
This is a repository copy of Tuning the feedback controller gains is a simple way to 
improve autonomous driving performance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/219324/

Version: Accepted Version

Proceedings Paper:
Liang, W., Baldivieso, P.R., Drummond, R. orcid.org/0000-0002-2586-1718 et al. (1 more 
author) (2024) Tuning the feedback controller gains is a simple way to improve 
autonomous driving performance. In: 2024 UKACC 14th International Conference on 
Control (CONTROL). 2024 UKACC 14th International Conference on Control (CONTROL),
10-12 Apr 2024, Winchester, United Kingdom. Institute of Electrical and Electronics 
Engineers (IEEE) , pp. 72-77. ISBN 979-8-3503-7427-8 

https://doi.org/10.1109/control60310.2024.10531819

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a journal 
article published in 2024 UKACC 14th International Conference on Control (CONTROL) is 
made available via the University of Sheffield Research Publications and Copyright Policy 
under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 
4.0), which permits unrestricted use, distribution and reproduction in any medium, provided
the original work is properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Tuning the feedback controller gains is a simple

way to improve autonomous driving performance

Wenyu Liang, Pablo R. Baldivieso and Ross Drummond
Dept. of Automatic Control and Systems Engineering

University of Sheffield

Sheffield, UK

{w.liang,p.baldivieso,ross.drummond}@sheffield.ac.uk

Donghwan Shin
Dept. of Computer Science

University of Sheffield

Sheffield, UK

d.shin@sheffield.ac.uk

Abstract—Typical autonomous driving systems are a combi-
nation of machine learning algorithms (often involving neural
networks) and classical feedback controllers. Whilst significant
progress has been made in recent years on the neural network
side of these systems, only limited progress has been made on the
feedback controller side. Often, the feedback control gains are
simply passed from paper to paper with little re-tuning taking
place, even though the changes to the neural networks can alter
the vehicle’s closed loop dynamics. The aim of this paper is to
highlight the limitations of this approach; it is shown that re-
tuning the feedback controller can be a simple way to improve
autonomous driving performance. To demonstrate this, the PID
gains of the longitudinal controller in the TCP autonomous
vehicle algorithm are tuned. This causes the driving score in
CARLA to increase from 73.21 to 77.38, with the results averaged
over 16 driving scenarios. Moreover, it was observed that the
performance benefits were most apparent during challenging
driving scenarios, such as during rain or night time, as the tuned
controller led to a more assertive driving style. These results
demonstrate the value of developing both the neural network
and feedback control policies of autonomous driving systems
simultaneously, as this can be a simple and methodical way to
improve autonomous driving system performance and robustness.

Index Terms—Autonomous driving systems, feedback control,
neural networks

I. INTRODUCTION

Training an Autonomous Driving System (ADS) requires

solving a complex control problem so the autonomous vehicle

can efficiently navigate through uncertain and changing envi-

ronments. As a control problem, the development of an ADS

is complicated by issues such as: i) the sensors (such as image

data from cameras) are only able to infer local and incomplete

state information, ii) the lack of clear definitions for the control

objectives and constraints to capture the diverse range of

driving behaviours seen in practice, and iii) the ADS has to

react to agents moving dynamically and, often, aggressively.

These issues represent a challenge that traditional control

policies, such as model predictive control (MPC) [12], struggle

to handle. Instead, machine learning algorithms built from

neural networks (NN) dominate the landscape of ADS. These

data-driven NN algorithms are able to flexibly handle both the

Ross Drummond was supported by a UK Intelligence Community Research
Fellowship from the Royal Academy of Engineering.

wealth of data generated by the vehicle sensors as well as the

vagueness of the control problem definition. They can now also

be trained using readily-available and simple software which

do not require mathematical models, with this simplicity being

another key reason fuelling the growth of NNs. Spurned on

by the growth of NN control algorithms, ADSs have improved

significantly in recent years, and there now exists an array of

open source software tools and challenges to evaluate different

algorithms in benchmark scenarios. One notable example is

the open source CARLA driving simulator [6] that hosts the

CARLA Autonomous Driving Leaderboard [20]. CARLA is

used in this paper to evaluate the ADS algorithms.

Currently, the algorithms dominating the CARLA Leader-

board are those based on NNs that translate the vehicle’s

image/lidar data into control actions for steering, throttle and

braking. Examples include: Trajectory-guided control predic-

tion (TCP) [19], ReasonNet [15], Interfuser [14], and Pylot

[10], with CARLA also being used as a resource for software

testing ADSs [11]. However, while such NN-dominated ADS

control algorithms have performed well in experiments, their

limitations affect how well they perform in the field. Most

significant are the issues around robustness and explainability,

which are, coincidentally, two issues which classical control

algorithms can, arguably, deal with, at least in principle. How-

ever, the rate of progress of NN-based ADS algorithms has

meant that, often, there is not enough time/data to follow the

classical control design pipeline of developing a mathematical

model, tuning the controller, and then verifying its robust-

ness e.g. using Lyapunov functions. Instead, different NN

architectures are proposed and trained using the latest tech-

niques where only limited stability analysis/modelling/testing

is conducted. As such, to keep pace with the latest NN

developments, often the control gains used to manipulate the

vehicle towards the reference trajectory generated by the NN

are simply passed from paper to paper without re-tuning.

An example of this is the Proportional-Integral-Derivative

(PID) control gains of [19] which were carried over from

[4], as the tuning from [4] was deemed satisfactory. From

a control perspective, this practice of carrying over PID gains

is problematic. Changes to the NN in the ADS can impact

the vehicle’s closed-loop dynamics, and this change should be

accounted for in the controller gains.

ar
X

iv
:2

40
2.

05
06

4v
1 

 [
ee

ss
.S

Y
] 

 7
 F

eb
 2

02
4



The aim of this paper is to demonstrate the value of

tuning the feedback controller gains in ADS which use NNs

to generate the vehicle’s reference trajectories. Whilst rapid

advances have been for the NNs of ADS, often little attention

is paid to the re-tuning of the controller gains. It is shown

here that re-tuning these gains can be a simple way to improve

ADS performance. And, since the tuning can be done using

the methods and machinery of control theory, the resulting

improvements can be implemented at scale and in a methodical

way, potentially with robustness guarantees as well [7]. In

this way, the results of this paper are aimed at opening a

dialogue between the control theory and machine learning

methods behind ADSs. Specifically, our work on re-tuning

ADS controllers have led to the following results:

1) Re-tuning the PID gains in the TCP [19] autonomous

driving systems algorithm can improve performance.

2) The results are evaluated in CARLA, with the driving

score of 73.21 for TCP increased to 77.38 by simply

tuning the gains of its longitudinal PID controller.

3) The performance improvements of the tuned controller

were most apparent in low-light and wet scenarios.

These results are preliminary and further improvements are

expected through the application of more advanced tuning

methods, such as automatic tuning [1] or designing the con-

troller to avoid overshooting [17]. Given the promising results

obtained, we expect that employing more advanced control

methods for ADS will lead to further improvements in the

driving score. In particular, there is great promise in the

application of MPC for this problem, to take advantage of

the future way points generated by NNs planning algorithms

such as TCP. Combining those future way points with the

robustness and constraint satisfaction feature of MPC should

deliver further improvements in the driving score.

In terms of comparison to the literature, there is a wealth of

results and methods in the area of ADS, as reviewed in papers

such as [3], [20] In this work, the focus is on improving the

driving score of the TCP ADS described in [19] for CARLA

[6]. The essence of our result lies in showing how tuning

the feedback controller gains, here the focus is on the the

longitudinal PID controller’s gains, in an ADS which uses

NNs to generate reference trajectories can improve perfor-

mance. As mentioned above, many of the emerging NN-based

algorithms do not re-tune the feedback controller gains during

development, an issue which could deteriorate performance

and/or increase training time. Our aim is to highlight this

limitation and recommend that a dialogue should be opened

between machine learners and control engineers to remedy it,

as doing so can bring quick and simple gains in the driving

score. We focus on the TCP algorithm for ADS in this work,

but we are conscious that the idea of the need for controller

re-tuning should be applicable to a broad class of ADS

algorithms. Moreover, algorithms for vehicle control have also

been implemented from the pure control theory perspective,

for example the eco-driving results of [16], the robust MPC

approach developed in [18] or the stochastic MPC approach of

[13]. The difference with these more control-focused results,

such as [18], is that whilst they are often equipped with

performance and optimality guarantees, a feature lacking for

many NN algorithms, e.g. [10] and [19], these algorithms often

require full state/road information which may not always be

available

II. CARLA DRIVING SIMULATOR

The results of this paper are generated with the CARLA driv-

ing simulator, with version CARLA 0.9.10 run on Linux.

CARLA is as an open-source driving simulator based upon

Unreal Engine 4 able to create a diverse range of driving

scenarios for training and validating ADS. These scenarios

include different weather settings, city infrastructure, traffic

density, and other such dangerous driving scenarios that are

impractical to replicate within the real physical world. En-

vironments in CARLA consist of 3D representations of both

static, i.e., buildings, vegetation, infrastructure, or dynamic

elements, i.e., moving traffic or pedestrians. Additionally,

CARLA offers an array of sensors for collecting data, such

as RGB cameras, LiDAR, radar, GPS, IMU, speedometers,

and pseudo-sensors that provide semantic segmentation and

ground-truth depth information [6].

CARLA also hosts the Autonomous Driving Challenge

Leaderboard to assess the driving capabilities of autonomous

agents within real traffic scenarios. Throughout a series of

predetermined routes, the ego vehicle encounters a diverse ar-

ray of traffic situations, including lane merging, lane changing,

interactions at crossroads and roundabouts, responses to traffic

lights and signs, and interactions with bicycles and pedestrians.

A. Driving score

Given an autonomous vehicle, the performance of its ADS

can be evaluated in CARLA using the Driving Score of the

CARLA Driving Challenge. To generate the score, the ADS

undergoes evaluation across 16 route scenarios. Each route

scenario is repeated three times, and the results for these three

routes are then averaged. When an infraction occurs during

a run, the penalty coefficients of Table I are applied. At the

culmination of the route, regardless of whether the ego vehicle

has reached its destination or not, the total penalty score is

determined by multiplying all the penalty coefficients together.

A penalty score of 1 is registered if no infractions occurs.

TABLE I: Penalty coefficient for the infractions.

Infraction Coefficient

Collision with pedestrian 0.5
Collision with pedestrian 0.6
Collision with pedestrian 0.65
Running a red light 0.7
Running a stop sign 0.8
Off-road driving 1-Percentage of the completed route

Furthermore, if the agent’s progress is halted, then the

simulation has to be suspended as detailed in Table II. In

such instances, the current score at the time of the halting

is recorded and the evaluation proceeds to the next scenario.



TABLE II: Shut down events

Shut down event Explanation

Route deviation More than 30m deviation from the planned route
Agent blocked Agent no action for 180s
Simulation timeout No client-server communication after 60s
Route timeout Simulation route takes too long to finish

Image encoder

Measurement encoder

Trajectory branch

Multi-step control branch
actl

atraj

Guidance

Situation

Longitudinal PID

Lateral PID

Vehicle

Speed: v

"Turn left"
Goal: (x,y)

Disturbances

Camera

Fig. 1: Schematic of the TCP algorithm from [19].

The ADS’s Driving score is the route completion score

multiplied by the total penalty score, where

1) Total penalty score: Obtained by multiplying all the

penalty coefficients together.

2) Route completion is the percentage of the route’s length

that an agent has completed. A successful arrival at the

destination corresponds to a perfect score of 100.

After completing all the routes, an overall infraction score is

derived by normalizing against the infraction count incurred

per kilometre travelled. This is achieved by subtracting the

average of all penalties from 1. Similarly, the global route

completion score is the mean for all routes, and the global

driving score is the global infraction score multiplied by the

global route completion score.

III. AUTONOMOUS DRIVING SYSTEMS: TCP

In this work, the TCP algorithm from [19] is used as the

benchmark ADS. The structure of TCP is shown in Figure

1 and it splits into two different branches, a Trajectory

branch and a multi-step control prediction branch. This

combination contrasts with most end-to-end driving systems,

e.g. [2], which typically either exclusively map raw sensor

data to trajectories or low-level control actions.

A. Trajectory planning branch

Within TCP’s trajectory planning branch, images captured

by the camera are processed by a CNN-based image encoder

to generate a feature map. Simultaneously, measurement data,

comprising information such as location, speed, and naviga-

tion is processed by a multi-layer NN measurement encoder

to generate measurement features. These features are then

amalgamated via average pooling, forming a trajectory feature

that enters a Gated Recurrent Unit (GRU) [5] to predict four

waypoints for the vehicle to follow.

TABLE III: Values for the longitudinal PID control gains of

both the original and tuned versions of TCP [19]. Here, kp
is the proportional gain, ki is the integral gain and kd is the

derivative gain.

kp ki kd Max throttle Brake speed

TCP 5 0.5 1 0.75 0.4
TCP-tuned 11 0.1 1 0.8 0.45

These waypoints form a reference trajectory for the au-

tonomous vehicle. PID controllers for both the longitudinal

and lateral direction are then used to regulate the autonomous

vehicle and follow this reference. The longitudinal controller

is used to generate throttle and brake control actions whilst the

lateral controller is used to implement steering action. In this

work, the focus will be on tuning the longitudinal controller,

with the gains of the lateral controller kept the same as in [19].

The values of the longitudinal PID gains are stated in Table

III with kp being the proportional gain, kd the derivative gain

and ki the integral gain.

B. Multi-step control branch

In the multi-step control prediction branch of TCP, the goal

is to directly forecast control actions for the ensuing four time

steps. Within this branch, an embedded temporal module is

used to implicitly account for the dynamic interactions and

alterations within the environment and the agent. This module

aims to predict how objects move within the environment and

relative to the ego vehicle, and so anticipate dynamic changes.

C. Integrating the branches

The control actions from both the trajectory branch and

the multi-step control branch of TCP [19] are then combined

together using a situation-based fusion strategy. Specifically,

a situation is determined by calculating the steering actions

over the previous seconds. If more than half of these steering

actions surpass 0.1, then the vehicle is assumed to be turning

and a “control specialized” situation is regarded as being

active. Conversely, if this criterion is not met, then the situation

is deemed “trajectory specialized.” A weight, α ∈ [0, 0.5], is

used to combine the two control actions from the trajectory

branch, atraj[k], and the multi-step control prediction branch,

actl[k], to generate the final control action. When the vehicle

is in a control specialised state, the combined action, a[k], is

a[k] = α× actl[k] + (1− α)× atraj[k]

and, when it is trajectory specialised, then the two control

actions are combined according to

a[k] = α× atraj[k] + (1− α)× actl[k].

In this paper, the weight was set to α = 1/2.

D. Tuning the Feedback control algorithm

The values of the longitudinal PID gains from TCP [19]

and the tuned values considered in this paper are shown

in Table III—the tuned gains are referred to as TCP-tuned.



(a) Clear Noon in Town02. (b) Cloudy Sunset in Town02.

(c) Soft Rain Dawn in Town05. (d) Hard Rain Night in Town05.

Fig. 2: Images from the drivers perspective of the vehicle in four different weather scenarios.

Fig. 3: Comparison between the original driving scores for the

original TCP algorithm [19] and that with the tuned PID gains

for the longitudinal controller, referred to as TCP-tuned.

No other additions were made to TCP beside these changes

to the longitudinal PID gains. Simple trial-and-error tuning

was applied to tune the gains, with it being observed that

a reduction in the integral gain ki and an increase in the

proportional gain kp led to a more reactive and dynamic

driving resposne. It is acknowledged that this is rudimentary

tuning compared to, for instance, the methods detailed in

[1]; further improvements over the results of Table IV are

expected using more effective tuning algorithms, and even

more advanced control algorithms such as MPC. However, the

results of this paper demonstrate that even rudimentary tuning

of the PID gains can improve the results, as will be seen in

the following section.

IV. RESULTS

This section compares the CARLA driving score results of

the original TCP algorithm of [19] against the version with the

tuned PID gains. Again, this tuned TCP algorithm is referred

to as TCP-tuned in the results. The score is based upon the

TABLE IV: Penalty coefficient of the infractions for both TCP

and the version with the tuned PID gains used in this work.

Driving score Route completion Infraction penalty

TCP 73.21 85.63 0.855
TCP-tuned 77.38 89.36 0.866

analysis of 4 different routes, 2 from Town02 and 2 from

Town05. Town02 features T-junctions in a small town setting,

while Town05 represents a larger city with multiple traffic

lanes. Both towns are provided in CARLA by default. Each

route is assessed under four distinct weather conditions (Clear

Noon, Cloudy Sunset, Soft Rain Dawn, Hard Rain Night).

Figure 2 provides a visual representation of different weather

conditions and town scenarios as viewed by the driver.

The combination of the four different routes with the four

different weather events resulted in a total of 16 different route

scenarios being tested. These sixteen scenarios are labelled

S0−S15 and the results comparing the original TCP algorithm

with the tuned version is shown in Figure 3. In each scenario,

the traffic participants were randomly generated.

A. Driving Score

Table IV compares the driving score for the original TCP

and that with the tuned longitudinal PID gains from Table III.

The results show that the tuned version of TCP can exhibit

superior performance when evaluated across all sixteen driving

scenarios, with the PID tuning increasing the Driving Score

from 73.21 to 77.38. It was noted that that TCP suffered

particularly in the challenging driving scenarios of Hard Rain

Night, with the reduced visibility and the ground reflections

impacting the camera sensors and, correspondingly, TCP’s

ability to maintain a precise lane position for the vehicle. It

was observed that the more assertive driving of the tuned TCP

algorithm (with a higher proportional PID gain and a lower

integral one) was able to alleviate some of the hesitancy of



(a) Collision with a bicycle. (b) Collision with a vehicle when turning.

(c) Deviating from the lane. (d) Blocked by an advertising board.

Fig. 4: Four examples of crashes recorded with the TCP [19] algorithm in CARLA (ego vehicle highlighted by red box).

(a) Collision avoided with vehicle at intersection. (b) Collision avoided with bicycle.

Fig. 5: Instances of the TCP algorithm with tuned PID gains avoiding crash events. In both cases, the ego vehicle is highlighted

by a red bounding box. The bicycle in b) is highlighted by a blue bounding box.

the driver in these challenging driving scenarios, and hence

improve the score. To reduce the risk of this assertive driving

style leading to more crashes, the brake ratio of TCP [19] was

increased to force the vehicle to initiate braking earlier.

The line chart of Figure 3 compares the driving scores for

both the original version of TCP [19] against the one with

the tuned PID gains. The figure demonstrates that the tuned

controller can overcome some of the challenging scenarios,

such as avoiding the collision with the bicycle in Scenario 4

and passing the blocking point in Scenario 7, resulting in a

higher driving score in these scenarios.

B. Inspection of crash incidents

Tuning the feedback PID gains in the TCP not only in-

creased the overall driving score but also meant that certain

crash situations could be avoided. Figures 4 shows several

scenarios of the autonomous vehicle crashing in CARLA when

controlled by the untuned TCP algorithm. These examples

include the vehicle colliding with a bicycle which unexpect-

edly crossed the road, crashing into a vehicle when turning

around a corner, leaving its lane when turning and stopping

for some unknown reason when encountering an advertise-

ment board. In particular, it was observed that the vehicle

stopped at the advertisement board on all three repetitions

of the route, which was on a rainy night. Videos showing

simulations with TCP can be found in [8] Specifically, the

files Original_S7_1.mp4, Original_S7_2.mp4 and

Original_S7_3.mp4 show the TCP-driven vehicle being

blocked twice at an advertising board and exceeding the

allotted time once.

Often these collision incidents could be avoided with the

tuned version of TCP. For instance, the collision observed



in Scenario 10 of the vehicle crashing when turning round

a corner, as shown in Figure 4b, was avoided after tuning

the PID gains, as illustrated in Figure 5a. In that instance,

the ego vehicle maintained some distance from the adjacent

vehicle and the stop line, allowing it to navigate through

without colliding. The ego vehicle with the tuned gains also

demonstrated an ability to evade bicycles crossing the road

unexpectedly, even in challenging conditions like heavy rain

at night. An example of this is shown in Figure 5b where,

despite the bicycle being barely discernible to human eyes,

the ego vehicle halted in a timely manner, avoiding a collision.

Videos of the vehicle driven by TCP with the tuned PID gains

can be found in [9]. In this case, the collision in Scenario 10

from TCP shown in Figure 4b is avoided, as shown in Figure

5a. The video of the vehicle evading the bicycle, as shown in

Figure 5b, can be found in the file TCP3_S10_2.mp4.

CONCLUSIONS

It was shown that simply re-tuning the feedback control

gains embedded within neural-network based autonomous

driving systems can improve performance, especially for chal-

lenging driving scenarios such as when it is raining and during

night time. To demonstrate this result, the PID gains for the

longitudinal control of the TCP algorithm were tuned and sim-

ulations were conducted in CARLA to evaluate performance.

After tuning the PID gains, the driving score over 16 scenarios

was increased from 73.21 to 77.38– demonstrating that tuning

the control gains can be a simple way to improve driving

performance. The aim of this work was to highlight that while

there has been rapid advancement in neural network design

for autonomous driving systems, there is value in spending

time and effort in tuning the feedback control gains as well.

We hope that this result can encourage a dialogue between

machine learners and control engineers to create more robust

and explainable driving systems which retain the flexibility

and power of the underlying machine learning algorithms.

We are conscious that the presented results are rudimentary

(manual tuning of a PID controller is studied) and we see

significant opportunity to develop these results further. Specif-

ically, we see potential in applying more advanced tuning

algorithms and control policies (in particular MPC since the

future way points generated by TCP can be embedded within

the MPC cost). Moreover, we believe that these results would

benefit from the certificates of neural network robustness.

However, whilst guaranteeing closed-loop stability of the

system is an appealing objective from a control theory point

of view, it was observed that most of the crashes encoun-

tered in the CARLA simulations could be attributed to poor

trajectories being generated (i.e. pushing the vehicle towards

a crash/leaving a lane) rather than some underlying instability

of the closed-loop feedback system. Still, by applying the deep

mathematical toolbox of control theory, we expect significant

benefits in terms of robustness and explainability could be

achieved.

REFERENCES

[1] K. J. Åström and T. Hägglund, Advanced PID control. ISA-The
Instrumentation, Systems and Automation Society, 2006.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[3] S. Chen and H. Chen, “MPC-based path tracking with PID speed control
for autonomous vehicles,” IOP Conference Series: Materials Science

and Engineering, vol. 892, p. 012034, 7 2020.
[4] K. Chitta, A. Prakash, and A. Geiger, “Neat: Neural attention fields for

end-to-end autonomous driving,” in Procs. of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2021, pp. 15 793–15 803.
[5] K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder–decoder for statistical machine translation,” Procs. of the

Conference on Empirical Methods in Natural Language Processing, pp.
1724–1734, 2014.

[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator.” PMLR, 10 2017, pp.
1–16.

[7] R. Drummond, S. Duncan, M. Turner, P. Pauli, and F. Allgower,
“Bounding the difference between model predictive control and neural
networks,” in Learning for Dynamics and Control Conference. PMLR,
2022, pp. 817–829.

[8] R. Drummond, W. Liang, P. R. B. Monasterios, and D. Shin, “CARLA
simulation videos with the TCP autonomous driving system,” 11
2023. [Online]. Available: https://figshare.com/articles/media/CARLA
simulations of autonomous driving system using TCP https github
com OpenDriveLab TCP/24619512

[9] ——, “CARLA simulation videos with the tuned TCP autonomous
driving system,” 11 2023. [Online]. Available: https://figshare.com/
articles/media/TCP-tuned/24619599

[10] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and I. Sto-
ica, “Pylot: A modular platform for exploring latency-accuracy tradeoffs
in autonomous vehicles,” in Procs. of the International Conference on

Robotics and Automation (ICRA). IEEE, 2021, pp. 8806–8813.
[11] F. U. Haq, D. Shin, and L. Briand, “Efficient online testing for DNN-

enabled systems using surrogate-assisted and many-objective optimiza-
tion,” in Procs. of the International Conference on Software Engineering,
2022, pp. 811–822.

[12] B. Kouvaritakis and M. Cannon, “Model predictive control,” Switzer-

land: Springer International Publishing, vol. 38, 2016.
[13] S. H. Nair, H. Lee, E. Joa, Y. Wang, H. E. Tseng, and F. Borrelli,

“Predictive control for autonomous driving with uncertain, multi-modal
predictions,” arXiv preprint arXiv:2310.20561, 2023.

[14] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-enhanced
autonomous driving using interpretable sensor fusion transformer,” in
Conference on Robot Learning. PMLR, 2023, pp. 726–737.

[15] H. Shao, L. Wang, R. Chen, S. L. Waslander, H. Li, and Y. Liu,
“Reasonnet: End-to-end driving with temporal and global reasoning,”
in Procs. of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2023, pp. 13 723–13 733.
[16] C. Sun, J. Guanetti, F. Borrelli, and S. J. Moura, “Optimal eco-

driving control of connected and autonomous vehicles through signalized
intersections,” IEEE Internet of Things Journal, vol. 7, pp. 3759–3773,
5 2020.

[17] H. Taghavian, R. Drummond, and M. Johansson, “Pole-placement for
non-overshooting reference tracking,” in Procs. of the Conference on

Decision and Control (CDC). IEEE, 2021, pp. 414–421.
[18] B. A. H. Vicente, P. A. Trodden, and S. R. Anderson, “Fast tube model

predictive control for driverless cars using linear data-driven models,”
IEEE Transactions on Control Systems Technology, vol. 31, no. 3, pp.
1395–1410, 2022.

[19] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet
strong baseline,” Advances in Neural Information Processing Systems,
vol. 35, pp. 6119–6132, 2022.

[20] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. Lopez,
“Multimodal end-to-end autonomous driving,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, pp. 537–547, 1 2022.


	Introduction
	CARLA Driving Simulator
	Driving score

	Autonomous Driving Systems: TCP
	Trajectory planning branch
	Multi-step control branch 
	Integrating the branches 
	Tuning the Feedback control algorithm

	Results
	Driving Score
	Inspection of crash incidents

	References

