning strategy of Duplicator
on stars is leaves-preserving, we can apply Claim 5.5 with I dis-
tinguishing between łleavesž and łnon-leavesž and get a winning
strategy of Duplicator in the game on Z(a,b] and Z(a′,b′]. Finally,
due to Claim 5.4, Duplicator has a winning strategy in the game on
L(a,b] and L(a′,b′]. This makes it possible to apply the well-known
Duplicator’s strategy on two long paths in the game on Lm ,Lm′

since Lm and Lm′ can be represented as unions of three segments
L(a,b] (the first one, for a = 0, an intermediate, and the last one,
for b ∈ {m,m′}) such that the respective segments are elementary
equivalent. For completeness, let us recall the strategy.

Let pm : V (Lm ) → [m] maps each vertex ui ,vi, j ,wi, j to the

number ⌈ i6 ⌉. Similarly definepm′ . Suppose thatm,m′ > 3k+1 and in
first t −1 rounds vertices x1, . . . ,xt−1 ∈ Lm and x ′1, . . . ,x

′
t−1 ∈ Lm′

are chosen. Without loss of generality, Spoiler chooses a vertex
xt ∈ Lm in round t .

• If pm (xt ) ≤ 3k−t + 1, Duplicator chooses the same vertex xt
in Lm′ .

• Ifm − pm (xt ) ≤ 3k−t , Duplicator chooses the next vertex
according to the strategy in the game on L(m−3k−t−1,m] and
L(m′−3k−t−1,m′].

• If there is xs with s < t such that |pm (xt ) − pm (xs )| ≤
3k−t , Duplicator chooses the next vertex according to the
strategy in the game on L(pm (xs )−3k−t−1,pm (xs )+3k−t ] and
L(pm′ (x ′s )−3k−t−1,pm′ (x ′s )+3k−t ].

• Otherwise, Duplicator chooses 3k−t + 1 < a < m − 3k−t

such that |a − pm′(x ′s )| > 3k−t for all s < t , and then
chooses a vertex according to the strategy in the game on
L(pm (xs )−3k−t−1,pm (xs )+3k−t ] andL(a−3k−t−1,a+3k−t ]. It is pos-
sible to choose such an a sincem′ is large enough.

A straightforward inductive argument implies that, for every
t ≤ k , as soon as t rounds are played on Lm ,Lm′ , Duplicator

has a winning strategy on pairs of graphs
(
L(0,3k−t+1],L(0,3k−t+1]

)
,(

L(m−3k−t−1,m],L(m′−3k−t−1,m′]
)
,

(
L(pm (xs )−3k−t−1,pm (xs )+3k−t ] ,

L(pm′ (x ′s )−3k−t−1,pm′ (x ′s )+3k−t ]
)
for all s ≤ t . It immediately implies

that Duplicator wins the game on Lm ,L′m
Thus, (g) follows, completing the proof of part (iii) of Theo-

rem 2.7.
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A PROOFS OF FO EXPRESSIBILITY

Cartesian products. Here we present a FO sentence φ that de-
scribes the property of being isomorphic toKs□Kt , for some s, t > 0.
We construct this sentence as a conjunction of three sentences de-
scribing the following properties:

(a) For each vertexv , its neighbourhood consists of two disjoint
cliques Av and Bv ;

(b) For every pair of non-adjacent vertices u and v , there is a
unique edge from u to Av and a unique edge from u to Bv ;

(c) For every vertex v and any two its non-adjacent neighbours
x , y, there is a unique vertex u , v adjacent to x and y.

Let us prove that this sentence expresses the desired property.
Observe that Ks□Kt satisfies it. Let us then consider any graph G
satisfying this sentence. Consider a vertex v , from (a) we have two
cliques Av and Bv . For any vertex x in Av , we have two cliques
Ax = Av ∪{v}\{x} and Bx . The clique Bx does not intersectAx by
the property (a), and does not intersect Bv because there is no edges
between x and Bv . Also, we conclude that each vertex adjacent
to x and not adjacent to v is a vertex of Bx . Similarly, for y ∈ Bv ,
By = Bv ∪ {v}\{y}, Ay does not intersect both By and Av , and
each vertex adjacent to y and not adjacent to v is a vertex of Ay .

From (b) and (c), we have that verticesu which are not adjacent to
v are in a one-to-one correspondence with pairs of vertices x ∈ Av
and y ∈ Bv : each such u is adjacent to the respective x and y, and
it is not adjacent to any other vertex in Av ∪ Bv . Therefore, for
each pair x ∈ Av and y ∈ Bv , cliques Bx and Ay have a unique
common vertex u. This implies that all cliques Bx have the same
size as Bv , and all cliques Ay have the same size as Av . Hence, the
graph G consists of cliques {v} ∪Av and {y} ∪Ay , for all y ∈ Bv ,
and cliques {v} ∪ Bv and {x} ∪ Bx , for all x ∈ Av , i.e. isomorphic
to Ks□Kt , for some s, t > 0.

The property ∪Γm . Let us show that the property
⋃
m

Γm is FO, and

define φ1 as a sentence describing this property. LetTypei1, ...,i j (x)
be a FO formula saying that x has degree j and adjacent to vertices
of degrees i1, . . . , i j . The sentenceφ1 is conjunction of the following
sentences:

• ∀x Type2(x) ∨Type3(x) ∨Type1,3(x) ∨Type3,3(x)∨
∨Type1,2,3(x) ∨Type2,2,3(x);

• ∀x Type1,2,3(x) ⇒
(
∃y Type2,2,3(y) ∧ (x ∼ y)

)
;

• ∀x Type2,2,3(x) ⇒
(
∃y Type1,2,3(y) ∧ (x ∼ y)

)
;

• ∀x (Type2,2,3(x) ∨Type1,2,3(x)) ⇒
⇒

(
∃!y Type3,3(y) ∧ (x ∼ y)

)
;

• ∀x Type3,3(x) ⇒
⇒

(
∃y∃z Type1,2,3(y) ∧Type2,2,3(z) ∧ (x ∼ y) ∧ (x ∼ z)

)
.

Let us prove thatφ1 indeed describes
⋃
m

Γm . Obviously, any graph

having the property Γm satisfies φ1. Let G |= φ1. We have to show
that G ∈ ⋃

m
Γm . Let us first show that all types listed in the first

clause of of φ1 are presented in G. All vertices of G have degree
at most 3. Let us show that there is a vertex of degree exactly 3.
Suppose the opposite, then there is no vertex of degree 2 because φ1
forces each vertex of degree 2 to be adjacent to a vertex of degree
3. Therefore, all vertices have degree 1 that leads to contradiction
because due to the definition of φ1 vertices of degree 1 cannot be
adjacent to other vertices of degree 1. Next, note that the presence
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of a degree 3 vertex of any of the two types implies the presence of
a degree 3 vertex of the second type. Vertex that satisfies Type1,2,3
has neighbours that satisfy Type3 and Type3,3. Vertex that satisfies
Type2,2,3 has exactly one neighbour that satisfies Type3,3. Hence,
another neighbour of degree 2 satisfies Type1,3. Finally, a vertex
that satisfies Type1,3 is adjacent to a vertex with degree 1 that
satisfies Type2, i.e. all types allowed by φ1 are indeed presented.

Let us reconstruct D ∈ ∆m such that G � G(D). It would imply
that G ∈ Γm . We set the vertices of D to be the vertices of G that
satisfy Type3,3. We add an edge (u,v) between (not necessarily
distinct) vertices of D if and only if there is a path uxyv in G such
thatType1,2,3(x) ∧Type2,2,3(y) holds. Due to φ1, each vertex u that
satisfies Type3,3(u) is adjacent to a unique vertex x that satisfies
Type1,2,3(x); the vertex x is adjacent to a unique vertex y that
satisfies Type2,2,3(y); the vertex y is adjacent to a unique vertex
v (not necessarily v , u) that satisfies Type3,3(y). So, for each
vertex of D its out-degree equals 1. Similarly, the in-degree of each
vertex in D equals 1. Therefore, the reconstructed digraph is in
∆m . It remains to show that the graph G is isomorphic to G(D),
and thus belongs to Γm . Indeed, vertices that satisfyType3,3 are the
vertices ofD. By the definition of edges inD, we have the respective
verticesw1(u,v) andw3(u,v), and the conditions on types of these
vertices guarantee the presence of properly connected vertices
w2(u,v),w4(u,v),w5(u,v) in G. All vertices wi (u,v) are different
because for different i they have different types, and u,v can be
restored as the two (or one u = v) nearest vertices that satisfy
Type3,3. There are no other vertices due to the first clause in the
definition of φ1.

The sentence φL . Let us show that there is a FO sentence φL
that expresses the property of being isomorphic to Lm for some
m ≥ 2. Let φL = Types ∧ UDeg ∧ VDeg ∧ VUEdges ∧ VUSquare ∧
UVPattern1 ∧ UVPattern2 ∧ UVPattern3, where the clauses in the
conjunction are defined as follows.

• Degi (x) (Deg≥i (x)) is a FO formula that expresses the prop-
erty of the vertex x to have degree i (at least i).

• W (x) = Deg1(x) ∧
(
∃y (x ∼ y) ∧ Deg≥3(y)

)
.

• V (x) = ∃!y (x ∼ y) ∧W (y).
• U (x) = ¬W (x) ∧ ¬∃y (x ∼ y) ∧W (y).
• Types = ∀x W (x) ∨V (x) ∨U (x).
• UDeg is a FO sentence saying that the induced subgraph
on {x : U (x)} consists of vertices with degrees 1 or 2, and
exactly two of them have degree 1.

• VDeg is a FO sentence saying that the induced subgraph on
{x : V (x)} consists of vertices of degrees 1 or 2.

• VUEdges = ∀x (V (x) ⇒ (∃!y U (y) ∧ (x ∼ y))). This sen-
tence defines a mapping UVMap : {x : V (x)} → {x : U (x)}.

• VUSquare is a FO sentence saying that, for any pair of ad-
jacent vertices x ,x ′ satsifying V (x) ∧ V (x ′), their images
UVMap(x) and UVMap(x ′) are adjacent as well.

It remains to define UVPattern1, UVPattern2 and UVPattern3.
For FO formulaeψ1,ψ2 with a free variable x , let

Matchingx [ψ1,ψ2] =∀x ¬(ψ1(x) ∧ψ2(x))∧(
ψ1(x) ⇒ ∃! x ′(x ∼ x ′) ∧ψ2(x ′)

)
∧(

ψ2(x) ⇒ ∃! x ′(x ∼ x ′) ∧ψ1(x ′)
)

be the formula saying that the set A1 of x satisfyingψ1(x) and the
set A2 of x satisfying ψ2(x) are disjoint and edges between them
form a perfect matching.

• VMatchingx (y,y′) = Matchingx [V (x)∧(x ∼ y),V (x)∧(x ∼
y′)].

• VAlmostMatching(y,y′) is the FO sentence

∃z′ V (z′) ∧ (y′ ∼ z′)∧
∧

(
∀z (V (z) ∧ (y ∼ z)) ⇒ ¬(z ∼ z′)

)
∧

∧Matchingx [V (x)∧(x ∼ y),V (x)∧(x ∼ y′)∧(x , z′)].
In other words, the induced bipartite graph betweenA = {x :
V (x) ∧ (x ∼ y)} and B = {x : V (x) ∧ (x ∼ y′)} is a disjoint
union of a matching and an isolated vertex z′ ∈ B.

• UVPattern1 is a FO sentence saying that, for each y0,y1, . . .,
y6 satisfying∧
0≤i≤6

U (yi ) ∧
∧

0≤i≤5
(yi ∼ yi+1) ∧

∧
0≤i≤4

(yi , yi+2), (3)

there are five i ∈ [6] such that VMatching(yi−1,yi ) holds and
for the single remaining i ∈ [6], at least one of the formulae
VAlmostMatching(yi−1,yi ) and VAlmostMatching(yi ,yi−1)
is satisfied.

In order to define UVPattern2 and UVPattern3, we need auxiliary
formulae UStart and UEnd:

• UStart(x) = U (x) ∧ Deд1(x).
• UEnd(x) = U (x) ∧ Deд≥2(x) ∧ (∃!y U (y) ∧ (x ∼ y)).
• Let UVPattern2 be a FO sentence saying that, for each y0,
y1, . . . ,y6 satisfying (3),

(UStart(y0) ⇒ VAlmostMatching(y5,y6)) ∧
∧ (UEnd(y6) ⇒ VAlmostMatching(y0,y1)) ,

is satisfied, and there are verticesy andy′ satisfyingUStart(y)
and UEnd(y′).

• Let UVPattern3 be a FO sentence saying that, for each y0,
y1, . . . ,y7 satisfying∧

0≤i≤7
U (yi ) ∧

∧
0≤i≤6

(yi ∼ yi+1) ∧
∧

0≤i≤5
(yi , yi+2),

the formula

VAlmostMatching(y0,y1) ⇒ VAlmostMatching(y6,y7)
is satisfied.

Let us briefly verify that φL expresses the desired property of
being isomorphic to some Lm . We skip a direct routine check that
Lm satisfies all clauses in the definition of φL . Let G |= φL and let
us prove that G � Lm for a certainm. By UDeg, we know that the
subgraph GU induced on vertices x that satisfy U (x) is a disjoint
union of a single path and cycles.

Suppose that there is a cycle y0 . . .ys−1y0 in GU for some s ≥ 3.
Then, without loss of generality, the sentence UVPattern1 implies
that VAlmostMatching(y0,y1) holds. For the sake of convenience,
setyk := yk−s fork ≥ s . For every i ∈ Z≥0, denote byni the number
of neighbours x of yi that satisfy V (x). Then, VMatching(yi ,yi+1)
implies ni+1 = ni , and VAlmostMatching(yi ,yi+1) implies ni+1 =
ni + 1. Due to UVPattern1 ∧ UVPattern3, for each i divisible by 6,
ni+1 = ni + 1, and ni+1 = ni for other. Therefore, the sequence
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n0,n6,n12, . . . ,n6s is strictly increasing. It leads to contradiction
because y0 = y6s and so n0 = n6s . Therefore, GU is a path.

By VDeg, we have that there are no vertices of degree more than
2 in the subgraph GV induced on {x : V (x)}. Hence, this graph
is a disjoint union of paths and cycles. By VUEdges ∧ VUSquare,
we have the mapping UVMap : GV → GU that sends adjacent
vertices to adjacent. Also, by UVPattern1, UVMap sends two dif-
ferent vertices with a common neighbour in GV to two different
vertices in GU . Indeed, if x1,x2 are neighbours of x in GV and y
is a common neighbour of x1,x2 from GU , then there is a vertex
y′ ∈ GU which is a common neighbour of x and y. This contradicts
UVPattern1 since, if the latter holds, then either VMatching(y,y′),
or VAlmostMatching(y,y′), or VAlmostMatching(y′,y). All these
predicates do not allow vertices of degree more than 1 in the bipar-
tite graph between the neighbourhoods of y and y′ inGV . Since the
graph induced onGU is a path, there are no cycles inGV , i.e.GV is
a disjoint union of paths, where each path is mapped by UVMap to
a subpath inGU . By UVPattern2 ∧ UVPattern3, we have that these
paths in GV behave as in Lm in the following sense: the induced
subgraph on V (GU ∪GV ) is isomorphic to the induced subgraph
on ui and vi, j in Lm ; vertices of GU correspond to vertices ui and
vertices of GV correspond to vertices vi, j . By Types, remaining
vertices have degree one and adjacent to vertices in GV . Since for
each x ∈ GV there is exactly one neighbor y that satisfiesW (x), we
have the correspondence between such vertices y and verticeswi, j
in Lm that completes the isomorphism between G and Lm .

B WINNING STRATEGIES ON
TRANSFORMED GRAPHS

Claim B.1. Let Spoiler has no winning strategy in k moves on

graphsG1 andG2. Then, for each graphH , there is no winning strategy

for Spoiler in k moves on graphs G1□H and G2□H .

Proof. There is a winning strategy for Duplicator in k moves on
G1 andG2. Let us construct a winning strategy forG1□H andG2□H .
Suppose in the first t − 1 rounds vertices (u1,v1), . . . , (ut−1,vt−1)
from G1□H and (u ′1,v ′1), . . . , (u ′t−1,v ′t−1) from G2□H are chosen.
Without loss of generality, suppose that Spoiler chooses (ut ,vt ) ∈
G1□H in round t . Let u ′t ∈ G2 be the Duplicator’s choice in round t
according to the strategy on G1 and G2 when u1, . . . ,ut ∈ G1 and
u ′1, . . . ,u

′
t−1 are chosen. Then, Duplicator chooses (u ′t ,vt ) in the

game on G1□H and G2□H .
Following this strategy, we have that v ′i = vi , for all i ≤ k after

k rounds. Also, vertices u1, . . . ,uk ∈ G1 and u ′1, . . . ,u
′
k
∈ G2 are

chosen according to the winning strategy of Duplicator in the game
on G1,G2. Therefore,

(ui ,vi ) ∼ (uj ,vj )
⇔ ((ui ∼ uj ) ∧ (vi = vj )) ∨ ((ui = uj ) ∧ (vi ∼ vj ))
⇔ ((u ′i ∼ u ′j ) ∧ (v ′i = v ′j )) ∨ ((u ′i = u ′j ) ∧ (v ′i ∼ v ′j ))
⇔ (u ′i ,v ′i ) ∼ (u ′j ,v ′j ),

so indeed Duplicator wins the game on G1□H and G2□H . □

Claim B.2. Let Y , G, H be a triple of graphs with induced sub-

graphs X0 ⊂ Y , X1 ⊂ G, X2 ⊂ H and isomorphisms f : X0 → X1,

д : X0 → X2. Denote by GX and HX the relational structures with

the usual adjacency relation in G and H and a unary relation Ix for

each vertex x ∈ X0 such that Ix (y) ⇔ (y = f (x)) for each y ∈ G and

Ix (z) ⇔ (z = д(x)) for each z ∈ H . LetG ∪f Y be the graph obtained

fromG andY by identifying every x ∈ X0 with f (x) ∈ X1 and adding

the rest of Y to G vertex-disjointly. Similarly define H ∪д Y . Assume

that Duplicator has a winning strategy in k moves on GX and HX ,

then Duplicator has a winning strategy in k moves on G ∪f Y and

H ∪д Y as well.

Proof. Denote by Y1 ⊂ G ∪f Y and Y2 ⊂ H ∪д Y the two
copies of Y attached to G and H respectively, and let h : Y1 → Y2
be an isomorphism between them such that its restriction to X1
coincides with д ◦ f −1. Suppose that in first t − 1 rounds vertices
u1, . . . ,ut−1 ∈ G ∪f Y and u ′1, . . . ,u

′
t−1 ∈ H ∪д Y are chosen.

Without loss of generality, Spoiler chooses a vertex ut ∈ G ∪f Y in
round t . If ut ∈ G , Duplicator chooses the vertex u ′t ∈ H according
to a winning strategy onGX andHX . Ifut ∈ Y1, Duplicator chooses
h(ut ) ∈ Y2. Note that this strategy is well-defined since for ut ∈
X1 = G∩Y1, the vertex chosen according to the winning strategy on
GX and HX has to be h(ut ) because of the unary predicate If −1(ut ).

Let us prove that this is a winning strategy of Duplicator. Con-
sider two chosen pairs of verticesui ,uj ∈ G∪f Y andu ′i ,u

′
j ∈ H∪дY .

If ui ,uj ∈ G, then u ′i ,u ′j ∈ H and (ui ∼ uj ) ⇔ (u ′i ∼ u ′j ) since this
vertices were chosen according to the winning strategy of Dupli-
cator in the game on GX and HX . If ui ,uj ∈ Y1, then u ′i ,u

′
j ∈ Y2

and (ui ∼ uj ) ⇔ (u ′i ∼ u ′j ) because u ′i = h(ui ) and u ′j = h(uj ). If
ui ∈ G\Y1,uj ∈ Y1\G, then u ′i ∈ H\Y2,u ′j ∈ Y2\H and so there are

no edges {ui ,uj }, {u ′i ,u ′j }. Therefore, Duplicator wins. □

Claim B.3. LetG , H be a pair of graphs with an additional unary

relation I . Denote by GI and HI graphs obtained from G and H by

attaching exactly one leaf to each vertex x satisfying I (x). Assume that

Duplicator has a winning strategy in k rounds onG and H equipped

with I , then Duplicator has a winning strategy in k rounds onGI and

HI as well.

Proof. Let fG : V (GI ) → V (G) be a mapping that acts as iden-
tity on vertices of G and sends each vertex in V (GI )\V (G) to its
unique neighbour. Similarly, define fH . Suppose that in the first
t − 1 rounds vertices u1, . . . ,ut−1 ∈ GI and u ′1, . . . ,u ′t−1 ∈ HI are
chosen. Without loss of generality, Spoiler chooses a vertexut ∈ GI
in round t . Let v ′t ∈ H be the Duplicator’s choice in round t ac-
cording to the strategy on G and H with unary relation I when
f (u1), . . . , f (ut ) ∈ G and f (u ′1), . . . , f (u ′t−1) ∈ H are chosen. If
ut ∈ G, then Duplicator chooses u ′t = v

′
t . If ut < G, then Dupli-

cator chooses the leaf u ′t attached to v ′t . Note that in both cases
f (u ′t ) = v ′t , so this strategy is well-defined.

Let us prove that this strategy is winning for Duplicator. Since
f (u ′t ) is chosen according to the winning strategy in the game on
G and H with unary relation I , f (ui ) ∼ f (uj ) ⇔ f (u ′i ) ∼ f (u ′j )
and f (ui ) = f (uj ) ⇔ f (u ′i ) = f (u ′j ), for 1 ≤ i < j ≤ k . Also,
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ui ∈ G ⇔ u ′i ∈ H for 1 ≤ i ≤ k . Therefore,

(ui ∼ uj ) ⇔ ((ui ,uj ∈ G) ∧ (f (ui ) ∼ f (uj )))∨
∨ ((ui , uj ) ∧ (f (ui ) = f (uj )))

⇔ ((u ′i ,u ′j ∈ H ) ∧ (f (u ′i ) ∼ f (u ′j )))∨
∨ ((u ′i , u ′j ) ∧ (f (u ′i ) = f (u ′j ))) ⇔ (u ′i ∼ u ′j ),

so indeed Duplicator wins the game on GI and HI . □

C PROOFS OF TECHNICAL PROPOSITIONS
FROM SECTION 3

Claim C.1. The stochastic FO reduction relation ⪯ is a preorder.

Proof. Firstly, we prove that ⪯ is reflexive. Let we have a ran-
dom relational structure Dn . We define a stochastic FO reduction
by the identity mapping id : D → D. It is clear that this map-
ping is (A | A)-measurable, maps n-structures to n-structures, and
satisfies lim

n→∞ |Pr(Dn |= id−1(φ)) − Pr(Dn |= φ)| = 0, implying the

reflexivity.
Next, we prove the transitivity. Let we have two stochastic FO

reductions f : D → D ′ from D ′
n to Dn and д : D ′ → D ′′ from

D ′′
n to D ′

n . As a reduction from D ′′
n to Dn we use the composition

д ◦ f . A composition of (A | A ′)-measurable and (A ′ | A ′′)-
measurable functions is (A | A ′′)-measurable. Also, a composition
of two functions which map n-structures to n-structures, for each
n ∈ N, satisfies the same property. Finally,

0 ≤ lim
n→∞ |Pr(Dn |= (д ◦ f )−1(φ)) − Pr(D ′′

n |= φ)|

≤ lim
n→∞ |Pr(Dn |= f −1(д−1(φ))) − Pr(D ′

n |= д−1(φ))|+

+ lim
n→∞ |Pr(D ′

n |= д−1(φ)) − Pr(D ′′
n |= φ)| = 0.

Hence, we have

lim
n→∞ |Pr(Dn |= (д ◦ f )−1(φ)) − Pr(D ′′

n |= φ)| = 0,

that finishes the proof. □

Claim C.2. For each random relational structure Dn over the sig-

nature σ , there is a loopless random relational structure D∗
n which is

equivalent toDn . Moreover,Gloop (n,p) is equivalent toG ′
loop

(n,p,p).

Proof. Let us give some auxiliary definitions.

• Let B = {B1, . . . ,Bt } be a partition of the set [ai ], for some
1 ≤ t ≤ ai .

• Let PB
i be a predicate symbol of arity t .

• Let β : [ai ] → [t] be the mapping such that k ∈ Bβ (k ).
• Let β ′ : [t] → [ai ] be a mapping such that β(β ′(k)) = k .
• Let signature σ̄ consist of = and PB

i over all i and B.
• Let D̄ be the set of all relational structures over the signa-
ture σ̄ .

Let f : D → D̄ be a function which maps each structure over the
signature σ to a structure over the signature σ̄ by assigning each
PB
i (x1, . . . ,xt ) the value Pi (xβ (1), . . . ,xβ (ai )), if x j are pairwise

distinct, and zero, otherwise. We let the distribution of the random
structureD∗

n be induced by f on D̄ from the probability distribution
onD. It is clear, thatD∗

n is loopless because every PB
i (x1, . . . ,xt ) in

the image of f is zero on each tuple (x1, . . . ,xt )with two coinciding

x j = xk . By Claim 3.6, f is a stochastic FO reduction defined by
formulae

Pi (xβ (1), . . . ,xβ (ai )) ∧
∧

1≤i<j≤t
¬(xi = x j ).

Also, we have a reduction д : D̄ → D defined by formulae

Pi (x1, . . . ,xai ) =

=

∨
B

©­«
PB
i (xβ ′(1), . . . ,xβ ′(t )) ∧

∧
1≤i<j≤t

¬(xβ ′(i) = xβ ′(j))
ª®¬
.

For Gloop (n,p), it returns the structure G ′
loop

(n,p,p). □

Lemma C.3. Let p,q ∈ [0, 1], pmin = min{p,q, 1 − p, 1 − q}, and
sn be a sequence of non-negative integers. Consider random vectors

(ξ1, . . . , ξsn ) and (η1, . . . ,ηsn ), where ξi and ηi are independent ran-
dom variables with Bernoulli distribution with the parameter p and

q respectively. If lim
n→∞

√
sn
pmin

|p − q | = 0, then the total variation

distance between the distributions of (ξ1, . . . , ξsn ) and (η1, . . . ,ηsn )
converges to zero.

Proof. Let An ⊂ {0, 1}sn . Then,

Pr((ξ1, . . . , ξsn ) ∈ An ) =
=

∑
(a1, ...,asn )∈An

pa1+· · ·+asn (1 − p)sn−a1−···−asn ,

where ai ∈ {0, 1}, and the same equality with p replaced by q holds
for (η1, . . . ,ηsn ). Then, letting

fa1, ...,an (p) = pa1+· · ·+asn (1 − p)sn−a1−···−asn ,

we get

|Pr((ξ1, . . . , ξsn ) ∈ An ) − Pr((η1, . . . ,ηsn ) ∈ An )|

=

������
∑

(a1, ...,asn )∈An
(fa1, ...,an (p) − fa1, ...,an (q))

������
≤

∑
(a1, ...,asn )∈An

��fa1, ...,an (p) − fa1, ...,an (q)
��

≤
sn∑
k=0

(
sn

k

) ���pk (1 − p)sn−k − qk (1 − q)sn−k
��� . (4)

We shall prove that this sum is at most 2C ′
√

sn
π (pmin− 1

sn
) |p − q |, for

some constant C ′ and pmin ≥ 3
2sn

. Without a loss of generality, we

suppose thatp > q andq ≤ 1
2 . The termpk (1−p)sn−k−qk (1−q)sn−k

is positive if and only if
(
p(1−q)
q(1−p)

)k
>

(
1−q
1−p

)sn
, i.e.

k > k0 :=

⌊
sn

ln(1 − q) − ln(1 − p)
lnp + ln(1 − q) − lnq − ln(1 − p)

⌋
.

Let us prove that

⌊qsn⌋ ≤ k0 < psn . (5)



LICS ’24, July 8–11, 2024, Tallinn, Estonia Demin, Zhukovskii

Consider the function д(x) = xk (1 − x)sn−k . The derivative of this
function is

д′(x) = kxk−1(1 − x)sn−k − (sn − k)xk (1 − x)sn−k−1

= (k − snx)xk−1(1 − x)sn−k−1.

For p ≤ k
sn

, д′(x) is positive on the interval (q,p). Therefore, д(p) −
д(q) > 0. This means that psn > k0. Similarly, for q ≥ k

sn
, д(p) −

д(q) < 0, and then ⌊qsn⌋ ≤ k0, completing the proof of (5). We then
get

sn∑
k=0

(
sn

k

) ���pk (1 − p)sn−k − qk (1 − q)sn−k
���

=

sn∑
k=k0+1

(
sn

k

) (
pk (1 − p)sn−k − qk (1 − q)sn−k

)
− (6)

−
k0∑
k=0

(
sn

k

) (
pk (1 − p)sn−k − qk (1 − q)sn−k

)
.

Consider the function

f (x) =
sn∑

k=k0+1

(
sn

k

)
xk (1 − x)sn−k −

k0∑
k=0

(
sn

k

)
xk (1 − x)sn−k .

By the Lagrange’s mean value theorem, we have that there is a
number t ∈ (q,p) such that

sn∑
k=k0+1

(
sn

k

) (
pk (1 − p)sn−k − qk (1 − q)sn−k

)
−

−
k0∑
k=0

(
sn

k

) (
pk (1 − p)sn−k − qk (1 − q)sn−k

)
=

= f (p) − f (q) = (p − q)f ′(t) = (p − q)×

×
sn∑

k=k0+1

(
sn

k

) (
ktk−1(1 − t)sn−k − (sn − k)tk (1 − t)sn−k−1

)
−

−(p−q)
k0∑
k=0

(
sn

k

) (
ktk−1(1 − t)sn−k − (sn − k)tk (1 − t)sn−k−1

)

The last expression equals

(p−q)sn
sn−1∑
k=k0

(
sn − 1

k

)
tk (1 − t)sn−1−k−

− (p − q)sn
sn−1∑
k=k0+1

(
sn − 1

k

)
tk (1 − t)sn−1−k−

− (p − q)sn
k0−1∑
k=0

(
sn − 1

k

)
tk (1 − t)sn−1−k+ (7)

+ (p − q)sn
k0∑
k=0

(
sn − 1

k

)
tk (1 − t)sn−1−k

= 2(p − q)sn
(
sn − 1

k0

)
tk0 (1 − t)sn−1−k0 .

By Stirling’s formula, there exists a constant C ′ > 0 such that, for
all non-negative integers a > b and any real x ∈ (0, 1),

(
a

b

)
xb (1 − x)a−b ≤ C ′

√
a

2π (a − b)b
(ax
b

)b (
a(1 − x)
a − b

)a−b

≤ C ′
√

a

2π (a − b)b

since the function xb (1 − x)a−b achieves its maximum at x = b
a .

For pmin ≥ 3
2sn

, we have k0 < psn ≤ (1 − pmin)sn < sn − 1.
Hence, for k0 < sn − 1

2(p − q)sn
(
sn − 1

k0

)
tk0 (1 − t)sn−1−k0

≤ 2(p − q)snC ′
√

sn − 1

2π (sn − 1 − k0)k0
(8)

= 2(p − q)C ′
√

sn − 1

2π (1 − k0+1
sn

) k0sn
.

The inequality
(
1 − k0+1

sn

)
k0
sn

≥ 1
2

(
1 − 1

sn

)
min

{(
1 − k0+1

sn

)
,
k0
sn

}
holds because the left side is a product of two factors that sum up
to 1 − 1

sn
, and then the largest one is at least half of this sum. Due

to (5), psn > k0 ≥ ⌊qsn⌋ > qsn − 1. Therefore,

min

{(
1 − k0 + 1

sn

)
,
k0

sn

}
≥ pmin −

1

sn
.

Finally, from (4), (6), (7), (8), we get

|Pr((ξ1, . . . , ξsn ) ∈ An ) − Pr((η1, . . . ,ηsn ) ∈ An )| ≤

≤ 2C ′
√

sn

π (pmin − 1
sn
)
|p − q |.

Since pmin − 1
sn

≥ 1
3pmin, we have the inequality

|Pr((ξ1, . . . , ξsn ) ∈ An ) − Pr((η1, . . . ,ηsn ) ∈ An )| ≤

≤ 2C ′
√

3sn
πpmin

|p − q |. (9)

If pmin <
3

2sn
, note that

|Pr((ξ1, . . . , ξsn ) ∈ An ) − Pr((η1, . . . ,ηsn ) ∈ An )| ≤ 1. (10)

Hence, for |p − q | ≥ 1
sn
, we have

|Pr((ξ1, . . . , ξsn ) ∈ An ) − Pr((η1, . . . ,ηsn ) ∈ An )| ≤

≤
√

3sn
2pmin

|p − q |.
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For |p − q | < 1
sn
, we can claim that p,q ≤ 3

sn
. Therefore,

sn∑
k=0

(
sn

k

) ���pk (1 − p)sn−k − qk (1 − q)sn−k
���

≤
sn∑
k=0

(
sn

k

) ���pk (1 − p)sn−k − qk (1 − p)sn−k
���+

+

sn∑
k=0

(
sn

k

) ���qk (1 − p)sn−k − qk (1 − q)sn−k
���

≤
sn∑
k=0

(
sn

k

)
|pk − qk | +

sn∑
k=0

(
sn

k

)
snq

k |p − q |

≤
sn∑
k=0

(
sn

k

)
k |p − q |

(
3

sn

)k−1
+

sn∑
k=0

3

(
sn

k

) (
3

sn

)k−1
|p − q |

(11)

=

sn∑
k=0

(
sn

k

)
|p − q |

(
3

sn

)k−1
(k + 3)

≤ sn |p − q |
sn∑
k=0

3k−1

k!
(k + 3) ≤ 2e3sn |p − q |

< 2e3

√
3sn

2pmin
|p − q |.

LetC ′′
= max

{
2C ′

√
3
π ,

√
3
2 , 2e

3
√

3
2

}
. Then, from (4), (9), (10), (11),

we get

|Pr((ξ1, . . . , ξsn ) ∈ An ) − Pr((η1, . . . ,ηsn ) ∈ An )| ≤

≤ C ′′
√

sn

pmin
|p − q |,

completing the proof of the lemma. □

Claim C.4. For any α > d
3 and each nonnegative integer r , we

have D(d )(n, cnα ) ⪯ D(d+r )(n, c
nα+r ).

Proof. It is sufficient for us to combine Corollary 3.14 and re-
duction defined by a formula, to show the reduction D(d )(n, cnα ) ⪯
D(d+1)(n, c

nα+1
), for α > d

3 . Let P andQ be predicates of arity d and

d+1 from signatures ofD(d )(n,p) andD(d+1)(n,p) respectively. The
formula ∃y Q(y,x1, . . . ,xd ) reduces D(d )(n, cnα ) to D(d+1)(n, 1 −
n

√
1 − c

nα ). Indeed, P(x1, . . . ,xd ) is true with the probability

c

nα
= 1 −

(
1 −

(
1 − n

√
1 − c

nα

))n
,

and all such events are independent. Also, we have

1 − n

√
1 − c

nα
=

c

nα+1
+O(n−2α−1).

Then√
nd+2+α

c

����
(
1 − n

√
1 − c

nα

)
− c

nα+1

���� = 1√
c
n
d+2+α

2 O(n−2α−1)

= O(n d−3α2 ).

Therefore, by Corollary 3.14, we have an equivalence between

D(d+1)(n, 1 − n

√
1 − c

nα ) and D(d+1)(n, c
nα+1

). Note that, if α > d
3 ,

then, for each nonnegative integer r , we have that α + r > d+r
3 .

Therefore, in the same way we can apply other r − 1 reductions. It
proves the claim. □

Claim C.5. For any α > d − 2, D(d )(n, 1
nα ) ⪯ D(d+1)(n, α lnn

n ).

Proof. The formula ∀y ¬Q(y,x1, . . . ,xd ) reduces D(d )(n, cnα )
to D(d+1)(n, 1 − n

√
c
nα ). Let us estimate

1 − n

√
c

nα
= 1 − e ln c−α lnn

n =

α lnn − ln c

n
+O

((
lnn

n

)2)
.

Suppose ε is an arbitrary real number in the interval (0, 1). For
c < 1 − ε (lnn)

3

n and sufficiently large n, we have 1 − n

√
c
nα >

α lnn
n .

For c > 1 + ε (lnn)
3

n and sufficiently large n, we have 1 − n

√
c
nα <

α lnn
n . Note that the function f (c) = n

√
c
nα is continuous on the

interval (0, 2) and monotone. Then, for sufficiently large n there

is unique solution c = cn of the equation 1 − n

√
c
nα =

α lnn
n in the

interval (0, 2), and lim
n→∞(cn − 1) n

(lnn)3 = 0. We get D(d )(n, cnnα ) ⪯
D(d+1)(n, α lnn

n ). Thus, it remains to check the condition of Corol-

lary 3.14 for D(d )(n, cnnα ) and D(d )(n, 1
nα ):√

nd+α
���� cnnα − 1

nα

���� = n d+α2 o

( (lnn)3
nα+1

)
= o

(
(lnn)3n d−2−α2

)
,

completing the proof of the claim. □

D PROOF OF CLAIM 3.22

We apply the strategy that was used in [18] to derive the analogous
statement for unoriented hypergraphs. The proof is based on a
Poisson limit theorem for the number of small cycles in random
hypergraphs and the validity of the FO 0ś1 law subject to the
absence of cycles. Let us first recall these auxiliary results.

Claim D.1 (Larrauri, Müller, Noy [18]). Let p ∼ c
nd−1

with

c > 0. Set

f (c) =
∑
k≥2

(
c

(d−2)!
)k

2k
=

1

2
ln

1

1 − c
(d−2)!

− c

2(d − 2)! .

Let Xn be the total number of cycles in GSd (n,p). Then

lim
n→∞E(Xn ) = f (c),

lim
n→∞ Pr(Xn = 0) = e−f (c) = e

c
2(d−2)!

√
1 − c

(d − 2)! .

We define a cycle in an d-uniform oriented hypergraph as an
oriented hypergraph with a setW of (d − 1)s vertices and s hy-
peredges such that there is no properW ′ ⊂ W inducing at least

≥ |W ′ |
d−1 hyperedges in this hypergraph. Let us show that Claim D.1

implies
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Corollary D.2. Let p ∼ c
nd−1

with c > 0. Set

f (c) =
∑
k≥2

(d(d − 1)c)k
2k

=

1

2
ln

1

1 − d(d − 1)c − d(d − 1)c
2

. (12)

Let Xn be the total number of cycles in G {id }(n,p). Then

lim
n→∞E(Xn ) = f (c),

lim
n→∞ Pr(Xn = 0) = e−f (c) = e

d (d−1)c
2

√
1 − d(d − 1)c .

Proof. For each oriented hypergraph G, we consider the un-
oriented hypergraph G ′ obtained by erasing orientations: there is
a hyperedge {v1, . . . ,vd } in G ′ if and only if there is an oriented
edge (vσ (1), . . . ,vσ (d )) inG , for some σ ∈ Sd . The corollary follows
from the next two observations.

• ForG ∼ G {id }(n,p), the number of cycles inG equals to the
number of cycles in G ′ whp, since whp G does not contain
two different hyperedges on the same set of d vertices.

• If G ∼ G {id }(n,p), then G ′ ∼ GSd (n,p′), where p′ ∼ d !c
nd−1

.

Then, we conclude that the number of cycles in G {id }(n,p) has
the same distribution as the number of cycles in GSd (n,p′) asymp-
totically. Then, replacing of c by cd! in the statement of Claim D.1
yields Corollary D.2.

□

Finally, let us state the validity of the FO 0-1 law subject to the
absence of cycles.

Lemma D.3. Let p ∼ c
nd−1

with 0 < c < 1
d (d−1) . Let Xn be the

random variable equal to the total number of cycles in G {id }(n,p).
Let φ be a FO sentence. Then,

lim
n→∞ Pr(G {id }(n,p) |= φ | Xn = 0) ∈ {0, 1}.

The proof is literally the same as the proof of Lemma 4.7 in [18]
that states a similar 0ś1 law for unoriented hypergraphs. It is a
direct corollary of the fact that the number of connected compo-
nents in G {id }(n,p) isomorphic to any fixed tree is not bounded in
probability. So, we omit this proof.

Proof of Claim 3.22. Note that 1
d !c

Sd
0 is the unique positive

solution of e−f (c) = 1
2 , where f is defined in (12). By Corollary D.2,

for each c < c0, we have that

lim
n→∞ Pr(Xn = 0) = e−f (c) > 1

2
.

By Lemma D.3, we have that

lim
n→∞ Pr

(
G {id }

(
n,

c

nd−1

)
|= φ

)
∈ [0, 1 − e−f (c)] ∪ [e−f (c), 1]

Then, the set L{id }c is not dense in [0, 1]. □

E COMPLEXITY OF DECIDING THE 0-1 LAW:
CONSTRUCTION OF φP

We construct the sentenceψP explicitly. First of all, we consider

• a FO formula Deg≥d (v) saying that v has degree at least d ;
• a FO formula Leafi (v) saying that v has exactly 2i + 1 neigh-
bours of degree 1;

• All = ∀v Deg≥1(v) ∧
(
Deg≥2(v) ⇒

s∨
i=1

Leafi (v)
)
.

The sentence All divides vertices into s + 1 types: vertices of the
first type have degree 1, vertices of type d ∈ [2, . . . , s + 1] have
exactly 2d + 1 neighbours of degree 1. We then encode the three
types of equations from S by FO sentences in the following way.

• For 1 ≤ i < j ≤ s , Equali, j states that for each vertex
v that satisfies Leafi there is a unique vertex u such that
Leaf j (u) ∧ (u ∼ v), and vice versa. That is, there is a perfect
matching between the sets of vertices that satisfy Leafi and
Leaf j which forces the numbers of these vertices to be equal.

• For 1 ≤ i < j < d ≤ s , Sumi, j,d states that for each ver-
tex v that satisfies Leafd there is a unique vertex u such
that (Leafi (u) ∨ Leaf j (u)) ∧ (u ∼ v), and vice versa. That is,
there is a perfect matching between the sets of vertices that
satisfy Leafd and Leafi ∨ Leaf j which forces the respective
cardinalities to be equal.

• For 1 ≤ i < j < d ≤ s , Prodi, j,d states that for each vertex
v that satisfies Leafd there is a unique pair of vertices u,w
such that Leafi (u) ∧ Leaf j (w) ∧ (u ∼ v) ∧ (u ∼ w), and vice
versa. That is, there is a bijection between the set of vertices
that satisfy Leafd and the set of pairs of vertices u,w such
that Leafi (u) ∧ Leaf j (w) which forces the cardinality of the
first set to be equal to the product of cardinalities of sets
{u | Leafi (u)} and {w | Leaf j (w)}.

Finally

ψP := All ∧
∧
ti=tj

Equali, j ∧
∧

td=ti+tj

Sumi, j,d

where the conjunctions are over the respective equations inS. Note
that if G |= ψP for a certain G, then the system S has a solution
(t1, . . . , ts ) in positive integers: ti is the numbers of vertices in G
that satisfy Leafi . On the other hand ifS has a solution (t1, . . . , ts ) ∈
Zs
>0, then a graph G that satisfiesψP can be constructed directly:

first, consider a disjoint union of sets of verticesT1, . . . ,Ts , |Ti | = ti .
Then, for every i ∈ [s], join 2i + 1 leaves to every vertex from Ti .
Next, observe that every successive equation from S, but the last
one, contains a new variable Ð thus, we may recursively draw edges
in the desired way defined by all equations, but the last one. Finally,
if we get a graph that contains at least one edge betweenTp andTq ,
then it may only happen if a perfect matching between Tp and Tq
is already drawn since, otherwise, |Tp | , |Tq |. On the other hand, if
no edge has been added between Tp and Tq , then we add a perfect
matching between them and finish the construction of G.

Let us finally observe that any graph that satisfiesψP must have
even number of vertices: there is even number of vertices involved
in isolated edges and any vertex satisfying Leafi has 2i + 1 neigh-
bours of degree one.
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