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Tug-of-war between two elastically coupled
molecular motors: a case study on force
generation and force balance

Mehmet Can Uçar and Reinhard Lipowsky*

Intracellular transport is performed by molecular motors that pull cargos along cytoskeletal filaments.

Many cellular cargos are observed to move bidirectionally, with fast transport in both directions. This

behaviour can be understood as a stochastic tug-of-war between two teams of antagonistic motors.

The first theoretical model for such a tug-of-war, the Müller–Klumpp–Lipowsky (MKL) model, was based

on two simplifying assumptions: (i) both motor teams move with the same velocity in the direction of

the stronger team, and (ii) this velocity matching and the associated force balance arise immediately

after the rebinding of an unbound motor to the filament. In this study, we extend the MKL model by

including an elastic coupling between the antagonistic motors, and by allowing the motors to perform

discrete motor steps. Each motor step changes the elastic interaction forces experienced by the motors.

In order to elucidate the basic concepts of force balance and force fluctuations, we focus on the

simplest case of two antagonistic motors, one kinesin against one dynein. We calculate the probability

distribution for the spatial separation of the motors and the dependence of this distribution on the

motors’ unbinding rate. We also compute the probability distribution for the elastic interaction forces

experienced by the motors, which determines the average elastic force hFi and the standard deviation of

the force fluctuations around this average value. The average force hFi is found to decrease monotonically

with increasing unbinding rate e0. The behaviour of the MKL model is recovered in the limit of small e0. In

the opposite limit of large e0, hFi is found to decay to zero as 1/e0. Finally, we study the limiting case with

e0 = 0 for which we determine both the force statistics and the time needed to attain the steady state.

Our theoretical predictions are accessible to experimental studies of in vitro systems consisting of two

antagonistic motors attached to a synthetic scaffold or crosslinked via DNA hybridization.

1 Introduction

Intracellular cargos such as vesicles and organelles are trans-

ported by cytoskeletal motors.1 Conventional kinesin and cyto-

plasmic dynein represent two types of cytoskeletal motors that

walk along microtubules in opposite directions.2,3 Many cargos

are observed to perform a bidirectional movement on the

microtubules with frequent reversals.4,5 This behaviour reflects

the presence of two antagonistic motors, plus-end directed

kinesin and minus-end directed dynein, on the same cargo.

These motors try to pull the cargo in their preferred direction

of motion, thereby performing a stochastic tug-of-war. The

first theoretical model for such a stochastic tug-of-war was

introduced by Müller, Klumpp, and Lipowsky (MKL)6–8 and

corroborated by the observations of endosome transport in

amoebae9 and fungi.10

The MKL model was based on two simplifying assumptions:

(i) all motors move with the same velocity in the direction of

the stronger team and (ii) this matching of the velocities sets

in as soon as the cargo is pulled by motors from both teams.

Thus, for two antagonistic motors, the MKL tug-of-war state is

characterized by the following properties. When both motors

are simultaneously bound to the filament, they experience

mutual interaction forces which are of equal magnitude and

opposite direction, in accordance with Newton’s third law. The

absolute value of this interaction force, the so-called cargo force

Fca, is determined uniquely by the characteristic force–velocity

relations of the motors and the condition of velocity-matching

under this force.6,8 The cargo then moves with this generally

low, but nonzero velocity vca in the direction of the stronger

motor. In the special case of equally strong motors the cargo is

in a stalled state with zero velocity.

In the MKL model, the motion of the motors is described in

a coarse-grained manner, averaging over the discrete steps of

the individual motors. Here, we extend this model by including
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these discrete steps, following the theoretical approach developed

in ref. 11 and 12 for two identical motors that pull in the same

direction. We consider two antagonistic motors which are coupled

to their common cargo via two elastic linkers. We then use the

force balance between the motors and the cargo to derive an

effective elastic coupling between the two motors. With each step

taken by one of the motors, the effective linker is either stretched

or compressed and an elastic force is induced acting on both

motors. The velocity-matching condition can therefore only be

reached, in general, after the motors have taken multiple steps.

When the tug-of-war involves antagonistic motor teams

consisting of several identical motors, the MKL model makes

the additional assumption that the overall load acting on one

team is shared equally by all motors in that team. This assumption

has been previously criticized to represent a mean-field approxi-

mation because it ignores fluctuations in the load sharing.13–15 In

order to examine the latter fluctuations, the authors in ref. 13–15

studied such antagonistic motor teams. In contrast to these

previous studies, we focus here on the simplest case of two

antagonistic motors for which load sharing does not play any

role. On the one hand, the case of 1 + 1 motors is useful in

order to elucidate the basic concepts of force balance and force

fluctuations. In fact, as shown below, this case already implies a

nontrivial force balance, with an average interaction force that

depends strongly on the unbinding rate e0 of the individual motors

and decays to zero for large e0. On the other hand, the study of the

1 + 1 motor system allows us to perform a detailed comparison

between (i) the tug-of-war of two elastically coupled motors that

perform discrete steps and (ii) the tug-of-war of two antagonistic

motors as described by the MKL model.

The theoretical results described below can be scrutinized

by experimental in vitro studies based on recently developed

protocols16–20 to control the number of active motors on

synthetic molecular scaffolds. Evidence for a tug-of-war mechanism

between kinesin and dynein attached to such scaffolds was

observed in ref. 19 and 20. Very recently, it has also been demon-

strated that one can directly crosslink a single, fluo-labeled kinesin

with a single, fluo-labeled dynein via DNA hybridization.21 For

such two-motor constructs, one should be able to measure the

probability distribution for the spatial separation of the two motors

along the filament and, in this way, directly scrutinize the predic-

tions of our theory. Furthermore, as shown below, the distribution

for the motor–motor separation also determines the probability

distribution for the elastic interaction forces and, thus, the average

elastic force hFi between the motors.

This paper is organized as follows. First, we briefly review (i) the

single motor description in Section 2.1, thereby introducing the

single motor parameters used in our model, and (ii) the cargo force

predicted by the MKL model in Section 2.2. Next, the force balance

for a tug-of-war between two elastically coupled motors is consid-

ered and the associated state space for this process is defined in

Section 2.3. We describe the system as a Markov process with

(i) several transient states corresponding to different extensions of

the effective elastic linker and (ii) two absorbing states defined by a

single plus- or minus-endmotor bound to the filament. The rates of

the network are determined using single motor parameters

characterising the stepping and unbinding behaviour. Section 3

reports the results on the steady state probability distributions of 2-

motor runs with both motors attached to the filament, the average

force experienced by the motors, as well as a detailed study of the

limiting case of zero unbinding rates. In the latter case, both the

force statistics and the time needed to reach the steady state are

determined as a function of the elastic coupling strength.

2 Model
2.1 Single motor description

When amotor binds to the filament, it steps along the filament in a

preferred direction. In the absence of an external force F, the motor

moves with its zero-force forward velocity towards the preferred end

of the filament. We use the convention that a resisting force acting

as a load on the motor has a positive sign whereas an assisting

force pulling the motor in its preferred stepping direction has a

negative sign. This convention is used both for plus-directed and

for minus-directed motors. With increasing load force, the motor

velocity decreases until the force reaches themotor’s stall force Fs at

which the motor velocity vanishes. Experimental studies provide

strong evidence that the kinesin-1 motor steps backwards for load

forces F4 Fs.
22,23 The explicit form of the force–velocity relation for

a single motor can be obtained from fits to experimental data or

provided by piecewise linear relations as in previous theoretical

studies, see e.g. ref. 6, 13 and 15 and Appendix A. Here, we will use a

convenient parametrization of the force–velocity relation as intro-

duced in ref. 11 which has the form

vðFÞ ¼
vmax

vmin � v0

v0 � vmax

þ vmin

vmax

vmin

v0 � vmin

v0 � vmax

� �F=Fs

vmin � v0

v0 � vmax

þ vmax

vmin

v0 � vmin

v0 � vmax

� �F=Fs
: (2.1)

The parameters vmax and vmin determine the limits of v(F) for

large negative and large positive values of F, respectively. The

zero-force velocity v(F = 0) is given by the parameter v0. In the

following, we use the force–velocity relation in eqn (2.1) for

both motors. The parameters v0, vmax, vmin and Fs can be

specified in order to obtain close approximations for experi-

mentally determined force–velocity relations, e.g. as given in

ref. 22 for kinesin-1 and in ref. 24 for cytoplasmic dynein.

Another single motor property that has been measured for

kinesin as a function of load force22,23 is the forward-to-

backward stepping ratio q which is defined as the number of

forward steps divided by the number of backward steps as

observed within a certain time interval. This ratio was found to

depend exponentially on the load force and to be well fitted by22

qðFÞ ¼ q
1�F=Fs
0 with q0 ¼ 800 and Fs ¼ 7 pN for kinesin:

(2.2)

For dynein, the corresponding parameters have not been

measured directly but the single motor data on yeast dynein

in ref. 25 and 26 provide the estimates

q0 = 4 and Fs = 7 pN for dynein. (2.3)
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We now use the force–velocity relationship v(F) and the

forward-to-backward stepping ratio q(F) together with the step

size l to define the forward stepping rate of a single motor by

aðFÞ � vðFÞ
‘

qðFÞ
qðFÞ � 1

(2.4)

and its backward stepping rate by

bðFÞ � vðFÞ
‘

1

qðFÞ � 1
; (2.5)

which implies a/b = q and a � b = lv.11 The force-dependence of

the two stepping rates a and b is illustrated in Fig. 1 for yeast

dynein. At the stall force F = Fs, the two stepping rates are equal,

implying that forward and backward steps are equally likely.

For F 4 Fs, backward steps are more likely than forward steps

and both stepping rates decay monotonically with increasing

force. For F o Fs, on the other hand, forward steps are more

likely than backward steps but the individual stepping rates

are nonmonotonic as a function of F. In fact, the backward

stepping rate b for dynein exhibits a pronounced maximum at

the load force F = 3.21 pN, arising from the relatively small

value q0 = 4 of the forward-to-backward stepping ratio. For

kinesin, on the other hand, which is characterized by a much

larger value of q0, no such maximum of b is found.

A motor bound to a filament unbinds from this filament with

a constant unbinding rate in the absence of external forces. We

denote this zero-force unbinding rate of a single motor by e0.

When a force acts on the cargo, the motor-filament bond is more

likely to break. Although the unbinding process is very complex

on a molecular scale, it can be approximately described as an

escape process of a particle in a potential well. According

to Kramers’ theory,27 the force-dependence of the motor’s

unbinding rate is then approximately exponential and given by

e(F) = e0 exp(|F|/Fd), (2.6)

where Fd is the detachment force, another force scale that char-

acterizes each motor type. Here and below, the force F represents

the tangential force component acting parallel to the long axis of

the filament, with the previously mentioned sign convention that F

is positive when it acts against the preferred stepping direction

that themotor has in the absence of force. Note that e(F) is taken to

depend only on the absolute value |F|, and not on the direction of

the force which implies that resisting and assisting forces increase

the unbinding rate by the same amount. This simplifying assump-

tion is not crucial, however, because, as we will see below, assisting

forces are almost never generated by a tug-of-war.

In the following, we use this single motor description for two

different types of motors, kinesin and dynein, which represent

the best studied examples for processive plus-end and minus-

end directed motors. We will use the notation F�s and F�d for the

stall and detachment forces of these two motor species. Our

sign convention for F implies that both stall and detachment

forces are positive. In addition, this convention also implies

that a positive force acting on the plus-end directed motor

points towards the minus end of the filament whereas a

positive force acting on the minus-end directed motor points

towards the filament’s plus end. Furthermore, because of the

opposite directionality, the force–velocity relationships v+(F)

and v�(F) for the plus- and minus-directed motors have the

form v+(F) = +v(F) and v�(F) = �v(F) with v(F) as in eqn (2.1).

2.2 Cargo force in the MKL model

Before we consider the tug-of-war between elastically coupled

motors, we will first summarize the main properties of the tug-

of-war in the MKL model which provides a useful reference

process. As described in Appendix A, the latter process is

characterized by instantaneous velocity matching between the

different motors. The corresponding matching condition can

be visualized by plotting the two force–velocity relations for the

individual motors in the same (F,v)-diagram.8 The intersection

point of these two relations provides the matching condition

for the MKL tug-of-war as illustrated in Fig. 2 for the case in

Fig. 1 Forward and backward stepping rates, a and b, as a function of load
force F for yeast dynein. The rates are computed via eqn (2.4) and (2.5) with
the force–velocity relationship v(F) and the step ratio q(F) as given by
eqn (2.1) and (2.2), using the single motor parameters in Table 1. The
dashed vertical line (red) corresponds to the motor’s stall force Fs = 7 pN.

Fig. 2 Matching condition for the velocities of two antagonistic motors as
used in the MKL tug-of-war model: force–velocity relations as given by
eqn (2.1) for a plus (green) and a minus (red) motor with zero-force
velocities v+0 4 0 and v�0 o 0. The intersection point (F, v) = (Fca, vca) of
the two force–velocity relations defines the velocity-matched state in
which both motors move with the same velocity vca and experience the
same single motor force as provided by the cargo force F = Fca. In this
example, the stall force F+s of the plus motor exceeds the stall force F�s of
the minus motor which implies vca 4 0, i.e. both the cargo and the two
antagonistic motors move towards the plus end of the filament.
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which the stall force F+s of the plus motor exceeds the stall force

F�s of the minus motor.

In general, the intersection point (F, v) = (Fca, vca) of the two

force–velocity relations defines the velocity-matched state in

which the cargo and the motors move with the same velocity vca
and the two motors experience the same single motor force,

namely the cargo force F = Fca. The cargo force is always positive

because it is located between the stall forces F+s and F�s of the two

motors, both of which are positive by definition. Thus, according

to our sign convention for single motor forces, the cargo force acts

as a resisting force on bothmotors: it represents the absolute value

of the two opposing forces that the cargo exerts simultaneously

onto the plus and onto the minus motor.

2.3 Elastic coupling between the motors

We now consider one kinesin and one dynein motor pulling on

the same cargo particle via elastic linkers as illustrated in Fig. 3.

We use the Cartesian coordinate x parallel to the filament to

describe the positions of the motors and the cargo along this

filament. The coordinate x is chosen to increase towards the plus

end of the filament. Thus, each motor–cargo configuration is

described by the positions xki, xdy, and xca with xdy o xca o xki.

Furthermore, to discuss the elastic forces acting between the

motors and the cargo, we will first define these forces with respect

to the coordinate x which implies that we temporarily use a

different sign convention for these interaction forces compared

to the single motor forces. Thus, in the following paragraph, the

elastic interaction forces are taken to be positive when they

point towards the plus end of the filament and negative when

they point towards the filament’s negative end.

Elastic forces between the cargo and the motors. The linkers

between the motors and the cargo are described by harmonic

springs with spring constant k and rest length LJ. The kinesin

motor then exerts the force

Fki,ca = k(xki � xca � LJ) (2.7)

onto the cargo. Likewise, the dynein motor exerts the force

Fdy,ca = �k(xca � xdy � LJ) (2.8)

onto the cargo. We now assume that, for given positions xki and

xdy, the elastic forces balance each other on timescales that are

short compared to the timescales of the single motor transi-

tions. This elastic force balance implies Fki,ca + Fdy,ca = 0 and

xca = 1
2(xki + xdy). Eliminating the cargo position xca from the

expressions in eqn (2.7) and (2.8), we obtain the forces

Fki,ca =
1
2k(xki � xdy � 2LJ) = K(xki � xdy � L0) (2.9)

and

Fdy,ca =
1
2k(xki � xdy � 2LJ) = �K(xki � xdy � L0), (2.10)

which depend only (i) on the coordinate difference xki � xdy of the

two motor positions and (ii) on the effective spring parameters

K � k/2 and L0 = 2LJ. (2.11)

Introducing the combined spring extension

DL � xki � xdy � L0, (2.12)

the force that the kinesin exerts on the dynein becomes

Fki,dy = Fki,ca = KDL, (2.13)

while the force that the dynein exerts on the kinesin has

the form

Fdy,ki = �KDL, (2.14)

as required by Newton’s third law.

Identification with single motor forces. In order to use

the single motor description as described in the previous

subsection, we now return to our original sign convention for

the force F acting on a single motor. As a consequence, the

single motor force is given by

F = Fki � �Fdy,ki for kinesin, (2.15)

which is positive when the force Fdy,ki points towards the minus

end of the filament, and by

F = Fdy � Fki,dy for dynein, (2.16)

which is positive when the force Fki,dy points towards the filament’s

plus end. Newton’s third law as given by Fki,dy = �Fdy,ki then

assumes the simple form Fki = Fdy = F.

State space for tug-of-war with elastic coupling. Kinesin and

dynein have the same step size l C 8 nm, see references in

Table 1. We further assume that the motor pair can attain a

Fig. 3 Different states ( j) with j = 0, 1, m and n of two antagonistic motors corresponding to different extensions of the elastic linkers between the
motors and the cargo. The kinesin motor (blue ‘‘heads’’) and the dynein motor (green ‘‘wheels’’) prefer to move towards the (+)- and (�)-end of
the microtubule, respectively. In state (0), the motor linkers are relaxed and do not generate elastic forces. When the motors perform steps leading
to a state ( j) with j4 0, the spring becomes stretched and generates the elastic force Fj = jFK. As explained in the main text, the single motor forces Fki and
Fdy acting on kinesin and dynein are defined in such a way that Newton’s third law assumes the simple form Fj = Fki = Fdy. In state (1), for example, both the
kinesin and the dynein motor experience the single motor force F1 = FK. In state (m), the force Fm =mFK C F�s , i.e. it is comparable to the stall force F�s of
the minus motor. At this stall force, the minus motor steps forward and backward with equal probability. In state (n), the force Fn is close to the stall force
of the plus motor, which can now step forward and backward with (almost) equal probability.
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relaxed state with DL = 0. It is then convenient to introduce the

dimensionless spring extension

j = DL/l with �J r j r J, (2.17)

where j = J represents the maximal stretching and j = �J the

maximal compression of the spring.

Each motor behaves as a stochastic stepper with force-

dependent forward and backward stepping rates a(F) and b(F), as

given by eqn (2.4) and (2.5). Following the approach in ref. 11 for

two identical motors, we now introduce a discrete state space with

states ( j) labeled by an integer j with �J r j r J. Each state ( j)

corresponds to a certain extension of the elastic spring. We

consider two identical motor linkers in series which implies the

effective spring constant K � k/2 for the elastic coupling between

the two motors as in eqn (2.11). When the spring extension is

increased by a single motor step with step size l, the elastic force

experienced by both motors is increased by the strain force

FK � Kl = kl/2, (2.18)

see Fig. 3. The elastic force acting between the motors is then

given by

Fj � jFK in state ( j). (2.19)

When one of the motors performs a step, the elastic force

acting between the two motors changes monotonically from its

initial value before the step to its final value after the step. As a

consequence, the effective force acting during the stretching

transition from ( j) to ( j + 1) is given by

%Fj4 = (Fj + Fj+1)/2 = FK( j + 1/2), (2.20)

i.e. by the arithmetic mean of the forces acting before and after

such a step.28 Likewise, the effective force acting during the

compression transition from ( j) to ( j � 1) has the form

%Fjo = (Fj + Fj�1)/2 = FK( j � 1/2). (2.21)

Motor kinetics and transition rates. The dynamics of

the two-motor runs can be investigated by considering the

stochastic process on the discrete state space corresponding

to the ‘‘stretching’’ or ‘‘compression’’ of the effective spring

between the motors. In state (0) the spring is relaxed. If one of

the motors performs a single step, the elastic spring of the two-

motor system can be stretched or compressed by l/2 and the

system undergoes a transition to states (1) or (�1), respectively,

see the network representation in Fig. 4. In general, the motor

system undergoes a forward transition from state ( j) to state

( j + 1) if kinesin or dynein performs a forward step. The

corresponding stepping rates are given by a�( %Fj4) for the

individual motors which implies the forward rate

of( j) = a+( %Fj4) + a�( %Fj4) for ( j)- ( j + 1) (2.22)

with �Jr jr J and the boundary condition of(J) = 0, see Fig. 4.

Each forward transition leads to an increased stretching or

a reduced compression of the elastic coupling between the

two motors.

Likewise, the motor system undergoes a backward transition

from state ( j) to state ( j � 1) if kinesin or dynein performs a

Table 1 Values of the parameters used for kinesin-1 and two types of dynein
motors: the values for ‘‘strong’’ and ‘‘weak’’ dynein correspond to yeast and
mammalian cells, respectively. A star superscript indicates a parameter for
which we did not find experimental data in the literature; the corresponding
parameter value was set equal to the experimentally deduced value of
another type of motor. For the minimal and maximal velocities of both
dynein motors in the force–velocity relationship (2.1) we used the estimated
values vmin C 0.12v0 and vmax C 1.12v0, as indicated by the † symbol. For the
parameters in this table the strain force is given by FK = kl/2 = 0.8 pN both for
kinesin vs. strong dynein and for kinesin vs. weak dynein

Parameter Kinesin-1
‘‘Strong’’
dynein

‘‘Weak’’
dynein

Zero-force unbinding rate e0 [s
�1] 135 1* 136

Stall force Fs [pN] 722 724,26 1.137,38

Detachment force Fd [pN] 3.639 3.340 3.3*
Linker stiffness k [pN nm�1] 0.217 0.2* 0.2*
Step size l [nm] 817,22 825 824

Zero-force step ratio q0 80022 425 4*
Zero-force velocity v0 [nm s�1] 54711 8525 80024

Backward velocity vmin [nm s�1] 1211 10† 100†

Max. velocity vmax [nm s�1] 57311 100† 900†

Fig. 4 State space associated with different states of the elastic linker. The two states (1, +) and (1, �) are the absorbing states with a single plus and
minus motor bound to the microtubule. States labelled by integer j with �J r j r J denote the states with a stretched and compressed linker for j 4 0
and jo 0, respectively. Starting from state ( j), the plus and minus motors unbind from the filament with rates o+

off( j) and o�
off( j). Furthermore, the motors

undergo a forward transition from ( j) to ( j + 1) with rate of( j) and a backward transition from ( j) to ( j � 1) with rate ob( j).
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backward step. The corresponding stepping rates are given

by b�( %Fj4) for the individual motors which implies the

backward rate

ob( j) = b+( %Fjo) + b�( %Fjo) for ( j)- ( j � 1) (2.23)

with �J r j r J and the boundary condition ob(�J) = 0, see

Fig. 4. Each backward transition leads to a reduced stretching

or an increased compression of the elastic coupling between

the two motors.

In state ( j), each of the motors can unbind (or detach) from

the filament. The corresponding unbinding rates have the form

e�(Fj) = e�0 exp(|Fj|/F
�
d ) � o�

off( j) (2.24)

for the two types of motors. The overall unbinding rate from

state ( j) is then given by

ooff( j) = o+
off( j) + o�

off( j). (2.25)

Motor parameters. In the following, we will study the tug-of-war

between one plus-directed motor and one minus-directed motor.

Most single motor parameters will be kept fixed and assume

values as appropriate for kinesin-1 and strong dynein, see

Table 1. One parameter that we will vary systematically is the

zero-force unbinding rate

e0 � e+0 = e�0 . (2.26)

As we will see, the elastically coupled tug-of-war is characterized,

in the limit of small e0, by essentially the same force balance as

the MKL tug-of-war. Another parameter of the motor system

that will be varied systematically is the elastic coupling between

the two motors as described by the strain force FK = Kl = kl/2.

In order to ensure that the finite size of the state space does not

affect our results, we will always use a sufficiently large state

space with (2J + 1) Z 101.

3 Results
3.1 Steady state properties of tug-of-war

The elastic coupling between the two antagonistic motors is only

effective as long as both motors are attached to the filament

and perform a 2-motor run. The latter runs are described by

transitions between the states ( j) in Fig. 4 and are terminated as

soon as one of the motors unbinds from the filament. After such

an unbinding event, the cargo is bound to the filament by a

single motor as described by the states (1, +) and (1, �) in Fig. 4.

These 1-motor runs continue until the unbound motor rebinds

to the filament. We will assume that the rebinding typically leads

to the state (0) which is relaxed in the sense that the two motors

do not experience elastic interaction forces. Thus, after rebinding,

a new 2-motor run starts from the initial state (0).

As described previously for the 2-motor runs of two identical

motors,11,12 the steady state probability distribution as obtained

from an ensemble average over many 2-motor runs can be

replaced by a time average over a concatenated 2-motor run that

is obtained by redirecting all transitions to the absorbing states

towards a certain initial state. For the network depicted in Fig. 4,

the absorbing states are provided by (1, +) and (1, �) and the

initial state is taken to be the relaxed state (0). As a result, we

obtain the redefined network in Fig. 12 which has no absorbing

states. The corresponding steady state probability distribution

can then be calculated by solving the master equation for the

redefined network, see Appendix B.

The steady state probability distribution pstj describes the

frequencies with which the effective elastic spring between the

two motors has the extension j. The latter extension determines

the spatial separation

L � L0 + jl (3.1)

of the two motors along the filament. The average motor–motor

separation is then given by

hLi ¼ L0 þ h ji‘ ¼ L0 þ ‘
X

ja0

pstj j: (3.2)

The fluctuating motor–motor separation L should be directly

accessible to experimental studies when one combines

the recently introduced crosslinking of one fluo-labeled

kinesin and one fluo-labeled dynein via DNA hybridization21

with advanced methods of fluorescence imaging such as

FIONA.29

In Fig. 5(a) we plot pstj for different values of the zero-force

unbinding rate e0. We see that for low unbinding rates, e.g.

e0 = 0.01 s�1, the probability distribution pstj shifts towards states

with larger j-values. Because the elastic force Fj corresponding

to spring extension j is given by Fj = jFK, we can transform the

occupation probabilities of the states into the corresponding

force distribution by a change of variables from j to Fj, see

Fig. 5(b). As shown in the latter figure, a decrease in the

unbinding rate leads to a shift of the force distribution towards

higher force values and to an average elastic force

hFi ¼
X

j

pstj Fj ¼ FK

X

ja0

pstj j ¼ FK hLi � L0½ �=‘ (3.3)

that approaches the cargo force Fca = 7 pN as obtained for

velocity-matching. For higher unbinding rates, the occupation

probabilities are shifted towards lower j-values, leading to a

reduced motor–motor separation and indicating that the motors

are likely to unbind from the filament before reaching a state

with velocity matching. The relationship in (3.3) implies that the

average elastic force hFi can be determined from the average

motor–motor separation hLi.

3.2 Dependence of average elastic force on the unbinding rate

For two antagonistic motors coupled by an effective spring

as studied here, the elastic interaction forces fluctuate and lead

to steady state force distributions as shown in Fig. 5(b) for

different values of the unbinding rate e0. In contrast, for the MKL

model, the mutual interaction force is given by the constant

cargo force Fca as obtained via velocity matching, see Fig. 2.

Inspection of Fig. 5(b) shows that the cargo force Fca provides

a better approximation to the average elastic force hFi if the

unbinding rate becomes smaller. To further examine the relation-

ship between the fluctuating elastic forces and the cargo force,
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we now consider the very low unbinding rate e0 = 10�5 s�1

and calculate the corresponding steady state probability dis-

tribution pstj . This distribution and the associated force dis-

tribution are displayed in Fig. 6 for different values of the strain

force FK. Both for kinesin vs. strong dynein as depicted in

Fig. 6(a1 and a2), and for kinesin vs. weak dynein in Fig. 6(b1

and b2), the cargo force Fca provides a more accurate approximation

to the average elastic force hFi for smaller values of the strain

force FK. This behaviour arises because smaller FK-values imply

smaller changes in the elastic force induced by single motor

Fig. 5 (a) Steady state probability distributions pstj for different values of the unbinding rate e0 as given in the inset. The spring extension j determines the
spatial separation of the two motors via L0 + jl. Apart from e0, all parameters have the values as given in Table 1 for kinesin and strong dynein, which
implies the strain force FK = 0.8 pN; and (b) steady state distributions for the elastic forces as obtained from pstj by a change of variables from j to Fj = jFK.
The dashed vertical line (red) represents the cargo force Fca of the velocity-matched model. For low unbinding rates e0, the average elastic force
approaches this cargo force. For larger values of e0, the force distribution becomes broader and shifts towards lower force values. As a consequence,
the average elastic force hFi becomes smaller than the cargo force Fca, see average force values in the inset. Likewise, the average spatial separation
L0 + hjil of the two motors decreases with increasing unbinding rate e0 as follows from the distributions pstj in (a).

Fig. 6 Steady state probability distributions and force distributions for the small unbinding rate e0 = 10�5 s�1 and for different choices of the strain force
FK: (a1 and a2) kinesin against strong dynein, see the motor parameters in Table 1. As we decrease FK, the average force hFi approaches the cargo force
Fca = 7 pN more accurately; and (b1 and b2) kinesin against weak dynein, see again Table 1. The cargo force now has the lower value Fca = 4.55 pN
compared to the kinesin vs. strong dynein case in (a). Accordingly, the state (0) in (b1) has a higher occupation probability than the same state in (a1), and
the probability for the force value F0 = 0 is increased in (b2) compared to (a2).

Soft Matter Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 N

o
v
em

b
er

 2
0
1
6
. 
D

o
w

n
lo

ad
ed

 o
n
 1

1
/7

/2
0
2
4
 1

0
:1

5
:4

6
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 328--344 | 335

steps which lead to a larger number of accessible force values

and, thus, to a smoother interpolation of the discrete force

distributions. In addition, the smaller cargo force for the tug-of-

war between kinesin and weak dynein compared to kinesin and

strong dynein implies that the force value F0 = 0 has a higher

probability for the weak dynein case, see Fig. 6.

As shown in Fig. 5, increasing the unbinding rate e0 leads to

a reduction in the average elastic force hFi induced by the

motors. This unbinding rate dependence of the average elastic

force is displayed in more detail in Fig. 7(a) for different choices

of the strain force FK, with Fig. 7(b) magnifying the limit of

small e0. In this limit, the deviation of the average elastic force

hFi from the cargo force Fca increases for larger values of FK.

The decrease of the average force hFi with increasing unbinding

rate e0 is caused by the increasing probability that one of the

motors unbinds from the filament before the motors have

matched their velocities in the 2-motor run and, thus, before

the motors can generate forces comparable to the cargo force

Fca. The double-logarithmic plot in Fig. 7(c) reveals that the

average elastic force hFi decays to zero for large e0. It follows

from eqn (3.3) that the asymptotic behavior of hFi for large e0 is
determined by the asymptotic behavior of the steady state

probability distribution pstj for large e0. The latter behavior can

be directly obtained from the master equations (B.1)–(B.4).

One then finds from the local flux balance in the states ( j) that

pstj � pstj�1

ofð j � 1Þ
ooffð jÞ

for 1 � j � J (3.4)

and

pstj � pstjþ1

obð j þ 1Þ
ooffð jÞ

for � J � j � �1 (3.5)

in the limit of large unbinding rates ooff( j) B e0. Iterating these

relations and imposing the normalization condition (B.5), one

obtains the asymptotic behavior

pst1 � ofð0Þ
ooffð1Þ

� 1

e0
and pst�1 �

obð0Þ
ooffð�1Þ �

1

e0
for large e0

(3.6)

as well as

pst0 E 1 � pst1 � pst�1 = 1 + O(1/e0) for large e0 (3.7)

whereas all other pstj are of higher order in 1/e0. The average

elastic force hFi as given by (3.3) then behaves as

hFi E FK( p
st
1 � pst�1) B 1/e0 for large e0. (3.8)

Fig. 7 (a) Average elastic force hFi acting on the motors as a function of the zero-force unbinding rate e0 for different values of the strain force FK. The
average force hFi decreases with increasing e0, irrespective of the value for FK; (b) limiting behaviour of the average elastic force hFi for small unbinding
rate e0. In this limit, the average force hFi approaches an asymptotic value hFi0 close to the cargo force Fca and the deviation hFi0 � Fca decreases with
decreasing FK; (c) double-logarithmic plot of the average force hFi versus the unbinding rate which now varies over six orders of magnitude. The straight
lines clearly demonstrate that hFi decays to zero for large e0 and that this decay can be well fitted, over the accessible range of e0-values, by a power law
of the form hFi B 1/ez0 with the effective decay exponent z; and (d) effective exponent z as obtained by fitting the data in (c) for different values of the
strain force FK.
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The power law behavior hFi B 1/e0 is corroborated by the

numerical data in Fig. 7(c) which are well fitted, over the

accessible range of e0-values as given by 1 s�1
r e0 r 106 s�1,

by a power-law of the form hFi B 1/ez with the effective decay

exponent z. As shown in Fig. 7(d), the effective exponent z is

found to depend weakly on the strain force FK for FK o 13 pN

and to approach the true asymptotic value z = 1 for FK 4 13 pN.

3.3 Statistics of elastic forces for vanishing unbinding rate

We now look at the properties of the tug-of-war in the limit in

which the two motors can no longer unbind from the filament,

corresponding to zero-force unbinding rate e0 = 0 which implies

that ooff( j) = 0 for all j. In this case, the state space for the

tug-of-war between the two motors is reduced to the states

j = �J,. . .,+J. For this reduced state space, the probability

distribution pj (t), which starts from the initial distribution

pj (0) = dj0 at time t = 0, evolves towards a steady state distribu-

tion pstj as shown in Fig. 8. The maximum of pstj is located close

to the state ( j = 9) characterized by the elastic force 9FK = 7.2 pN

induced by the effective spring, while the cargo force obtained

from velocity matching is Fca = 7 pN.

The average elastic force hFi for the process with vanishing

unbinding rate is shown in Fig. 9 for different values of the strain

force FK. We observe that, regardless of the choice of FK, the

average force hFi remains close to the cargo force Fca whereas its

standard deviation sF increases with increasing FK. In the limit of

small strain forces FK, the average force hFi approaches the cargo

force Fca more accurately, in accordance with our previous results.

As shown in the right inset of Fig. 9, the standard deviation

sF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j

pstj Fj
2 � hFi2

� �

s

(3.9)

of the elastic force behaves as

sF �
ffiffiffiffiffiffi

FK

p

(3.10)

over the whole range of FK-values considered here. For FK = 1 pN

and e0 = 0, the standard deviation is sF C 1.5 pN. Increasing the

zero-force unbinding rate e0 for fixed FK = 1 pN, the full network

in Fig. 4 leads to a slight increase in the deviation sF, which

then saturates at sF C 1.9 pN for an unbinding rate of e0 = 1 s�1

(data not shown here).

Using these results for the statistics of the elastic forces,

we can directly conclude that the average spring extension h ji
behaves as

h ji = hFi/FK C Fca/FK (3.11)

and its standard deviation

sj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j

pstj j2 � h ji2ð Þ
s

¼ sF=FK (3.12)

as

sj �
ffiffiffiffiffiffi

FK

p

.

FK ¼ 1
.

ffiffiffiffiffiffi

FK

p

� 1
.

ffiffiffiffi

K
p

: (3.13)

These dependencies on the strain force FK are displayed in

Fig. 10.

The average spring extension h ji implies that the two motors

have the average separation hDLi = lh ji. Thus, we conclude that,
in the limit of small FK corresponding to weakly coupled

motors, the average separation between the motors increases

as 1
�
ffiffiffiffiffiffi

FK

p
� 1
� ffiffiffiffi

K
p

. Furthermore, the behavior of the standard

deviation sj is consistent with a Gaussian probability distribu-

tion of the form

pstj p exp[�cK ( j � h ji)2] (3.14)

for the spring extension j where c is a proportionality factor.

It is instructive to compare the distribution as given by (3.14),

which arises from the stochastic nature of the tug-of-war and the

underlying motor activity, with the equilibrium distribution

peqj p exp[�1
2Kj

2/(kBT)] (3.15)

corresponding to thermal fluctuations in the harmonic spring

potential 1
2Kj

2. Comparing the two distributions in (3.14) and

(3.15), we can draw two conclusions. First, the motor activity

Fig. 8 Time evolution of the probability distribution pj (t) for unbinding
rate e0 = 0 and strain force FK = 0.8 pN, the latter parameter being
appropriate for strong dynein. The initial probability distribution at time
t = 0 is given by pj (0) = dj0 corresponding to a relaxed spring with zero
extension. As t increases, the distribution pj (t) approaches the steady state
distribution pstj as indicated by the dashed red line.

Fig. 9 Average elastic force hFi as a function of strain force FK for
unbinding rate e0 = 0: the average force hFi is roughly independent of FK
for FK o 3 pN and remains close to the cargo force value Fca = 7 pN. (left
inset) Average force hFi for 0.01 pN r FK r 0.09 pN. (right inset) The
standard deviation sF of the elastic force is proportional to

ffiffiffiffiffiffi

FK

p
(solid blue

line).
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leads to a nonzero average value h ji of the spring extension

implying a nonzero average separation hDLi = lh ji of the

motors and a nonzero average force hFi = FKh ji acting on them.

Second, the fluctuations around the average value h ji can be

characterized by a standard deviation sj � 1
� ffiffiffiffi

K
p

both for the

thermal and for the active process.

A comparison between Fig. 7 and 9 also shows that the

tug-of-war obtained for the reduced state space with e0 = 0 is

reached in a smooth manner when we consider the full state

space as depicted in Fig. 4 and take the limit of small e0. This

agreement is to be expected because the steady state probability

distributions for e0 4 0 follow from the redefined network

in Fig. 12 which also becomes identical with the reduced state

space for e0 = 0.

3.4 Relaxation time for vanishing unbinding rate

For the reduced state space consisting of the states ( j) with

j = �J,. . .,+J as obtained for unbinding rate e0 = 0, the elastically

coupled motors eventually reach a steady state with the average

elastic force hFi C Fca as illustrated in Fig. 8 for FK = Fca/8.75.

We will now address the relaxation time for this process, i.e. the

time it takes to actually reach this steady state. This relaxation

time tre is provided by the largest non-zero eigenvalue l2 of the

transition rate matrix for the redefined state space in Fig. 12 via

the relation30

tre = �1/l2. (3.16)

As shown in Fig. 11, the relaxation time tre for the approach

towards the steady state increases strongly as we reduce the

strain force FK, i.e. as we reduce the elastic coupling between

the two motors and allow them to move further apart. Indeed,

in the limit of small FK, the average separation of the two

motors increases as hDLi = lh ji B 1/FK as follows from the

behavior of h ji in Fig. 10. When we plot the tre-data in a double-

logarithmic manner, see the inset of Fig. 11, a least-squares fit

leads to the relation tre B 1/FZ
K with the decay exponent Z =

0.97. We thus conclude that the relaxation time tre is also

inversely proportional to FK to a very good approximation. As a

consequence, the relaxation time tre for two weakly coupled

motors is roughly proportional to their average separation

hDLi B 1/FK which diverges in the limit of small FK = lK = lk/2.

In order to obtain a well-defined relaxation time tre, we

had to consider the limiting case with unbinding rate e0 = 0.

Real motors have, of course, a finite unbinding rate which

implies that their 2-motor runs are terminated after a finite

Fig. 10 Average spring extension h ji and standard deviation sj of these
extensions as a function of strain force FK for unbinding rate e0 = 0. Both h ji
and sj decrease with increasing FK. The FK-dependence of h ji is very well
described by Fca/FK (dashed red line). The standard deviation sj is propor-
tional to 1

�
ffiffiffiffiffiffi

FK

p
(full blue line in the inset). This behavior is intimately

related to the behavior of the average force hFi and the associated
standard deviation sF, see the main text.

Fig. 11 Strain force dependence of the relaxation time tre (green) needed
to attain the steady state for unbinding rate e0 = 0. The inset displays a
double-logarithmic plot of the tre-data. A least-squares fit to these data
leads to tR B 1/FZK with the exponent Z = 0.97 from which we conclude
that the relaxation time tre is inversely proportional to FK to a very good
approximation. For comparison, the average run time t2 (red) for 2-motor
runs with e0 = 0.3 s�1 has also been included. For the range of FK-values
considered here, the relaxation time tre is always large compared to the
average run time t2.

Fig. 12 Redefined state space: all transitions of the full network in Fig. 4 that reach the two absorbing states (1, +) and (1, �) are combined with a very fast
rebinding transition towards the transient initial state (0). Because the rebinding process is instantaneous, the combined unbinding and rebinding
transition from state ( j) to state (0) is governed by the rate ooff as given by eqn (2.25).
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time and can then be characterized by the average run time

t2 ¼
P

j

pstj ooffð jÞ
 !�1

. We must now distinguish different

cases depending on the relative size of the average run time

t2 and the relaxation time tre. If t2 is large compared to tre, the

two motors will be characterized by an average elastic force hFi
close to the cargo force Fca of the MKL model. On the other

hand, if t2 is small compared to tre, the force balance between

the two motors is different because hFi is small compared to

Fca. As shown in Fig. 11, the latter case applies to the unbinding

rate e0 = 0.3 s�1 for the whole range of FK-values considered in

this figure. A more detailed discussion of the different time-

scales and the associated dynamic regimes will be given in a

subsequent publication.31

4 Summary and outlook

In this paper, we considered the tug-of-war between one kinesin

and one dynein motor, which are coupled to a common cargo

via elastic linkers. We started from the known properties of

the single motors and used these properties to derive the force-

dependent stepping rates for forward and backward steps

of both motors. Unexpectedly, we found that the backward

stepping rate of strong dynein exhibits a maximum at an

intermediate load force, see Fig. 1. We then described the

elastic interaction forces between the motors and the cargo

by two harmonic springs which can be combined into an

effective harmonic spring between the two motors. The exten-

sion j of this effective spring was used to define the state space

for the tug-of-war between two elastically coupled motors as

displayed in Fig. 4.

A Markov process was constructed on this state space with

transition rates that were derived from the single motor rates.

Starting from the relaxed state (0) with spring extension j = 0,

the antagonistic motors perform a 2-motor run on the reduced

state space consisting of the transient states ( j) with j =�J,. . .,+J

until one motor unbinds from the filament and the process

ends up in one of the absorbing states (1, +) or (1, �), see Fig. 4.

The ensemble average over many such 2-motor runs can be

obtained by computing the steady state probability distribution

pstj on the redefined state space in Fig. 12. Using this distribu-

tion, we calculated the average elastic force hFi experienced by

the two motors as a function of the unbinding rate e0, see Fig. 7.

This average force approaches the cargo force Fca for small e0
and decays to zero as 1/e0 for large e0, see (3.8). Numerically we

find the power law hFiB 1/ez0 with an effective decay exponent z

that depends on the strain force FK, see Fig. 7(d).

Finally, we studied the limiting case of a tug-of-war between

two elastically coupled motors that cannot unbind from the

filament, corresponding to zero-force unbinding rate e0 = 0. In

this case, we found that the time evolution of the probability

distribution always leads to a steady state distribution for

which (i) the average elastic force hFi is close to the cargo force

Fca irrespective of the strain force FK and (ii) the standard

deviation sF of the force fluctuations is proportional to
ffiffiffiffiffiffi

FK

p

as shown in Fig. 9. These relationships imply that the average

spring extension h ji B 1/FK B 1/K and the standard deviation

sj � 1
�
ffiffiffiffiffiffi

FK

p
� 1
� ffiffiffiffi

K
p

, see Fig. 10. The latter dependence is

consistent with a Gaussian probability distribution for the

spring extension j as described by (3.14). The behavior of the

average spring extension h ji implies that the average separation

hDLi = lh ji of the two antagonistic motors increases as 1/K for

small K, corresponding to the weak coupling limit. Essentially

the same K-dependence is found for the relaxation time tre

towards the steady state probability distribution pstj , see Fig. 11.

Therefore, in the weak coupling limit of small K, both the

average motor separation hDLi and the relaxation time tre

diverge as 1/K for e0 = 0.

In the present article, we have focussed on the forces acting

between two elastically coupled motors. As indicated in

the last subsection 3.4 on the relaxation time, the resulting

tug-of-war involves different timescales that define different

kinetic regimes. Likewise, as far as motor unbinding is con-

cerned, one has to distinguish spontaneous unbinding for

small elastic forces from force-induced unbinding for large

elastic forces. Another interesting topic is the tug-of-war

between elastically coupled motor teams involving N1 Z 1

plus-directed motors and N2 Z 1 minus-directed motors.

These more complex motor systems will be addressed in a

forthcoming paper.31

As previously mentioned, the theoretical results presented

here can be scrutinized by experimental in vitro studies based

on recently developed protocols16–20 to control the number of

active motors on synthetic DNA scaffolds. Evidence for a tug-of-

war mechanism between kinesin and dynein attached to such

scaffolds was observed in ref. 19 and 20. Very recently, it has

also been demonstrated that one can directly crosslink a single,

fluo-labeled kinesin with a single, fluo-labeled dynein via DNA

hybridization.21 Our tug-of-war model provides detailed predic-

tions for the transport properties of such a two-motor system.

One of these properties is the probability distribution pstj for the

spatial separation of the two motors as displayed in Fig. 5a, 6a1,

b1, and 8. The latter distribution should be accessible to

advanced methods of fluorescence imaging such as FIONA.29

In principle, it is also possible to measure the average inter-

action force hFi directly via FRET-based molecular tension

probes32 that are incorporated into the linkers between the

motors and the cargo. Other quantities of interest that can be

used to compare our theory with experiment include the run

lengths and run times of the two-motor systems.

Appendices
A Review of tug-of-war with velocity matching

Here we shortly describe the tug-of-war in the MKL model,

following ref. 6 and 7. Let N+ and N� denote the number of

plus and minus motors attached to the cargo, respectively.

At any given time t 0 the cargo is pulled by n+ plus and n� minus

motors, where 0 r n+ r N+ and 0 r n� r N�. The motility

state of the cargo at t 0 is then characterised by the
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number of bound motors to the microtubule, denoted by

(n+, n�). Assuming that (i) opposing motors act as load and

(ii) identical motors share this load6 the transition rates

between adjacent motility states can be inferred from single

motor binding and unbinding behaviour. The force balance

on a cargo pulled by n+ plus and n� minus motors at any

moment is given by:

Fca(n+,n�) � n+F
+ = �n�F

�. (A.1)

F+ and F� are the forces ‘‘felt’’ by a single plus and a single

minus motor, respectively. The sign of the force is chosen to

be positive if it is a load on the plus motors. The force acting

on a single plus motor is then given by F+ = Fca(n+,n�)/n+.

This means that all plus motors feel the same load in a given

cargo state (n+,n�). The effective unbinding rate for a plus

motor is:

e+(n+,n�) = n+e
+
0 exp(|Fca(n+,n�)|/(n+F

+
d)). (A.2)

Note that multiplying single motor rates by the factor n+
implies that the motor–motor interactions are not considered.

The effective binding rate of a plus motor is similarly given by:

p
+(n+,n�) = (N+ � n+)p

+
0. (A.3)

The effective binding and unbinding rates for the minus

motors can be obtained by replacing the index ‘‘+’’ by ‘‘�’’ in

eqn (A.2) and (A.3).

An expression for the cargo force Fca(n+,n�) of the force

balance condition can be determined by observing that both

plus and minus motor teams match their velocities under

this load. The corresponding velocity is equal to the cargo

velocity:

vca(n+,n�) = v+(Fca(n+,n�)/n+) = �v�(Fca(n+,n�)/n�),

(A.4)

where the functions v+(	) and v�(	) are determined by the single

plus and minus motor force–velocity relations. In ref. 6 and 7

the force–velocity relation of a single motor is given by the

following piecewise-linear function:

v(F) = vF|B(1 � F/Fs), (A.5)

with vF|B = vF for Fr Fs and vF|B = vB for F4 Fs, where vF and vB
are the force-free forward and backward velocity, respectively.

When there is no load force acting on the motor, it proceeds

with the force-free forward velocity vF. Note that both vF and vB
indicate the absolute values of the corresponding velocities. In

this work, however, we use an empirical force–velocity relation

obtained by a least squares fit to the data from ref. 22. This

specific choice is initially presented in ref. 11, see eqn (2.1) in

the main text.

From eqn (A.5) we obtain the velocity of plus motors for the

state (n+,n�):

The minus motor velocity is given by an analogous expression

by replacing the index ‘‘+’’ by ‘‘�’’. The cargo force Fca(n+,n�)

can now be determined by the velocity matching condition in

eqn (A.4):

vþFjB 1� Fca nþ; n�ð Þ
�

nþF
þ
s

� �� �

¼ �v�FjB 1� Fca nþ; n�ð Þ
�

n�F
�
s

� �� �

;

, Fca nþ; n�ð Þ ¼
nþn�Fþ

s F
�
s vþ

FjB þ v�FjB

� 	

vþ
FjBn�F

�
s þ v�

FjBnþF
þ
s

:

(A.7)

Observe that when only one motor type is active, i.e. n� = 0 or

n+ = 0, the force acting on the cargo disappears: Fca(n+,n�) = 0.

From eqn (A.7) and (A.4), we obtain the cargo velocity:

vca nþ; n�ð Þ ¼ nþFþ
s � n�F�

s

n�F�
s

.

v�
FjB þ nþFþ

s

.

vþ
FjB

: (A.8)

For the empirical force–velocity relationship v(F) as given in

the main text by eqn (2.1) the matching condition (A.4) can be

solved numerically. In the case of two antagonistic motors the

cargo velocity defined by the matching condition eqn (A.4) can be

obtained graphically from the intersection point (F,v) = (Fca,vca)

of two force–velocity relations, as shown in Fig. 2.

For the case of ‘‘stronger plus motors’’, i.e. n+F
+
s 4 n�F

�
s ,

we have:

Fca(n+,n�) = Ln+F
+
s + (1 � L)n�F

�
s , (A.9)

vca nþ; n�ð Þ ¼ nþFþ
s � n�F�

s

n�F�
s

�

v�B þ nþFþ
s

�

vþF
; (A.10)

where L = (1 + (n+F
+
sv

�
B )/(n�F

�
s v

+
F))

�1. Observe that L can only

have values in the interval [0,1], which implies that the cargo

force Fca(n+,n�) ranges between the maximal values of the plus

and minus stall forces n+Fs+ and n�Fs�.

In this work we only consider two opposing motors, i.e.

the state (n+ = 1, n� = 1). The notation used in the main text is

Fca� Fca(n+ = 1, n� = 1) and vca� vca(n+ = 1, n� = 1), where Fca and

vca are obtained from the numerical solution of the velocity

matching condition, i.e. by determining the coordinates of the

intersection point of the force–velocity functions of both motors.

B Master equations and the specification of parameters

The full network in Fig. 4 can be reduced to a closed network

with all transitions to the two absorbing states being redirected

to the initial state (0), see Fig. 12. The steady state distribution

of the closed network can now be used to obtain some quan-

tities of interest such as the average absorption time for the full

network.11,33 The latter quantity can also be calculated recur-

sively without constructing the closed network.34 A single

trajectory on the closed network in Fig. 12 corresponds to the

concatenation of many full network trajectories, each of which

starts at the initial state (0) and is eventually absorbed in the

vþ Fca nþ; n�ð Þ=nþð Þ ¼
vþF 1� Fca nþ; n�ð Þ

�

nþFþ
s

� �� �

; for Fca nþ; n�ð Þ � Fþ
s ;

vþB 1� Fca nþ; n�ð Þ
�

nþFþ
s

� �� �

; for Fca nþ; n�ð Þ4Fþ
s :

8

<

:

(A.6)
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states (1, +) or (1, �). The master equations corresponding to

the closed network in Fig. 12 are given by

qtp�J(t) = �[of(�J) + ooff(�J)] p�J(t) + ob(�J + 1)p�J+1(t)

(B.1)

and

qtpJ(t) = �[ob( J) + ooff( J)] pJ(t) + of(J � 1)pJ�1(t). (B.2)

for the two boundary states with j = �J and j = +J, by

@tp0ðtÞ ¼ � ofð0Þ þ obð0Þ½ �p0ðtÞ þ obð1Þp1ðtÞ þ ofð�1Þp�1ðtÞ

þ
X

ja0

ooffð jÞpjðtÞ; ðB:3Þ

for the state (0), where the sum includes all states ( j) apart

from (0), and

qtpj (t) = �[of( j) + ob( j) + ooff( j)]pj (t) + ob( j + 1)pj+1(t)

+ of( j � 1)pj�1(t) (B.4)

for all other values of j. Eqn (B.1)–(B.4) are supplemented by the

normalization condition
X

j

pjðtÞ ¼ 1 for all t: (B.5)

The different rates that appear in these equations are defined

in (2.22)–(2.25) and depend on the single motor properties

described by (2.1)–(2.6). The latter relationships involve the

single motor parameters v0, vmax, vmin, Fs, q0, Fd, e0, and l as

well as the elastic coupling parameter K = k/2. We typically vary

one parameter such as the unbinding rate e0 or the elastic

coupling parameter K, keeping all other parameters fixed at

their values in Table 1.

C Matrix form of master equations

The master equations can be written in the matrix form if we

define the (2J + 1)-dimensional column vector

(p�J(t),p�J+1(t),. . .,pJ�1(t),pJ(t))
T � |p(t)i (C.1)

where the superscript T stands for ‘transpose’ and the ket

notation will be used for convenience. Using the latter vector,

the master equations (B.1)–(B.4) attain the compact form

qt|p(t)i = W|p(t)i (C.2)

with the (2J + 1) 
 (2J + 1) transition rate matrix W. The

diagonal matrix elements Wj, j are given by

Wj, j = �[of( j) + ob( j) + ooff( j)] for j a �J, j a 0, and j a J

(C.3)

as well as by

W�J,�J = �[of(�J) + ooff(�J)], (C.4)

W0,0 = �[of(0) + ob(0)], (C.5)

and

WJ, J = �[ob( J) + ooff( J)]. (C.6)

The off-diagonal matrix elements of W are given by

Wj, j+1 = ob( j + 1) for j r J � 1 (C.7)

and

Wj, j�1 = of( j � 1) for j Z �J + 1. (C.8)

For each column of the matrix W, the matrix elements sum up

to zero, i.e.
P

j

Wj;k ¼ 0 for all values of k.

Most of our results are based on the steady state solutions

pstj of eqn (C.2) with qt|p
sti = W|psti = 0 or

X

k

Wj;kp
st
k ¼ l1p

st
j with eigenvalue l1 ¼ 0: (C.9)

The numerical solutions of these equations were obtained with a

self-written script based on built-in subroutines of Mathematica 9.0.

D Time evolution without motor unbinding

In Section 3.3, we describe the time evolution of the probability

distribution pj (t) for unbinding rate e0 = 0, see Fig. 8. In this

limiting case, the state space in Fig. 4 becomes 1-dimensional

and does not contain any cycles. The steady state probability

distribution pstj then satisfies the detailed balance conditions

of( j � 1)pstj�1 � ob( j)p
st
j = Wj, j�1p

st
j�1 � Wj�1, jp

st
j = 0

(D.1)

for all j with �J r j r J � 1 which is equivalent to

Wi,jp
st
j = Wj,ip

st
i (D.2)

for all nonzero matrix elements. Applying the conditions (D.1)

iteratively along the 1-dimensional state space, we obtain the

steady state solutions

pstj ¼ ofð j � 1Þofð j � 2Þ 	 	 	ofð�J þ 1Þofð�JÞ
obð jÞobð j � 1Þ 	 	 	obð�J þ 2Þobð�J þ 1Þp

st
�J ; (D.3)

where pst�J is determined by the normalization condition
P

j

pstj ¼ 1.

In general, the matrix W is not symmetric. However, if the

matrix elements Wi,j fulfill the detailed balance conditions

(D.2), we can define the symmetric transition rate matrix W̃

with matrix elements41

~Wj;k � Wj;k
pstk
pstj

 !1=2

¼ ~Wk;j : (D.4)

Because the matrix W̃ is symmetric, it has real eigenvalues ln

with n = 1,2,. . .,N and N = 2J + 1. Furthermore, the right and left

eigenvectors for the eigenvalue ln have the same components

ũj (ln), i.e.
X

k

~Wj;k~uk lnð Þ ¼ ln~uj lnð Þ and

X

j

~uj lnð Þ ~Wj;k ¼ ln~uk lnð Þ (D.5)

and satisfy the orthonormality condition
X

j

~uj lmð Þ~uj lnð Þ ¼ dm;n (D.6)
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where the Kronecker delta symbol dm,n = 1 for m = n and 0

otherwise.

It then follows from eqn (D.4) that the transition rate matrix

W has the same eigenvalues ln as the symmetric matrix W̃ and

that the right eigenvectors ofW are given by the column vectors

lnj i ¼ r1 lnð Þ; . . . ; rN lnð Þð ÞT with rj lnð Þ � ~uj lnð Þ
ffiffiffiffiffiffi

pstj

q

(D.7)

whereas the left eigenvectors of W are provided by the

row vector

lnh j ¼ ‘1 lnð Þ; . . . ; ‘N lnð Þð Þ with ‘j lnð Þ � ~uj lnð Þ
ffiffiffiffiffiffi

pstj

q : (D.8)

The left and right eigenvectors satisfy the orthonormality and

completeness relations

lm j lnh i ¼ dm;n and
X

n

lnj i lnh j ¼ 1 (D.9)

with the identity matrix 1. The column vector |p(t)i can now be

decomposed according to

pðtÞj i ¼
X

n

lnj iCnðtÞ with CnðtÞ � ln j pðtÞh i: (D.10)

When this decomposition is inserted into the master equation

(C.2), we obtain the time-dependent coefficients Cn(t) = Cn(0)e
lnt

and the probabilities

pjðtÞ ¼
ffiffiffiffiffiffi

pstj

q

X

n

~uj lnð ÞCnð0Þelnt (D.11)

with

Cnð0Þ ¼
X

k

~uk lnð Þ
ffiffiffiffiffiffi

pstk
p pkð0Þ: (D.12)

Because all eigenvalues ln are negative for n Z 2, the long time

behavior of pj (t) is dominated by the term with n = 1 and l1 = 0

corresponding to the steady state probabilities pstj .

Thus, in order to determine the time-dependent probabilites

pj (t) as given by (D.11), we subsequently computed the steady

state probabilities pstj , see (D.3), the symmetric matrix W̃ via

(D.4), as well as the eigenvalues ln of W̃ and the corresponding

eigenvectors with components ũj (ln), using again the built-in

subroutines of Mathematica 9.0. The initial distributions were

set to pj (t = 0) = 1 for j = 0 and pj (t = 0) = 0 for all other values of j.

E Dependence of average elastic force on strain force

In Fig. 9 the strain force dependency of the average elastic force

hFi is presented up to a strain force value of FK C 3 pN. In this

regime, the average elastic force is approximately independent

of the strain force and equal to the cargo force Fca of the tug-of-

war in the MKL model. In the limit of high strain forces,

however, we would expect the elastically coupled model to

generate hFi = 0, since none of the motors would be able to

make a single step because of the high spring stiffness.

In Fig. 13 we plot the average force hFi as a function of the

strain force FK within the range 3 pNr FK r 40 pN. We observe a

weak maximum of hFi around a strain force value of FK C 10 pN.

For FK Z 15 pN, the average force hFi decreases monotonically

towards zero. Considering the steady state distribution over the

discrete state space one can interpret the FK-dependence of hFi as
follows. Up to a strain force value of FK C 2F+s = 2F�s the process

can perform at least one step resulting in a stretching of the linker

between the motors. Recall that the transition from state (0)

to state (1) occurs with the sum of forward stepping rates

a+( %F04) + a�( %F04), see eqn (2.22), where the motors feel the

effective force %F04 = FK/2. For a strain force of FK = 14 pN this

force is %F04 = 7 pN = F+s = F�s , at which the motors are equally

likely to perform a forward or a backward step. Without motor

unbinding, and taking into account that a further transition

from (1) to (2) with an effective force of %F14 = 14 pN acting on

the motors is highly unlikely, this force balance is expected to lead

to steady state probabilities pst0 C pst1 C 0.5 and to the average

elastic force hFi C pst0 F0 + pst1 F1 = 7 pN = Fca.† A further increase

in the strain force FK shifts the steady state distribution towards

the relaxed state (0), i.e. pst0 4 pst1 , resulting in a reduction of the

average force hFi towards zero. The initial increase of hFi with
increasing FK implies that the corresponding increase in F1
overcompensates the decrease of pst1 for FK o 10 pN, see the

steady state distribution in Fig. 14.

In Fig. 14 we plot the time evolution of the probability

distribution over the states pj (t) starting from an initial state

different from (0). We fix a high strain force FK = 10 pN,

corresponding to the maximum of hFi in Fig. 13, and choose

the initial state to be (5), i.e. pj (0) = dj5. As t increases we see that

the time-dependent probability distribution pj (t) approaches the

steady state distribution pstj (dashed red line). We see that

pstj has a clear peak in state (1), but also a nonzero value in (2),

where the corresponding elastic force is given by F2 = 2FK = 20 pN.

These high force value contributions from state (2) to the average

force results in hFi 4 Fca, as observed in Fig. 13.

Fig. 13 Average elastic force hFi of the process for zero-force unbinding
rate e0 = 0 and strain forces FK Z 3 pN. We observe that hFi reaches a
maximum around a strain force value of FK = 10 pN. For larger strain forces
corresponding to stiffer springs, the average force hFi induced by the
motors decreases monotonically to zero.

† In this discussion we ignore the backward transitions (0)- (�1) leading to a

compression of the spring, since the transition rate for (0) - (�1) is much

smaller than the rate for (�1)- (0), e.g. for a strain force of FK = 14 pN we would

have of(�1) C 10ob(0).
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F Dependence of force distribution on the size of state space

As shown in Fig. 10, the probability distribution pstj is shifted

towards larger j-values and becomes broader as we decrease the

strain force FK. Therefore, a fixed size of the state space, i.e. a

fixed number (2J + 1) of states, acts to truncate the distribution

pstj for sufficiently small values of FK. Likewise, the average elastic

force hFi starts to decrease, for a fixed value of FK, as we decrease

the size (2J + 1) of the state space below a certain minimal value.

These finite size effects are illustrated in Fig. 15 where the

average elastic force hFi is plotted as a function of the inverse

size (2J + 1)�1 of the state space. Inspection of this figure shows

that hFi attains a constant value for sufficiently small (2J + 1)�1

but decays strongly for sufficiently large (2J + 1)�1. In practice,

we chose (2J + 1) Z 201 for FK r 0.1 pN and (2J + 1) Z 51 for

FK r 0.5 pN.

Glossary of mathematical symbols

a(F) Force-dependent forward stepping rate

b(F) Force-dependent backward stepping rate

dij Kronecker delta symbol

e0 Zero-force unbinding rate

e(F) Force-dependent unbinding rate

z Effective decay exponent in hFi B e�z
0 , see Fig. 7

Z Decay exponent in tre B F�Z
K , see Fig. 11

Fca Cargo force of the MKL model

Fd Detachment force

Fs Stall force

Fdy,ca Force exerted by the dynein motor onto the cargo

Fki,ca Force exerted by the kinesin motor onto the cargo

Fj Elastic force acting in state ( j), defined by Fj � jFK
%Fj4 Effective force acting during the stretching by a

single step
%Fjo Effective force acting during the compression by a

single step

FK Effective strain force, FK = Kl

F� Force acting on single plus/minus motors in the

MKL model

j Integer spring extension in units of l, �J r j r J

( j) State corresponding to the spring extension j

J Maximal value of j

k Spring constant of a single motor linker

K Effective spring constant, K = k/2,

kB Boltzmann constant

l Step size of the motors

LJ Rest length of a single elastic linker

L0 Effective rest length of two elastic linkers, L0 = 2LJ
DL Extension of the effective spring

ln Eigenvalue of the transition rate matrix W

N� Number of plus/minus motors attached to the

cargo

n� Number of active motors bound to the filament

of( j) Forward transition rate

ob( j) Backward transition rate

ooff( j) Overall unbinding rate

peqj Equilibrium probability to be in state ( j), see

eqn (3.15)

pstj Steady state probability to be in state ( j)

pj (t) Time-dependent probability to be in state ( j)

q0 Zero-force forward-to-backward stepping ratio

q(F) Force-dependent forward-to-backward stepping

ratio

sF Standard deviation of the force distribution

sj Standard deviation of the probability distribution

pstj
tre Relaxation time

t2 Average two-motor binding time

|lni Right eigenvector of W for eigenvalue ln

hln| Left eigenvector of W for eigenvalue ln

vca Cargo velocity of the velocity-matched state

v0 Zero-force velocity

vmax Maximal forward velocity

vmin Backward velocity

vF Force-free forward velocity of the MKL model

vB Force-free backward velocity of the MKL model

vF|B Velocity parameter given by vF or vB

Fig. 15 Dependence of average elastic force hFi on the inverse size (2J + 1)�1

of the state space. If the two motors are weakly coupled, the finite size
of the state space acts to truncate the probability distributions. Thus, for
FK = 0.1 pN, we see large finite size effects and a strong decay of hFi
already for (2J + 1)�1

\ 0.005.

Fig. 14 Time evolution of the probability distribution pj (t) for a strain force
of FK = 10 pN. The initial probability distribution is pj (0) = dj5. The probability
distribution pj (t) approaches the steady state distribution pstj , indicated by
the dashed red line, which has a maximum for spring extension j = 1.
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W Transition rate matrix of the redefined state space

in Fig. 12

Wi, j (2J + 1) 
 (2J + 1) matrix elements of W

W̃ Symmetric transition rate matrix as defined by

eqn (D.4)

W̃i, j (2J + 1) 
 (2J + 1) matrix elements of W̃

xki Position of the kinesin motor

xdy Position of the dynein motor

xca Position of the cargo

References

1 H. Lodish, A. Berk and S. L. Zipursky, et al. Molecular Cell

Biology, W. H. Freeman, New York, 4th edn, 2000.

2 J. Howard, Mechanics of Motor Proteins and the Cytoskeleton,

Palgrave Macmillan, Sunderland, MA, 2005.

3 R. D. Vale, The Molecular Motor Toolbox for Intracellular

Transport, Cell, 2003, 112, 467–480.

4 M. A. Welte and S. P. Gross, Molecular motors: a traffic cop

within?, HFSP J., 2008, 2, 178–182.

5 B. H. Blehm and P. R. Selvin, Single-molecule fluorescence

and in vivo optical traps: how multiple dyneins and kinesins

interact, Chem. Rev., 2014, 114(6), 3335–3352.

6 M. J. Müller, S. Klumpp and R. Lipowsky, Tug-of-war as a

cooperative mechanism for bidirectional cargo transport by

molecular motors, Proc. Natl. Acad. Sci. U. S. A., 2008,

105(12), 4609–4614.

7 M. J. Müller, S. Klumpp and R. Lipowsky, Motility states of

molecular motors engaged in a stochastic tug-of-war, J. Stat.

Phys., 2008, 133(6), 1059–1081.

8 R. Lipowsky, J. Beeg, R. Dimova, S. Klumpp andM. J. I. Müller,

Cooperative behavior of molecular motors: cargo transport

and traffic phenomena, Physica E., 2010, 42(3), 649–661.

9 V. Soppina, A. K. Rai, A. J. Ramaiya, P. Barak and R. Mallik,

Tug-of-war between dissimilar teams of microtubule motors

regulates transport and fission of endosomes, Proc. Natl.

Acad. Sci. U. S. A., 2009, 106(46), 19381–19386.

10 M. Schuster, R. Lipowsky, M. A. Assmann, P. Lenz and

G. Steinberg, Transient binding of dynein controls bidirec-

tional long-range motility of early endosomes, Proc. Natl.

Acad. Sci. U. S. A., 2011, 108(9), 3618–3623.

11 F. Berger, C. Keller, S. Klumpp and R. Lipowsky, Distinct

transport regimes for two elastically coupled molecular

motors, Phys. Rev. Lett., 2012, 108(20), 208101.

12 F. Berger, C. Keller, S. Klumpp and R. Lipowsky, External

forces influence the elastic coupling effects during cargo

transport by molecular motors, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2015, 91(2), 022701.

13 A. Kunwar and A. Mogilner, Robust transport by multiple

motors with nonlinear force–velocity relations and stochas-

tic load sharing, Phys. Biol., 2010, 7(1), 016012.

14 A. Kunwar, S. K. Tripathy, J. Xu, M. K. Mattson, P. Anand

and R. Sigua, et al.Mechanical stochastic tug-of-war models

cannot explain bidirectional lipid-droplet transport, Proc.

Natl. Acad. Sci. U. S. A., 2011, 108(47), 18960–18965.

15 S. Klein, C. Appert-Rolland and L. Santen, Motility states in

bidirectional cargo transport, EPL, 2015, 111(6), 68005.

16 D. K. Jamison, J. W. Driver, A. R. Rogers, P. E. Constantinou

and M. R. Diehl, Two kinesins transport cargo primarily via

the action of one motor: implications for intracellular

transport, Biophys. J., 2010, 99(9), 2967–2977.

17 A. R. Rogers, J. W. Driver, P. E. Constantinou, D. K. Jamison

and M. R. Diehl, Negative interference dominates collective

transport of kinesin motors in the absence of load, Phys.

Chem. Chem. Phys., 2009, 11(24), 4882–4889.

18 H. Lu, A. K. Efremov, C. S. Bookwalter, E. B. Krementsova,

J. W. Driver and K. M. Trybus, et al. Collective dynamics of

elastically coupled myosin V motors, J. Biol. Chem., 2012,

287(33), 27753–27761.

19 K. Furuta, A. Furuta, Y. Y. Toyoshima, M. Amino, K. Oiwa

and H. Kojima, Measuring collective transport by defined

numbers of processive and nonprocessive kinesin motors,

Proc. Natl. Acad. Sci. U. S. A., 2013, 110(2), 501–506.

20 N. D. Derr, B. S. Goodman, R. Jungmann, A. E. Leschziner,

W. M. Shih and S. L. Reck-Peterson, Tug-of-war in motor

protein ensembles revealed with a programmable DNA

origami scaffold, Science, 2012, 338(6107), 662–665.

21 V. Belyy, M. A. Schlager, H. Foster, A. E. Reimer, A. P. Carter

and A. Yildiz, The mammalian dynein-dynactin complex is a

strong opponent to kinesin in a tug-of-war competition, Nat.

Cell Biol., 2016, 18, 1018–1024.

22 N. J. Carter and R. Cross, Mechanics of the kinesin step,

Nature, 2005, 435(7040), 308–312.

23 M. Nishiyama, H. Higuchi and T. Yanagida, Chemomecha-

nical coupling of the forward and backward steps of single

kinesin molecules, Nat. Cell Biol., 2002, 4(10), 790–797.

24 S. Toba, T. M. Watanabe, L. Yamaguchi-Okimoto,

Y. Y. Toyoshima and H. Higuchi, Overlapping hand-over-

hand mechanism of single molecular motility of cytoplasmic

dynein, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(15), 5741–5745.

25 S. L. Reck-Peterson, A. Yildiz, A. P. Carter, A. Gennerich,

N. Zhang and R. D. Vale, Single-molecule analysis of dynein

processivity and stepping behavior, Cell, 2006, 126(2),

335–348.

26 A. Gennerich, A. P. Carter, S. L. Reck-Peterson and

R. D. Vale, Force-induced bidirectional stepping of cytoplas-

mic dynein, Cell, 2007, 131(5), 952–965.

27 M. Plischke and B. Bergersen, Equilibrium statistical physics,

World Scientific, 2006.

28 C. Keller, R. Lipowsky, unpublished.

29 A. Yildiz and P. R. Selvin, Fluorescence Imaging with One

Nanometer Accuracy: Application to Molecular Motors, Acc.

Chem. Res., 2005, 38, 574–582.

30 M. Kijima, Markov processes for stochastic modeling, CRC

Press, 1997, vol. 6.

31 M. C. Ucar, R. Lipowsky, unpublished.

32 C. Gayrard and N. Borghi, FRET-based Molecular Tension

Microscopy, Methods, 2016, 94, 33–42.

33 T. L. Hill, Interrelations between random walks on dia-

grams (graphs) with and without cycles, Proc. Natl. Acad.

Sci. U. S. A., 1988, 85(9), 2879–2883.

Paper Soft Matter

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 N

o
v
em

b
er

 2
0
1
6
. 
D

o
w

n
lo

ad
ed

 o
n
 1

1
/7

/2
0
2
4
 1

0
:1

5
:4

6
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



344 | Soft Matter, 2017, 13, 328--344 This journal is©The Royal Society of Chemistry 2017

34 J. R. Norris, Markov chains, Cambridge University Press,

1998, vol. 2.

35 R. D. Vale, T. Funatsu, D.W. Pierce, L. Romberg, Y. Harada and

T. Yanagida, Direct observation of single kinesin molecules

moving along microtubules, Nature, 1996, 380(6573), 451–453.

36 S. J. King and T. A. Schroer, Dynactin increases the proces-

sivity of the cytoplasmic dynein motor, Nat. Cell Biol., 2000,

2(1), 20–24.

37 A. K. Rai, A. Rai, A. J. Ramaiya, R. Jha and R. Mallik, Molecular

adaptations allow dynein to generate large collective forces

inside cells, Cell, 2013, 152(1), 172–182.

38 B. H. Blehm, T. A. Schroer, K. M. Trybus, Y. R. Chemla and

P. R. Selvin, In vivo optical trapping indicates kinesin’s stall

force is reduced by dynein during intracellular transport,

Proc. Natl. Acad. Sci. U. S. A., 2013, 110(9), 3381–3386.

39 S. Uemura, K. Kawaguchi, J. Yajima, M. Edamatsu,

Y. Y. Toyoshima and S. Ishiwata, Kinesin-microtubule bind-

ing depends on both nucleotide state and loading direction,

Proc. Natl. Acad. Sci. U. S. A., 2002, 99(9), 5977–5981.

40 M. P. Nicholas, F. Berger, L. Rao, S. Brenner, C. Cho and

A. Gennerich, Cytoplasmic dynein regulates its attachment

to microtubules via nucleotide state-switched mechanosen-

sing at multiple AAA domains, Proc. Natl. Acad. Sci. U. S. A.,

2015, 112(20), 6371–6376.

41 N. G. Van Kampen, Stochastic processes in physics and

chemistry, Elsevier, 1992, vol. 1.

Soft Matter Paper

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 1

7
 N

o
v
em

b
er

 2
0
1
6
. 
D

o
w

n
lo

ad
ed

 o
n
 1

1
/7

/2
0
2
4
 1

0
:1

5
:4

6
 A

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online


