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A B S T R A C T

Colonoscopy screening is the gold standard procedure for assessing abnormalities in the colon and rectum,
such as ulcers and cancerous polyps. Measuring the abnormal mucosal area and its 3D reconstruction can help
quantify the surveyed area and objectively evaluate disease burden. However, due to the complex topology of
these organs and variable physical conditions, for example, lighting, large homogeneous texture, and image
modality estimating distance from the camera (aka depth) is highly challenging. Moreover, most colonoscopic
video acquisition is monocular, making the depth estimation a non-trivial problem. While methods in computer
vision for depth estimation have been proposed and advanced on natural scene datasets, the efficacy of these
techniques has not been widely quantified on colonoscopy datasets. As the colonic mucosa has several low-
texture regions that are not well pronounced, learning representations from an auxiliary task can improve
salient feature extraction, allowing estimation of accurate camera depths. In this work, we propose to develop
a novel multi-task learning (MTL) approach with a shared encoder and two decoders, namely a surface normal
decoder and a depth estimator decoder. Our depth estimator incorporates attention mechanisms to enhance
global context awareness. We leverage the surface normal prediction to improve geometric feature extraction.
Also, we apply a cross-task consistency loss among the two geometrically related tasks, surface normal and
camera depth. We demonstrate an improvement of 15.75% on relative error and 10.7% improvement on 𝛿1.25
accuracy over the most accurate baseline state-of-the-art Big-to-Small (BTS) approach. All experiments are
conducted on a recently released C3VD dataset, and thus, we provide a first benchmark of state-of-the-art
methods on this dataset.
1. Introduction

Colorectal cancer (CRC) is among the third most common type
of cancer in the world, imposing a healthcare burden globally. The
estimated number of new CRC cases in 2023 will likely increase to
153,020 (Siegel et al., 2023). Optical endoscopy is the gold standard
procedure for diagnosing and treating CRC (Rex et al., 2015). Despite
its great potential, the colonoscopic procedure is subject to the clin-
ician’s experience as they have to deal with a complex anatomical
environment, imaging artefacts, and a limited field of view. A retro-
spective analysis of clinical endoscopic video realised that 9.6% of the
colon surface is never imaged during the screening procedure (McGill
et al., 2018). Those missed regions can contribute to an estimated 22%
of precancerous undetected lesions found by Van Rijn et al. (2006). The
development of an intelligent system to reduce the missed detection

∗ Corresponding author.
E-mail address: s.s.ali@leeds.ac.uk (S. Ali).

rate and guide the clinician to potential regions of interest has caught
the attention of the medical computer vision research community.
Several methods have been developed to detect and segment polyp
instances accurately. Unlike polyp detection and segmentation meth-
ods, 3D computer vision techniques in colonoscopy have not been
widely explored. Some applications within this field cover lesion extent
prediction (Abdelrahim et al., 2022; Ali et al., 2021), observational
coverage of the colon (Armin et al., 2016; Bobrow et al., 2023), and
3D reconstruction (Zhang et al., 2021a).

The development of 3D computer vision applications in colonoscopy
is limited due to the difficulty in acquiring ground truth labels. Com-
pared to labelled datasets required for training detection and segmen-
tation methods, acquiring datasets with accurate surface information
(e.g., surface normal vectors and depth maps) for 3D scene under-
standing is far from practical during a clinical endoscopy procedure.
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Hence, the development of commercial and computed tomography-
derived silicone models has been suggested as an alternative method
for data acquisition. The C3VD dataset leverages a novel technique
for generating high-fidelity silicone phantom models of the colon with
various textures and colours (Bobrow et al., 2023). The phantom model
and a 2D-3D video registration algorithm were used to generate a
ground truth dataset with pixel-level registration to a known 3D model.
Unlike digital phantom datasets (Rau et al., 2019; Zhang et al., 2021a),
silicone phantom models are closer to real-world clinical datasets and
reflect more accurately to an actual colonoscopic procedure. Therefore,
most methods that are trained on synthetically (digital) generated
data (Rau et al., 2023; Mahmood and Durr, 2018; Jeong et al., 2024;
Zhang et al., 2021b) suffer a relatively higher domain gap compared to
hose trained on a dataset acquired from a 3D printed phantom model.

Depth estimation is crucial for understanding geometry structure
nd a fundamental task in computer vision for 3D scene reconstruction.
ost depth estimation approaches initially relied on stereo matching

nd triangulation methods to calculate the disparity of two 2D images.
owever, these binocular-based depth estimation methods require at

east two fixed cameras. In addition, capturing enough features to
atch between images becomes challenging when the scene does not
ave enough texture (Ming et al., 2021). Due to the spatial constraint
mposed by the lumen (e.g., size and complex non-uniform shape) of
he gastrointestinal tract, monocular systems have been more attrac-
ive than stereo systems. Monocular depth estimators aim to learn a
apping between a single RGB image and their corresponding depth

alues by capturing features that represent geometric structures.
Single-view deep learning methods (Lee et al., 2021; Yuan et al.,

2022; Piccinelli et al., 2023) for monocular depth estimation make use
f monocular visual cues, e.g., texture gradients and lighting variations.

These methods learn to incorporate scene priors without the need to
ompute camera motion. While this is an advantage, they usually per-

form well only in similar samples to those presented during the training
stage, making these networks harder to generalise. Their accuracy is
also affected by the essential ambiguity of the problem as an infinite
number of world scenes and camera positions could have produced
a given image (Eigen et al., 2014; Lee et al., 2021; Zhang et al.,
2021a; Piccinelli et al., 2023). Therefore, recent approaches suggest
sing multi-task learning schemes as they leverage auxiliary tasks with
epth-related features (Ming et al., 2021). Adopting an additional task

aims to enhance the extraction of relevant geometrical cues during the
encoding stage, leading to a better performance overall (Ming et al.,
2021; Chen et al., 2020a; Qi et al., 2018). For example, joint learning of
depth and optical flow (Zou et al., 2018; Chen et al., 2020a) and joint
earning of depth and surface normal (Bae et al., 2022) have shown
ompetitive performances on natural scene datasets. Multi-task learning
pproaches have been extensively studied in natural scenes, but their

applicability in the colonoscopy domain has not been widely validated.
n addition, consistency among tasks is desirable since both generate a
articular domain representation of the same underlying reality (Zou
t al., 2018; Zamir et al., 2020).

To this end, we propose Col3D-MTL, a novel multi-task learn-
ng with a cross-task consistency approach for joint monocular depth
nd surface normal prediction featuring attention mechanisms to im-
rove global context awareness. We validate our study on a public
olonoscopy dataset fully acquired using a silicone phantom model.

Our proposed framework can be summarised on the following five main
contributions:

1. A multi-task learning approach with novel unit normal com-
putational blocks: We introduce Col3D-MTL, a new framework
for joint estimation of monocular depth and surface normal maps
on colonoscopy data. Our method consists of one shared encoder
and two independent decoders specifically designed for each
corresponding task. We present a novel unit normal computation
block (UNC block) in our surface normal decoder to enable the
accurate recovery of the geometrical orientation of the scene.
 g

2 
2. Feature enhancement using attention modules at multiple
scales: We incorporate convolutional block attention modules
(CBAM) in our depth estimation decoder at different scales to
improve both local and global context awareness. Compared to
the baseline network (Lee et al., 2021), the use of CBAM modules
boosts the performance of the network.

3. A weighted cross-task consistency loss with a novel depth-
to-surface normal block: We propose a weighted cross-task
consistency loss between our predicted surface normal and the
computed surface normal utilising depth image gradients (re-
ferred to as warped surface normal) to explicitly enforce equilib-
rium among the two geometrically related tasks. We introduce a
depth-to-surface normal module (D2SN module) for learning the
end-to-end mapping of depth-to-surface normal.

4. A new benchmark of monocular depth estimation methods
on colonoscopy dataset: We provide a benchmark compris-
ing SOTA monocular depth estimation methods on the publicly
available C3VD dataset. This dataset was fully acquired using a
clinical colonoscope on a realistic silicone phantom colon model
with pixel-wise ground truth labelled data (Bobrow et al., 2023).
We compare our approach against several monocular depth
estimation methods. Furthermore, we qualitatively validate our
proposed method on two publicly available real colonoscopy
patient datasets.

5. Improved generalisability using a self-supervised learning
approach: To improve the generalisability of our approach on
real colonoscopy patient datasets, we propose to pre-train our
encoder model using an architecture-agnostic masked image
modelling technique (A2MIM) (Li et al., 2023b).

The rest of the paper is organised as follows. Section 2 presents
tate-of-the-art methods on monocular depth estimation, multi-task

learning, and cross-task consistency. In Section 3, we introduce the
3VD dataset used in this work and our proposed network. Section 4

describes the training and ablation study setups followed in this work.
e also present the evaluation metrics and the corresponding quanti-

ative and qualitative results. In Section 5, we discuss the findings of
our approach. Finally, our conclusions are presented in Section 6.

2. Related work

This section introduces the most relevant technical aspects needed
to understand our contribution. The structure of this section starts
with a review of related works to monocular depth estimation in com-
puter vision and endoscopy, followed by a discussion about multi-task
learning approaches found in the literature covering the natural scene
and endoscopy domains. Finally, we describe the cross-task consistency
methods.

2.1. Monocular depth estimation in computer vision

Unlike most traditional stereo matching and triangulation app-
roaches, monocular depth estimation methods only require a single
amera to generate a depth map. Even though promising, it is still an
ll-posed problem to regress depth from a single image (Ming et al.,

2021). The success of deep learning in many computer vision tasks
was also translated into the monocular depth estimation task. Learning-
based approaches for monocular depth estimation were first introduced
in 2014 by Eigen et al. (2014). Their proposed method consists of a
convolutional coarse-scale network to predict depth at a global level,
followed by a fine-scale network to incorporate finer details, such as
object edges.

In Lee et al. (2021), an atrous spatial pyramid pooling (ASPP)
odule is used to leverage global context information, while the de-

oder applies local planar guidance at different resolutions to provide
eometric guidance to the full-resolution depth map. Kim et al. (2020)
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propose a convolution-based encoder–decoder scheme with attention
mechanisms embedded in their skip connections to generate refined
multi-scale features. A global context module is also introduced at the
network’s bottleneck to capture representative features on a global
scale. In Ranftl et al. (2022), scale- and shift-invariant losses are
proposed to mitigate the major sources of incompatibility between
datasets. Furthermore, the authors explore optimal strategies for mixing
multiple datasets during the training stage to enhance the robustness of
their model. Patil et al. (2022) exploit the high degree of regularity in
D scenes by using a piecewise planarity prior to leverage information
rom co-planar pixels to improve depth estimation.

Leveraging the enhanced global context understanding of
ransformer-based architectures, Farooq Bhat et al. (2021) propose

an adaptive bin-width estimator based on a mini vision transformer
mViT) network (Zhang et al., 2022). The idea behind this approach is
o divide the depth range into several adaptive-width bins and predict
he final depth map as a linear combination of the bin centres. All
hese methods have achieved state-of-the-art performance on popular
atural scene depth prediction datasets (such as KITTI Geiger et al.,

2012, NYU Nathan Silberman and Fergus, 2012).

2.1.1. Monocular depth estimation applied to endoscopy
In contrast to natural scenes, estimating depth from endoscopy data

is highly affected by the lack of ground truth labelled data, low texture,
variable lighting conditions and the presence of artefacts, e.g., specular-
ities, saturation, and blurring effects (Ma et al., 2021; Rau et al., 2023).
To address the lack of ground truth labelled data, Tukra and Giannarou
(2022) present a novel randomly connected encoder–decoder network
for self-supervised monocular depth estimation network on surgical
data. The random connections within the encoder, which are generated
by their cascade random search approach, increase the expressive ca-
pabilities of their feature extraction. Conditional generative adversarial
networks (cGANs), e.g., pix2pix (Isola et al., 2017), have been used to
estimate depth from monocular endoscopic images (Rau et al., 2019;
Cheng et al., 2021). However, one major drawback of cGANs is the
lack of realistic detail and texture in their representations.

Mahmood and Durr (2018) apply continuous conditional random
fields (CRFs) and a convolutional neural network (CNN) to estimate
epth from endoscopy images. However, one limitation of this ap-
roach is the generation of artefacts due to specular reflections. Yang
t al. (2023) propose a geometry-aware monocular depth estimation
etwork based on ManyDepth (Watson et al., 2021) and leverage a
epth, smoothness, gradient, normal and geometric consistency losses

to enhance depth predictions on endoscopy images. However, their
normal loss only relies on the normal map generated from the predicted
epth map, which does not faithfully represent the characteristics of the
cene (Bae et al., 2022).

2.2. Multi-task learning in computer vision

The complementarity between depth and other geometrically
-related features has recently been explored by computer vision re-
searchers (Qi et al., 2018; Chen et al., 2020a; Long et al., 2021).
According to a survey on monocular depth estimation (Ming et al.,
2021), many approaches suggest incorporating joint multi-task train-
ing, in which the extracted features between tasks are projected from
ne to the other for improved performance (Zou et al., 2018; Ma et al.,

2021; Bae et al., 2022). For example, Chen et al. (2020a) develop an
architecture composed of two tightly coupled encoder–decoder net-
works to predict depth map and optical flow as primary and auxiliary
tasks, respectively. The authors also introduce exchange blocks to
effectively communicate between depth and optical flow networks and
an epipolar layer that confines feature matching along the epipolar line.
In GeoNet, Qi et al. (2018) propose jointly predicting the depth and
urface normal maps from a single image. The method uses two stream-
NNs (ResNet-50 He et al., 2016 and VGG-16 Simonyan and Zisserman,
3 
2015) to predict the initial depth and surface normal maps. It then
pplies the depth-to-normal and normal-to-depth modules to refine

surface normal and depth maps. However, the depth-to-normal network
solves a pre-trained least square equation from the initial depth map
followed by a residual module to enhance the final prediction, which
is not learned in an end-to-end fashion. Similarly, normal-to-depth also
solves linear equations through a kernel regression module to infer
depth from surface normal.

2.2.1. Multi-task learning applied to medical image analysis
Multi-task learning approaches have been studied for breast can-

er segmentation and classification (Wang et al., 2023), left ventricle
quantification (Xue et al., 2018), and CT-based identification and quan-
tification (Goncharov et al., 2021). Islam et al. (2021) propose a
spatio-temporal multi-task learning network with one shared-encoder
nd two spatio-temporal independent decoders for instrument segmen-
ation and saliency on a robotic instrument segmentation dataset for
ndoscopy. Alistair et al. (2023) adopt a multi-task learning scheme

for joint optimisation of depth and structured light projection on stereo
pairs of surgical images. The disparity maps are generated by perform-
ing 2D cross-correlation over the epipolar lines of the predicted light
patterns. The results show an improved capability of learning from
mall datasets while increasing its generalisability performance.

Other multi-task learning approaches on endoscopy have focused
on monocular depth and motion estimation (Shao et al., 2022; Liu
et al., 2022; Recasens et al., 2021). A 3D colon reconstruction approach
uggested by Ma et al. (2021) incorporates a multi-task recurrent neural
etwork (RNN) that estimates depth and camera pose (Wang et al.,

2019) to improve the performance of a standard simultaneous local-
isation and mapping (SLAM) method. Zhang et al. (2021b) leverage
urface normal estimation to enhance feature extraction and improve

their depth estimation performance. The authors used a shared encoder
and two independent decoders for depth and surface normal prediction.
However, both decoders have almost the same architecture, with the
umber of output channels only varying. In this work, we propose
ask-specific architectures for each decoder.

2.3. Cross-task consistency loss

In visual perception, different domain representations of the same
underlying reality or scene are not independent, i.e., a consistent factor
between them should exist. A general fully computational method for
augmenting training is proposed in Zamir et al. (2020). In this work, the
authors introduce a loss for predicting domain 𝑦1 from an input image,
𝑥, while imposing consistency with domain 𝑦2. This approach compares
prediction 𝑦2 with the warped prediction of 𝑦1 to domain 𝑦2. An
unsupervised framework leveraging geometric consistency for training
single-view depth and optical flow networks on an unlabelled dataset
was proposed in Zou et al. (2018). To enforce geometric consistency,
the authors introduced a cross-task consistency loss to minimise the
discrepancy between the estimated optical flow and a synthesised flow
computed from the predicted depth map and an estimated 6D camera
pose.

2.4. Domain gap minimisation for improved generalisability

Rau et al. (2023) propose domain gap reduction in endoscopy
DGRE) for monocular depth prediction. The authors trained a modified

version of SharinGAN (Koutilya et al., 2020) to map task-specific
eaningful information from synthetic and real-patient colonoscopy

data to an intermediate domain. Cycle-consistent generative adversarial
etworks (CycleGAN) (Zhu et al., 2017) have also been used to map
rom real to synthetic colonoscopy domains (Masahiro et al., 2022;

Jeong et al., 2024).
Wang et al. (2024) propose a framework based on SimCLR (Chen

et al., 2020b), a contrastive self-supervised learning approach, to clas-
sify colorectal neoplasia based on the NICE classification. In Gan et al.
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(2023), self-distillation-based contrastive learning is employed to en-
hance the detection of polyps. Contrastive approaches aim to pull
similar features and push away dissimilar ones, hence their success in
downstream discriminative tasks (Liu et al., 2023). Filiot et al. (2023)
explore iBOT (Zhou et al., 2022), a generative self-supervised technique
based on masked image modelling (MIM), on multiple downstream
tasks using histopathological data. MIM leverages co-occurrence re-
lationships among image patches to enhance its generalised feature
extraction (Gui et al., 2024; Xie et al., 2022). Since most MIM ap-
proaches rely on vision Transformers (Xie et al., 2022; Bao et al.,
2022; Minglan et al., 2023; Chen et al., 2023), A2MIM (Li et al.,
2023b) proposes a framework that is compatible with CNNs. A2MIM
masks the input image with the mean RGB value and places the mask
token at intermediate feature maps. This method extracts more complex
features, e.g., shape and edges, via middle-order interactions among
patches and an additional loss in the Fourier domain (Li et al., 2023b).

3. Materials and method

In this section, we describe the datasets used in our work, and
we also present the details of our proposed multi-task learning with
a cross-task consistency framework.

3.1. The C3VD dataset

In this study, we use the new publicly available Colonoscopy 3D
Video Dataset (C3VD) (Bobrow et al., 2023), which is the first video
dataset containing 3D pixel-wise ground truth labelled data entirely
recorded with a high-definition (HD) clinical colonoscope. The authors
created a complete 3D phantom model of the colon, which was digitally
sculpted by a board-certified anaplastologist. A 3D-printed phantom
model was generated and coated with silicone, silicone pigments and
silicone lubricants to mimic the specular appearance of the mucosa,
tissue features and vascular patterns.

As described in Bobrow et al. (2023), the data acquisition is per-
formed by mounting the tip of a colonoscope to the end-effector of
a robotic arm with previously defined moving trajectories. Then, 𝑁 ,
keyframes are extracted and used to generate target depth frames with
a pretrained conditional generative adversarial network (Isola et al.,
2017). Subsequently, pixel-level ground truth frames are rendered by
moving a virtual camera along the recorded trajectory. Although the
trajectory of the virtual camera is known, the location of the virtual
phantom model relative to this trajectory is not. The pose of the phan-
tom, which can be expressed as a single rigid body transformation, is
estimated using a 2D-3D registration approach. The registration process
iteratively samples the parameter space for a model transform predic-
tion; then, at each keyframe, compares the geometric contours from
the target and rendered depth frames of the current model transform;
finally, an evolutionary optimiser called Matrix Adaptation Evolution
Strategy (Hansen et al., 2003) updates the model transform aiming to
maximise the overlap of the edge frames.

The dataset contains 10,015 frames with paired ground truth depth,
surface normal, optical flow, occlusions, six-degrees-of-freedom (DoF)
poses, coverage maps, and 3D models. The image resolution of all
available data is 1080 × 1350 pixels. In total, 22 videos covering
four different colon segments (caecum, transverse, descending, and
sigmoid), four texture variations, and three predefined trajectories are
publicly available. Fig. 1 shows sample images with their corresponding
ground truth depth map, surface normal, and occlusion map.

The train, validation and test splits used in this work are detailed
in Table 1. During the training stage, we followed a video-wise split
in which we provided data from three colon segments (caecum, trans-
verse, and sigmoid). Our models are validated on data collected from
the same segments. To test our methods, we select one video from each
colon segment. The caecum (C2V1) and transverse (T3V3) videos eval-
uate the methods on similar scenes and textures as the training set but
4 
Fig. 1. The C3VD dataset. Sample data including the original RGB image with its
corresponding ground truth depth map, surface normal, and occlusion map (Bobrow
et al., 2023).

Table 1
Dataset split. Our dataset split follows a video-wise split. Each label corresponds to the
colon segment, followed by the texture style and the predefined video trajectory. Here
‘c’ refers to caecum, ‘s’ refers to sigmoid, ‘t’ refers to transverse and ‘d’ for descending
colon.

Split Colonoscopy videos No. of frames

Training c1v1, c2v2, c2v3, c3v2, s1v3, s2v1, t1v1, 6344
t1v3, t2v1, t2v2, t3v2, t4v1, t4v3

Validation c4v2, c4v3, s3v1, t2v3 1738
Testing c2v1, d4v2, s3v2, t3v3 1268

from different viewpoints. The sigmoid (S3V2) sequence compares the
ability of each method to generalise to different textures. Whereas, the
descending (D4V2) colon assesses their generalisability to a completely
unseen scene, not present in the training and validation set.

3.2. Method

This subsection presents our proposed multi-task learning with a
cross-task consistency framework for improved colonoscopy depth esti-
mation. We describe the baseline depth estimation network selected in
this study, followed by a review of our multi-task learning scheme and
the cross-task consistency approach we incorporate into the network.

3.2.1. Depth estimation network
Our framework is inspired by the monocular depth estimation net-

work, BTS, proposed by Lee et al. (2021). BTS has been referenced
by several works (Bae et al., 2022; Yuan et al., 2022; Yang et al.,
2023; Piccinelli et al., 2023; Patil et al., 2022; Farooq Bhat et al.,
2021) as their state-of-the-art comparison method, achieving, in most
of these works, the second best-performing network on the KITTI
dataset (Geiger et al., 2012). This method follows an encoder–decoder
scheme, in which the encoder performs dense feature extraction while
the decoder aims to regress the depth values. While most SOTA meth-
ods use depth decoders based on simple bilinear interpolation, the
BTS network incorporates local planar guidance (LPG) at different
resolutions. LPG layers guide input feature maps to the desired depth
map resolution. As a result, it incorporates multi-resolution features
that are important in colonoscopy due to the limited texture of the
data. The architecture of this network can be identified at the bottom
of Fig. 2.

The network uses ResNet-50 (He et al., 2016) as its dense feature
extractor, which outputs a feature map of 𝐻∕8 resolution. The back-
bone is followed by an atrous spatial pyramid pooling module (Chen
et al., 2018) to extract contextual information at multiple dilation rates.
During the decoding phase, internal outputs are recovered to their
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Fig. 2. Multi-task learning with cross-task consistency (Col3D-MTL). Our proposed framework follows the encoder–decoder scheme, in which the encoder consists of a shared
backbone, 𝜃, followed by an atrous spatial pyramid (ASPP) module to extract contextual information at different dilation rates. The decoder stage comprises a primary depth
estimator decoder (bottom) and an auxiliary surface normal decoder (top). Our unit normal computation block (UNC block) uses two feature channels (FC) to compute the elements
of unit normal vectors (𝑛𝑥, 𝑛𝑦, and 𝑛𝑧). The local planar guided depth estimation block (LPG block) also uses a third FC to compute the perpendicular distance to the camera,
which is incorporated together with the unit normals to provide local depth information 𝑐𝑘×𝑘 by the ray-plane intersection (see Eq. (2)). CBAM modules (Att) are introduced at the
skip connections and after the convolutional layers of the depth decoder to enhance global context awareness. The depth-to-surface normal (D2SN) module receives the predicted
depth and outputs a warped surface normal map, which is compared against the surface normal prediction to enforce consistency among tasks. The surface normal decoder and
D2SN module can be easily combined with other depth estimators for an end-to-end MTL-X-TC. A2MIM (see Section 3.3) is used to pre-train our encoder, 𝜃, on phantom and
patient colonoscopy data following a self-supervised learning approach based on masked image modelling.
original resolution 𝐻 by a factor of 2 at each LPG block. The LPG block
provides geometric guidance to the full-resolution depth map. A final
1 × 1 convolutional layer is also used to extract the finest estimation
(𝑐1×1) after the last upconv layer. All the estimated outputs (𝑐𝑘×𝑘) are
concatenated and processed through a convolutional layer to compute
the final depth estimation. The model is optimised by minimising the
scale-invariant logarithmic (SILog) error loss introduced by Eigen et al.
(2014).

Multi-scale local planar guidance (LPG block). Most monocular depth
estimation networks following an encoder–decoder architecture just
apply simple nearest neighbour up-sampling to recover the original
resolution of the input image (Kim et al., 2020; Yang et al., 2023).
Unlike those methods, LPG blocks guide features to the full resolution
leveraging the local planar assumption (Lee et al., 2021). The LPG block
consists of a stack of 1 × 1 reduction layers, which iteratively decrease
the number of channels by a factor of two until it reaches a channel di-
mension of three. The resulting feature map (𝐻∕𝑘, 𝐻∕𝑘, 3) is processed
through two pathways to compute local plane coefficient estimations.
The first pathway uses the first two channels (FC#1 and FC#2) to
compute the (𝑥, 𝑦, 𝑧) components of unit normal vectors, denoted by
(𝑛𝑥, 𝑛𝑦, 𝑛𝑧). A unit normal vector has only two degrees of freedom (DoF),
described in spherical coordinates by polar (𝜃) and azimuthal (𝜙) angles
from predefined axes. The two channels (FC#1 and FC#2) are regarded
5 
as polar (𝜃) and azimuthal (𝜙) angle maps, respectively, and converted
to unit normal vectors in Cartesian coordinates by Eq. (1).
⎧

⎪

⎨

⎪

⎩

𝑛𝑥 = 𝑠𝑖𝑛(𝜃)𝑐 𝑜𝑠(𝜙)
𝑛𝑦 = 𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜙)
𝑛𝑧 = 𝑐 𝑜𝑠(𝜃)

(1)

The second pathway estimates the perpendicular distance (𝑛𝑑) be-
tween the plane and the origin. This pathway computes a sigmoid
function from the third channel and multiplies its output with the maxi-
mum depth value. Finally, these 4D plane coefficients (𝑛𝑥, 𝑛𝑦, 𝑛𝑧, 𝑛𝑑) are
used to compute 𝑘×𝑘 local depth cues using the ray-plane intersection
Eq. (2).

𝑐𝑘×𝑘 =
𝑛𝑑

𝑛𝑥 ⋅ 𝑢𝑖 + 𝑛𝑦 ⋅ 𝑣𝑖 + 𝑛𝑧
(2)

where (𝑛𝑥, 𝑛𝑦, 𝑛𝑧, 𝑛𝑑) describe the previously estimated plane coeffi-
cients and 𝑢𝑖, 𝑣𝑖 denote 𝑘×𝑘 patch-wise normalised coordinates of pixel
𝑖.

3.2.2. Attention mechanism
Convolutional neural networks have shown outstanding perfor-

mance in enhancing local feature representations. However, focusing
on relevant features while suppressing irrelevant ones further improves
the process of capturing the visual structure of a scene. The convolu-
tional block attention module (CBAM) proposed in Woo et al. (2018)
sequential applies a channel attention module and a spatial attention
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module to a given feature map. The process consists of two sequential
lement-wise multiplications. The first one multiplies the input feature
ap () and the channel attention map (𝑀𝑐). The second one is

performed between the output of the first multiplication ( ′) and the
output of the spatial attention module (𝑀𝑠), resulting in a refined
feature map  ′′. The whole process can be summarised as shown in
Eq. (3):
{

 ′ =  ⊗ 𝑀𝑐 ( )
 ′′ =  ′ ⊗ 𝑀𝑠( ′)

(3)

This module has been used by Li et al. (2023a) in the skip con-
nections and in the decoder of their network to recover meaningful
global information at a low computational cost. We followed a sim-
ilar approach to Li et al. (2023a) by incorporating CBAM modules
in the skip connections and at each resolution level of our depth
ecoder. We aim to leverage the local feature representation of con-

volutional neural networks to extract monocular depth cues and the
lobal context awareness of CBAM modules to relate them effectively.
he incorporation of CBAM modules into our framework is shown in

Fig. 2.

3.2.3. Multi-task learning network with UNC block
Our proposed framework is based on the geometric relationship

between the depth and surface normal information of a 3D scene.
Following this statement, our method aims to improve its depth estima-
tion robustness by incorporating a geometrically related auxiliary task.
The proposed architecture consists of a single shared encoder and two
independent decoders. The purpose of the shared encoder is to extract
meaningful geometric features that represent the 3D scene, while the
two decoders are used to regress depth and surface normal maps.

Our framework extends the depth estimation network by adding a
urface normal decoder located at the top of Fig. 2. Within our surface

normal decoder, we introduce the unit normal computation block (UNC
lock) to compute surface normal maps at multiple resolutions. Our
NC block is based on the LPG blocks without the computation of the

ay-plane intersection. Each surface normal map is represented by an
GB image, where each channel represents one particular axis: the red
hannel denotes the 𝑥-axis, the green channel represents the 𝑦-axis, and
he blue channel represents the 𝑧-axis. The outputs of all UNC blocks
ndergo a channel concatenation followed by convolutional layers to
ompute the final surface normal prediction.

The multi-task learning framework combines the losses of both tasks
as described in Eq. (4).

𝑀 𝑇 𝐿 = 𝜆1 ⋅ 𝑑 𝑒𝑝𝑡ℎ + 𝜆2 ⋅ 𝑠𝑛 (4)

where 𝜆1, 𝜆2 are weighting factors equally set to 0.5, 𝑑 𝑒𝑝𝑡ℎ represents
he scale-invariant logarithmic error (SILog) loss between the predicted
nd ground truth depth maps (Eigen et al., 2014), and 𝑠𝑛 symbolises

the mean absolute error (MAE) loss between the estimated surface
normal and its corresponding ground truth.

3.2.4. Cross-task consistency loss with D2SN module
We incorporate a cross-task consistency (X-TC) loss into our multi-

ask learning framework to enforce consistency among depth and sur-
ace normal predictions. To this end, we add a depth-to-surface normal
D2SN) warping module based on the mathematical method proposed
y Nakagawa et al. (2015). Our warping module uses the output of
ur depth estimation decoder. The predicted depth map is processed

within this module to generate a warped surface normal representation.
he output of this module introduces a consistency constraint by being
ompared against the prediction of the surface normal decoder.

Depth-to-surface normal module (D2SN module). Since normal estima-
ion is equivalent to fitting a plane to a local point cloud in the
6 
3D space, several approaches leveraging optimisation techniques have
been proposed. However, these methods are expensive in terms of
computational resources (Nakagawa et al., 2015). Therefore, our D2SN
module, which is shown in the right section of Fig. 2, computes a sur-
ace normal from depth image gradients (DIG) as shown in Nakagawa

et al. (2015). The authors consider that adjacent 3D points in a depth
image can be used to compute a local 3D plane whose orthogonal
vector is equivalent to the normal vector at that particular pixel. Their
proposed method consists of three steps:

1. Depth image gradients: Given the location of a pixel (𝑥, 𝑦) and
its depth value (𝑍), pixels can be projected to the 3D space
P(𝑋 , 𝑌 , 𝑍) by a transformation matrix with known camera in-
trinsic parameters. The generated point cloud is used to compute
the partial directional derivatives as shown in Eq. (5):
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝑍(𝑥,𝑦)
𝜕 𝑥 = 𝑍(𝑥 + 1, 𝑦) −𝑍(𝑥, 𝑦)

𝜕 𝑍(𝑥,𝑦)
𝜕 𝑦 = 𝑍(𝑥, 𝑦 + 1) −𝑍(𝑥, 𝑦)

𝜕 𝑋(𝑥,𝑦)
𝜕 𝑥 = 𝑍(𝑥,𝑦)

𝑓 + (𝑥−𝑐𝑥)
𝑓

𝜕 𝑍(𝑥,𝑦)
𝜕 𝑥

𝜕 𝑋(𝑥,𝑦)
𝜕 𝑦 = (𝑥−𝑐𝑥)

𝑓
𝜕 𝑍(𝑥,𝑦)

𝜕 𝑦
𝜕 𝑌 (𝑥,𝑦)

𝜕 𝑥 = (𝑥−𝑐𝑥)
𝑓

𝜕 𝑍(𝑥,𝑦)
𝜕 𝑦

𝜕 𝑌 (𝑥,𝑦)
𝜕 𝑦 = 𝑍(𝑥,𝑦)

𝑓 + (𝑦−𝑐𝑦)
𝑓

𝜕 𝑍(𝑥,𝑦)
𝜕 𝑦

(5)

2. Tangent vectors: The 𝑥 and 𝑦 directional derivatives at a given
3D point, P, can be used as tangent vectors of the surface as
shown in Eq. (6):
⎧

⎪

⎨

⎪

⎩

𝐯𝑥(𝑥, 𝑦) =
(

𝜕 𝑋(𝑥,𝑦)
𝜕 𝑥 , 𝜕 𝑌 (𝑥,𝑦)𝜕 𝑥 , 𝜕 𝑍(𝑥,𝑦)

𝜕 𝑥
)

𝐯𝑦(𝑥, 𝑦) =
(

𝜕 𝑋(𝑥,𝑦)
𝜕 𝑦 , 𝜕 𝑌 (𝑥,𝑦)𝜕 𝑦 , 𝜕 𝑍(𝑥,𝑦)

𝜕 𝑦
) (6)

3. Normal vector: The cross-product of the two tangent vectors
described in the previous step is calculated to get the normal
vector as in Eq. (7):

𝐧(𝑥, 𝑦) = 𝐯𝑥(𝑥, 𝑦) × 𝐯𝑦(𝑥, 𝑦) (7)
While a mathematical formulation to map surface normals directly

to absolute depth maps is non-trivial due to the inherent ambiguity in
the relationship between surface orientation and depth. Some works
hat use surface normals to refine depth maps apply an iterative post-
rocessing method requiring both the initial depth prediction and
urface normal maps (Bae et al., 2022; Patil et al., 2022; Shao et al.,

2023). However, even doing so a single surface normal can correspond
to multiple absolute depth configurations creating ambiguity in the
depth prediction. Thus, in contrast to these approaches, we aim to
enhance the feature extraction and decoding processes in our net-
work through cross-consistency loss utilising a mathematically feasible
depth-to-surface normal configuration, which can also be trained in an
end-to-end fashion.

Our multi-task learning with cross-task consistency network com-
ines the losses from both tasks and the cross-task consistency loss into

the final weighted loss function described in Eq. (8).

𝑓 𝑖𝑛𝑎𝑙 = 𝜆1 ⋅ 𝑑 𝑒𝑝𝑡ℎ + 𝜆2 ⋅ 𝑠𝑛 + 𝜆3 ⋅ 𝑥−𝑡𝑐 (8)

where 𝜆1, 𝜆2, and 𝜆3 are weighting factors, and 𝑋−𝑇 𝐶 represents the
root mean squared error (RMSE) loss between the predicted and warped
surface normal maps. Eq. (9) defines each of the loss functions used in
our final loss.
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝐿𝑑 𝑒𝑝𝑡ℎ = 𝛼
√

𝐷(𝑔); 𝐷(𝑔) = 1
𝑁

∑

𝑖
𝑔2𝑖 −

𝜆
𝑁2

(

∑

𝑖
𝑔𝑖

)2

𝐿𝑠𝑛 =
1
𝑁

∑

𝑖
|𝑦𝑖_𝑠𝑛 − 𝑦̂𝑖_𝑠𝑛|

𝐿𝑥−𝑡𝑐 =
√

1
𝑁

∑

(𝑦∗𝑖_𝑠𝑛 − 𝑦̂𝑖_𝑠𝑛)2

(9)
⎩

𝑖
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where 𝛼 = 10 is a scaling parameter of the range of the loss function
to improve convergence (Lee et al., 2021) and 𝜆 = 0.85 is a trade-off
arameter between element-wise 𝑙2 error (𝜆 = 0) and the exact scale
nvariant error (𝜆 = 1) (Eigen et al., 2014). The variable 𝑦𝑖 represents
he ground truth map, 𝑦𝑖 denotes the prediction map, and 𝑦∗𝑖_𝑠𝑛 the
arped surface normal map. The variable 𝑔𝑖 denotes the difference
etween the predicted and the ground truth depths in logarithmic scale
or each sample 𝑖, i.e., 𝑔𝑖 = 𝑙 𝑜𝑔 (𝑦𝑖_𝑑 𝑒𝑝𝑡ℎ

)

− 𝑙 𝑜𝑔 (𝑦̂𝑖_𝑑 𝑒𝑝𝑡ℎ
)

.

3.3. Self-supervised learning using masked image modelling

To improve the generalisability of our network to real colonoscopy
patient data, we leverage A2MIM to pre-train our encoder on patient
and 3D phantom model data. A2MIM computes the mean RGB value
f the input image and uses it to perform patch masking (see Fig. 2,

bottom right). While most existing mask image modelling (MIM) frame-
works apply the mask token in the input space, following this approach
can affect the context extraction capabilities of CNNs. Additionally,
his technique limits the feature extraction capabilities to local texture
eatures learned by low-order interactions among patches. Therefore,
 learnable mask token is added on intermediate feature maps of the
ncoder architecture, where semantic and spatial features are available.
urthermore, a Fourier loss is incorporated to enable CNNs to model
eatures of medium frequencies (middle-order interactions) for more
eneralised feature extraction (Li et al., 2023b). To this extent, we

create a combination of colonoscopy data from the publicly available
PolypGen (Ali et al., 2023) (clinical colonoscopy videos from 6 differ-
nt medical centres acquired) and C3VD (Bobrow et al., 2023) (see
ection 3.1) datasets.

4. Experiments and results

4.1. Training setup

Each model presented in this study is trained using a single NVIDIA
V100 GPU. All models are trained for up to 50 epochs (pix2pix and
MonoDepth+FPN are trained for 200 epochs) using a batch size of 8,
with an initial learning rate of 1𝑒−4, and a weight decay of 1𝑒−2. The
input images are resized from their original resolution to 320 × 320
ixels. Only random rotation is performed as a data augmentation
echnique to avoid the loss of structural information and visual cues.
andom cropping, which is suggested by baseline methods, is discarded

because we observed that it could lead to heavy close-ups towards the
alls of the colon, drastically reducing contextual information.

4.2. Ablation study setup

We perform an ablation study to analyse the proposed network
components that lead to the design of our multi-task learning approach
with cross-task consistency featuring attention mechanisms. We select
the BTS architecture proposed by Lee et al. (2021) as our baseline

ethod. Before incorporating our multi-task learning approach, we add
BAM attention modules at different stages of the depth decoder and

ts skip connections. We further extend this method following a multi-
ask learning scheme. Experimentally, we define the best loss function

to optimise our auxiliary task. Additionally, we implement a cross-
task consistency module into our multi-task learning approach. Finally,
we conduct a hyperparameter study on our multi-task learning with a
cross-task consistency framework to determine the set of 𝜆 values in
our loss function that leads to the best trade-off performance among
both tasks. In Table 2, we describe the different network configurations
trained and evaluated in our ablation study.
7 
Table 2
Model configurations. Our ablation study setup is constituted by four different model
configurations.

Model ID CBAM MTL X-TC

BTS (baseline) (Lee et al., 2021)
BTS-CBAM ✓

BTS-CBAM-MTL ✓ ✓

BTS-CBAM-MTL-X-TC (Col3D-MTL) ✓ ✓ ✓

4.3. Metrics and assessment

To evaluate our methods, we follow standard depth estimation
metrics described by Eigen et al. (2014). These include five error
metrics: absolute relative error (Abs Rel), squared relative error (Sq
Rel), logarithmic error (log10), root mean squared error (RMSE), root

ean squared logarithmic error (RMSE𝑙 𝑜𝑔), scale-invariant logarithmic
rror (SILog); and three accuracy metrics that are described in Eq. (10)

: 𝛿1.25, 𝛿1.252 , and 𝛿1.253 . We used standard surface normal evaluation
metrics, which include two error metrics: average angular error (AAE)
and median angular error (Med. AE), and three accuracy metrics:
𝛿11.25◦ , 𝛿22.5◦ , and 𝛿30◦ .

% of 𝑦̂𝑖 s.t. max(
𝑦𝑖
𝑦̂𝑖
,
𝑦̂𝑖
𝑦𝑖
) = 𝛿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 (10)

4.4. Results

In this section, we provide the quantitative and qualitative re-
sults from our network configuration ablation study, followed by our
hyperparameter study on the 𝜆 weighting factors of our final loss func-
tion. Finally, we compare our approach against other state-of-the-art
methods.

4.4.1. Quantitative results
In Table 3, we provide the results of our ablation study on the

proposed network configurations. We compare the performances of
BTS, BTS-CBAM, BTS-CBAM-MTL, and BTS-CBAM-MTL-X-TC for all
depth and surface normal evaluation metrics on the validation set of the
C3VD dataset. Our BTS-CBAM network yields a relative improvement
over the BTS method by 8.9% and 2.4% in terms of SILog and 𝛿1.25,
respectively.

Following the incorporation of attention mechanisms, the middle
ection of Table 3 illustrates the effect of the 𝐿1 and 𝐿2 loss functions to

optimise the surface normal decoder of our BTS-CBAM-MTL approach.
The use of the 𝐿1 loss function leads to a relative improvement of 2.6%
on SILog metric but a relative decrease of 1.5% on 𝛿1.25 regarding the
use of the 𝐿2 loss. Furthermore, our surface normal decoder optimised
through the 𝐿1 loss demonstrates a relative improvement of 1% and
26.5% on mean angular error and 𝛿11.25◦ , respectively. The bottom
section of Table 3 assesses the performance of our BTS-CBAM-MTL-
X-TC employing the 𝐿1 and 𝐿2 loss functions to optimise our surface
normal decoder. Initially, the 𝜆 weighting factors in our final loss
function (Eq. (8)) are set to 𝜆1 = 0.5, 𝜆2 = 0.3, and 𝜆3 = 0.2. Our
proposed network configuration optimising our surface normal decoder
with the 𝐿1 loss outperforms all previous network configurations in all
depth and surface normal evaluation metrics.

Table 4 includes the results of our hyperparameter study on dif-
ferent sets of 𝜆 weighting factors in the loss function (Eq. (8)) of our
BTS-CBAM-MTL-X-TC network. Based on our experimental results, the
est 𝜆 configuration set consists of 𝜆1 = 0.5, 𝜆2 = 0.3, and 𝜆3 = 0.2.
his configuration leads to the best performance among all evaluated

models, achieving a relative improvement of 10.9%, 11.9%, and 7% on
SILog, RMSE, and 𝛿1.25 metrics over our baseline method. Furthermore,
we outperform the surface normal prediction of our BTS-CBAM-MTL
configuration by a relative improvement of 45.3%, 39.5%, and 37.4%
on mean angular error, median angular error, and 𝛿 .
11.25◦
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Table 3
Quantitative results for various network configurations on validation set (ablation study). Each network uses the learned weights that lead to a better performance during the
raining stage. First and second best performing methods for each evaluation metric are formatted.

Method Losses Depth (in mm) Surface normals (in degrees)

Abs Rel ↓ Sq Rel ↓ log 10 ↓ RMSE ↓ RMSE𝑙 𝑜𝑔 ↓ SILog ↓ 𝛿1.25 ↑ 𝛿1.252 ↑ 𝛿1.253 ↑ AAE ↓ Med. AE ↓ 𝛿11.25◦ ↑ 𝛿22.5◦ ↑ 𝛿30◦ ↑

BTS (baseline)
(Lee et al.,
2021)

Depth: SILog 0.179 1.088 0.073 5.667 0.208 14.066 0.756 0.959 0.992 – – – – –

BTS-CBAM Depth: SILog 0.170 0.979 0.070 5.503 0.198 12.814 0.774 0.969 0.994 – – – – –

BTS-CBAM-
MTL

Depth: SILog
SN: 𝐿1

0.166 0.934 0.070 5.422 0.195 12.872 0.785 0.969 0.996 43.892 35.363 17.637 40.340 51.814

Depth: SILog
SN: 𝐿2

0.163 0.900 0.067 5.298 0.190 13.219 0.797 0.972 0.995 44.337 35.142 13.940 37.288 49.594

Depth: SILog
SN: AAE

0.164 0.946 0.072 5.426 0.205 14.095 0.755 0.970 0.995 36.362 27.732 24.699 52.089 62.485

BTS-CBAM-
MTL-X-TC
(Ours:
Col3D-MTL)

Depth: SILog
SN: 𝐿1
X-TC: 𝐿2

0.156 0.805 0.065 4.994 0.186 12.530 0.809 0.975 0.997 23.999 21.382 24.232 55.883 71.758

Depth: SILog
SN: 𝐿2
X-TC: 𝐿2

0.176 1.057 0.073 5.723 0.211 14.822 0.731 0.968 0.996 40.664 32.630 15.974 40.219 52.394

Depth: SILog
SN: AAE
X-TC: AAE

0.184 1.182 0.074 5.902 0.216 16.560 0.735 0.957 0.992 39.831 32.366 16.008 39.360 52.721
Table 4
Hyperparameter study on validation set. Proposed BTS-CBAM-MTL-X-TC networks are evaluated in the validation set to avoid 𝜆 weighting factors to be adjusted based on the
esting data. Each network uses the learned weights that lead to a better performance during the training stage. First and second best performing methods for each evaluation

metric are formatted.
Method 𝜆1 𝜆2 𝜆3 Depth (in mm) Surface normals (in degrees)

Abs Rel ↓ Sq Rel ↓ log 10 ↓ RMSE ↓ RMSE𝑙 𝑜𝑔 ↓ SILog ↓ 𝛿1.25 ↑ 𝛿1.252 ↑ 𝛿1.253 ↑ AAE ↓ Med. AE ↓ 𝛿11.25◦ ↑ 𝛿22.5◦ ↑ 𝛿30◦ ↑

BTS-CBAM-
MTL-X-TC
(Col3D-MTL)

0.4 0.3 0.3 0.178 1.061 0.072 5.639 0.204 13.632 0.769 0.963 0.994 22.957 20.405 25.028 57.662 73.668
0.4 0.2 0.2 0.187 1.116 0.077 5.664 0.213 13.672 0.726 0.965 0.990 30.100 24.999 21.081 49.877 63.892
0.5 0.3 0.2 0.156 0.805 0.065 4.994 0.186 12.530 0.809 0.975 0.997 23.999 21.382 24.232 55.883 71.758
0.5 0.4 0.1 0.161 0.837 0.066 4.901 0.189 13.036 0.795 0.974 0.997 34.013 24.606 21.812 50.571 63.335
0.6 0.2 0.2 0.222 1.470 0.089 6.269 0.248 16.163 0.620 0.939 0.987 29.338 25.449 17.860 45.908 62.025
0.6 0.3 0.1 0.187 1.083 0.075 5.598 0.209 13.773 0.742 0.957 0.994 45.448 35.227 15.080 36.828 48.007
0.7 0.2 0.1 0.178 1.028 0.070 5.128 0.202 14.329 0.764 0.961 0.991 33.879 28.175 17.835 43.982 58.190
0.8 0.1 0.1 0.180 1.078 0.074 5.753 0.210 13.573 0.739 0.963 0.995 23.880 21.434 23.147 55.364 71.800
Table 5
Benchmark results on test set. Evaluation of three state-of-the-art methods, our baseline method, our proposed framework, and our proposed framework with SSL pre-training on
the C3VD dataset. All methods are trained and evaluated on the same data distributions. First and second best performing methods for each evaluation metric are formatted.

Method # parameters Depth (in mm)

Abs Rel ↓ Sq Rel ↓ log 10 ↓ RMSE ↓ RMSE𝑙 𝑜𝑔 ↓ SILog ↓ 𝛿1.25 ↑ 𝛿1.252 ↑ 𝛿1.253 ↑

pix2pix
(Isola et al., 2017)

14.2 M 0.157 ± 0.103 0.730 ± 0.647 0.062 ± 0.034 3.721 ± 1.385 0.237 ± 0.144 21.062 ± 14.118 0.801 ± 0.181 0.956 ± 0.078 0.986 ± 0.029

MonoDepth+FPN
(Ali et al., 2021)

61.8 M 0.204 ± 0.052 1.494 ± 0.832 0.090 ± 0.025 6.762 ± 1.812 0.342 ± 0.078 31.737 ± 6.25 0.628 ± 0.176 0.949 ± 0.046 0.991 ± 0.010

NeWCRFs
(Chen et al., 2020a)

270.4 M 0.133 ± 0.097 0.557 ± 0.595 0.048 ± 0.033 3.058 ± 1.419 0.151 ± 0.082 11.817 ± 4.714 0.854 ± 0.197 0.973 ± 0.066 0.997 ± 0.006

NDDepth
(Shao et al., 2023)

348.4 M 0.316 ± 0.076 2.651 ± 1.691 0.111 ± 0.027 7.043 ± 3.317 0.322 ± 0.043 24.255 ± 6.497 0.498 ± 0.218 0.873 ± 0.031 0.956 ± 0.018

BTS
(Lee et al., 2021)

50.3 M 0.127 ± 0.089 0.622 ± 0.543 0.055 ± 0.034 3.823 ± 2.024 0.150 ± 0.089 11.400 ± 5.614 0.812 ± 0.198 0.979 ± 0.051 0.998 ± 0.003

Col3D-MTL
(ours)

50.3 M 0.109 ± 0.064 0.386 ± 0.316 0.046 ± 0.024 3.052 ± 1.143 0.131 ± 0.065 11.035 ± 4.856 0.896 ± 0.140 0.989 ± 0.021 0.998 ± 0.003

Col3D-MTL + SSL
(ours + SSL)

50.3 M 0.107 ± 0.075 0.346 ± 0.415 0.042 ± 0.026 2.729 ± 1.036 0.128 ± 0.062 10.072 ± 3.164 0.899 ± 0.174 0.989 ± 0.026 0.999 ± 0.001
s

a

a
𝛿

In Table 5, we compare the performance of our baseline and our
ol3D-MTL methods against other state-of-the-art networks on super-
ised monocular depth estimation: NeWCRFS (Chen et al., 2020a),

pix2pix (Isola et al., 2017), MonoDepth+FPN (Ali et al., 2021), and
DDepth (Shao et al., 2023). MonoDepth+FPN (Ali et al., 2021) is used

o estimate depth maps on oesophageal endoscopy, while pix2pix (Isola
et al., 2017) is applied to a synthetic colonoscopy dataset to generate
epth predictions (Rau et al., 2019). All methods are trained on the
ame data distribution and tested on the same held-out testing data, set-
ing a new benchmark on the C3VD dataset. Our proposed frameworks
with and without SSL pre-training, respectively) achieve the first and
 s
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second-best performances on all depth evaluation metrics. Our Col3D-
MTL + SSL improves our baseline method by 11.7%, 28.6%, and 10.7%
on SILog, RMSE and 𝛿1.25, respectively. Moreover, it outperforms the
tate-of-the-art method NeWCRFs by 14.8%, 10.8%, and 5.3% on the

same evaluation metrics.
Table 6 analyses the performance of all the evaluated methods

on each colon segment of the testing set separately. On the caecum
nd transverse segments, which respectively represent 43% and 36%

of our training data, our baseline and Col3D-MTL achieve the first
nd second best-performing methods in terms of SILog, RMSE, and
1.25. Only NeWCRFs accomplish a lower RMSE value on the caecum
egment, achieving a relative improvement of 4.9% over our baseline.
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Table 6
Quantitative results for per colon segment. Evaluation of all evaluated methods on each colon segment in the testing set is
provided. First and second best performing method for each evaluation metric on each colon segment is formatted. In ‘(.)’
we include the percentage of training samples used from each segment.

Colon segment Method Depth (in mm)

SILog ↓ RMSE ↓ 𝛿1.25 ↑

Caecum
(43%)

pix2pix(Isola et al., 2017) 6.805 ± 1.345 2.649 ± 1.342 0.956 ± 0.083
MonoDepth+FPN(Ali et al., 2021) 28.834 ± 4.958 7.143 ± 1.405 0.822 ± 0.052
NeWCRFs(Chen et al., 2020a) 7.494 ± 0.696 1.567 ± 0.552 0.996 ± 0.004
NDDepth(Shao et al., 2023) 17.027 ± 1.111 11.548 ± 1.946 0.342 ± 0.161
BTS(Lee et al., 2021) 5.171 ± 1.065 1.649 ± 0.447 0.997 ± 0.003
Ours 5.738 ± 1.232 2.069 ± 0.547 0.996 ± 0.004
Ours + SSL 6.749 ± 0.557 1.894 ± 0.407 0.996 ± 0.002

Transverse
(36%)

pix2pix(Isola et al., 2017) 13.464 ± 1.304 2.374 ± 0.100 0.929 ± 0.017
MonoDepth+FPN(Ali et al., 2021) 25.409 ± 0.695 4.894 ± 0.279 0.759 ± 0.026
NeWCRFs(Chen et al., 2020a) 8.858 ± 0.917 2.598 ± 0.416 0.992 ± 0.004
NDDepth(Shao et al., 2023) 21.466 ± 0.422 3.677 ± 0.123 0.772 ± 0.007
BTS(Lee et al., 2021) 6.243 ± 0.265 1.840 ± 0.145 0.997 ± 0.002
Ours 6.412 ± 0.490 1.648 ± 0.056 0.997 ± 0.001
Ours + SSL 7.164 ± 0.466 2.927 ± 0.143 0.990 ± 0.002

Sigmoid
(21%)

pix2pix(Isola et al., 2017) 32.429 ± 12.481 4.618 ± 0.593 0.745 ± 0.068
MonoDepth+FPN(Ali et al., 2021) 36.365 ± 4.780 6.422 ± 0.546 0.459 ± 0.072
NeWCRFs(Chen et al., 2020a) 13.135 ± 1.600 3.664 ± 1.052 0.809 ± 0.158
NDDepth(Shao et al., 2023) 30.938 ± 2.369 5.654 ± 1.352 0.493 ± 0.191
BTS(Lee et al., 2021) 16.276 ± 1.526 5.838 ± 0.498 0.715 ± 0.048
Ours 15.460 ± 1.240 4.020 ± 0.353 0.877 ± 0.023
Ours + SSL 12.515 ± 1.106 2.602 ± 0.351 0.917 ± 0.029

Descending
(0%)

pix2pix(Isola et al., 2017) 26.52 ± 6.868 5.095 ± 0.599 0.432 ± 0.121
MonoDepth+FPN(Ali et al., 2021) 31.629 ± 6.907 11.405 ± 1.479 0.523 ± 0.109
NeWCRFs(Chen et al., 2020a) 22.137 ± 2.915 5.468 ± 0.437 0.464 ± 0.098
NDDepth(Shao et al., 2023) 22.156 ± 5.466 5.675 ± 1.482 0.511 ± 0.201
BTS(Lee et al., 2021) 15.647 ± 2.705 5.121 ± 0.627 0.396 ± 0.138
Ours 14.156 ± 2.325 4.279 ± 0.584 0.524 ± 0.144
Ours + SSL 12.201 ± 0.772 5.611 ± 0.885 0.399 ± 0.166
c
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Considering the sigmoid segment, which only constitutes 21% of the
training set, Col3D-MTL + SSL is the best-performing method. Col3D-
MTL achieves the second best 𝛿1.25 and improves our baseline method
by 5%, 31.1%, and 22.7% on SILog, RMSE, and 𝛿1.25, respectively.
The most remarkable improvement occurs in the descending segment
of the colon, which is not given in the training stage. On this colon
segment, Col3D-MTL ranks first among all the evaluated methods on

MSE and 𝛿1.25. Col3D-MTL + SSL achieves the best SILog evaluation
metric among all the evaluated methods. Moreover, it yields a relative
mprovement of 22% and 0.8% on SILog and 𝛿1.25 over our baseline.

Table 6 also compares the standard deviation of all evaluated
methods on each colon segment of the testing set. Col3D-MTL + SSL
achieves the lowest standard deviation on all evaluation metrics on
the caecum. Additionally, on the sigmoid segment, it achieves the best
standard deviation on SILog and RMSE, only surpassed by Col3D-MTL
on 𝛿1.25 by 26%. On the transverse segment, Col3D-MTL yields the
lowest RMSE and 𝛿1.25 standard deviations, outperforming our baseline
by 61.4% and 50%, respectively. Considering the descending colon
segment, Col3D-MTL + SSL is the best-performing method in terms
of SILog, surpassing the second-best-performing method (Col3D-MTL)
by 66.8%. The worst performance of our methods is observed on the
𝛿1.25 standard deviation on the descending colon segment, in which
they only outperform NDDepth by a relative improvement of 28.4%
(Col3D-MTL) and 17.4% (Col3D-MTL + SSL).

4.4.2. Qualitative results
Fig. 3 contains sample input images with their corresponding

ground truth annotations and the predictions of our baseline and our
roposed method. We can observe that our baseline properly recovers
 global depth map of the 3D scene; however, it has a tendency to gen-
rate smooth transitions between anatomical structures. Our proposed
ethod addresses these cases by recovering geometrical information

bout the scene and enforcing cross-task consistency between our
epth and surface normal predictions, leading to sharper boundaries
nd reduced visual artefacts, e.g., specular reflection. We include an
 o
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absolute error map for each channel pair among prediction and ground
truth maps from both tasks. From the absolute error maps, we can
observe that our baseline generates brighter regions than Col3D-MTL,
i.e., our approach recovers the 3D information of the scene with less
absolute error than its baseline method.

By analysing the most challenging samples, we can observe that the
ases in which our methods fail to recover an accurate depth estimation
re small regions with low lighting conditions. Even though our surface
ormal decoder recovers the overall geometry of small structures, such
s polyps, it does not compute a detailed representation of the surface
rientation within these small regions. Looking at the areas denoted
ith red arrows, we can observe that regions with higher errors in
ur depth maps are consistent with regions with higher errors in our
urface normal maps. Despite these focalised errors, the overall depth
stimation of our proposed method performs better than the one from
ts baseline.

In Fig. 4, we compare the absolute error maps from all the proposed
etwork configurations of our ablation study to observe the effect of
ach approach. Lower absolute error maps are achieved after each
ncorporated module, emphasising their positive impact towards an en-
anced depth estimation. Our baseline method inaccurately estimates
he depth values at transition zones, e.g., on the folds of the colon and

occluded regions. The addition of CBAM modules reduces the absolute
epth error at areas corresponding to the folds of the colon but not
t occlusion zones where depth variation can be higher. Incorporating
ur surface normal predictor diminishes the absolute error of our

depth estimation at these zones. However, the highest absolute errors
ithin each depth map remain in these areas. Our BTS-CBAM-MTL-X-
C approach addresses these cases by explicitly enforcing consistency
mong both predictions. Our proposed framework leads to an overall
ower absolute error map but also achieves a sharper depth prediction
ith fewer visual artefacts.

Fig. 5 shows a qualitative comparison between all the state-of-the-
rt methods evaluated in this study: BTS, pix2pix, NeWCRFs, Mon-
Depth+FPN, NDDepth, and our Col3D-MTL frameworks. From the
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Fig. 3. Qualitative comparison between our baseline and our proposed framework on best, average, and worst performing cases. We show absolute error maps for both methods to
observe the most challenging regions and the impact of our BTS-CBAM-MTL-X-TC. In the first two rows, we can observe the best-performing cases (green) in which both methods
lead to low absolute error maps. The third and fourth rows show average-performing cases (blue) in which the lack of texture and regions with high-depth variability affecting
our baseline method are addressed by our BTS-CBAM-MTL-X-TC framework. Consistency can be observed on the predicted surface normal maps, which help to recover the shape
of the scene, e.g., folds of the colon and small protuberances like polyps. The last two rows represent challenging cases (red) in which both methods generate less accurate depth
estimations. Low-lighting regions, usually located at the furthest section of the scene, represent challenging cases for both methods.
testing set, one sample from each colon segment with its corresponding
ground truth and depth prediction is given. The highest absolute error
maps are generated by NDDepth, followed by MonoDepth+FPN and
pix2pix, which recovered an overall depth representation of the scene
but not as sharp as our baseline method. Our baseline method improves
pix2pix but generates smooth changes in transition zones. NeWCRFs
surpass our baseline method in regions with low texture but cannot
accurately estimate depth in regions with high depth variability. Our
proposed frameworks show similar predictions, leading to the lowest
absolute error maps among all the previous methods, addressing low
texture and regions with increased depth variability. Overall, Col3D-
MTL + SSL leads to lower absolute error maps, except on the last sample
corresponding to the transverse segment.

In Fig. 6, we can visualise the 3D projection of each colon segment
from the depth predictions of each state-of-the-art method evaluated
in this work. Each 3D projection is computed from 50 depth map
predictions following the ground truth camera poses provided by the
C3VD dataset. Overall, the 3D projections computed from the depth
estimation maps of NDDepth and pix2pix contain more artefacts and
distortions than the ones from the other methods (first and fourth
row of Fig. 6). Another significant drawback of these methods is their
inability to recover the overall shape of the colon segments. For ex-
ample, the smoothed high-depth values predicted by MonoDepth+FPN
on the caecum segment (first row of Fig. 5) lead to a protruded 3D
projection in which the folds of the colon are not recovered properly
(first row of Fig. 6). Additionally, the polyp projected from the depth
map predictions of MonoDepth+FPN does not recover the rounded
shape of the polyp. NeWCRFs achieves a more realistic 3D model of the
scene, considerably reducing the generation of artefacts and distortions.
10 
However, the predictions NeWCRFs and our baseline generate smaller
and narrower projections of the polyp than the one generated from
ground truth depth maps. Our Col3D-MTL networks overcome these
drawbacks, generating an overall better representation of the shape
of each colon segment with sharper boundaries at the folds of the
gastrointestinal tract (first and fourth rows of Fig. 6). Col3D-MTL +
SSL also generates a projection of the polyp whose shape and extent
resemble the one computed from the ground truth depth maps (second
row of Fig. 6).

Fig. 7 qualitatively compares our approach against our baseline
method on real colonoscopy patient samples extracted from the CVC-
ColonDB-300 (Bernal et al., 2012) and the PolypGen (Ali et al., 2023)
datasets. The depth predictions on real colonoscopy frames demon-
strate the enhanced generalisability of our proposed Col3D-MTL, even
though our methods are trained on 3D phantom-based data. Col3D-MTL
shows improved robustness against specularities and bubbles (see red
arrows in the first and second samples from both datasets in Fig. 7)
compared to our baseline. Additionally, it estimates smoother depth
maps with sharper edges on the boundaries of polyps and gastroin-
testinal folds (see red arrows in the third sample from both datasets
in Fig. 7) than our baseline method. Some limitations of this method
are close, convex objects (e.g., big polyps in the fourth and fifth samples
from PolypGen in Fig. 7), in which Col3D-MTL is able to estimate
sharper boundaries but can generate higher depth values in its surface.
To improve the generalisability of our method to unseen domains, we
have compared three different techniques: CycleGAN (Zhu et al., 2017)
for domain translation, domain gap reduction in endoscopy (Rau et al.,
2023), and A2MIM (Li et al., 2023b) as a pre-training task. CycleGAN
and domain gap reduction in endoscopy are used to pre-process the
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Fig. 4. Qualitative comparison between our different network configurations. We show
the input image, its corresponding ground truth depth maps, the depth predictions for
each network configuration, and its corresponding absolute error maps. White arrows
show the positive impact of each network configuration concerning the previous one.
The addition of the CBAM modules partially reduces the smooth transitions of our
baseline method. Leveraging our MTL approach reduces the absolute error at transition
zones but does not recover an accurate estimation at areas with low texture. Explicitly
enforcing consistency among tasks achieves an enhanced depth estimation.

input image (we will refer to them as Ours + cGAN and Ours + DGRE,
respectively). A2MIM is used to pre-train the feature extractor of our
proposed network (we will refer to it as Col3D-MTL + SSL). While the
translated images by CycleGAN seem to follow the distribution of the
3D phantom model dataset, it leads to flattened polyps and distorted
shapes that affect depth estimation (see red arrows in the fourth column
of Fig. 7). The use of domain gap reduction in endoscopy preserves the
shape of the scene and emphasises useful features for depth prediction.
This approach improves depth estimation on big polyps not given in
the training set. However, it yields blurry images and generates image
artefacts that affect depth prediction (red arrows in the sixth column of
Fig. 7). The pre-training of our encoder using A2MIM helps to mitigate
the limitations of the previous methods. The predictions show sharper
depth maps and improved generalisability to big polyps and unseen
patient colonoscopy data.

5. Discussion

Monocular depth estimation methods rely on the representation of
visual cues to recover the depth information from a single image. Con-
volutional neural networks have shown an outstanding performance
in extracting local feature representations but need more contextual
information to relate them properly. Therefore, we explored the use
of CBAM modules at each multi-scale stage of the decoder and skip
connections of our baseline method to incorporate attention mecha-
nisms and leverage global context awareness. Our experiments show
an improved performance on all evaluation metrics (see top of Table 3)
and a refined depth map with respect to our baseline (second and third
11 
Fig. 5. Qualitative comparison between all evaluated methods in this study. One
sample from each colon segment and its corresponding ground truth depth map is
given from the testing set. The depth prediction of each method is provided with
its corresponding absolute error map. Red arrows specify challenging regions for each
method, e.g., folds of the colon, polyps, occlusion zones, low-texture regions, and areas
with low lighting conditions.

columns of Fig. 4). However, our BTS-CBAM configuration shows a
tendency to create blurry regions. To further enhance the extraction of
salient features and leverage the orientation of the scene, we integrate
a geometrically related task, namely surface normal estimation, into
our previous network with attention mechanisms. We have designed
an independent surface normal decoder with novel unit normal compu-
tation blocks and incorporated it into our baseline method with CBAM
modules. Our BTS-CBAM-MTL approach using an 𝐿1 loss function to op-
timise the surface normal decoder yields the best trade-off performance
considering all evaluation metrics for both tasks (see middle of Table 3).
The extraction of salient geometrical features leads to a better scene
representation, partially reducing the generation of blurry regions of
our BTS-CBAM network (third and fourth columns of Fig. 4). However,
without an explicit constraint to enforce cross-task consistency, we
do not achieve a refined depth prediction at regions with high-depth
variability, such as the folds of the gastrointestinal tract and occlusion
zones. To explicitly enforce consistency among both predictions, we
implement a cross-task consistency scheme. In order to evaluate con-
sistency among depth and surface normal predictions, we implement a
warping module based on DIG to generate a warping surface normal
map from our depth estimation. Our cross-task consistency scheme
aims to minimise the RMSE between the warped surface normal and
the surface normal prediction of our decoder. We define our final loss
function as a weighted sum of each loss function that optimises our
depth estimation, surface normal prediction, and cross-task consistency
module. The results of our ablation study show that the best set of 𝜆
weighting factors consists of 𝜆1 = 0.5, 𝜆2 = 0.3, and 𝜆3 = 0.2 (Table 4).
Our proposed Col3D-MTL framework surpasses all previous approaches
in our network configuration ablation study (see bottom of Table 3). We
can observe that our approach leads to the most refined depth maps
with the lowest absolute error maps (fifth column of Fig. 4). Moreover,
we can notice an improved accuracy on transition zones, e.g., on the
folds of the colon or in regions containing polyps. Furthermore, the
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Fig. 6. Qualitative comparison between the 3D projections generated from evaluated methods for different colon segments. Each 3D projection consists of 50 depth map predictions
projected into the world-coordinate space following the ground truth camera trajectory provided by the C3VD dataset. In the first row (caecum), our approaches achieve the sharpest
boundaries at the folds of the gastrointestinal tract (red arrows). The second row (descending) shows that the shape of the polyp is better projected by our methods in comparison
to the other analysed networks (blue arrows). In the third row (sigmoid), the overall geometry of the colon scene is less distorted by our frameworks (green arrows). The fourth
row (transverse) demonstrates that our networks recover inner structures with more realistic details while maintaining the overall shape of the scene and reducing the presence
of artefacts (green, blue, and red arrows). Visualisations performed with the Open3D library (Zhou et al., 2018).
enhanced, detailed regions in our depth estimation show consistency
with the accurate surface normal predictions (see Fig. 3).

We set a new benchmark on the C3VD dataset, in which our
proposed Col3D-MTL + SSL achieves the best performance among the
evaluated state-of-the-art methods on monocular depth estimation (see
Table 5). Col3D-MTL + SSL yields a relative improvement of 11.7% on
SILog, 28.6% on RMSE, and 10.7% on 𝛿1.25 over our baseline. We also
qualitatively compare each of the evaluated methods in Fig. 5, in which
we can observe that NDDepth generates higher absolute depth error
maps. We consider that the piecewise planarity assumption leveraged
by NDDepth can provide geometric guidance to the model in 3D natural
scenes. However, this assumption might affect the performance of the
model in colonoscopy scenes because of their low degree of regularity
and complex topology. Based on our qualitative analysis, our Col3D-
MTL + SSL approach estimates depth maps with lower absolute error
maps than the other state-of-the art methods.

We assess the impact of similar and distinct scene data in all
colon segments by using a careful split between training and test sets
of the provided data as discussed in Section 3.1. For example, the
sigmoid segment in the test set, which has a different texture from
the training samples, generates a significant drop in performance when
compared to the caecum or transverse segments which have some
resemblance to the training data (Table 6). Additionally, we analyse
the dependence of the performance of the model on the structure of
the 3D scene. For example, the transverse colon has more folds along
the lumen and a broader depth range than the caecum segment (first
(caecum) and seventh (transverse) row of Fig. 5). Even though there
are more training samples related to the caecum, Col3D-MTL achieves
a lower RMSE on the transverse segment (Table 6). Notably, on all
colon segments, except for the caecum, our proposals achieve the best
𝛿1.25 value. However, the most remarkable achievement relates to the
unseen descending colon segment, in which Col3D-MTL surpasses all
the networks presented in this study (only outperformed by Col3D-MTL
+ SSL on SILog evaluation metric) (see Table 6).
12 
We evaluate temporal consistency in terms of standard deviation
across sequential frames for each colon segment. A lower standard
deviation denotes higher temporal consistency. We observe that our
methods achieve lower RMSE standard deviation values, below one
millimetre and within the top two best-performing methods in all colon
segments, suggesting stable depth estimation across the video frames
(see Table 6). Moreover, we notice that the lack of texture in the
caecum decreases the temporal consistency of our approach in terms
of SILog and RMSE evaluation metrics.

The disparity maps generated by NDDepth result in distorted point
clouds that do not recover a realistic topology of the colon segments,
e.g., at the folds of the gastrointestinal tract (Fig. 6). Unlike ND-
Depth, the support of our auxiliary surface normal task guides our
network towards an enhanced and detailed 3D point cloud. In contrast
to pix2pix and MonoDepth, Col3D-MTL decreases the generation of
artefacts and distortions during the 3D projection of the colonoscopy
scene. Among the evaluated methods, NeWCRFs qualitatively yields
detailed 3D projections on each colon segment. However, our approach
addresses the cases in which NeWCRFs does not lead to a proper 3D
representation by generating sharper boundaries at the folds of the
colon and recovering the geometry of small protuberances, such as
polyps (see Fig. 6).

Our proposed Col3D-MTL qualitatively outperforms our baseline
on two real colonoscopy datasets (see Fig. 7). Overall, Col3D-MTL
results in smoother depth maps with sharper edges on the boundaries of
polyps and gastrointestinal folds. However, we noticed that our method
generates wrong depth estimations within the surface of big polyps, as
indicated by the red arrows on the last two samples from the PolypGen
dataset (see Fig. 7). We consider that the convex shape and prominent
size of the polyp affect the performance of our method because similar
samples are not available in our training dataset. We observed that
self-supervised pre-training with real patients and 3D phantom-based
colonoscopy data improves the generalisability of our method to unseen
patient colonoscopy datasets with minimal performance drop on the
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Fig. 7. Qualitative evaluation on real patient colonoscopy samples. We evaluate our baseline method and our proposed approaches on five samples from the CVC-ColonDB-
300 (Bernal et al., 2012) and the PolypGen (Ali et al., 2023) datasets. In the first two rows from both datasets, we show the robustness of our Col3D-MTL methods when tested on
frames with different photometric properties, e.g., contrast variabilities and specularities. The third sample of each dataset examines the performance of all approaches on different
texture and colour details, e.g., boundaries of the polyp and shape of the folds. In the last two samples of each dataset, we compare the predictions on frames with occlusion
regions caused by polyps and folds. Notably, Col3D-MTL+SSL achieves refined boundaries of the occlusion regions and mitigates the wrong depth predictions of Col3D-MTL within
the protuberances.
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source phantom data (see Fig. 7, Tables 4, and 6). While domain
gap reduction achieves better results than domain translation using
CycleGAN (see Fig. 7), we observed that mapping colonoscopy data
from one domain to another is complex due to inherent geometrical
changes of the scene that distorts the transformed data. In contrast,
we noticed that learning middle-order interactions from pretraining
using real patient data and 3D phantom data through a self-supervised
MIM approach yields enhanced generalisability to unseen real patient
colonoscopy data without such geometrical distortions and hence not
affecting the depth predictions.

6. Conclusion

Colonoscopy screening remains the gold standard for diagnosing
and treating inflammatory bowel diseases. However, due to its chal-
lenging anatomical environment and variable conditions, it is a highly
operator-dependent procedure, which usually leads to a high missed-
detection rate. Although several approaches have been proposed to
detect and segment instruments and polyps, recovering the 3D scene
information to perform a quantitative assessment has not been widely
studied. Recovering the depth information of a scene is the first step in
a 3D reconstruction pipeline. We have identified the current challenges
of monocular depth estimation methods and developed our proposed
ramework towards its applicability in the colonoscopy domain. We se-
ected BTS as our baseline monocular depth estimation method. Given
he outstanding local feature representation of convolutional neural

networks, our proposed method leverages CBAM attention mechanisms
to improve global context awareness and to relate our extracted local
features, a surface normal decoder with novel unit normal compu-
tation blocks to enhance the 3D representation of the scene, and a
cross-task consistency scheme to explicitly enforce consistency among
depth and surface normal predictions. To demonstrate the impact of
each module, we have provided a comprehensive experimental setup
which validates our Col3D-MTL network. We have included a self-
supervised masked image modelling-based approach for improving the
generalisability of our proposed model on real patient colonoscopy
datasets. Our framework is compared against other state-of-the-art
monocular depth estimation methods on the C3VD dataset, which is
entirely recorded with a high-definition clinical colonoscope on a sili-
cone phantom model that mimics the vascular patterns and the specular
appearance of the colon mucosa. Our quantitative results show that our
proposed networks outperform current state-of-the-art methods. The
most remarkable improvement of our method is achieved on a colon
segment that was not given during the training stage. Our qualita-
tive results support adding each proposed module towards a refined
feature representation of the colon scene. A qualitative comparison
among the 3D projections generated from the depth predictions of
each method shows the ability of our proposed framework to generate
sharper boundaries at transition zones, recover the shape of small
protuberances, and decrease the generation of visual artefacts.

Limitations and future work

The limitations of the proposed frameworks include inaccurate
depth and surface normal predictions in regions with low lighting con-
ditions, usually located at the farthest region of the colonoscopy scene.
Other cases in which our surface normal decoder does not recover
the surface orientation include small regions with high orientation
variability, usually encountered as the region gets farther from the

colonoscope.
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