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Abstract
The gamma and Nakagami distributions have an advantage over other proposed flexible inefficiency distributions in that
they can accommodate not only non-zero modes, but also cases in which many firms lie arbitrarily close to the frontier. We
propose a normal-Nakagami stochastic frontier model, which provides a generalisation of the normal-half normal that is
more flexible than the familiar normal-truncated normal. The normal-gamma model has already attracted much attention, but
estimation and efficiency prediction have relied on approximation methods. We derive exact expressions for likelihoods and
efficiency predictors, and demonstrate direct maximum likelihood estimation of both models. Across three empirical
applications, we show that the models avoid a convergence issue that affects the normal-truncated normal model, and can
accommodate a concentration of observations near the frontier similar to zero-inefficiency stochastic frontier models. We
provide Python implementations via the FronPy package.
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1 Introduction

Since the mid- to late 2000s, there has been a marked
slowdown in productivity growth in advanced economies
(Fernald et al. 2023; Gordon and Sayed 2019). How are
increases in productivity in a given industry to be realised?
Do all firms have comparable scope for improvement? Or
is there a ‘long tail’ of inefficient firms that need to catch
up to the frontier or exit the market? These questions have
been the subject of several studies (Bersch et al. 2019;
Bloom and Van Reenen 2007; Oliveira-Cunha et al. 2021),
and are of great relevance to policymakers, for whom
increasing productivity is one of the most pressing current
challenges.

The original normal-half normal (N-HN) and normal-
exponential (N-EXP) stochastic frontier (SF) specifications
introduced by Aigner et al. (1977) and Meeusen and van
Den Broeck (1977) – still the workhorses of the applied SF
literature – are ill-equipped to answer such questions. While

they may provide useful estimates of the average firm-level
efficiency, and give some insight into the ranking of firms,
they impose inefficiency distributions that have fixed shapes
and zero modes. This study explores estimation of – and
efficiency prediction from – two specifications that allow
for far more flexibility in the shape of the inefficiency dis-
tribution: a normal-gamma (N-G) model and a normal-
Nakagami (N-NAK) model, which generalise the N-EXP
and N-HN specifications, respectively.

The N-G model has attracted considerable attention over
the years, and several approaches to approximating the
integrals in the N-G model have been proposed. Greene
(1990) uses Laguerre and Newton-Coates quadrature
methods. Ritter and Simar (1997) use the trapezoidal rule.
Greene (2003) simulates the integral. Tsionas (2012) uses a
fast Fourier transformation of the characteristic function. An
exact solution is available, however – Beckers and Ham-
mond (1987) derive expressions for the N-G likelihood in
terms of the confluent hypergeometric function 1F1

(Kummer 1837), but to our knowledge this has only ever
been used by Hammond (1992).

We extend the approach of Beckers and Hammond
(1987) to derive exact expressions for the N-G and N-NAK
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likelihoods and efficiency predictors. The use of the
Nakagami distribution has not, to our knowledge, been
explored in the SF literature, and our results relating to the
N-NAK model are new. Our expressions for the efficiency
predictors for the N-G model are also new, previous lit-
erature having used various approximations.

Further motivation is needed. After all, beginning
with Stevenson (1980) many alternative inefficiency
distributions have been proposed – for recent reviews see
Kumbhakar et al. (2020) and Stead et al. (2019). We now
have plenty of options to choose from which allow for
non-zero modes, or flexible shapes, or both. And esti-
mation of the N-G model has already attracted much
discussion in the literature. So what is the rationale for
revisiting the N-G model, and why is the N-NAK model
worthy of attention? There are both economic and sta-
tistical motivations: we show that the N-G and N-NAK
models offer greater flexibility in allowing an arbitrary
concentration of firms near the frontier, whereas other
flexible distributions contain the N-HN and N-EXP
models as limiting cases in this regard; we also show that
the use of our exact expressions leads to significant
improvements in accuracy and optimisation times.

These motivations are discussed in detail in Section 2.
The remainder of the paper is structured as follows. In
Section 3 we derive the likelihood function and efficiency
predictors for N-G and N-NAK SF models and discuss
estimation. Section 4 demonstrates implementation of the
models using a purpose-built Python package, FronPy
(Stead 2023), with application to real and simulated data.
Section 5 summarises and concludes.

2 Motivation

In this section, we discuss the motivation for further dis-
cussion of maximum likelihood estimation of the N-G SF
model, and for proposing the new N-NAK specification, in
which Ui follows a Nakagami distribution (Nakagami
1960). To be specific, we are concerned with standard
cross-sectional SF models of the form outlined by
Assumption 1.

Assumption 1

yi ¼ x0iβþ Ei; Ei ¼ Vi � sUi; Vi � N 0; σVð Þ;
xi ?? Vj 8 i; j; xi ?? Uj 8 i; j; Vi ?? Uj 8 i; j:

ð1Þ

for all observations i = 1, …, I, where yi is the dependent
variable, xi is a coefficient vector, β is a vector of
parameters, s = 1 for a production frontier or s = − 1 for
a cost frontier, and Vi and Ui ≥ 0 are random variables
representing noise and inefficiency, respectively.

The N-G and N-NAK models are then obtained by
assuming that Ui follows gamma and Nakagami distribu-
tions, respectively. Assumptions 2 and 3 give the corre-
sponding densities of Ui.

Assumption 2

Ui � Gamma μ; σUð Þ¼)

f U Ui ¼ uið Þ ¼
1

Γ μð ÞσμU
uμ�1
i exp � ui

σU

� �
; ui � 0:

0; ui < 0:

(

ð2Þ

where fU denotes the density function of Ui.

Assumption 3

Ui � Nakagami μ; σUð Þ¼)

f U Ui ¼ uið Þ ¼
2μμ

Γ μð Þσ2μU
u2μ�1
i exp �μ ui

σU

� �2� �
; ui � 0:

0; ui < 0:

8<
:

ð3Þ

where fU denotes the density function of Ui.
Note that the latter differs from the usual parameterisa-

tion introduced by Nakagami (1960), which uses Ω ¼ σ2U .
The gamma and Nakagami distributions are closely related,
both belonging to the generalised gamma family (Stacey
1962). Note that Gamma 1; σUð Þ ¼ Exponential 1=σUð Þ, and
Nakagami 0:5; σUð Þ ¼ Nþ 0; σ2U

� �
so that the N-G model

nests the N-EXP model and the N-NAK nests the N-HN
when μ = 1 and μ = 0.5, respectively.1 The economic
motivation for these specifications is discussed in Section
2.1, while the statistical motivations are discussed in
Section 2.2.

2.1 Economic motivation

In terms of economic motivation, most of the literature
proposing alternative inefficiency distributions has focused
on allowing for the possibility of a non-zero mode. The
opposite problem of allowing for a greater concentration of
firm-level efficiencies near zero has received little attention.
Most alternative inefficiency distributions only allow for as
much concentration near zero as the exponential distribu-
tion, or less. For instance, the one-parameter Rayleigh and
generalised exponential distributions, proposed by Hajar-
gasht (2021) and Papadopoulos (2021), respectively, allow
only for non-zero modes – or no mode, as with the uniform
distribution proposed by Li (1996). In common with the

1 We used the following notation: If Wi � N μ; σ2V
� �

, then
WijWi > 0 � Nþ μ; σ2V

� �
is a truncated normal random variable. If

Wi � N 0; σ2V
� �

, it then follows a half normal distribution.

Journal of Productivity Analysis



half normal and exponential cases, they have fixed shapes,
and the concentration of firms on or near the frontier
increases only as Var Uið Þ�!0.

Flexible distributions with two or more parameters are
not necessarily better in this regard. Stevenson (1980)
proposed the use of a truncated normal distribution, gen-
eralising the half normal and allowing not only for non-zero
modes, but also for zero mode distributions with a variety of
different shapes. However, Meesters (2014) finds that the
truncated normal distribution contains the exponential as a
limiting case, so that in terms of the concentration of firms
near the frontier, we can do no better under the truncated
normal specification than under the exponential. The trun-
cated Laplace distribution used by Horrace and Parmeter
(2018) can also accommodate no more concentration near
the frontier than the exponential, by virtue of the mem-
orylessness property of the latter.

To see why this is a problem, consider that in terms of
economic theory, we might ordinarily expect a large pro-
portion of firms – perhaps the majority, in a context of
effective competition or regulation – to be on, or at least
very close to, the frontier. However, the exponential and
half normal distributions have most of their mass in their
tails and shoulders, implying that the majority of firms must
have some appreciable level of inefficiency, with very few
being close to the frontier. This limitation motivated the
zero inefficiency stochastic frontier (ZISF) model (Kumb-
hakar et al. 2013; Rho and Schmidt 2015), which takes a
latent class approach in which some proportion of firms is
assumed to be fully efficient.

In contrast to other distributions we have discussed, the
gamma – originally proposed by Stevenson (1980) as a means
of generalising the exponential specification – can allow for
an arbitrary concentration of firms near the frontier by
allowing its shape parameter μ to approach zero. The Naka-
gami distribution behaves in a similar fashion. As inefficiency
distributions, they both allow for behaviour very similar to
that of a ZISF model. While they do not imply that a certain
number of firms lie exactly on the frontier as do ZISF models,
the gamma and Nakagami densities can become so con-
centrated near zero that a non-negligible number of firms end
up, for all practical purposes, on the frontier.

The gamma and Nakagami models therefore have the
virtue of being able to behave like ZISF models without
having to resort to latent class approaches, with all the
challenges around estimation and hypothesis testing that
that entails. They also have the advantage of greater flex-
ibility – being also able to accommodate non-zero modes.

To demonstrate the value of having such flexibility with
respect to shape, imagine that we know mean firm-level
efficiency is 0.9, i.e. E exp �Uið Þ½ � ¼ 0:9. Then consider
E exp �Uið ÞjUi<F�1

U pð Þ� 	
– in simple terms, the mean

efficiency among the top 100 × p% most efficient firms.

Table 1 Supra-percentile unconditional mean efficiency estimates
when E exp �Uið Þ½ � ¼ 0:9 for various various values of μ, when
U � Gamma μ; σUð Þ
p μ = 0.1 μ = 0.2 μ = 0.5 μ = 1.0 μ = 2.0 μ = 5.0

0.10 1.0000 1.0000 0.9994 0.9943 0.9819 0.9607

0.20 1.0000 1.0000 0.9975 0.9882 0.9729 0.9517

0.30 1.0000 0.9998 0.9943 0.9816 0.9650 0.9447

0.40 1.0000 0.9992 0.9897 0.9745 0.9576 0.9387

0.50 0.9999 0.9976 0.9835 0.9667 0.9502 0.9330

0.60 0.9994 0.9941 0.9754 0.9581 0.9427 0.9275

0.70 0.9971 0.9869 0.9649 0.9483 0.9347 0.9219

0.80 0.9889 0.9737 0.9512 0.9368 0.9259 0.9160

0.90 0.9642 0.9495 0.9324 0.9226 0.9155 0.9094

0.95 0.9389 0.9301 0.9195 0.9134 0.9091 0.9054

0.99 0.9089 0.9077 0.9053 0.9036 0.9024 0.9014

1.00 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

Table 2 Supra-percentile
unconditional mean efficiency
estimates when E exp �Uið Þ½ � ¼
0:9 for various various values of
μ, when U � Nakagami μ; σUð Þ

p μ = 0.05 μ = 0.10 μ = 0.20 μ = 0.50 μ = 1.00 μ = 2.00

0.10 1.0000 1.0000 0.9997 0.9915 0.9745 0.9557

0.20 1.0000 1.0000 0.9983 0.9830 0.9636 0.9460

0.30 1.0000 0.9997 0.9954 0.9745 0.9549 0.9390

0.40 1.0000 0.9989 0.9906 0.9659 0.9471 0.9330

0.50 0.9999 0.9968 0.9837 0.9571 0.9399 0.9276

0.60 0.9992 0.9920 0.9744 0.9479 0.9329 0.9226

0.70 0.9964 0.9829 0.9625 0.9383 0.9259 0.9176

0.80 0.9866 0.9673 0.9474 0.9278 0.9185 0.9126

0.90 0.9595 0.9422 0.9282 0.9160 0.9105 0.9071

0.95 0.9350 0.9245 0.9161 0.9090 0.9059 0.9040

0.99 0.9082 0.9060 0.9040 0.9023 0.9015 0.9010

1.00 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
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This is the supra-percentile unconditional mean efficiency
for percentile p of the Ui distribution.

2 If we divide this by
E exp �Uið Þ½ �, it gives us the potential productivity gains to
be realised if the bottom 1� pð Þ � 100% of firms catch up
to the rest or exit the market. Formulae for E exp �Uið Þ½ �
and E exp �Uið ÞjUi <F�1

U pð Þ� 	
for various distributions of

Ui are given in the Supplementary Appendices.
Tables 1 and 2 show the variation in

E exp �Uið ÞjUi <F�1
U pð Þ� 	

when E exp �Uið Þ½ � ¼ 0:9 but μ
is allowed to vary – σU is adjusted accordingly in each case.
Table 1 relates to the gamma distribution, in which case when
μ = 1 we have the exponential, while Table 2 relates to the
Nakagami distribution, in which case when μ = 0.5 we have
the half normal. The first thing to note is the similarity of the
columns relating to these special cases – for each value of p,
the picture that emerges does not differ radically if one switches
between the exponential and half normal cases.

Note that the relationship between supra-percentile
unconditional mean efficiency and p depends fundamen-
tally on the curvature of fU(Ui = ui). In general, it can be
shown that

∂E exp �Uið ÞjUi <F�1
U pð Þ� 	

∂ ln p

¼ exp �F�1
U pð Þ� ��E exp �Uið ÞjUi <F�1

U pð Þ� 	
;

ð4Þ

i.e. the derivative of E exp �Uið ÞjUi <F�1
U pð Þ� 	

with
respect to ln p is simply the difference between percentile
p in efficiency terms and the supra-percentile unconditional
mean efficiency itself.3 As F�1

U pð Þ moves further to the
right of the peak, this derivative therefore increases more
slowly where the density is steeper, and more rapidly where
the density is flatter. In Tables 1 and 2, in cases where
the mode is zero we therefore see the values changing more
slowly the lower the value of μ.

The columns to the right show how the picture changes in
each case as we move the mode of Ui away from zero – the
difference between the more efficient firms and the frontier
increases, while the differences between the lower deciles
diminishes. Note that the truncated normal model will offer
similar flexibility in this direction due to its ability to
accomodate non-zero modes. On the other hand we see from
the columns to the left that the gamma and Nakagami dis-
tributions, for small μ, can allow for cases in which the first
several deciles of firms have practically no inefficiency at
all – similar to a ZISF model – whereas the truncated normal
does not allow for this situation; it follows from the Meesters
(2014) result that when μ < 0, the truncated normal will be
intermediate between the half normal and exponential cases.

We therefore motivate the Nakagami distribution for Ui in
terms of its flexibility. In particular we argue that, as a gen-
eralisation of the familiar half normal case, it is preferable to
the established truncated normal distribution on account of its
superior ability to allow for a large concentration of firms near
the frontier. The gamma distribution has a similar ability –

previously overlooked. We argue that this feature allows for
more theoretically plausible inefficiency distributions than
other specifications. It is clear that the various columns of
Tables 1 and 2 could lead to substantially different policy
conclusions regarding the ways in which to increase pro-
ductivity, e.g. whether the need is for broad-based strategies
to improve performance in an industry, or more tailored
measures encouraging less efficient firms to either catch up to
the frontier or exit the market.

2.2 Statistical motivation

In this section we discuss motivations besides the flexibility
of the gamma and Nakagami distributions. We first discuss
an estimation problem affecting the N-TN model, which
provides additional motivation for the N-NAK model in
particular. We then discuss improvements in accuracy and
speed of estimation and efficiency prediction, which are key
motivators for revisiting implementation of the N-G model.
Finally, we discuss potential pitfalls.

2.2.1 Estimation issues with the normal-truncated
normal model

Although the likelihood function of the N-TN model has a
convenient expression, and the model is well-established in
the SF literature as a generalisation of the N-HN specifi-
cation, it appears to be quite common to encounter pro-
blems with convergence when attempting to estimate the
model by maximum likelihood. Rather than converging, the
estimation routine keeps iterating as σU and μ grow
increasingly large in magnitude.

This phenomenon may be explained with reference to the
Meesters (2014) result, discussed in Section 2.1, that the
truncated normal distribution contains the exponential as a
limiting case. More specifically, Meesters (2014) notes that
when σU ! 1; μ ! �1 such that �μ=σ2U > 0 remains
constant, the distribution of Ui converges to
Exponential �μ=σUð Þ, so that the N-TN model contains the
N-EXP on a boundary of its parameter space. If the true
distribution of Ui is exponential – or the exponential is the
best possible approximation – then the estimator may well
fail to converge as described. In Section 4 we demonstrate
that this occurs in all three of our empirical applications,4

and that the parameter estimates and efficiency predictions2 For example, if p = 0.1, we are considering the 10% most efficient
firms, if p = 0.2 the 20% most efficient, and so on.
3 Derivation is shown in the Supplementary Appendices. 4 This was by chance rather than design.
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from the N-TN models become practically identical to those
from the N-EXP models.

If this convergence issue with the N-TN model occurs
frequently in applications to real data, this provides a
powerful motivation for considering alternative flexible
specifications, such as the N-G and N-NAK. It strengthens
the case for the N-NAK model, as an alternative general-
isation of the N-HN, in particular.

2.2.2 Accuracy and speed of estimation

In order to estimate the N-G and N-NAK models via max-
imum likelihood, we need to derive the marginal densities of
Ei in each case, which we can use to derive the log-likelihood
functions. In contrast to the N-TN, N-HN, and N-EXP cases,
the likelihood and efficiency predictors of the N-G model lack
convenient expressions in terms of the kinds of functions
routinely available in standard statistical and econometric
software packages. Implementation of the N-G model has
received considerable attention over the years, given the dif-
ficulty of the integral that appears in the marginal density of Ei

which, under Assumptions 1 and 2, is given by

f E Ei ¼ εið Þ ¼ 1ffiffiffiffi
2π

p
Γ μð ÞσVσμU

exp � 1
2

εi
σV

� �2� �

�
Z 1

0
uμ�1
i exp � u2i

2σ2V
� sσUεiþσ2Vð Þui

σ2VσU

� �
dui:

ð5Þ

Stevenson (1980) derived relatively simple expressions for
Eq. (5) for a few cases of integer μ. However the lack of a
convenient general solution has, until now, been a barrier to
direct maximum likelihood estimation of the model.
Various approaches to approximation of the likelihood
have therefore been explored: Greene (1990) used Gauss-
Laguerre quadrature, Ritter and Simar (1997) used the
trapezoid rule, and Greene (2003) used simulation.

In terms of speed and accuracy, de Andrade and Souza
(2018) compare various methods of approximating the N-G
density and show that the most accurate is inverse fast
Fourier transformation (FFT) of the characteristic function, as
proposed by Tsionas (2012). This takes advantage of two
facts: first, that the characteristic function of the sum of two
independent random variables is simply the product of their
individual characteristic functions; second, that the density
function is the inverse Fourier transformation of the char-
acteristic function. The approach taken by Tsionas (2012) is
therefore to apply inverse FFT – a fast, discrete approxima-
tion of the inverse Fourier transform – to the N-G char-
acteristic function, in order to approximate the log-likelihood.

Results from Tsionas (2012) and de Andrade and Souza
(2018) suggest that this inverse FFT approximation is highly
accurate and, for the N-EXP model, yields densities and

maximum likelihood estimates that are practically identical to
those obtained using exact expressions within a matter of
seconds for moderate sample sizes. Improvements in accuracy
and speed from using exact expressions, such as we derive for
the N-G and N-NAK likelihoods, may therefore be marginal.

Based on application of the inverse FFT approximation to
both real and simulated data it appears, however, that it
sometimes leads to issues with respect to accuracy or
numerical stability, or both. For the sake of brevity, we do not
report these results in full, though a discussion of accuracy and
comparison of optimisation times for the N-G models in our
empirical applications is included in Section 4.2. The accuracy
issue can be remedied by increasing sequence length, at the
cost of longer optimisation times – though without also
maximising the exact log-likelihood for comparison, it may be
hard to diagnose. The issue of instability is more concerning.

A comprehensive investigation of these issues, and possible
remedies, is beyond the scope of this paper. We conjecture that
they are a result of the periodicity assumption underlying FFT
algorithms, i.e. the assumption that the input is one period of a
continuous, periodically repeating signal. This should be no
issue if we are approximating a symmetric density – the per-
iodic extension of a (symmetrically) truncated symmetric
density yields a continuous, repeating signal. But in SF mod-
elling, the composed error density is, by construction, asym-
metric; the same process of symmetric truncation and periodic
extension will result in jump discontinuities. The presence of
such jump discontinuities causes a phenomenon known as
spectral leakage, which introduces unwanted artefacts into the
output – for a discussion see e.g. Brigham (1988).

Figure 1, which compares exact and approximated log-
densities for a N-EXP model in which σV = σU = 0.1,
appears to support this conjecture. The density was
approximated for the interval εi 2 �0:8; 0:8½ � and, compar-
ing the approximated and exact log-densities over the same
interval, we see that the approximation is practically exact
around the mode and right tail of the distribution, but differs
significantly at the left tail. In this instance, moving right to
left, the inverse FFT approximation diverges from the exact
log-density at around εi = − 0.4 and increases such that both
the left and right tails intersect the vertical axis at a value of
around −5. As a result of the FFT algorithm forcing the
output to conform to its assumption of periodicity, we
therefore have a significant degree of inaccuracy in the left
tail of the distribution. The fact that the density is increasing
as we move further into the left tail is particularly con-
cerning, since it suggests that outlying observations could
cause significant inaccuracy and numerical instability.5

5 This issue is hard to detect when visually examining the densities as
in Tsionas (2012) and de Andrade and Souza (2018) due to the fact it
occurs in the tails of the distribution, but is more apparent when
comparing log-densities or log-likelihoods.
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As noted by Beckers and Hammond (1987), a solution to
Eq. (5) is given by expression 3.462.1 of Gradshteyn and
Ryzhik (2014). To our knowledge, however, the only study to
have implemented the N-G model using this result is Ham-
mond (1992) – Yuengert (1993) estimates an N-G model, but
with the restriction α = 2, taking advantage of the results
derived by Stevenson (1980) for this special case. By deriving
similar results for the N-G and N-NAK likelihoods and effi-
ciency predictors, we avoid potential issues of inaccuracy and
instability in estimation, and additionally avoid the need to
use approximations for efficiency prediction.

Of course, the evaluation of any special function – even
the exponential function, for example – involves numerical
approximation methods, e.g. series expansions, asymptotic
expansions, recurrence relations, and continued fractions.
But these approximations can be optimised for precision
and stability such that they can be computed to arbritrary
precision, whereas the issue of spectral leakage affecting the
inverse FFT approximation is a more fundamental problem
arising from limitations of FFT algorithms in handling non-
periodic inputs. The use of special function representations
of likelihoods will therefore generally offer greater preci-
sion than inverse FFT approximations.

2.2.3 Other considerations

A further motivation for the use of the gamma and Naka-
gami distributions is they are more flexible with respect to
skewness than other commonly-used distributions for Ui.
For example, as discussed by Papadopoulos and Parmeter
(2021),

Ui � Nþ 0; σ2V
� � ¼) Skewness Uið Þ ¼

ffiffi
2

p
4�πð Þ

π�2ð Þ3=2 ;

Ui � Nþ μ; σ2U
� � ¼) Skewness Uið Þ 2 0; 2ð Þ;

Ui � Exponential 0; σUð Þ ¼) Skewness Uið Þ ¼ 2;

so that the skewness of commonly-used distributions for Ui

are either fixed or bound within a relatively narrow range.

By contrast, the gamma and Nakagami distributions are
very flexible with respect to their skewnesses, such that

Ui � Gamma μ; σUð Þ ¼) Skewness Uið Þ ¼ 2ffiffi
μ

p 2 0;1½ Þ;
Ui � Nakagami μ; σUð Þ ¼) Skewness Uið Þ ¼ Γ μþ3=2ð Þ

μ3=2Γ μð Þ 2 1;1ð Þ:

We should also address some potential issues. Ritter and
Simar (1997) note that the N-G model suffers from
potential identification problems owing to the way the
composed error becomes Gaussian in three different
cases. These cases and their analogues in the N-NAK
model are outlined in Propositions 1–3 in the Supple-
mentary Appendices. These issues are not unique to the
N-G and N-NAK models, but apply to SF models with
flexible distributions for Ui more generally.

It is worth noting that the N-G and N-NAK models
appear to suffer from the ‘wrong skewness’ problem – see
Papadopoulos and Parmeter (2024) for a recent review – as
with other common specifications. They offer additional
flexibility with respect to the magnitude of population
skewness, but not its sign. In addition, both satisfy
Assumptions 1–5 of Horrace and Wright (2020), so we can
conclude that the ordinary least squares (OLS) estimator is a
stationary point in the N-G and N-NAK likelihoods.
Establishing the stability of these stationary points and
connecting this to the skewness of the OLS residuals would
be challenging, given the complexity of their scores and
Hessians. However, our experience using simulated data
suggests that maximum likelihood estimation breaks down
when the OLS residuals are skewed in the wrong direction –
this makes intuitive sense given the identification issues we
have just referred to – or when the excess kurtosis of the
OLS residuals is negative, pointing to an analogous ‘wrong
kurtosis’ problem.

We may also note that the gamma and Nakagami
densities, when μ < 1 and μ < 0.5, respectively, possess
vertical asymptotes – and thus non-differentiable points –
at zero. In Section 3, however, we will see that this is not
true of the densities of Ei, so this does not cause any
problems with respect to maximum likelihood estimation.
Of greater relevance is the fact that the densities of Ui

become log-convex everywhere in these cases, with
implications for ML estimation and efficiency prediction,
discussed further in Section 3.2 and the Supplementary
Appendices, respectively.

3 Implementation

In this section, we discuss implementation of the N-G and
N-NAK models. In Section 3.1 we derive of key expres-
sions such as log-likelihoods and efficiency predictors. In
Section 3.2 we discuss our approach to estimation.

Fig. 1 Comparison of exact and approximated log-densities for
Ei ¼ Vi � Ui; Vi � N 0; σ2V

� �
; Ui � Exponential 1=σUð Þ; Vi ?? Ui;

σV ¼ σU ¼ 0:1
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3.1 Derivation

Since one of the main objectives of SF analysis is the
prediction of firm-level efficiencies, we must also derive
formulae for efficiency predictors in each case. Following
Jondrow et al. (1982) and Battese and Coelli (1988), the
most commonly used predictors are the conditional means
E UijEi ¼ εi½ � and E exp �Uið ÞjEi ¼ εi½ �, and the condi-
tional mode Mode UijEi ¼ εið Þ.

Theorems 1 and 2 give the marginal densities of Ei in
the N-G and N-NAK cases, respectively, while their
corollaries give the relevant conditional densities and
efficiency predictors. Eq. (6) was derived previously by
Beckers and Hammond (1987), whereas Eqs. (7–15)
appear to be new results. In these expressions, Dν denotes
Whittaker’s parabolic cylinder function (Whittaker 1902).
The proofs are straightforward, and are shown in the
Supplementary Appendices.

These theorems also give us alternative expressions for
the key results for the N-EXP and N-HN models, when
μ = 1 and when μ = 0.5, respectively. The expressions
derived by Aigner et al. (1977) can be recovered given
the following special cases of the parabolic cylinder
function:

D�1 zð Þ ¼ ffiffi
π
2

p
exp z2

4

� �
1� erf zffiffi

2
p
� �� �

;

D�2 zð Þ ¼ exp � z2

4

� �
� ffiffi

π
2

p
z exp z2

4

� �
1� erf zffiffi

2
p
� �� �

:

Further special cases exist for other integer and rational
values of ν.

Theorem 1 Under Assumptions 1 and 2, the marginal
density of Ei is given by

f E Ei ¼ εið Þ ¼ σμ�1
V D�μ zið Þffiffiffiffiffi

2π
p

σμU
exp

zi
2

� �2
� 1
2

zi � σV
σU

� �2
 !

; zi ¼ sεi
σV

þ σV
σU

:

ð6Þ

Corollary 1.1 Under Assumptions 1 and 2, the conditional
density of Ei = εi∣Ui = ui is given by

f UjE Ui ¼ uijEi ¼ εið Þ ¼
uμ�1
i exp � 1

2
ui
σV

� �2
� uizi

σV

� �

σμVΓ μð Þ exp zi
2

� �2� �
D�μ zið Þ

; ui � 0:

0; ui < 0:

8>>>><
>>>>:

ð7Þ

Corollary 1.2 Under Assumptions 1 and 2,

E UijEi ¼ εi½ � ¼ μσV
D�μ�1 zið Þ
D�μ zið Þ : ð8Þ

Corollary 1.3 Under Assumptions 1 and 2,

E exp �Uið ÞjE ¼ εi½ � ¼
exp ziþσV

2

� �2� �
exp zi

2

� �2� � D�μ zi þ σVð Þ
D�μ zið Þ : ð9Þ

Corollary 1.4 Under Assumptions 1 and 2,

Mode UijEi ¼ εið Þ ¼
0; z2i < 4ð1� μÞ:

σV
2 max 0;�zi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i þ 4ðμ� 1Þ

p� �
; z2i � 4ð1� μÞ:

8<
:

ð10Þ

Theorem 2 Under Assumptions 1 and 3, the marginal
density of Ei is given by

f E Ei ¼ εið Þ ¼ Γ 2μð Þ
Γ μð Þ

ffiffiffi
2
π

r
μμσ2μ�1

V

σ2μ
D�2μ zið Þ exp zi

2

� �2
� 1
2

σzi
σU

� �2
 !

;

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μσ2V þ σ2U

q
; λ ¼ σU=σV ; zi ¼ sεiλ

σ
:

ð11Þ

Corollary 2.1 Under Assumptions 1 and 3, the conditional
density of Ei = εi∣Ui = ui is given by

f UjE Ui ¼ uijEi ¼ εið Þ ¼
u2μ�1
i exp � 1

2
σui
σVσU

� �2
� σuizi

σVσU

� �
σVσU
σ

� �2μΓ 2μð Þ exp zi
2

� �2� �
D�2μ zið Þ

; ui � 0:

0; ui < 0:

8>>>><
>>>>:

ð12Þ

Corollary 2.2 Under Assumptions 1 and 3,

E UijEi ¼ εi½ � ¼ 2μσVσU
σ

D�2μ�1 zið Þ
D�2μ zið Þ : ð13Þ

Corollary 2.3 Under Assumptions 1 and 3,

E exp �Uið ÞjEi ¼ εi½ � ¼
exp zi

2 þ σVσU
2σ

� �2� �
D�2μ zi þ σVσU

σ

� �
exp zi

2

� �2� �
D�2μ zið Þ

:

ð14Þ

Corollary 2.4 Under Assumptions 1 and 3,

Mode UijEi ¼ εið Þ

¼
0; z2i < 4ð1� 2μÞ:
σVσU
2σ max 0;�zi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i þ 4ð2μ� 1Þ

p� �
; z2i � 4ð1� 2μÞ:

8<
:

ð15Þ
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3.2 Estimation

Beckers and Hammond (1987) proposed direct maximum
likelihood estimation of the N-G model using the parabolic
cylinder function representation of the N-G density shown
in Eq. (6). Specifically, the authors suggested using the
definition of Dν in terms of Kummer’s confluent hyper-
geometric function 1F1 (Kummer 1837):

DνðzÞ ¼ 2ν=2
ffiffiffi
π

p
e�

z2

4 1
Γ 1�ν

2ð Þ 1F1 � ν
2 ;

1
2 ;

z2

2

� �
� 1

Γ �ν
2ð Þ 1F1

1�ν
2 ; 32 ;

z2

2

� �� �
;

1F1 a; b; zð Þ ¼ P1
k¼0

að Þkzk
bð Þkk! ;

ð16Þ

where zð Þn ¼ Γ zþ nð Þ=Γ zð Þ denotes the Pochhammer
symbol, and calculating the function 1F1, via this series
representation, to machine precision. Efforts were made to
implement this approach, but these were ultimately unsuc-
cessful (Hammond 2023). The issue appears to be that, since
the numerator and denominator of Eq. (16) may grow large
very quickly for certain parameter values, we encounter the
limits of floating-point arithmetic before the series has
converged to machine precision, resulting in problems of
arithmetic underflow or overflow. These are familiar issues in
the field of computational mathematics, and implementations
of special functions typically involve choosing, for a given set
of argument values, the best available approximation.

The lack of such implementations of Dν or 1F1 in
commonly-used econometric and statistical software packa-
ges still presents a hurdle to use of Eqs. (6–9) and (11–14). A
later application of the N-G model to UK interwar electricity
generating plant costs by Hammond (1992) used nag_-
specfun_1f1_real, an implementation of 1F1 from the
NAG Fortran library (Numerical Algorithms Group, n.d.).
This is proprietary software to which many analysts may lack
access, and to our knowledge, there have been no further
applications. However, two relatively recent open-source
implementations of Dν are available in Python (Van Rossum
and Drake 2009): the scipy.special.pbdv function,
from the SciPy package (Virtanen et al. 2020), and the
mpmath.pcfd function from the mpmath package
(Johansson et al. 2023). Implementations of 1F1 are also
available from these packages, and also from the
hyperg_1F1 function from the R library gsl (Hankin
2006), but for the sake of convenience and concision, we will
prefer the parabolic cylinder representations.

Figures 2 and 3 show Eqs. (6) and (11), respectively,
plotted for several instances where s = 1 and Var Eið Þ ¼ 1,
but μ is allowed to vary. The parabolic cylinder function has
been calculated using the scipy.special.pbdv func-
tion. In Fig. 2, i.e. the N-G case, μ = 1 corresponds to the
N-EXP case, in which case Ei follows an exponentially-
modified Gaussian (EMG) distribution (Grushka 1972). By

analogy, in the more general case we will call the dis-
tribution of Ei the gamma-modified Gaussian (GMG) dis-
tribution. In Fig. 3, i.e. the N-NAK case, μ = 0.5
corresponds to the N-HN case, in which case Ei follows a
skew-normal distribution (Azzalini 1985). The distribution
of Ei in the N-NAK model is therefore a generalised skew
normal distribution. Checking against the EMG and skew
normal special cases, we find identical results, as expected.

Under Assumptions 1 and 2 – i.e. in the N-G case –

given Eq. (6), we derive the log-likelihood function

ln L ¼ I μ� 1ð Þ ln σV � I
2 ln 2� I

2 ln π � Iμ ln σU � 1
2

PI
i¼1

εi
σV

� �2

þ 1
4

PI
i¼1

sεi
σV
þ σV

σU

� �2
þPI

i¼1
lnD�μ

sεi
σV
þ σV

σU

� �
:

ð17Þ
Under Assumptions 1 and 3 – i.e. in the N-NAK case –

given Eq. (11), we derive the log-likelihood function

ln L ¼ I lnΓ 2μð Þ � I lnΓ μð Þ þ I
2 ln 2� I

2 ln π þ Iμ ln μþ I 2μ� 1ð Þ ln σV

� Iμ ln σ2U þ 2μσ2V
� �� 1

2

PI
i¼1

εi
σV

� �2
þ 1

4

PI
i¼1

sεiσU=σVffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Uþ2μσ2V

p
� �2

þPI
i¼1

lnD�2μ
sεiσU=σVffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Uþ2μσ2V

p
� �

:

ð18Þ
Beckers and Hammond (1987) discuss derivation of the
Jacobian and Hessian in the N-G case. However, the terms

Fig. 2 Density plots for Ei ¼ Vi � Ui; Vi � N 0; σ2V
� �

; Ui �
Gamma μ; σUð Þ; Vi ?? Ui; Var Við Þ ¼ Var Uið Þ ¼ 0:5

Fig. 3 Density plots for Ei ¼ Vi � Ui; Vi � N 0; σ2V
� �

; Ui �
Nakagami μ; σUð Þ; Vi ?? Ui; Var Við Þ ¼ Var Uið Þ ¼ 0:5

Journal of Productivity Analysis



involving differentiation of Dν with respect to ν are very
cumbersome and involve Kampé de Fériet functions (Kampé
de Fériet 1937) and their derivatives – see results from
Ancarani and Gasaneo (2008) on the derivatives of 1F1. As
such, supplying the analytical Jacobian and Hessian could
complicate matters considerably, since it would require
implementations of additional special functions. For our
purposes, it will be much more convenient to approximate
the score vector and Hessian matrix numerically.

Suitable optimisation routines are available from SciPy
and other Python packages, while the NumPy package
(Harris et al. 2020) includes functions for working with
arrays and matrices, giving us everything we need for a
Python implementation of the N-G model. Using these, we
have developed a Python package called FronPy (Stead
2023) which enables estimation of the N-G and other SF
models, and has been used to generate all the results shown
in the present study.6

As noted in Section 2, the gamma and Nakagami den-
sities are log-convex everywhere when μ < 1 and μ < 0.5,
respectively. We typically make use of the result that strong
log-concavity of fE implies that the likelihood has only one
stationary point, and that this is a maximum. In turn, the fact
that log-concavity is preserved under convolution means
that, if both fV and fU are strongly log-concave, so too is fE.
When one or both of these densities are not strongly log-
concave, as in our case, this raises the possibility of multiple
stationary points in the N-G and N-NAK likelihood func-
tions. This suggests a need for careful consideration of
optimisation algorithms. The use of quasi-Newton methods
– which make use of the curvature information from the
Hessian to set the direction of travel and ensure we con-
verge to a maximum – offers an advantage over simpler
gradient descent methods in this setting.

Fronpy uses, as a default option, a modified Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm with a Wolfe-
type line search to minimise the negative log-likelihood
function. Such an approach has been shown to perform well
in converging to global minima even when the objective
function is non-convex (Li and Fukushima 2001). The
Jacobian and inverse Hessian are calculated numerically,
and the latter is used to derive the covariance matrix. The
reparameterisation

θ0 ¼ β0 ln σV ln σU ln μ
� �0

is used to ensure positive values of σV, σU, and μ.
Approaches taken to selecting starting values are discussed
in the Supplementary Appendices. Following estimation of

the model, FronPy also calculates the efficiency predictors
given in Eqs. (8–10) and (13–15).

4 Application

In this section, we demonstrate three applications of the
N-G and N-NAK models to real data, and compare the
results to those from N-HN, N-EXP, and N-TN models.
Application 1 is to the Christensen and Greene (1976)
dataset on the costs, outputs, and input prices of a 1970
cross-section of 123 US electricity generating firms.
Application 2 is to the 1990-1997 panel dataset on the
outputs and inputs of 43 smallholder rice producers in the
Philippines used by Coelli et al. (2005) and others. Appli-
cation 3 is to the dataset on interwar electricity generating
plants in Great Britain used by Foreman-Peck and Waterson
(1985) and Hammond (1992), consisting of a cross-section
of 184 steam generating plants supplying the Central
Electricity Board in 1937 – of which 129 were municipally
operated, and the remainder were privately operated.

In these applications, we adopt the functional forms used
by Greene (2003), Coelli et al. (2005), and Hammond
(1992), respectively. In the latter case, we have a particular
interest in comparing our results from our N-G model to
those obtained by Hammond (1992) who, as discussed
previously, provides – to our knowledge – the sole example
of a direct maximum likelihood estimation of the N-G
model prior to our own.

In each case, we estimate models as described by
Assumption 1 under several different assumptions –

Assumptions 2 and 3, i.e. N-G and N-NAK models, and
their N-EXP and N-HN special cases, along with a N-TN
model for comparison. All models are estimated using
FronPy. In Application 1,

yi ¼ ln ci
ei

� �
; s ¼ �1;

x0iβ ¼ β0 þ β1 ln qi þ β2ln
2qi þ β3 ln

wi
ei

� �
þ β4 ln

ri
ei

� �
;

where ci is total cost, qi is output in millions of kilowatt-
hours generated, wi is the price of labour, ri is the price of
capital, and ei is the price of fuel. In Application 2,

yit ¼ ln qit; s ¼ 1;

x0itβ ¼ β0 þ β1 ln x1it þ β2 ln x2it þ β3 ln x3it
þ β11ln

2x1it þ β12 ln x1it ln x2it þ β13 ln x1it ln x3it
þ β22ln

2x2it þ β23 ln x2it ln x3it þ βtt;

where qit is tonnes of freshly threshed rice, x1it is hectares of
land planted, x2it is days of hired and family labour, and x3it
is kilograms of nitrogen, phosphorous, and potassium

6 see https://github.com/AlexStead/FronPy for instructions on instal-
lation and usage.
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(NPK) fertiliser used. In Application 3,

yi ¼ ln vci
qi

� �
; s ¼ �1;

x0itβ ¼ β0 þ βq ln qi þ βqq ln qið Þ2 þ βr ln ri

þβrr ln rið Þ2 þ βooi þ βqr ln qi ln ri
þ βrooi ln ri þ βqooi ln qi þ βc ln ci þ βs ln si

þβwwi þ βcc ln cið Þ2 þ βss ln sið Þ2
þ βcs ln ci ln si þ βcwwi ln ci þ βswwi ln si
þβcq ln ci ln qi þ βsq ln si ln qi
þ βwqwi ln qi þ βcr ln ci ln ri þ βsr ln si ln ri
þβwrwi ln ri þ βcocioi
þ βsooi ln si þ βwowioi þ βk ln ki þ βkk ln kið Þ2
þβkq ln ki ln qi þ βkr ln ki ln ri
þ βokoi ln ki þ βck ln ci ln ki
þβsk ln si ln ki þ βwkwi ln ki;

where vci is variable costs, qi is kilowatt-hours generated, ri
is peak capacity utilisation rate, si is average salary (of
salaried staff), ci is a coal price, ki is the maximum
generating capacity, oi and wi are binary dummies
identifying, respectively, continuously-operated plants and
plants in London – the latter a proxy for wages.

In all three applications, all independent variables except
binary dummies are divided by their sample means before
taking logarithms, so that their first-order coefficients may
be interpreted as elasticities at the sample means. Note that
this means that the first-order coefficients in Application 3
will not be comparable to those presented by Hammond
(1992), who did not rescale the data in this way.

4.1 Parameter estimates

Tables 3–5 show selected parameter estimates, standard
errors, and significance stars, along with log-likelihoods, for
each model, for each of our three applications. Note that, for
the sake of brevity, Tables 4 and 5 report only first-order
coefficient estimates, along with the distributional para-
meters and log-likelihoods. Full sets of parameter estimates,
including second-order frontier coefficients, are included for
replication purposes in the Supplementary Appendices.

Across all three applications, we can see that the para-
meter estimates and log-likelihoods produced by FronPy
for the N-HN and N-EXP models match those reported in
Greene (2003), Coelli et al. (2005), and Hammond (1992),
respectively.7 Strikingly, however, none of our N-TN
models converged successfully, and it is immediately

noticeable that the β values and log-likelihoods are practi-
cally identical to those from the N-EXP models.8 The values
of μ and σU are negative and positive, respectively, and large
in magnitude across all three applications. This suggests that
the issue identified by Meesters (2014) in which the N-TN
model approaches the N-EXP at this boundary of its para-
meter space is a real, practical problem, and one that may
occur very frequently in applications to real data.

In contrast, our N-G and N-NAK models converged
successfully in all three applications, and yield results dif-
ferent from those of the N-HN and N-EXP models. Of
immediate interest here are the estimates of the shape
parameters from these models. In each of our N-NAK
models, the estimated μ parameters are less than the N-HN
special case of μ = 0.5. Similarly, two of our three N-G
models have estimates of μ below the N-EXP special case of
μ = 1. These suggests that the N-G and N-NAK models may
be useful primarily in allowing for distributions of Ui with
essentially exponential or Gaussian tails, respectively,
but greater concentrations around zero than their special

Table 3 Parameter estimates – Application 1

N-EXP N-G N-HN N-NAK N-TN

β0 3.7636 3.8231 3.7349 3.8302 3.7632

(0.0205) (0.0282) (0.0369) (0.0209) (0.0202)

β1 0.9664 0.9639 0.9659 0.9638 0.9664

(0.0129) (0.0120) (0.0131) (0.0124) (0.0119)

β2 0.0287 0.0273 0.0303 0.0272 0.0288

(0.0026) (0.0026) (0.0025) (0.0027) (0.0023)

β3 0.2701 0.2787 0.2606 0.2786 0.2700

(0.0651) (0.0670) (0.0627) (0.0607) (0.0635)

β4 0.0332 0.0216 0.0553 0.0206 0.0334

(0.0599) (0.0585) (0.0583) (0.0565) (0.0556)

ln σV −2.2599 −2.1896 −2.2179 −2.1808 −2.2600

(0.1351) (0.1041) (0.2098) (0.0937) (0.1346)

ln σU −2.3285 −1.4297 −1.9008 −2.2989 0.4953

(0.2403) (0.7344) (0.3547) (0.2809) (0.3616)

ln μ 0.00000 −1.7442 -0.69315 −3.1774 –

– (1.2238) – (0.8795) –

σV 0.1044 0.1120 0.1088 0.1130 0.1044

(0.0141) (0.0117) (0.0228) (0.0106) (0.0140)

σU 0.0974 0.2394 0.1494 0.1004 1.6410

(0.0234) (0.1758) (0.0530) (0.0282) (0.5934)

μ 1.0000 0.1748 0.5000 0.0417 −27.3703

– (0.2139) – (0.0367) (18.9008)

ln L 67.9609 68.7326 66.8649 69.0722 67.9504

Standard errors in parentheses

7 In the case of Hammond (1992), note however that we are com-
paring with a reported N-TN model in which μ = 0, making it
effectively an N-HN model.

8 Note that the N-TN results presented by Coelli et al. (2005) and
Hammond (1992) differ. The reasons for this are unclear, but note that
our log-likelihoods are higher. We were also able to replicate the same
phenomenon reported here using other software packages.
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cases – or the N-TN model – can accommodate. In Appli-
cation 2, however, our N-G model has μ = 1.1548 and
implies Mode Uið Þ ¼ 0:1820; Mode exp �Uið Þð Þ ¼ 0:8336,
indicating that it can also be useful to allow for
Mode Uið Þ> 0.

Note that, in Application 3, our results differ from those
of Hammond (1992), who reports an estimate of μ =
0.1165 – our estimate of μ = 0.0472 is even lower. Given
that our log-likelihood is higher – 63.0581 compared to
60.7078 – it appears that Hammond (1992) may have
encountered some issue in convergence, though his esti-
mates certainly appear to have been heading in the same
direction. We were unfortunately unable to obtain the code
used by Hammond (1992). However, we found that our
FronPy package performed well in Monte Carlo simula-
tions for a variety of N-G data generating processes – results
are reported in the Supplementary Appendices.

4.2 Optimisation times

As discussed in Section 3, several different approaches have
previously been used to approximate the N-G likelihood, which
vary with respect to accuracy and computational intensity. One

advantage of the direct implementation in FronPy, aside from
accuracy, is speed of computation. Table 6 compares, for all
three applications, the time taken to maximise the likelihood for
each model. Note that optimisation times will vary depending
on hardware used, and may be expected to fluctuate whenever
the model is re-run depending on, e.g., CPU usage, so the times
given here are merely indicative.

As expected, given the additional parameter, optimisa-
tion times for the N-G and N-NAK models are slightly
longer than for the N-HN and N-EXP models, but broadly
in line with those for the N-TN models. All the models
converge quickly, in a few seconds or fractions of a second.
In contrast, methods such as maximum simulated likelihood
may take anywhere from tens of seconds to several minutes,
depending on sample size and numbers of pseudorandom or
quasirandom draws used.

Table 4 Selected parameter estimates – Application 2

N-EXP N-G N-HN N-NAK N-TN

β0 2.0608 2.0814 2.1523 2.0002 2.0656

(0.0446) (0.1025) (0.0394) (0.0584) (0.0406)

β1 0.5250 0.5248 0.5314 0.5186 0.5242

(0.0882) (0.0784) (0.0795) (0.0780) (0.0787)

β2 0.2477 0.2469 0.2309 0.2482 0.2474

(0.0847) (0.0738) (0.0744) (0.0728) (0.0743)

β3 0.2020 0.2021 0.2033 0.2064 0.2025

(0.0551) (0.0441) (0.0450) (0.0436) (0.0443)

βt 0.0142 0.0143 0.0151 0.0140 0.0142

(0.0077) (0.0065) (0.0065) (0.0066) (0.0066)

ln σV −1.6743 −1.6985 −1.8284 −1.6350 −1.6844

(0.0973) (0.1459) (0.1218) (0.1164) (0.1011)

ln σU −1.3546 −1.4200 −0.8151 −1.1515 0.6422

(0.1045) (0.3073) (0.0718) (0.1500) (0.0583)

ln μ 0.0000 0.1440 −0.6932 −1.7094 –

– (0.6373) – (0.4117) –

σV 0.1874 0.1830 0.1607 0.1949 0.1855

(0.0182) (0.0267) (0.0196) (0.0227) (0.0188)

σU 0.2581 0.2417 0.4426 0.3162 1.9006

(0.0270) (0.0743) (0.0318) (0.0474) (0.1108)

μ 1.0000 1.1548 0.5000 0.1810 −13.2289

– (0.7359) – (0.0745) (0.0404)

ln L −71.3256 −71.2989 −74.4099 −71.6658 −71.3133

Standard errors in parentheses

Table 5 Selected parameter estimates – Application 3

N-EXP N-G N-HN N-NAK N-TN

β0 −1.9075 −1.7486 −1.9171 −1.9531 −1.9081

(0.1446) (0.1165) (0.1338) (0.1308) (0.3396)

βq −0.5150 −0.5332 −0.4844 −0.5567 −0.5148

(0.0818) (0.0817) (0.0863) (0.0766) (0.0822)

βr −0.2967 0.0221 −0.3247 −0.4440 −0.2988

(0.4329) (0.3999) (0.4328) (0.3749) (1.4358)

βo 0.0007 0.1577 −0.0277 0.0363 −0.0002

(0.2433) (0.2337) (0.2338) (0.2067) (0.5485)

βc 0.5734 0.3507 0.6038 0.5883 0.5756

(0.2928) (0.2852) (0.3105) (0.2571) (1.5211)

βs 1.4863 0.9246 1.1317 2.4034 1.4899

(1.7235) (1.5486) (1.6804) (1.5533) (4.3322)

βw 0.2803 0.3011 0.2658 0.3611 0.2799

(0.3286) (0.3097) (0.3500) (0.3060) (0.6383)

βk 0.2899 0.4005 0.3189 0.1450 0.2894

(0.2195) (0.1969) (0.2134) (0.2028) (0.5207)

ln σV −2.1696 −1.8901 −2.2868 −2.1154 −2.1721

(0.1786) (0.0771) (0.2460) (0.0958) (0.8572)

ln σU −1.9348 −0.5848 −1.3543 −1.7206 1.0556

(0.2023) (0.7717) (0.1477) (0.1719) (0.7025)

ln μ 0.00000 −3.0527 −0.69315 −2.8671 –

– (1.1932) – (0.4696) –

σV 0.1142 0.1511 0.1016 0.1206 0.1139

(0.0204) (0.0117) (0.0250) (0.0115) (0.0977)

σU 0.1445 0.5572 0.2581 0.1790 2.8736

(0.0292) (0.4300) (0.0381) (0.0308) (2.0187)

μ 1.0000 0.0472 0.5000 0.0569 −56.6402

– (0.0564) – (0.0267) (45.4836)

ln L 60.4193 63.0581 54.7594 62.2609 60.3847

Standard errors in parentheses
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As discussed in Section 2.2, we compare the time taken
to optimise the N-G model by maximising the exact like-
lihood to the time taken when using the inverse FFT
approximation of the likelihood proposed by Tsionas
(2012). This depends upon the number of grid points used
to approximate the density. When using 212, as suggested
by Tsionas (2012), we find that optimisation times are
comparable to those using the exact expression, but that the
accuracy of the estimated log-likelihoods could be
improved; in the case of Application 3, we found that the
accuracy was not sufficient for the estimation algorithm to
declare convergence. Increasing the number of points to 218

dealt with this issue and resulted in estimated log-
likelihoods and parameter estimates accurate to four deci-
mal places, at the cost of slowing optimisation down
considerably.

Table 7 compares optimisation times for our N-G models
when using exact expressions and when using the inverse
FFT approximation with 218 grid points. With the preceding
discussion in mind, there is a clear trade-off between
accuracy and optimisation time when using the inverse FFT
approximation. By using the exact expressions, we avoid

this trade-off and benefit from a potentially significant
reduction in optimisation time.

4.3 Efficiency predictions

Figures 4–9 show scatter plots of E exp �Uið ÞjEi ¼ εi½ �
against estimated residuals, and Gaussian kernel density
estimates of the distributions of the E exp �Uið ÞjEi ¼ εi½ �,
across Applications 1–3. Following from the discussion in
Section 4.1, we can see that across all three applications, the

Table 6 Model optimisation times

Application Model Time (seconds)

N-EXP 0.0796

N-G 0.1831

1 N-HN 0.1505

N-NAK 0.1739

N-TN 0.5467

N-EXP 0.1947

N-G 0.5641

2 N-HN 0.3629

N-NAK 0.9188

N-TN 0.8495

N-EXP 0.5330

N-G 3.1678

3 N-HN 0.8227

N-NAK 3.0312

N-TN 3.5505

Table 7 Normal-gamma model optimisation times – maximisation of
the exact likelihood (ML) versus the inverse fast Fourier transform
approximation (ML-FFT)

Application Observations Parameters Time (seconds)

ML ML-FFT

1 123 8 0.1831 31.0762

2 43 14 0.5641 27.3343

3 184 37 3.1678 189.6788

Fig. 4 Plots of efficiency predictions against residuals – Application 1

Fig. 5 Kernel density estimates for efficiency predictions – Application 1

Fig. 6 Plots of efficiency predictions against residuals – Application 2
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N-TN and N-EXP models yield practically identical effi-
ciency scores. Again, this highlights the Meesters (2014)
result as a real practical issue which appears to mean that, in
many cases, the N-TN model offers little advantage over
simpler specifications.

By contrast, with the exception of the N-G model in
Application 2, which is not far from the N-EXP special case
of μ = 1, the N-G and N-NAK models yield efficiency

predictions noticeably different to those from the N-EXP
and N-HN models, with a much greater concentration near
1. This is a reflection of the fact that the estimated values of
μ in these cases are far below the values of μ = 1 and μ =
0.5 that give the N-EXP and N-HN special cases. As can be
seen in Tables 1 and 2, this means that the densities of Ui

are even more concentrated at zero than in the N-HN or
N-EXP cases.

The motivation for the N-G and N-NAK models is nicely
illustrated by the fact that they give us a significantly dif-
ferent picture than the N-HN and N-EXP models regarding
the distribution of efficiency scores, while the N-TN mimics
the N-EXP in these cases. We see, in Applications 1 and 3,
the concentration of a significant number of firms near the
frontier, similar to what a ZISF model might yield.
Regarding the differences between the N-G and N-NAK
models, we see that in Application 1 they yield highly
similar efficiency predictions, while there are significant
differences in Application 2; the latter likely due to differ-
ences in the sensitivity of the two models to the outlying
observations that can be seen in that application, given that
the tails of the Nakagami and gamma distributions are
essentially Gaussian and exponential, respectively.

It is worth remarking on the economic significance of
some of these results. Results from the N-G and N-NAK
models in Applications 1 and 3 – relating to electricity
generation plants in the US and UK, respectively – sug-
gest a large proportion of plants on or near the frontier. In
the UK case, the mean efficiency prediction was 0.9869
among municipally operated plants, and 0.9754 among
privately operated plants according to the N-G model
(0.9596 and 0.9339 respectively according to the N-NAK
model). Different ownership models do not appear to have
been decisive. This makes sense given that both types of
plant had an incentive to operate efficiently to reduce their
unit costs and improve their standing in the ‘merit order’
operated by the Central Electricity Board in order to
minimise the cost of supply (Hammond 1992). In contrast,
results for Application 2 – relating to rice farms in the
Philippines – suggest much lower efficiency scores on
average and, in the N-G case, a non-zero mode for inef-
ficiency – results that appear to make sense in the context
of significant subsidies, widespread family ownership,
and limited technological diffusion. The estimated shapes
and scales of the efficiency distributions therefore appear
intuitive in economic terms.

4.4 Likelihood ratio tests

If we are concerned with testing down from more flexible
models to more restrictive special cases, are three likelihood
ratio (LR) tests of interest in each of Applications 1–3.
These are testing down from the N-G to the N-EXP, from

Fig. 7 Kernel density estimates for efficiency predictions – Applica-
tion 2

Fig. 8 Plots of efficiency predictions against residuals – Application 3

Fig. 9 Kernel density estimates for efficiency predictions – Application 3
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the N-NAK to the N-HN, and from the N-TN. The corre-
sponding null hypotheses are H0: μ = 1, H0: μ = 0.5, and
H0: μ = 0, respectively. These each involve only one
restriction, and therefore the LR statistics follow a χ21 dis-
tribution (Wilks 1938). Table 8 shows the likelihood ratio in
each case, along with significance stars.

The results of these tests vary significantly between
applications. Although the differences between the N-G and
N-NAK models and their special cases are economically
significant – in terms of the different pictures they give of
efficiency levels – the improvements in the log-likelihoods are
modest. From the N-NAK models we only weakly reject the
N-HN null models in Applications 1 and 2, but strongly reject
it in Application 3, and from the N-G models we fail to reject
the null N-EXP models in Applications 1 and 2, but weakly
reject it in Application 3. In terms of comparing the N-G and
N-NAK models, note that both the gamma and Nakagami
distributions belong to the generalised gamma family (Stacey
1962), so one approach is to simply choose the higher log-
likelihood. On this basis, the N-NAK model would be pre-
ferred in Application 1, while the N-G model would be pre-
ferred in Applications 2 and 3.

5 Conclusion

Much prior motivation for the N-G model has focused on its
ability to accommodate non-zero modes of inefficiency. Our
empirical applications suggest that the N-G and N-NAK
models may in fact be more useful for their ability to
accommodate a greater concentration of inefficiencies near
zero than their N-EXP and N-HN special cases permit. The
resulting efficiency predictions place most firms very close
to the frontier, and thus may tell a more plausible story in the
context of competitive markets or effective regulation.

We have derived closed-form solutions for the log-like-
lihoods, efficiency predictors, and other key results for the
normal-gamma (N-G) and normal-Nakagami (N-NAK)

stochastic frontier (SF) models. The relevant functions are
expressed in terms of the parabolic cylinder function, mir-
roring a similar derivation of the N-G likelihood – in terms
of the confluent hypergeometric function 1F1 – by Beckers
and Hammond (1987).

The fact that the N-G likelihood involves special func-
tions not typically found in standard statistical and econo-
metric software packages has hitherto been a barrier to
direct maximum likelihood estimation – bar a lone example
in Hammond (1992) – and for this reason several approa-
ches to approximating the density have been proposed. Our
direct implementation offers improvements in stability,
accuracy and speed. In particular, use of exact expressions
avoids issues of spectral leakage that arise when applying
the inverse fast Fourier transform approximation proposed
by Tsionas (2012). Applications to real and simulated data
suggest that our implementation – included as part of the
Python package FronPy – performs well.

The value of this work lies not only in the fact that esti-
mation of the N-G model has been a longstanding challenge in
the SF literature, but also because the N-G and N-NAK models
appear to perform better than the normal-truncated normal (N-
TN) model in applications to real data. In all three of our
applications, we note that the N-TN model fails to converge
due to an issue noted by Meesters (2014): that the N-TN model
can approach the normal-exponential at a boundary of its
parameter space. In contrast the N-G and N-NAK models work
well in all of our applications. The N-NAK model therefore
emerges as a potentially more attractive generalisation of the
normal-half normal (N-HN) model.

This paper has focused on alternative inefficiency distribu-
tions. In recent years, the importance of the assumed noise
distribution has also gained attention – see Papadopoulos
(2023) for a recent review. The pairing of gamma and Naka-
gami inefficiency distributions with alternative noise distribu-
tions may be an interesting direction for future research.

Data availability

Guidance on accessing the data used in this study can be
found in the supplementary material files.
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