
This is a repository copy of Theory of branching morphogenesis by local interactions and 
global guidance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219334/

Version: Published Version

Article:

Uçar, M.C. orcid.org/0000-0003-0506-4217, Kamenev, D., Sunadome, K. et al. (5 more 
authors) (2021) Theory of branching morphogenesis by local interactions and global 
guidance. Nature Communications, 12 (1). 6830. ISSN 2041-1723 

https://doi.org/10.1038/s41467-021-27135-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ARTICLE

Theory of branching morphogenesis by local
interactions and global guidance
Mehmet Can Uçar 1,7✉, Dmitrii Kamenev2,7, Kazunori Sunadome3, Dominik Fachet 1,6,

Francois Lallemend 2,4, Igor Adameyko 3,5, Saida Hadjab 2,8✉ & Edouard Hannezo 1,8✉

Branching morphogenesis governs the formation of many organs such as lung, kidney, and

the neurovascular system. Many studies have explored system-specific molecular and cel-

lular regulatory mechanisms, as well as self-organizing rules underlying branching morpho-

genesis. However, in addition to local cues, branched tissue growth can also be influenced by

global guidance. Here, we develop a theoretical framework for a stochastic self-organized

branching process in the presence of external cues. Combining analytical theory with

numerical simulations, we predict differential signatures of global vs. local regulatory

mechanisms on the branching pattern, such as angle distributions, domain size, and space-

filling efficiency. We find that branch alignment follows a generic scaling law determined by

the strength of global guidance, while local interactions influence the tissue density but not its

overall territory. Finally, using zebrafish innervation as a model system, we test these key

features of the model experimentally. Our work thus provides quantitative predictions to

disentangle the role of different types of cues in shaping branched structures across scales.
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B
ranching morphogenesis is a ubiquitous developmental
process, where a number of morphogenetic events coop-
erate to give rise to complex tree-like morphologies.

Branched structures are observed both at the level of multicellular
organs, such as lung, kidney, mammary gland or vascular
system1–5, and at the level of single cells such as neurons6 or
tracheal cells7. A number of studies in the past decades have been
devoted to understanding their design principles, with a parti-
cular emphasis on how given branched topologies and geometries
can optimize properties such as transport and robustness8–17.

A complementary question has been to understand the dyna-
mical mechanisms through which branching complexity can arise
during development. It has been shown in particular that branching
morphogenesis proceeds via tip-driven growth and/or side
branching events, which are controlled by combinations of deter-
ministic and stochastic rules4,18–20. Indeed, different cellular stra-
tegies have been demonstrated to regulate the final branching
pattern, from stereotypic transcription factor expression21, sto-
chastic local rules22,23, mechanical forces and local reaction-
diffusion mechanisms2,3,24 to epigenetic mechanisms25 and codes
of cell adhesion molecules19,26. In addition to these intrinsic
mechanisms, branching morphogenesis is also controlled externally
by a number of guidance cues from the environment27–30,
including chemical gradients (chemotaxis from diffusible factors or
haptotaxis from substrate-bound adhesion or guidance molecules)
or gradients in the mechanical stiffness of the environment31,32.
However, a theoretical framework to quantitatively assess the
contribution of each intrinsic and/or extrinsic cue in shape, orien-
tation and size of branched structures, as well as the relative roles of
deterministic vs. stochastic factors during branching morphogenesis
remains to be established.

Here, we combine numerical simulations with analytical theory
to derive a comprehensive description of branching morpho-
genesis in the presence of internal self-organizing cues (such as
self-avoidance of branches, stochastic exploration of space, and
tip termination) and external guidance cues. Furthermore, we
identify several metrics, including branch directionality, shape or
efficiency of space filling, which are differentially affected by
different model parameters. These metrics thus provide generic
criteria, measurable from static data on the final branched
structure, to distinguish different dynamical mechanisms at play
during morphogenesis. Finally, we experimentally test our model
in peripheral sensory system focusing on the branching of indi-
vidual Rohon-Beard sensory neurons in the zebrafish caudal fin.
Thus, we present a model where the combination of two simple
parameters, for local self-interactions and global guidance, can
synergize to generate complex branched structures both in two
and three-dimensions.

Results
Influence of self-avoidance, stochasticity and external guidance
on the morphology of branched networks. To analyze the
influence of both the local self-organizing (intrinsic) cues and the
global (extrinsic) guidance on the formation of branched structures,
we first turned to a modelling approach inspired by the physics of
branching random walks, which represents tips as particles
undergoing both stochastic and deterministic elongation move-
ments (which generates branches at a constant speed), as well as
stochastic branching events into two tips with probability pb. This
type of model20,22,33–35 has the advantage of coarsening many
microscopic features of branching regulation (for instance that have
been addressed via reaction-diffusion models36,37) into simple sets
of rules. In this work, we include both the possibility for global
guidance via gradients quantified by a guidance strength fc (which
acts as an external force on tip motion) as well as local self-

avoidance of neighboring branch segments. Such self-avoidance can
typically occur in neurons by cycles of contact-retraction when a tip
touches a neighboring branch of the same cell20,38, or in branched
multicellular organs via diffusible molecules39. Here we concentrate
on the morphogenesis of single neurons, and therefore model self-
avoidance effectively by tips moving deterministically away from
neighboring branches of the same tree at strength fs. If the tip fails
to reorient in close proximity to a neighboring branch, it terminates
its growth and becomes irreversibly inactive (which we call termi-
nation/annihilation, see Fig. 1a,b for a schematic of the model). In
particular, the effect of the external field on the branch tip can be
described by a force acting on the alignment angle ψ between the tip
polarity and the field. Microscopically, the external field applies a
torque on the tip leading to its reorientation determined by a factor
�f c sinðψÞ, reminiscent of models for dry active particles with
polarity interactions40 and colloidal flocks in an external flow
field41. Accordingly, we implement in the simulations external
guidance as modifying the transition probabilities on the direction
of elongation, to bias growth in the direction of the external field:
“forward” and “backward” jumps that respectively increase and
decrease the alignment angle ψ are determined by the probabilities
peA(ψ) and peB(ψ), where pe≡ 1− pb is the elongation probability
and the reweighting factors A(ψ) and B(ψ) are determined by
AðψÞ � BðψÞ ¼ �f c sinðψÞ and A(ψ)+ B(ψ)= 1. Furthermore, we
implement self-avoidance by deterministic displacements of the
active tip at position r by a “self-interaction” force−fsps∝−

fs∑j(r− rj) with fs < 0, pointing away from the density gradient of
neighboring branches (at positions rj within a radius Rs i.e., ∣r−
rj∣ < Rs), see Supplementary Note 2 for details.

To determine how the morphology and shape of a branching
structure is affected by local intrinsic vs. global extrinsic cues, we
then asked whether the two key parameters of local self-avoidance
fs and of external guidance fc could give rise to qualitatively
different types of morphologies. Indeed, building a phase diagram
of branching morphologies revealed key differences: in the
presence of an external, axially oriented (linear) gradient,
branched structures adopt triangular shapes, branching in a
cone-shape with a well-defined angle that becomes smaller for
increasing guidance strength fc (Fig. 1c). On the other hand,
changing the self-avoidance strength fs gave rise to denser
branches with increased local alignment, but did not markedly
change the overall shape.

Derivation of the continuum model. To back the qualitative
insights of the morphology diagram obtained from simulations
more quantitatively, we sought to develop an analytical theory of
branching via external guidance, which falls under the class of
branching and interacting random walks22 in an external field.
Starting from a microscopic description of branching and elon-
gation events, we derived a (continuum) Fokker–Planck equation
for the tip growth and branching under the influence of external
field guiding elongation (as described in detail in Supplementary
Note 1, see also Supplementary Figs. 1–3). In particular, we
obtained an equation for the time evolution of the probability of a
tip to grow in a given direction, as determined by the alignment
angle ψ relative to the polarity of the external field. In the absence
of an external field, this direction is subjected to two types of
random fluctuations: a branch tip undergoing elongation exhibits
a small rotational diffusion that is described by small continuous
changes in the alignment angle (bounded by ψe at each time
point), while branching events lead to abrupt jumps of larger
maximal magnitude ψb in the branch orientation. To account for
the latter, non-local changes in the alignment angle ψ, we turned
to the theory of Lévy flights, where a generalized Fokker–Planck
equation has been proposed42. Crucially, using a jump size
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distribution λðψ � ψ0Þ to describe the difference in the alignment
angle before ψ0 and after ψ an elongation or branching event, we
could integrate these two sources of stochasticity into macro-
scopic “diffusion” and “mobility” coefficients D � 1

6
ðpbðψ

2
b þ

ψbψeÞ þ ψ2
e Þ and μ � 1

2
ðpbψb þ ψeÞ, respectively. Finally, con-

sistent with the implementation of the simulations, the effect of
the external guidance could then be incorporated by a drift term
�f c sinðψÞ, leading to the Fokker–Planck equation:

∂tPðψ; tÞ ¼ D∂2ψPðψ; tÞ þ μ∂ψ½Pðψ; tÞf c sinðψÞ� ; ð1Þ

which reflects a sinusoidal reorientation of the active tip by the
external field43.

Comparison between analytical model and simulations.
Importantly, Eq. (1) describing the probability of branch orien-
tation attains a steady-state solution (∂tPst(ψ, t)= 0) that is largely
independent of the form of the external field, i.e., it applies
generically to different geometries after defining the relative
branch alignment with respect to the external field. This solution
predicts that the alignment of angles with respect to the polarity
of the external field will be determined by the von Mises

distribution (circular normal distribution44):

PðψÞv:M: ¼
1

2πI0ðνÞ
exp ν cosðψÞ

� �

; ð2Þ

with a concentration parameter given by ν≡ μfc/D, and I0(ν) is
the modified Bessel function of the first kind of order zero. The
fluctuations in the angular alignment as determined by the var-
iance will thus follow a universal scaling approximately given by
σ2∝D/μfc that underlines the relative contribution of the local
noise to the external guidance. For an axial (linear) field parallel
to the horizontal axis, for instance, the above solution applies to
the distribution of the local angles φ of the branch segments
(Fig. 1d). In a radial external field emerging from a central point
of origin, however, the alignment of a branch is determined by
the angle difference ψ≡ φ− θ between its local angle φ and its
angle θ with respect to the origin of the external field, and thus ψ,
rather than φ, is predicted to follow the von Mises distribution
(see Supplementary Figs. 4–9 for the alignment angles for dif-
ferent model assumptions). Comparing these analytical criteria
with the numerical simulations led to excellent agreement with-
out using any fit parameter (Fig. 1d–f).

Fig. 1 Morphology and alignment of branching structures in the presence of global guidance cues and local self-repulsion. a–c Schematic of the model

and resulting branching morphologies. a We consider an active tip (orange node) which undergoes stochastic branching and elongation according to a

local angle φ to make branch segments (blue solid lines), guided by an external field (linear guidance, dashed arrows). b Self-avoidance or external field are

implemented in the simulation by additional displacements of active tips of the branching network respectively by “sensing” neighboring branch segments

(blue nodes) within a radius of repulsion Rs (red arrow in b), or by a bias toward the external field (large gray arrow in b). The strength of local self-

avoidance and external guidance are respectively determined by a factor ∣fs∣ or fc. c Morphology diagram of branching and annihilating random walks

(BARWs) with linear (axial in one-dimension) external guidance obtained from simulations. Representative networks are displayed for different values of

the external field strength fc and self-avoidance ∣fs∣. d Probability distribution of tips growing with an angle φ for different values of fc and without self-

repulsion (fs= 0) in the simulations (solid bars). These are well-approximated by the analytical predictions (dashed lines) following a von Mises

distribution centered around zero and with single parameter ν �
μfc
D
(with D≃ 0.03 and μ≃ 0.18 as predicted from theory). With increasing field strength fc

the distributions become sharper, indicating better alignment of the branch segments with the external field. e Histograms of the local angle displayed in

(d) rescaled by their corresponding standard deviations (SDs), showing that they all collapse onto the von Mises distribution with unit SD (dashed line), as

predicted analytically. f Fluctuations in local angle σφ decrease monotonically with increasing field strength fc (top panel), and are consistent with a power-

law relation (bottom panel), close to the scaling law predicted by the analytical theory (dashed line) and to the scaling law σφ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=ðμfcÞ
p

(dotted line).
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To summarize, the combination of analytical modelling and
numerical simulations allows us to make a number of predictions
for different topological and geometrical properties of branched
structures: A key signature of external guidance is that branching
angles should conform to a von Mises distribution while the
overall branching structure in an axial field can adopt a well-
defined conical domain in the absence of defined boundaries.
Furthermore, a signature of the stochastic nature of branching
and annihilating random walks is that even with external
guidance, the local branch length or overall network size and
shape should be highly variable to random branching events and
local density-driven termination of tip growth.

Sensory neuron morphogenesis as a biased and branching
random walk. To sequentially test these theoretical predictions,
we examined the morphology of sensory neurons using zebrafish
caudal fin innervation as a model system, as it has several
advantages: (i) it is a simple quasi two-dimensional (see Supple-
mentary Movie 1) and transparent system, facilitating imaging
and reconstruction, (ii) the innervation pattern is complex, with
tens to hundreds of branches per neuron, and (iii) multiple axons
arise from dorsal part of spinal cord and start branching out in a
simple geometry, i.e., a roughly semi-circular region (Fig. 2a). To
segment and reconstruct single branched neurons, we used
genetic sparse labelling strategy to label individual neurons
(mCherry positive, see Supplementary Fig. 10) at 5 days post-
fertilization (a time when neurons are functional and the fish is
able to swim), and skeletonized the manually traced filaments to
generate hierarchical tree topologies (see Methods below and
Supplementary Note 3 for details). Interestingly, we found that
these neurons, although all appearing to grow radially toward the
outer edge of the fin, were highly stochastic and heterogeneous
both in shape, size, and morphology (Fig. 2c, Supplementary
Fig. 11). This hints at a highly stochastic pattern of fin innerva-
tion, as expected in our branching random walk model when we
adapted it to a radial external field (Fig. 2b). Qualitative com-
parisons with different stochastic simulations with identical
model parameters revealed similar stochasticity in shape, angles,
topology and size of neuronal trees, as seen in the experimental
data (Fig. 2c–d). Furthermore, few crossovers between branches
could be observed with terminal tips residing all over the neu-
ronal structure close to neighboring branches (Fig. 2a,c), as
qualitatively expected in the framework of branching and anni-
hilating random walks. Finally, and more quantitatively, we
extracted (i) the branch length distribution across neurons, and
found that it was very wide (with branches of all lengths seen in
data) and well-described by a simple exponential, as predicted by
a stochastic branching process (Fig. 2e), and (ii) the size dis-
tribution of subtrees (defined as the number of branches derived
from a given branch point, looked at for all branch points at any
generation number) showing similar and long-tailed distributions
in both data and simulations (Supplementary Fig. 12). Altogether
these key features supported the applicability of our theory of
branching and annihilating random walks to the experimental
dataset.

Signatures of external guidance on the morphology of bran-
ched networks. To go further and test the predicted signatures of
external guidance on branch orientations, we next analyzed the
distribution of branch angles in the data. As predicted by Eq. (2),
we expected the distribution of the angle difference ψ (see Fig. 3a
for a schematic) to decay with a variance scaling as D/μfc (see
Fig. 3b-d for the distributions P(ψ) obtained from simulations
and analytical theory). Comparing theory and experimental data
revealed very good agreement, with both single neuron

distributions (see Supplementary Fig. 13 for the individual dis-
tributions) and distributions averaged across all data (Fig. 3e)
closely following the predicted scaling of the von Mises dis-
tribution. Importantly, the single free parameter in this fit (i.e.,
the variance of the distribution) allows us to estimate μfc/D, and
thus the relative strength of the global/extrinsic guidance com-
pared with local stochasticity (see Supplementary Note 3 and
Supplementary Table 1 for details on the measurements and
values of the other parameters, in particular the estimation of the
branching probability and branch length). Interestingly, we find
intermediate values of D/μfc≃ 0.35, arguing that neuronal mor-
phology is shaped by a combination of both factors.

Such extrinsic guidance provides a simple theoretical mechan-
ism to restrict neuronal growth to a domain characterized by a

well-defined opening angle �θ. Turning to experiments, we found
that reconstructed neurons were typically also characterized by

such angle, which we estimated as h�θi ’ 96� ± 28�. Theoretically,
the average opening angles �θ decreased monotonically with
increasing field strength fc (see Fig. 4a for an illustration) with
strikingly similar values both in the presence and absence of self-
repulsion (see Fig. 4b). Using a simple geometric argument
-assuming in particular that this opening angle is determined by
the changes in the angle to origin θ values of the active tips at the
boundary of the branching network, we could approximate this
angle by:

�θa ’ 2χ
log ðrmaxÞ

f c
; ð3Þ

where rmax is the radial distance of the furthermost branch from
the origin of the network (fixed by the maximal time of network
growth). With this approximation, we could fit the numerical
data by using a single fit parameter χ (see Supplementary Note 2
for further details). From the fitted value of the external field

fc= 0.6, we predict an opening angle of h�θi ’ 203� ± 85�

(mean ± SD). Although this overestimates the experimental value,
we note that this prediction is based on a perfectly radial gradient
in 360∘ without boundary, i.e., assuming neurons can branch
backwards. When we confined the theory to a 180∘ hemispherical
region, which seems to reflect the experimental geometries
(Supplementary Fig. 11), we obtained average opening angles of
h�θi ’ 110�, much closer to the data.

Although the existence of an external gradient has not yet been
characterized in the zebrafish fin, we note that other features from
the comparison between experimental and theoretical data argue
in favor of it. For instance, even though self-avoidance can lead
locally to aligned branches, these branches grow isotropically in
any direction without global cues (see Supplementary Fig. 3 in
Supplementary Note 2 for a brief illustration). This is particularly
true in low-density regions (which occur stochastically in the
simulations) where fewer branches would lead to weaker
repulsive cues, and consequently, in the absence of an external
gradient, would result in tips deviating from the radial direction.
However, examining the data revealed that this did not occur:
even in sparse branching regions (e.g., Fig. 2b–d), branches
appear as directional toward the fin periphery as in dense
branching regions. Furthermore, sparse neurons also showed the
same alignment angle distribution as dense neurons in the data
(Supplementary Fig. 13c), in contrast to what would happen in
the absence of external guidance. This argues for the importance
of external guidance to drive robust directional growth indepen-
dently of stochastic density fluctuations.

Signatures of self-avoidance on the space-filling properties of
branched networks. Next, we sought a quantitative metric
which could distinguish between networks with weak or strong
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self-repulsion fs after having estimated fc. Visually, our phase
diagram of neuronal morphology showed that larger self-
avoidance fs allows for denser networks, as tips can locally avoid
termination and continue growing, compared with branched
networks in the absence of self-avoidance. However, to identify
signatures beyond the coarse-grained metric of overall branch
density, we tested the effect of self-avoidance on the efficiency
of space tiling across length scales45,46, by quantifying the
fractal dimension df of the branching networks (box-counting
method, Fig. 5a) as a function of model parameters. We found
that self-avoidance markedly improved the space-filling prop-
erties of the branching networks (see Fig. 5b, a fractal dimen-
sion close to df= 1 is expected for very sparse structures, while
a fractal dimension of df= 2 corresponds to full tiling of space).

Then, we again turned to the experimental data to ask whether
these signatures could be observed. Because the branching rate/
number showed variability across samples, we first explored
this effect, and found a positive correlation between mean
branch probability in a neuron and its fractal dimension
(Supplementary Fig. 14), as expected. Focusing on the four
densest networks to remove this confounding effect, we found
that measuring fractal density in experiments yielded curves
that were consistent with the power-laws predicted by the
simulations (Fig. 5c), with a typical exponent in the range of
df ≃ 1.55 ± 0.04 (mean ± SD). This is consistent with our com-
putational screen for relatively small values of self-avoidance
(in the range of ∣fs∣= 0− 0.1), a feature which was confirmed
by comparing absolute densities between model and data

Fig. 2 Branching and annihilating random walks (BARWs) with radial guidance cue reproduces qualitative features of zebrafish caudal fin innervation.

a Development of the zebrafish nervous system and innervation of the caudal fin (boxed area in the top right cartoon) 5 days postfertilization. (Left)

Confocal image of neuronal cell membranes in the caudal fin imaged via red mCherry fluorescence (HUC:Gal4-UAS:mCherry-caax). Imaged Rohon-Beard

sensory neurons exhibit a clear directionality toward the fin edge (indicated by the dashed white lines). (Right) Different manually reconstructed neuronal

trees color-coded for visualization. b Morphology of branched structures with the same model as in Fig. 1, but in a radial external field (dashed arrows, top)

obtained from simulations for different values of the external field strength fc and self-avoidance ∣fs∣. c–d Simulations with an intermediate external field

strength (fc= 0.6) and no self-avoidance (fs= 0), corresponding to the boxed region in the morphology diagram (b), capture the overall directionality

observed in reconstructed networks (four representative neurons, red cross indicating “origin” of the axon, c), but also show some stochasticity in the final

network structure as in the data. Active tips of the simulated branching networks are highlighted in orange. e Branch lengths Lj (in normalized units)

obtained from experiments (left) and simulations (right) are distributed exponentially, defining a characteristic length scale 〈Lj〉 related to the branching

probability pb, as predicted by our theory of stochastic branching. Experimental data are obtained from n= 8 reconstructed neuronal filaments from N= 4

larvae.
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(Fig. 5d–f). This argues that although we cannot exclude a small
contribution of self-repulsion in locally aligning branches,
global external guidance cues play a dominant role in shaping
these neuronal structures.

Effect of dimensionality on the morphology of branched
structures. Finally, although we have so far exclusively considered
a two-dimensional (2D) model and simulations, which is a good
approximation for the quasi-2D geometry of zebrafish fin
innervation, we wished to test whether our findings can be
extended to the more general case of branching morphogenesis
under external guidance in three-dimensions (3D).

For this generalization, we performed numerical simulations
with similar rules for branching, elongation and self-avoidance as
before, but allowing tips to evolve in 3D, see Supplementary
Note 2 for details. As an exemplary case, we added a constant
axial guidance along a single coordinate axis (see Supplementary
Movie 2 for an illustration). This could be relevant for the
morphogenesis of neurons such as hippocampal granule cells or
cortical pyramidal cells10. Importantly, a number of quantitative
signatures predicted in 2D were unchanged in 3D. For instance,

we found that while a large value for self-avoidance gave rise to
locally more aligned and denser branch morphologies (Supple-
mentary Fig. 9a), in strong analogy to the phase diagram in 2D,
the overall territory remained minimally influenced by self-
avoidance (Supplementary Fig. 9b). Furthermore, the alignment
angles (as determined by azimuthal and polar angle coordinates,
see Supplementary Fig. 8 for a schematic) both followed the
predicted scaling from the analytical theory up to a constant
prefactor, with self-avoidance having again negligible influence
on these angles (Supplementary Fig. 9c–d). Turning to space-
filling efficiency, we found a similar trend where self-avoidance
increased the fractal dimension (Supplementary Fig. 9e), although
interestingly, the effect was weaker than in 2D, as can be
anticipated considering that the probability of branches to
interact is much smaller in 3D than in 2D. Overall, this analysis
suggests that our key results for 2D branching morphogenesis can
be generally extended to 3D situations.

Discussion
In this work, we have derived an analytical theory, backed by
stochastic numerical simulations, of branching morphogenesis

Fig. 3 Continuum model predicts the alignment of branch segments along the external field both for simulation and experimental data. a Schematic of

branch segments in a radial external field (dashed arrows) highlighting three distinct angles: The local angle φ of a branch segment with an active tip

(orange node), the angle to origin θ (denoted by the star symbol, which determines the extrinsic guidance direction at this point), and the angle difference

ψ≡ φ− θ (which tends to be minimized by extrinsic/global guidance). b Normalized histograms of the angle difference ψ for different values of fc and

without self-avoidance (fs= 0). The histograms (solid bars) are well-approximated by von Mises distributions (dashed lines) as for the local angle φ in a

linear gradient (Fig. 1), and as predicted by the continuum model (with D≃ 0.04 and μ≃ 0.2). c Mean standard deviations (SDs) 〈σψ〉 of the angle

difference ψ obtained from simulations are close to the mean SD of the experimental data (dotted horizontal line) for an external field strength of fc= 0.6.

For comparison, the scaling of SD as a function of fc predicted by the von Mises distribution is displayed (dashed line). d Histograms of angle difference ψ

rescaled by their corresponding SDs σψ (solid lines) are well-approximated by the von Mises distribution with unit SD (dashed line). e Angle difference

distribution obtained from the experimental data from n= 8 networks (solid bars) compared with the von Mises distribution predicted by the theory for an

external field strength of fc= 0.6 (dashed line). The latter value is inferred from the matching of theoretical and experimental values of the SDs displayed in

(c), and no other fit parameter is used.
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under both local cues - such as repulsion, branching, and ter-
mination - as well as global guidance from external cues. Each of
these factors can be tuned to create a variety of complex branched
structures. To systematically classify these, and try to understand
analytically how each parameter impacts the final structure, we
derived a continuum Fokker–Planck theory, which enables us to
coarse-grain the parameters of the numerical simulation
(branching angles, branching rate, stochasticity in elongation,
external guidance strength) into a few relevant coefficients at the
macroscopic level. Through this, we have identified a number of
generic features in the final branched structures. For instance, a
combination of branching/elongation stochasticity in the pre-
sence of global guidance cues robustly gives rise to branched
structures occupying well-defined spatial domains, but also to a
universal scaling law for the alignment of branch angles. This
scaling law only depends on the geometry of the problem, i.e., the
direction of the external guidance cue both for 2D and 3D ter-
ritories, with a variance that can be used to extract the relative
contribution of external guidance fc compared with local sto-
chasticity. Self-avoidance of branches, controlled by the para-
meter fs, on the other hand, has a minimal impact on these
features, although it can strongly optimize other morphological
parameters such as space-filling properties, as quantified by

overall density or fractal dimension. Interestingly, the branch
densities depend strongly on both parameters fc and fs, which
indicates that our predictions on the branch orientations or
domain sizes can be used complementarily to disentangle global
and local cues.

Our approach here is based on a minimal model to understand
the growth of branched structures from simple rules (elongation,
branching, guidance, avoidance) within a statistical physics fra-
mework. At smaller scales, one would need to take a number of
features into account, for instance the specifics of axonal/sub-
strate mechanics during neuronal growth31,32, to understand
what regulates mechanistically each of the parameters that we use
in the model. A strength of our “mesoscopic” approach is that it
extracts a small number of such coarse-grained parameters, to
identify which ones are key at the scale of the overall branching
pattern, and thus guiding subsequent, more detailed modelling.
Our proposed framework builds upon previous simulations of
stochastic branching morphogenesis, which had considered local
cues such as branching and repulsion20,22,33,35. We find that
adding global extrinsic guidance—a key element in different
contexts to break the isotropy in tissue growth—in the model
gives rise to significantly different dynamics, enriching the phase
diagram of possible branching patterns. Furthermore, in addition
to the computational/numerical features of this framework, we
provide a continuum theory for branching morphogenesis guided
by extrinsic cues, which enables us to make simple but generic
predictions on testable experimental metrics such as the orien-
tation of branch segments. These predictions are useful to
understand branching morphogenesis of organs and neurons,
because detailed live-imaging is typically difficult in these sys-
tems, so that inferring dynamical information and cues from
static snapshots could prove valuable to dwell further into the
detailed regulations of these signals. We also note that our
strategy of using a mesoscopic theory to infer dynamical growth
rules is complementary to other approaches in the field that have
addressed the relationship between structure and function on an
adult branched organ15–17. An interesting next step would be to
try to unify the two approaches and test how feedbacks on the
growth rules we propose here contribute to design a structure
with a desired function.

To begin to test this theory, we have examined the innervation
of the zebrafish fin, which proceeds in a simple quasi-2D radial
geometry, and, despite the local stochasticity, displays a strong
overall radially-oriented bias toward the fin edge. Quantitative
reconstructions of several neurons allowed us to test a number of
metrics predicted by the theory in the experimental data, such as
the distributions of branch lengths and branching angles, or the
space-filling properties of individual neurons. In particular, the
observation that fin neurons exhibit a clear directional bias with
rather well-defined angles can be readily explained in our fra-
mework by simply emerging from a global/extrinsic guidance cue
which directs single neuronal tips toward the outer edge of the
fin. Identifying such an interaction would be a natural next step.
It has been shown for instance in the zebrafish pectoral fin that
molecules such as BMP or Smoc1 are patterned in a graded way
toward the edge during morphogenesis47, and that innervation of
the pectoral fin exhibits a strong variability in sensory neuron
morphologies48. Overall, a global guidance cue would provide a
minimal/complementary explanation to the more involved
mechanism of repulsion/tiling between branches of different
neurons49. Such hetero-avoidance would lead to more refined
boundaries between neighboring neurons and could in particular
play a role in reducing the domain angles occupied by the indi-
vidual neurons.

This theoretical framework, although we have applied it here to
a specific geometry in neuronal branching, is highly general in

Fig. 4 The strength of extrinsic guidance determines the territory of the

branched structures in simulations, with minimal influence from local

self-avoidance. a Representative simulation snapshots highlighting the

changes in the opening angle �θ (a proxy for territory size in a radial

geometry, gray circular segments) with increasing external field strength fc.

b Mean opening angles h�θi of branched networks decrease monotonically

with increasing external field strength fc, and have similar values for

networks with zero (fs= 0, circular markers) or with strong (fs=−0.3,

triangular markers) self-avoidance. Errors of the averages are determined

by the standard deviations and highlighted by the dashed and dotted lines

for fs= 0 and fs=−0.3, respectively. The monotonic decrease of h�θi

obtained from simulations is well-described by the analytical approximation
�θa (solid line), see Eq. (3), with the fit parameter χ= π/15.
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considering the interplay between external cues and local self-
organized rules. In this sense, it could be applied to any branching
structure that forms via tip-driven growth, which frequently
occurs e.g., during angiogenesis and where similar questions on
external guidance vs. local self-organization arise50,51. This is
strengthened by our findings that the predictions of the model are
similar in both 2D and 3D settings. Interestingly, it has recently
been proposed that the types of stochastic rules governing tip
growth that we model here are conserved for the morphogenesis
of various filamentous organisms such as plants or Fungi52.
Understanding quantitatively the relative contribution of each
mechanism is also of key importance for the morphogenesis of
branched mammalian organs53: Mammary gland, pancreas or
late-kidney morphogenesis have been proposed to follow a sim-
pler form of these stochastic models in the absence of external
guidance22, although kidney morphogenesis has been suggested
to require stronger self-avoidance (denoted by the parameter fs in
our framework) at early stages to avoid premature termination54.
This hints at a potentially broad applicability of our framework in
a large number of systems, which would be a next step for future
research.

Methods
Zebrafish transgenic lines and husbandry. Zebrafish were raised and housed in
the Karolinska Institutet core facility following established and approved

procedures. The study was performed in accordance with local guidelines and
regulations and approved by Stockholms djurförsöksetiska nämnd. The new
transgenic zebrafish strain was generated by injecting UAS:mCherry-caax to
Tg(HuC:Gal4; UAS:synaptophysin-GFP) as described below. The resulting F0
transgenic fish express red fluorescent reporter mCherry in cell membranes of a
sparse number of neurons, allowing visualization and analysis of neuronal arbor-
ization in vivo.

Cloning. The expression construct of UAS:mCherry-caax was generated with tol2
kit55 by recombining p5E-UAS (tol2 kit #327), pME-mCherryCAAX (tol2 kit
#550), p3E-polyA (tol2 kit #302), and pDestTol2pA2 (tol2 kit #394). The mRNA of
alpha-bungarotoxin was prepared using Addgene plasmid, #69542 as a template
and mRNA of pCS2FA-transposase using tol2 kit #396 as a template56; in vitro
transcription was performed with mMessage mMachine SP6 kit (Thermo Fisher
Scientific) and RNA was purified with RNeasy Mini Kit (Qiagen). Zebrafish
embryos of Tg(Huc:gal4VP16;UAS:synaptophysin-GFP) were injected with 90 pg
of alpha-bungarotoxin mRNA with 10% phenol red and 0.13 M KCl into yolk at
one cell stage. Then 20 pg of UAS:mCherry-caax and 20 pg of transposase mRNA
were injected with 10% phenol red and 0.13 M KCl into one of the cells at 4–8
cell stage.

Immunostaining. For the whole-mount imaging, we anesthetized fish at the 24 hpf,
48 hpf and 5 dpf stages with Tricaine in the same manner as described above,
followed by fixation with 4% PFA for 4 h at room temperature. Subsequently, the
specimens were permeabilized with three 30 min washes in 100% methanol,
washed with PBS supplemented with 0.1% Tween-20 (PBST) five times for 15 min,
stained with the primary antibodies in blocking solution (5% normal donkey
serum, 10% DMSO, 0.1% Tween-20, in PBS) for 48 h, washed five times in PBST
for 30 min, stained with secondary antibodies for 24 h, washed in PBST as
described above, and finally dehydrated in 100% methanol with two 30 min washes

Fig. 5 Effect of self-avoidance and external guidance on branching density and space-filling properties. a Fractal dimension of the networks estimated

by the box-counting method: Boxes of decreasing sizes ϵ are used to count the total number of boxes that include at least one skeletonized node. b Mean

fractal dimensions obtained from the box-counting method increases from 〈df〉≃ 1.52 to 〈df〉≃ 1.67 with increasing self-avoidance (fs= 0 to fs=− 0.3),

whereas large changes in the external field strength (from fc= 0.4 to fc= 1) have a smaller effect on the mean values. c Combined experimental data from

the densest n= 4 networks (circular markers) are consistent with the theoretically predicted power-law: We find a fractal dimension of df≃ 1.55, close to

the theoretical value df≃ 1.57 obtained from the combined data from simulations with fc= 0.6 and fs= 0 (crosses). d Average density ρðSÞ of a branched

network (ratio of the number of branch segments to the arc length S spanned by the network). e Densities ρðSÞ of the simulated networks increase

markedly both for increasing external field strength fc and self-repulsion strength ∣fs∣. f Densities ρðSÞ obtained from experimental data for n= 8 filaments

(crosses) compared with densities obtained from simulations for fc= 0.6 and fs= 0 (blue box), fs=−0.1 (green box), and fs=−0.2 (purple box). Mean

density of the experimental data (red horizontal line) is on the lower end of the densities obtained from simulations even for low repulsion, indicating a

small value for the parameter fs. For each parameter choice box plots are obtained from n= 100 simulations, with mean and median values denoted

respectively by the plot markers and horizontal dashed lines (orange). The boxes are drawn from the first quartile Q1 to the third quartile Q3, and whiskers

indicate 1.5 interquartile range (IQR≡Q3−Q1), i.e., max=Q3+ 1.5 IQR, min=Q1− 1.5 IQR.
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and rendered transparent with clearing solution consisting of one part benzyl
alcohol and two parts of benzyl benzoate (BABB). The primary antibodies utilized
were anti-acetylated tubulin (Neuronal marker, Gene Tex), anti-HuC/HuD neu-
ronal protein and (Abcam), all diluted 1/800 in blocking solution. Alexa fluor 555
donkey anti-rabbit and Alexa fluor 647 donkey anti-mouse (all from Invitrogen)
were used as secondary antibodies at a dilution of 1/1000 in blocking solution. Note
that tubulin staining was punctiform at high magnification therefore only fish of
the mCherry line were used for 3D reconstruction.

Imaging of live animals. The expression of mCherry in cell membranes of zeb-
rafish neurons is not uniform, including in the region of the caudal fin, therefore
we first screened multiple animals and selected fish which presented mCherry
positive signals in the caudal fin. 5dpf fish were anesthetized with tricaine (MS-222,
Sigma) in final concentration 200 ug/ml in E3 PTU treated medium. Then five fish
samples per dish were immobilized in 500 ul of 0.5% low melting agarose (LMA,
Sigma), supplemented with tricaine (200 ug/ml) and placed laterally on glass
bottom microwell dish (MatTek, uncoated, 35 mm) using tungsten forceps. After
complete polymerization of LMA (40–60 min at room temperature), the droplets
containing live fish were covered with Tricaine supplemented with E3-PTU
medium to prevent desiccation of the immobilized fish during imaging. Confocal
images were acquired using Z-stacks with a Zeiss Zen Blue LSM 800 confocal
microscope equipped with Diod lasers 405 nm, 488 nm, 555 nm and 639 nm, Plan
Apochromat 10×, Plan Apochromat 20×, and C-Apochromat 40×. Images were
processed in Bitplane Imaris 8.0 and exported as .tiff files for further analysis.

Reconstruction of neuronal filaments
Initial (manual) reconstruction of the filaments. Arborization trees of all visible
neurons –the transient Rohon-Beard sensory neurons located in the dorsal spinal
cord and innervating the caudal fin integuments57—were reconstructed using the
pipeline described below. Raw images acquired on live animals were exported from
ZEN software to Bitplane Imaris 8.0. For initial reconstruction, Bitplane Imaris tool
“Filaments” was used. Resulting images are referred to as “filament trees” in the
following. For each image multiple filament trees were acquired. Each tree corre-
sponds to a unique neuron arborization. Each filament tree was then manually
analyzed, using native mCherry fluorescence channel as a reference, to eliminate
false connections between branches. After manual correction, the tools “smooth
filaments” and “center filaments” were applied to further co-localize obtained
reconstructions with fluorescence signal. Filaments with confirmed branching
pattern and no cross-connectivity artifacts were taken to the next step of analysis
(see Supplementary Note 3 for details). All filaments which could not be clearly
traced were eliminated from the further analysis. 2D Images of the selected filament
trees were exported as separate .tiff files and transferred to ImageJ software. The
same set of tools was applied to all filaments: conversion to 8-bit black and white
image, skeletonize, analyze skeleton.

a. Limitations of the experiment: Prior to the manual reconstruction of the
filaments, we performed raw image quality assessment, based on the following
parameters. Neurons chosen for reconstruction had a minimal optical overlapping
with its neighbors. All raw images were acquired using the same confocal
microscopy settings to ensure uniform data resolution. We note that, however,
based on the pinhole settings, we could not reliably distinguish between two dots if
the Z distance was less than one pinhole, which was set for 1 AU (airy unit) and
equal to 1.75 um at 20× objective and to 6.45 at 10× objective. Therefore, any
neurites (from two different neuron trees) closer than this distance were discarded
from the analysis, creating a small loss in the reconstruction. In a sufficiently dense
region of the fin, this loss was evaluated post-hoc to amount to 8.9% of the overall
length of all mCherry positive axon arbors (using Imaris tool “filament statistics”).
Overall, considering these limitations, a total number of 8 filaments from about 50
fish scanned were qualified for analysis.

Modelling details. Detailed descriptions for the derivation of the analytical model
and implementation of the BARW simulations, parameter values used in the
simulations, and further details on the reconstruction and analysis of the neuronal
branches from the experiment can be found in the Supplementary Note. All cal-
culations and results presented in the main text are obtained from
n= 100 simulations for each parameter choice.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Source data obtained from the simulations and experiments that support the findings of

this study are provided in a supplementary zip folder, accessible as a DOI link: https://
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Code availability
Custom made Python codes to analyze source data, and an exemplary simulation script
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