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Abstract Low-light images often fail to accurately capture color and texture, limiting their 

practical applications in imaging technology. The use of low-light image enhancement 

technology can effectively restore the color and texture information contained in the image. 

However, current low-light image enhancement directly calculates from low-light to 

normal-light images, ignoring the basic principles of imaging, and the image enhancement 

effect is limited. The Retinex model splits the image into illumination components and 

reflection components, and uses the decomposed illumination components and reflection 

components to achieve end-to-end enhancement of low-light images. Inspired by the Retinex 

theory, this study proposes a low-light image enhancement method based on multispectral 

reconstruction, which first uses a multispectral reconstruction algorithm to reconstruct a 

metameric multispectral image of a normal-light RGB image, then uses a deep learning 

network to learn the end-to-end mapping relationship from a low-light RGB image to a 

normal-light multispectral image. In this way, any low-light image can be reconstructed into a 

normal-light multispectral image. Finally, the corresponding normal-light RGB image is 

calculated according to the colorimetry theory. To test the proposed method, the popular 

dataset for low-light image enhancement of LOL is adopted to compare the proposed method 

and the existing methods. During the test, a multispectral reconstruction method based on 

reversing the ISP of RGB imaging is used to reconstruct the corresponding metameric 

multispectral image of each normal-light RGB image in LOL, and the deep learning 

architecture proposed by Zhang et al. with CBAM added is used to establish the mapping 

relationship between the low-light RGB images and the corresponding reconstructed 

multispectral images. The proposed method is compared to existing methods such as 

Self-supervised, RetinexNet, RRM, KinD, RUAS, and Uretinex-net. In the context of the 

LOL dataset and an illuminant chosen for rendering, the results show that the low-light image 

enhancement method proposed in this study is better than the existing methods. 

Index Terms: Color imaging; Low-light image enhancement; Imaging model; CBAM; 

Multispectral reconstruction 

Introduction 

Images taken with insufficient lighting intensity have defects such as underexposure and 

missing image texture details, which limit the extraction of image features and applications in 

the visual tasks. To address this problem, researchers have proposed many low-light image 

enhancement methods[1-8]. The Retinex theory assumes that the image can be decomposed 

into two components of illumination and reflectance[1], which is widely used in low-light 

enhancement tasks. Based on this theory, the Single-scale Retinex[2], Multi-scale Retinex[3] 



 

were developed. Wang et al. proposed a method to enhance image details while maintaining 

lighting naturalness[4]. Li et al. proposed a robust Retinex method by adding a noise term to 

handle low-light image enhancement under strong noise conditions[5].  

With the development of deep learning in the field of computer vision, neural networks have 

also been used in low-light enhancement. Enhancement networks based on deep learning 

usually use a large number of data sample pairs to extract data features and cooperate with 

nonlinear function fitting to obtain expected results. The KinD network, trained with image 

pairs taken under varying exposure conditions, can decompose images into reflection and 

illumination components[6]. Benefiting from the progress of convolutional neural networks，

Li et al. proposed LightenNet to enhance low-light images[7]. Inspired by information entropy 

theory and the Retinex model, Zhang et al. proposed a self-supervised low-light image 

enhancement network, which only requires minutes of training to achieve image 

enhancement[8]. In addition, Liu et al. proposed the RUAS method to construct a lightweight 

yet effective enhancement network for low-light images in real-world scenarios[9]. Wu et al. 

proposed a Retinex-based deep unfolding network (URetinex-Net), which unfolds an 

optimization problem into a learnable network to decompose a low-light image into 

reflectance and illumination layers[10]. Furthermore, some physical modeling methods and 

those integrate denoising and color restoration have also been studied recently[11,12]. 

The above image enhancement methods overlook the camera imaging model which includes 

the light source, the object, and the camera. As we all know, when the light is incident on the 

surface of an object, the object will reflect part of the wavelength. The reflected radiance is 

acquired by the camera and forms an RGB image that satisfies human eye perception[13]. In 

the field of color science, spectral reflectance is considered the fingerprint of color 

information. A multispectral image contains not only two-dimensional feature information but 

also three-dimensional spectral information. Among existing multispectral image acquisition 

methods, the multispectral reconstruction technology based on machine learning algorithms 

has received widespread attention from researchers. Finding the connection between RGB 

images and multispectral images through mathematical algorithms can provide fairly accurate 

multispectral approximations[14].  

Based on the strong correlation between multispectral images and RGB images, Zhang et al. 

proposed a deep-learning network on the basis of dense connections[15]. The network first 

extracts shallow information from the RGB image then uses a 7-layer dense network to learn 

the deep mapping relationship of them, and finally outputs the multispectral image 

corresponding to the RGB image through a reconstruction layer including three layers of 

convolution. Li et al. proposed an adaptive weighted network based on an attention 

mechanism (Adaptive Weighted Attention Network, AWAN)[16], it mainly consists of dual 

residual attention blocks (Dual Residual Attention Blocks, DRAB)[17]. In order to achieve 

spectral reconstruction under unknown spectral response, Shi et al. proposed the HSCNN+ 

network based on the HSCNN network by using a convolutional layer instead of the 

up-sampling step[18]. Then the residual network commonly used in computer image research is 

added to increase the network depth and improve reconstruction accuracy[19]. After using the 

dense networks, a better spectral reconstruction accuracy was achieved[20]. 



 

The Retinex theory, akin to the camera's perception process, equates the image's reflection 

component with the spectral reflectance in color visual perception, offering a theoretical 

foundation for low-light image enhancement based on spectral components. In the proposed 

method, we use a multispectral reconstruction method based on reversing the ISP of RGB 

imaging to obtain metameric multispectral images of normal-light RGB images, and apply the 

dense neural network proposed by Zhang et al. to establish the mapping relationship between 

low-light RGB images and normal-light multispectral images[15]. In this way, the purpose of 

low-light image enhancement can be achieved. Compared with direct low-light image 

enhancement, the advantage underlying the proposed method is that the intermediate step of 

multispectral reconstruction will enrich the data information for low-light image enhancement. 

In addition, the dense connections used in the network structure not only help to alleviate the 

possibility of non-convergence of network training but also the number of channels in the 

dense blocks greatly reduces the amount of parameters. Finally, the hybrid attention 

mechanism of CBAM is used to weight the feature channels[21] and reduce the patch noise in 

the reconstructed spectrum, so that the obtained low-light enhancement RGB image has better 

visual effects than that enhanced by existing enhancement methods. 

1 Theory and Models 

From the perspective of image decomposition, the Retinex theory is proposed to estimate the 

illumination components in low-light images L(x,y) and reflection component R(x,y). 

Assuming the essence of the object's color depends on the reflection component and is not 

affected by the illumination component, image enhancement is achieved by removing or 

correcting the illumination component. Assuming the image consists of an illumination 

component L(x,y) and a reflection component R(x,y), and the image I(x,y) formula can be 

described as follows. 

( , ) ( , ) ( , )I x y R x y L x y=                            (1) 

Three basic elements of light source, object, and camera are involved in the imaging process. 

Among them, a light source refers to a collection of different spectra in electromagnetic 

wavelengths. It is usually characterized by spectral power distribution (SPD). When the 

radiant energy of the light source irradiates the surface of the object, the object will 

selectively absorb part of the wavelength of the light source radiant energy and reflect the rest, 

forming a radiation spectrum that combines the light source information and the object's 

reflection characteristics. The radiation spectrum is focused by the camera lens and incident 

on the camera sensor. After photoelectric (OE) and analog-to-digital (AD) conversion, an 

initial raw format digital image is formed on the camera sensor, and then it goes through a 

series of image signal processing (ISP) steps to finally form a color image that conforms to 

visual perception[13]. The entire imaging process can be divided into a linear imaging stage 

and a nonlinear correction stage. The initial raw format image is the linearized imaging data, 

and image signal processing (ISP) makes the raw image data nonlinear. For different camera 

manufacturers and different cameras, the algorithms used are different[22]. Therefore, it is 

assumed that the ideal imaging model is represented as follows, 
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where di is the raw response of the i-th channel of a pixel at (x,y) in the image, l(λ) is the 

spectral power distribution of the lighting source, r(λ) is the spectral reflectance of the surface 

of an object, t(λ) is the overall transmittance of the camera lens optics, fi(λ) is the 

transmittance of the i-th channel filter of the camera, s(λ) is the spectral sensitivity function of 

the camera sensor, λ is the wavelength, ni is the noise signal of the i-th channel of the digital 

camera, mi = l(λ)t(λ)fi(λ)s(λ) is the overall spectral sensitivity function of the i-th channel of 

the digital camera. 

Due to the very-high correlation between RGB responses and their corresponding 

multispectral reflectance[14], the mathematical algorithms can be used to directly learn the 

mapping relationship between RGB and multispectral images. With the success of deep 

learning in various computer vision tasks, convolutional neural networks have been 

introduced into multispectral reconstruction. Assuming that an RGB image and its 

corresponding multispectral image are given, the mapping between RGB and multispectral 

images can be described in Equation (3). 

( )r f d=                                 (3) 

In equation (3), it is supposed that the conversion function f(•) from RGB to spectral is known, 

that is, the feature extraction and feature selection operation of the response signal d can be 

realized, and the calculation of the spectral information r can be realized. Given any RGB 

image d, their corresponding spectral images r can be reconstructed. 

2 Proposed Method 

This paper proposes a low-light image enhancement method based on multispectral 

reconstruction. The process of this method includes two parts (see Figure 1), the construction 

of the low-light image enhancement module (named as modeling) and the application of the 

module (named as application). Three key steps are included in the modeling part, they are the 

multispectral reconstruction of normal-light images, the design of the deep learning 

architecture for low-light image enhancement, and the training of the low-light image 

enhancement network. In the first step of the modeling part, the normal-light RGB images in 

the LOw Light dataset (LOL) are used as input data[23], and the metameric multispectral 

images from 400nm to 700nm with a step interval of 10nm of the normal-light RGB image 

are reconstructed based on reversing the ISP method that proposed by Joyce et al.[24]. The 

multispectral reconstruction principle in the Toolbox of ISET for spectral reflectance 

inspection is based on the inverse imaging pipeline of digital imaging[24], where the RGB 

image is inversely quantized and inversely gamma corrected to obtain the linear raw image. 

Then, following the inverse AD and OE conversion under the assigned illuminant (e.g., CIE 

D65) and camera sensitivity functions (e.g., a default in ISET), we can calculate the 

corresponding metameric multispectral image of the RGB image. 



 

 

Figure 1. Flow chart of the proposed low-light image enhancement method. 

In the second step of designing the deep learning architecture for low-light image 

enhancement, the low-light RGB images and the normal-light multispectral images 

reconstructed in the first step are used as training data pairs to train a deep multispectral 

reconstruction network. In the third step, the proposed multispectral reconstruction 

architecture of low-light image enhancement is trained with the paired data and the designed 

Loss functions. Finally, with the established multispectral reconstruction network, the 

normal-light metameric multispectral image of any low-light image can acquired. Then the 

corresponding normal-light RGB image can be calculated and rendered based on the CIE 

colorimetry. For the calculation of the CIE XYZ tristimulus values in the proposed method, as 

shown in Equation (4), the CIE1964 10-degree color matching functions (CMFs) and CIE 

D65 illumination (after tested) are used, and the standard sRGB color space is used to 

represent the rendered RGB images of the original low-light images.  
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where X, Y, and Z are the tristimulus values of the spectral reflectance in a pixel, )(x , )(y , 

and )(z  are standard observer color matching functions, r(λ) is the spectral reflectance of a 



 

pixel, l(λ) is the light source's relative spectral power distribution function, λ is the wavelength, 

and k is the modulation factor. With the tristimulus in each pixel, the corresponding sRGB 

values are calculated using the preset 3-by-3 color conversion matrix[25]. 

When designing the deep multispectral image reconstruction network (see Figure 2), some 

improvements are made based on the network proposed by Zhang et al.[15], because the 

number of network parameters is less, and the hardware resources consumed during training 

and testing are relatively small. During the network training stage, the hyper-parameters are 

kept consistent with the original network. The network is trained for 50 epochs, the batch size 

is set to 64, and the Adam optimizer is used to train the network. The learning rate is initially 

set to 0.0001 and decays exponentially at a rate of 0.99. The loss function used the error 

between the reconstructed spectral reflectance and the groundtruth spectral reflectance, as 

well as the structural similarity. The composition of the loss function is shown in Equation 

(5), 

( )
1

,= − +rec f ssim rec fLoss r r loss r r                    (5) 

where rrec is the reconstructed spectral reflectance, rf is the reference spectral reflectance 

acquired in the previous step. ||•||1 denotes the L-1 norm, the lossssim(rrec,rf) is equal to one 

minus ssim(rrec,rf), and ssim(rrec,rf) represents the structural similarity (SSIM) between rrec 

and rf. At the same time, the optimization strategy used in our previous study [26] is also used 

in this work to further improve the multispectral effect, where the convolutional block 

attention module (CBAM) is added to the neural network as a plug-and-play module[21].  

 

Figure 2. Architecture of the proposed optimized low-light image enhancement network. 

With the designed low-light image enhancement network in Figure 2, the input low-light 

RGB image first passes through 16 layers of convolution to extract the shallow feature 

information in the image, and then passes through 7 layers of dense network modules. Each 

layer has 16 convolutions. Compared with the residual structure, the dense structure further 

improves the reuse rate of channel features. The size of the feature map remains unchanged, 

and the number of channels gradually increases as the network deepens, greatly reducing the 

parameters of the network and also mitigating the possibility of non-convergence of network 



 

training to a certain extent. After shallow feature extraction and applying a dense connection 

network, a feature information map with 128 layers is finally learned, and then input into the 

reconstruction layer including three layers of convolution. The kernel size of each layer of 

convolution in the network is 3. The Relu is used as an activation function, and the CBAM 

module is added to the reconstruction layer to further improve the network for better image 

quality. 

In the convolutional block attention module (CBAM), the channel attention uses average 

pooling and maximum pooling layers to compress feature information, and then extracts 

feature weights through two fully connected layers including activation. The first fully 

connected layer can reduce the feature dimension to 1/r of the input, where r is the 

compression parameter. In this article, r is 32 and 16 respectively for the two blocks. After the 

feature map output by the previous layer is activated by the Relu function, it is restored to the 

original dimension by the second fully connected layer. The feature information processed by 

the second fully connected layer is processed by the sigmoid function, and the original 

features are recalibrated in the channel domain. The spatial attention mechanism module takes 

the output of channel attention as input and uses average pooling and maximum pooling to 

integrate channel feature information, and then combines the obtained features to reduce the 

dimension through convolution with a convolution kernel size of 1, Then the required mask is 

obtained through the sigmoid activation function. 

3 Experimental 

The experiment was completed on a desktop computer. The processor used was Intel Core 

I5-13400, the graphics card used was NVIDIA GeForce RTX4060Ti, the programming 

environment was Python 3.8, and the TensorFlow deep learning framework was used. During 

the experiment, the data set used is the LOL data set.  

 

Figure 3. Some of low-light RGB images (left) and normal-light RGB images (right) in the 

LOL dataset. 

The LOL dataset contains a data set of image pairs with a bit-depth of 8 bits of each channel 

obtained from real scenes for low-light enhancement tasks, which contains images of various 

scenes, such as houses, campuses, streets, and so on[23]. The data set has a total of 500 pairs of 

data, including 485 pairs of images for training and 15 pairs of images for testing. The 



 

resolution of each image is 400×600 pixels. The physical inverse-based multispectral 

reconstruction method proposed in the literature [24] is implemented in Matlab to generate the 

corresponding multispectral images of the normal-light images in LOL. Some of the image 

pairs in the LOL data set are shown in Figure 3, where the left side is the low-light images 

and the right is the normal-light images. During training, 485 image pairs were cropped into 

40×40 pixels sample pairs and used to train the proposed network. The training process 

includes 50 epochs of training, with 64 pairs of samples input for each batch of training data. 

4 Results and Discussion 

4.1 RGB rendering under different illuminants 

According to the CIE colorimetry theory and color imaging model, the multispectral image 

should be rendered to RGB images to make it perceptible to the human visual system. One of 

the important things in the proposed method is to determine which kind of illuminants should 

be used for RGB image rendering to reconstruct multispectral images. With the normal-light 

RGB images in the LOL dataset as the groundtruth, we have tested a series of illuminants 

during the experiment to find out the suitable illuminant for RGB image rendering. Taking 

one test image as an example, Figure 4 shows the rendered RGB images under different 

illuminants of A, D50, F7, F11, and D65. 

 

Figure 4. One of the ground-truth normal-light image in the testing sets (a), and its 

corresponding reconstructed images from the low-light image under different tested 

illuminants: (b) illuminant A, (c) illuminant D50, (d) illuminant F7, (e) illuminant F11, and (f) 

illuminant D65. 

It can be seen from Figure 4 that the reconstructed multispectral images show different visual 

effects under different illuminants that with different correlated color temperatures (CCT). 

Generally speaking, the lower the CCT, the warmer the visual perception, while the higher the 

CCT, the colder the visual perception. But we can not visually determine which illuminant is 

the good enough from several available candidates for RGB image rendering in the proposed 

method. Therefore, in order to determine the most suitable illuminant from several candidates 

for RGB image rendering, the normal-light image was used as the reference and groundtruth, 



 

we calculated the overall average color difference (CIEDE2000) of all 15 testing images 

between the rendered and the normal-light RGB images under different illuminants (see Table 

1). At the same time, the metrics of the average peak signal-to-noise ratio (PSNR), 

structural-similarity-index-measure (SSIM) and root-mean-square error (RMSE) between the 

rendered and the groundtruth RGB images were also calculated and summarized in Table 1. 

RMSE was calculated, as shown in Equation (6), where n represents the channels of the RGB 

image, i represents a pixel in a image, IR represents the rendered image, Ig represents the 

corresponding normal-light RGB images. 
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Table 1. Quantitative comparison of the RGB rendering effects of all 15 tested low-light 

image enhancement and the corresponding groundtruth normal-light images under different 

rendering illuminants. 

  CIEDE2000 PSNR SSIM RMSE(%) 

A 20.94 14.73 0.27 17.45 

D50 11.09 20.89 0.62 8.74 

F7 9.24 21.63 0.77 8.35 

F11 14.99 18.52 0.43 11.23 

D65 9.24 21.74 0.78 8.25 

It is easy to find out from Table 1 that the overall average error of different metrics gives the 

outperform result under the illuminant D65, and then followed by illuminants F7, D50, F11, 

and A. This is reasonable as people have adapted the illuminant D65 more than other 

illuminants overall, and most of the current imaging devices perform white balance and color 

correction using D65 as a reference. Therefore, we chose the illuminant CIE D65 for RGB 

image rendering after we got the reconstructed multispectral image of a low-light RGB image 

in LOL dataset. It should be noted that the rendering illuminant was determined using the 

testing images, not the training images. As a result, the training of the multispectral 

reconstruction work in Figure 1 is also influenced by the testing images. 

4.2 Comparison with existing methods 

After determining the rendering illuminant for RGB image rendering, the performance of the 

proposed method is compared with some of the existing methods, such as RRM[5], KinD[6], 

Self-supervised[8], RetinexNet[23], RUAS[9], URetinex-net[10], and the original multispectral 



 

reconstruction network of Zhang et al.[15], based on the same dataset of LOL, which includes 

485 training and 15 testing images. The CIEDE2000 color difference, the peak signal-to-noise 

ratio (PSNR), the structural similarity(SSIM), the root-mean-square error (RMSE), and the 

learned perceptual image patch similarity (LPIPS)[27] are calculated to quantify the 

performance of each method. The average values of each metric for different methods are 

summarized in Table 2.  

Table 2. Quantitative comparison of the low-light image enhancement performance of the 

proposed and some existing methods based on the average metrics error of 15 testing images. 

  CIEDE2000 PSNR SSIM RMSE(%) LPIPS 

RetinexNet[23] 15.73 16.77 0.56 13.47 0.419 

Self-supervised[8] 12.56 19.50 0.71 11.18 0.322 

RRM[5] 20.68 13.88 0.66 21.26 0.290 

KinD[6] 12.48 17.65 0.76 12.86 0.216 

RUAS[9] 16.77 16.40 0.58 16.13 0.303 

URetinex-net[10] 10.63 19.84 0.78 10.40 0.168 

Zhang[15] 11.45 18.70 0.73 11.06 0.294 

Ours 9.24 21.74 0.78 8.25 0.211 

It is easy to see from Table 2 that the errors of our method for CIEDE2000, PSNR, SSIM, and 

RMSE are 9.24, 21.74, 0.78, and 8.25%, apparently outperforming the existing methods. For 

the metric of LPIPS, the best result comes from URetinex-net with a value of 0.168, and our 

method gives the second-best result followed by KinD, RRM, and so on. This shows that the 

proposed low-light image enhancement method based on multispectral reconstruction 

significantly outperforms the existing methods, in the case of using CIE D65 illuminant for 

RGB image rendering. In addition, by comparing our optimized multispectral reconstruction 

method with the original Zhang’s method, we can see that the optimized strategy in the 

proposed method can significantly improve the low-light image enhancement results, and 

more than 16% improvement for the evaluation metrics of CIEDE2000, PSNR, and RMSE 

are observed. To intuitively compare the experiment results of different methods, some 

low-light image enhancement results from the 15 testing images are shown in Figure 5. 

We can see from Figure 5 that even different methods have improved the visual effect of the 

original low-light image, but when compared with the normal-light RGB images in the 

top-row, the RetinexNet method shows apparent image noise and color bias over the image in 

the enhancement results. The self-supervise method exhibits better results on noise 

suppression than the RetinexNet method but still has an apparent color bias on colorful 

images. Both the RRM and KinD methods exhibit a slight color bias, and the enhanced 

images still appear relatively dim compared to the normally lit RGB image in the top row.  



 

 

Figure 5. Some low-light image enhancement results from the 15 testing images of the 

proposed and the existing methods, where the first row is the norm-light images and rows 2 to 

9 present enhancement low-light images. 

In addition, it appears that the image saturation from RUAS is significantly enhanced, 

resulting in higher contrast of the images. However, this enhancement is still noticeable in 

relatively low light levels of the results. The URetinex-net gives the relatively good results but 

less saturated. The image enhanced by Zhang’s method has good brightness similar to the 



 

normal-light image, but it contains noticeable noise patches in solid color areas. Our 

optimized method effectively addresses the noise patches present in Zhang’s method and 

delivers an improved image enhancement compared to normal-light images. 

Overall, compared to the normal-light RGB images in the LOL database, our method has 

demonstrated better results for the testing images of the LOL database than most existing 

methods in reducing image noise and maintaining structure and clarity. However, it still falls 

short in maintaining the color saturation of the images, which leads to its inferior performance 

compared to the URetinex-net in terms of the LPIPS metric. It is a critical issue that requires 

further improvement in our method. 

5 Conclusion 

This research is based on imaging theory and uses multispectral reconstruction to enhance 

low-light images. The method's effectiveness lies in the two-step process of obtaining 

metameric multispectral images from normal-light images and then rendering into RGB 

images. According to the Retinex theory, the reflection component, which equals to the 

reconstructed multispectral image in this study, represents the essential and unchanging color 

features regardless of the external environment. Thus, low-light image enhancement through 

multispectral reconstruction has the potential to deliver better results. Additionally, we 

incorporated an advanced deep learning-based multispectral reconstruction method into 

low-light image enhancement with CBAM to achieve better results. Experimental results have 

demonstrated the effectiveness of the proposed method. However, the results of test images 

were influenced by the use of a test image to choose the rendering illuminant, which impacted 

the training of the multispectral reconstruction network, and further optimization should be 

introduced to the proposed method to improve its performance on color quality. 
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