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Original Research Article

The locus of legitimate interpretation
in Big Data sciences: Lessons for
computational social science from
-omic biology and high-energy physics

Andrew Bartlett1, Jamie Lewis2, Luis Reyes-Galindo3 and

Neil Stephens4

Abstract

This paper argues that analyses of the ways in which Big Data has been enacted in other academic disciplines can provide

us with concepts that will help understand the application of Big Data to social questions. We use examples drawn from

our Science and Technology Studies (STS) analyses of -omic biology and high energy physics to demonstrate the utility of

three theoretical concepts: (i) primary and secondary inscriptions, (ii) crafted and found data, and (iii) the locus of
legitimate interpretation. These help us to show how the histories, organisational forms, and power dynamics of a field

lead to different enactments of big data. The paper suggests that these concepts can be used to help us to understand the

ways in which Big Data is being enacted in the domain of the social sciences, and to outline in general terms the ways in

which this enactment might be different to that which we have observed in the ‘hard’ sciences. We contend that the locus

of legitimate interpretation of Big Data biology and physics is tightly delineated, found within the disciplinary institutions

and cultures of these disciplines. We suggest that when using Big Data to make knowledge claims about ‘the social’ the

locus of legitimate interpretation is more diffuse, with knowledge claims that are treated as being credible made from

other disciplines, or even by those outside academia entirely.
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Q: You are sure that your statement represents scien-

tific truth?

A: I am.

Q: On what basis?

A: On the basis of the mathematics of psychohistory.

Q: Can you prove that this mathematics is valid?

A: Only to another mathematician.

Isaac Asimov, Foundation (1951)

Introduction

Over the past decade, ‘Big Data’ has been positioned as

the indispensable mode of 21st century research across

academia (Boyd and Crawford, 2012; Kitchin, 2014a).

While many of the foundational concepts and

techniques of the Big Data sciences were already well-

established practices across a number of scientific dis-

ciplines, only recently have they been assembled into a

distinct field of research claiming legitimacy in and of

itself (Beer, 2016; Kitchin, 2014a, 2014b; Ruppert,

2015; Williams et al., 2017). While social science has a
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quantitative history with ‘big’ datasets dating back to

before Durkheim (1897 [2006]), the emergence of ‘Big

Data’ and computationally-intensive social science is a

contemporary phenomenon. As with much of the dis-

course surrounding Big Data across the board, there is

a tendency to posit the application of ‘Big Data’

approaches to social science questions as a revolution-

ary innovation in the profession, both in terms of

empirical reach and in theoretical advancement. Lazer

and Radford (2017: 20), to cite a recent example, argue

that in the span of a generation we ‘‘will witness a trans-

formation of sociological theory through these

improvements in our ability to observe dynamic social

systems.’’ Yet, as Lazer and Radford also maintain, the

presence of Big Data research in the leading sociology

journals is minimal, with much computational

social science currently being carried out not by trained

social scientists, but by computer scientists. Supporting

this, a sociologist engaged in Big Data research

described to us a major conference on Big Data social

science as being attended by around ‘‘98% computer

scientists and physicists and 2% sociologists’’ and that

attendees ‘‘weren’t engaging with the kinds of questions

that [. . .] sociology would engage with.’’

While there are, undoubtedly, a significant number

of social scientists developing programs of sociologi-

cally-informed Big Data work with potential for advan-

cing social science, computationally-derived claims

about ‘the social’ can easily become divorced from, or

more worryingly contest the legitimacy of traditional

social science that have developed over decades: the

theoretical, epistemological, and ontological sensibil-

ities, as well as its ethical and political commitments.

In this regard, Big Data social science has ‘revolution-

ary’ potential regardless of the content (or success) of

its knowledge claims. Or, as McFarland et al. (2016: 32)

put it, despite the potential for innovation, it is a legit-

imate concern that ‘‘we may be more likely to witness

engineering colonize sociology and the social sciences

than vice versa.’’ A decade earlier, Savage and Burrows

(2007) also pointed out that the techniques of social

research have been incorporated into the circuits of

‘knowing capitalism’ (Thrift, 2005) as much ‘social

research’ takes place outside, and in (deliberate) ignor-

ance of, academic social science.

When Lazer and Radford (2017: 25) find that what is

‘‘[p]erhaps most exciting about Big Data is the oppor-

tunity to build a science of society’’, one is left to wonder

what a vast number of social scientists are supposed to

have attempted for the past two centuries, if not such a

science. Of course, the idea that the social sciences are

‘soft’, scientifically ‘weak’ or lack internal disciplinary

integrity when compared to the ‘hard’ and more ‘scien-

tifically legitimate’ natural sciences, is not new (see, for

example, Cole, 1983; Holmwood, 2010; Pinar et al.,

2008; Storer, 1967), and these hierarchies are the context

in which disciplinary prejudices might shape the future

of Big Data applications to social science questions;

minimising the role of thinking about the social vis-à-

vis elevating that of computational expertise through

‘scientific superiority’ discourse. Commentators have

even gone so far as to provocatively declare on the pos-

sibility for a ‘methodological genocide’, in which ‘‘vio-

lence [is] being committed under the guise of ‘Big Data’

at a methodological level that is not being discussed.’’1

Yet, as we suggest in this paper, the conditions in which

the locus of legitimate interpretation for computation-

ally-intensive Big Data social science is being manufac-

tured is sociologically quite different to the cases of Big

Data biology and physics. This paper uses our in-depth

studies of these ‘hard’ scientific fields to critically probe

the question of who is currently poised to be the legit-

imate interpreter of Big Data social science and the

implications this may have for social science research

in the future. We take our empirically robust analyses

of biology and physics to make suggestions, provoca-

tions even, that point towards analyses of ‘Big Data’

social science that make similar use of Science and

Technology Studies (STS)-derived concepts.

Like many of our colleagues, we welcome new meth-

ods of researching the social, new ways of addressing

social science questions, but offer our use of the concept

of the locus of legitimate interpretation in the paper as

a contribution to discussions about the ways in which

sociological (and other social science) sensibilities can

be retained in Big Data research, as a bulwark against

domination through technical discourse by badly-prac-

tised ‘social scientism’.

Who are the legitimate interpreters of

Big Data social science?

While there is an emerging body of critical,

social theory-informed Big Data social science

(Cockayne, 2016; Kitchin, 2014a; Kitchin and

McArdle, 2016; Niederer and Taudin Chabot, 2015;

Symons and Alvarado, 2016), we propose a critical

engagement from a different vantage point: Science

and Technology Studies (STS). STS has historically

dealt with its objects of study – socio-technological sys-

tems and research fields – with a highly critical eye, and

thus offers a number of tools for probing Big Data

computational social science (hereon BDCSS) futures.

Additionally, a vast number of STS studies exist ana-

lysing the role of scientific fields where Big Data

computation has been the dominant experimental para-

digm. We present two cases in which the authors have

extensive sociological expertise: (i) Big Data biology in

the ‘-omic’ sciences, and (ii) in Big Data high-energy

physics (HEP). Both disciplines have, for decades,
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performed Big Data production and analysis, but they

engage computational practices, data analysis and data

interpretation in different ways. Furthermore, both

assign epistemic legitimacy and power differently to

computational versus ‘traditional’ practices in their

fields. The -omic sciences and HEP thus offer a pri-

mary, comparative, empirically rich point of departure

for understanding the way in which scientific disciplines

structure legitimacy of interpretation around computa-

tional practices.

Our primary contribution to the debate will be to

show that in contrast to sociology, where ‘analysing

society’ is often framed by outsiders as if it were a ubi-

quitous expertise,2 biologists and physicists face few, if

any, challenges to their monopoly on making legitimate

knowledge claims about those aspects of the world

encompassed by their discipline. Despite increasingly

relying on computational practices that have demanded

the introduction of new forms of expertise, the compu-

tational aspect in biology and physics is often subju-

gated as a tool, a service even, to be used by those with

disciplinary grounding in the sensibilities of their dis-

cipline. However, this arrangement is not unconnected

to the way in which the Big Data of biology and physics

is made – crafted within, and for use by, these discip-

lines – and we therefore describe the critical distinction

between such ‘crafted’ and ‘found’ data in this paper.

As our extensive empirical work on biology and physics

shows, the transformation of a discipline into one that

produces and uses Big Data need not entail a revolu-

tionary transformation in the locus of legitimate inter-

pretation. However, as our observations of some Big

Data claim-making about social science questions also

show, Big Data does have the potential to erode even

further the primacy of knowledge claims about the

social made by those with groundings in disciplinary

social science, and sociology in particular.

We situate our paper in dialogue with Beer’s (2016)

work on how we should study the history (and for us,

equally the sociology) of Big Data. For Beer, ‘‘we need

to place Big Data within the genealogy of social data of

various types . . . [and]. . . approach this history by treat-

ing Big Data as both material phenomenon and also a

concept’’ (p. 1). While completely agreeing with this

approach, we advocate the value of extending beyond

social data to include other comparative articulations

of Big Data practices. In this paper, we show how Big

Data in the two domains that we have studied in depth

(biology and physics) is associated with a change in the

arrangements of work that produce and analyse these

data, the legitimation of knowledge claims, and, to

some degree, the rhetoric of the underlying epistemol-

ogy, which we use as a basis for our observations of

difference in BDCSS. By considering Big Data as an

enactment, pointing to the importance of how socio-

material sets of practices achieve and accomplish Big

Data as a meaningful phenomenon, we place Big

Data in its social and cultural context. Of course, our

notion of enactment does not deny the affordances and

impacts of Big Data, nor its increasing popularity as a

novel mode of research and powerful research tool.

However, for the scientific fields we use to illustrate

this argument, we locate ‘Big Data’ within a socio-

material account that recognises not only the scientific

and technical promises of Big Data, but also the

performative capacity of the promises, the practices,

and the specificities around Big Data. As Beer (2016)

argues, Big Data as a concept ‘‘defines, enacts and

ushers in’’ (p. 9) the materiality it describes.

Fieldwork

Our argument is informed by a set of empirical projects

and participatory activities that ran over a 15-year period.

These include extended ethnographic contact in multiple

sites of scientific work, sets of qualitative interviews, a

survey of UK academic bioinformaticians, and the par-

ticipant comprehension of working in and on Big Data

programmes in both biology and physics. Bartlett has

conducted postgraduate and postdoctoral research on

‘big’ biological projects, including the Human Genome

Project (HGP) (Bartlett, 2008) and large-scale psychiatric

genetics (Arribas-Ayllon et al., 2010). With Lewis he has

also conducted research on the development of academic

bioinformatics in the United Kingdom (Bartlett et al.,

2017; Lewis and Bartlett, 2013; Lewis et al., 2016). In add-

ition to qualitative data, this research involved a survey

examining the attitudes and opinions of those working in

UK academic bioinformatics (Bartlett et al., 2016). Lewis

has also conducted interview and observational research

with scientists working in bioinformatics and proteomics

including those working at the European Bioinformatics

Institute (Lewis, 2008) and has participatory experience of

working in research centres engaged in both Big Data

biology and Big Data social science. Reyes-Galindo has

carried out extended research in the sociology of physics,

in particular themediating role of computational and data

analytic cultures in both ‘big’ and ‘small’ science settings.

This included fieldwork with a computational physics

group at the Conseil Européen pour la Recherche

Nucléaire (CERN) and other physics institutes around

the world, and has produced work on the role of algo-

rithms in defining physics communities (Reyes-Galindo,

2016). Stephens has conducted a four-year ethnographic

study of the development of biological Big Data tools in

the novel context of cell culturing (Stephens et al.,

Forthcoming; Stephens and Lewis, 2017). Collectively

these form a substantial and robust body of studies

from which our STS-based analysis of Big Data in prac-

tice is drawn.
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In what follows, we articulate four key theoretical con-

cepts used in our analysis. We apply them to biology and

physics in specific detail, and reflect on their relevance for

Big Data applications to social science in a more general

way. In doing so, we demonstrate how the histories, insti-

tutional forms and power dynamics of a discipline play a

part in producing different forms of Big Data enactment;

with concrete empirically-grounded examples in the cases

of biology and physics, and suggestions of possible

futures and research agendas in the case of the social sci-

ences learnt from those examples.

Four key concepts: Enactment, primary/

secondary inscriptions, crafted/found

data, and the locus of legitimate

interpretation

The classic notion of enactment in STS captures how

scientific work operates to bring into being the knowl-

edge-world it seeks to explore (Pickering, 1995). Studies

of sociology (Law and Urry, 2004), economics (Callon,

1998; MacKenzie, 2006), public understanding of sci-

ence (Michael, 2016), biology (Borup et al., 2006;

Brown and Michael, 2003) and physics (Barad, 2007;

Galison, 1997; Pickering, 1995) have demonstrated that

research visions and methodologies are performative in

the making and re-making of scientific disciplines and

their knowledge. Here, we show how in biology and

physics the notion of Big Data, its manipulation, and

the institutional forms that support it, are brought into

being through extensive physical, intellectual and sym-

bolic labour and material configuration. Furthermore,

these enactments bring with them particular socio-

material relations, power dynamics and implications

for what form Big Data science takes and its efficacy

as a research tool.

To do this, we draw upon the notion of inscriptions

(Latour and Woolgar, 1986), and especially primary

and secondary inscriptions (Lewis and Bartlett, 2013).

Laboratory instruments in this metaphor are seen as

‘‘inscription devices’’ that ‘‘transform a material sub-

stance into a figure or a diagram’’ (Latour and

Woolgar, 1986: 51), or ‘nature’ into ‘knowledge’ –

understood as socially legitimised, portable and stabi-

lised ‘facts’. In previous work examining Big Data biol-

ogy, we distinguished between Latourian primary

inscriptions that transform the material into the sym-

bolic, and secondary inscriptions that are the result of

separate, distinct transformations of the symbolic into

a second set (Lewis and Bartlett, 2013). An example

from biology of producing a primary inscription is

the physical, material work of drawing blood samples,

extracting the DNA, and genotyping the DNA on a

gene chip, producing hundreds of thousands of data

points. An example of producing a secondary inscrip-

tion is taking these existing primary inscriptions and

conducting Genome-Wide Association Studies

(GWAS), using a dataset containing the genomic and

phenotypic data of thousands of individuals, in order to

discover associations between genetic variants and

phenotypic traits.3 These processes of secondary

inscription can be conducted without ever entering a

traditional laboratory, and produce a distinct form of

representation with different standards.

We extend this analysis from biology to physics and

discuss the implications of this way of thinking for Big

Data social science. In doing so, we develop a distinction

between crafted and found data. ‘Crafted’ data are

inscriptions produced within the scientific community

which will use these inscriptions in order to make know-

ledge claims. In other words, data that have been pro-

duced with the disciplinary sensibilities of scientists in

mind; specifically oriented, for example, towards answer-

ing questions that are meaningful within the discipline.

‘Found’ data, on the other hand, are inscriptions that

‘exist’ independently of the intent and design of the scien-

tific community doing the analysis (for example, admin-

istrative or transactional data that reflects the priorities

and purposes of its producers).4 Found data are ‘out

there’, already existing as inscriptions, independent of

any prospective or imagined disciplinary use and control.

This paper suggests that the differences between the way

in which Big Data is enacted in biology and physics, and

in its application to social science questions, is related to

the fact that the natural sciences craft their own inscrip-

tions, while those applying data to social science ques-

tions often draw on existing, ‘found’ inscriptions from

Twitter, Google or Amazon for example.

The notion of the locus of legitimate interpretation

originates in the work of Collins and Evans (2007: 120).

It describes the (social) ‘location’, in terms of commu-

nities and expertise, from which legitimate knowledge

claims and judgements of those knowledge claims can

be made. To illustrate, we can think briefly about where

we would find the locus of legitimate interpretation in

two starkly different cases. Collins and Evans argue

that the locus of legitimate interpretation for art

extends beyond the community of art-producers.

Audiences and art critics are treated as legitimate asses-

sors of the quality of the work. By comparison, in the

sciences, the locus of legitimate interpretation usually

lies well inside the community of producers, as only

those with specialist expertise are deemed sufficiently

equipped to make valid judgements. When deploying

this analytical framework it is important to keep dis-

tinct its descriptive application – documenting empiric-

ally who holds legitimacy within a specific context – and

its normative application – arguing that particular

groups ought to be deemed legitimate interpreters. In
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this paper we do both; by drawing on our empirical

sociologies of biology and physics to describe the

locus of legitimate interpretation in these cases, and

by raising questions about where and how the locus

of legitimate is to be found in questions of BDCSS.

Describing this in terms of inscriptions and crafted/

found data, we argue that in -omic biology and HEP

physics, both primary and secondary inscriptions are

crafted, analysed, and interpreted within the established

scientific communities. By contrast, an emerging para-

digm in Big Data applications to social questions is to

create secondary inscriptions from data found outside

the discipline. Further, it is possible to make ‘social’

knowledge claims using Big Data, which are taken to

be legitimate, from outside of the disciplinary cultures

of social science. In other words, the ‘location’ of the

making, analysis, and interpretation of big social data,

and the judgement on these knowledge claims allows us

to say that the locus of legitimate interpretation is much

more widely distributed in the social sciences than is the

case in biology and physics.

Enacting Big Data in biology

Big Data underwent its foundational enactment as a

scientific and political force in biology during the

period of 1990–2003 with the HGP. The HGP remains

the biggest biological collaboration in history

(Hilgartner, 2013; Tripp and Grueber, 2011). It pro-

vided the technological and informational platform,

as well as the inspiration and model, for the post-

HGP data-driven sciences (Collins et al., 2003), such

as genomics, proteomics, transcriptomics, and metabo-

lomics, collectively known as the ‘-omic’ sciences. In the

post-HGP era, techniques for producing significant

amounts of data have meant that both the production

and analysis of big biological data have become avail-

able to smaller and smaller research groups (Check

Hayden, 2014; Grada and Weinbrecht, 2013). The

establishment of biology as, at least in part, an infor-

mational, computational science, has been accompa-

nied by claims that this new way of doing biology is

data-driven (Leonelli, 2016; Stevens, 2013), and even

(perhaps erroneously) ‘hypothesis-free’ (Cooke Bailey

et al., 2014).5

Biologists, bioinformatics and

bioinformaticians

While bioinformatics has a history almost as long as the

history of computing itself (Garcia-Sancho, 2012;

November, 2012; Strasser, 2010; Suarez-Diaz, 2010),

the HGP was the catalyst for its rapid growth and dis-

ciplinary infrastructure of conferences, journals, grants

and undergraduate and postgraduate courses (Lewis

et al., 2016; Stevens, 2013). The move to enacting Big

Data brought with it a requirement for a formalisation

of mathematical and computer literacy through -omic-

oriented bioinformatics (Lewis and Bartlett, 2013;

Lewis et al., 2016). This collective enterprise encom-

passes a broad set of actors including data curators,

data analysts, and computer engineers that seek to

align computational analysis with large data sets

(Harvey and McMeekin, 2002). However, bioinfor-

matics – like any other field – is itself a distinct and

recognisable community and set of practices (Bartlett

et al., 2017). In the theoretical language developed here,

bioinformatics is the work of producing secondary

inscriptions through the application of computational

techniques to the primary inscriptions made in the

laboratory. That is, the data are crafted by the biologist

and their contact with the material, biological world –

be that a cell line, a living organism, or a survey of

people – and is then further transformed by a process

of secondary inscription by a bioinformatician.

The status of bioinformatics is contested within the

reward and recognition structures of biology. This is

clear in the contrast between Stein’s (2008) celebrative

account of the total integration of computational meth-

ods into biology in the statement ‘‘[b]iologists are all

bioinformaticians now’’ (p. 151) with Chang’s (2015:

151) pessimistic claims that ‘‘there are not enough

bioinformaticians’’ and that ‘‘[b]iological data will con-

tinue to pile up unless those who analyse them are

recognized as creative collaborators in need of career

paths’’ (see also Bartlett et al., 2016, 2017). In our own

work, we refer to contestation over the institutional

position of computational analysis in biology as the

‘middling’ of bioinformatics (Lewis et al., 2016), brid-

ging the gap between computer science and biology but

as yet not forming its own, coherent, disciplinary space,

nor occupying those of its ‘parental’ disciplines.6

Although conceptually central to the doing of post-

genomic science, bioinformatics is institutionally

peripheral, and is often positioned by biologists as a

service to biology (Bartlett et al., 2017; Lewis and

Bartlett, 2013), blending into the background (Baren-

Nawrocka, 2013). In many cases, despite the rhetoric,

we have found that data analysis and computation is

not a particularly highly valued or rewarded activity

within biology (Lewis et al., 2016).

It should be noted here that much computing expert-

ise is brought into biology from outside the discipline.

Bioinformatics is often blackboxed as far as many

biologists are concerned – with analysis being con-

ducted by collaborating bioinformaticians, often at a

distance (even if they are within the same institution)

– or through the use of standardised bioinformatics

tools (Lewis and Bartlett, 2013). Some in the field see

this as a positive, while others recognise the problems

Bartlett et al. 5



of this ‘collaborative or collective interdisciplinarity’

(see Calvert, 2010; Lewis and Bartlett, 2013). For exam-

ple, while the computational work is performed by

bioinformaticians, the burden of analysis is shared

with biologists, who through the disciplinary and insti-

tutional systems of prestige, retain a dominant position

with regard to the locus of legitimate interpretation.

Importantly, biologists have institutional ‘ownership’

of the data of Big Data biology.

There are instances in which ‘big biology’ produces

Big Data – the case of the HGP, for example. Here,

bioinformatics can be conducted in large-scale settings,

such as the National Centre for Biotechnology

Information (NCBI) in the USA, the DNA Data

Bank of Japan (DDBJ) and the European

Bioinformatics Institute (EBI). But Big Data also pro-

duces big science. We observe this not only in the epi-

stemic demands for Big Data to tackle genetically and

phenotypically complex disorders, but also in that the

resulting Big Data (and the techniques and technologies

developed in these projects) enables (scientifically, insti-

tutionally, and ‘politically’) further big science projects.

This is clear in the way in which the accomplishment

and legacy of the HGP has helped to shape many other

satellite centres of post-HGP -omic science. The scale of

bioinformatics projects therefore can also be much

smaller, sometimes involving only a handful of

researchers. Such smaller science Big Data work often

draws on computational and statistical expertise from a

centralised group within their host institution. Many

universities establish a central bioinformatics hub for

its researchers to work with when they see fit. Yet these

smaller science settings may still rely on components of

big science, by drawing upon the training, data, appli-

cations, and collaborative skills of institutions such as

the EBI. Furthermore, the work of these smaller science

Big Data projects can be aggregated using standardised

protocols for data collection and recording (Wallis

et al., 2013). This is already underway in the ‘-omic

sciences’ (Harvey and McMeekin, 2010; Leonelli,

2012, 2013), and is spreading to other areas of bio-

logical research such as cell culturing (Khan et al.,

2014). Reflecting this, big biological data science is pro-

mised as being geography-free, as collation disentangles

it from the peculiarities and particularities of localised

settings, with global infrastructures allowing seemingly

‘frictionless’ international flow.

The epistemic culture (Knorr-Cetina, 1999) of

biology has shifted in the post-HGP era. Some argue

this is a move from ‘hypothesis-driven’ research into

an era of ‘hypothesis-free’ biology (Cooke Bailey

et al., 2014), although, perhaps more accurately, the

move to data driven biology is a change from deduct-

ive to inductive reasoning (Leonelli, 2012). This

change has already been institutionalised and

embedded within the distinctive nomenclature of the

‘-omic’ sciences. An important point must be reiter-

ated with regard to this new, inductive, mode; Big

Data biology ‘crafts’ its data. The vast databases of

-omic data that are said to ‘drive’ much contemporary

biology have been crafted in a laboratory, by techni-

cians and scientists trained in biological ways of think-

ing and according to the disciplinary sensibilities of

biologists. Even when computational biologists come

to use these large data sets at one step removed,

having played no part in the production of the data,

the data that they use are still crafted within the epi-

stemic culture of biology.

The locus of legitimate interpretation for Big Data

biology is located firmly within the epistemic, disciplin-

ary culture of biology: data are produced within the

discipline, in laboratories, by biologists, or by computer

scientists with biological sensibilities in mind. That is,

although computational and statistical expertise has

been drawn into the discipline, bringing with it a new

style of statistical reasoning (Leonelli, 2012; Lewis

et al., 2016), it has been done so in a way that positions

it subordinate to the disciplinary concerns of biology

(Lewis and Bartlett, 2013). We now turn our attention

to Big Data in physics.

Enacting Big Data in physics

Historical and ethnomethodological studies identify

three families of practice in physics: theory, phenomen-

ology, and experiment. Phenomenology encompasses

the cumulus of disciplines that does the bulk of the

‘translation’ between theory and experiment (Galison,

1997; Merz and Knorr-Cetina, 1997; Reyes-Galindo,

2011). Specifically, Reyes-Galindo (2014) describes

physics as being structured around two opposite poles

of practices: theoretical and experimental, but with

many intermediate micro-cultures mediating the trans-

mission of knowledge across them. In all these micro-

cultures, computation has for a long time been an

important element, particularly in HEP experiments,

which are nowadays recognised as forerunners of Big

Data science (Murray, 2014). Yet it is only recently,

with the rise of ‘Big Data’ rhetoric in the media and

in commercial and academic discourse, that physicists

have begun to market their traditional practices as ‘Big

Data’. Indeed, the first occurrences of the term

‘Big Data’ in the physics arXiv preprint server – the

single most important resource for vanguard physics –

are as recent as 2013 (Anderson et al., 2013), while the

earliest mentions of ‘Big Data’ related to physics in the

scientific press refer not to a discourse on the promises

or possibilities of Big Data, but to the problems of sus-

tainable and reliable computational infrastructure that

Big Data sets imply (Lynch, 2008).
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The locus of legitimate interpretation

in HEP

Nowhere in physics has the rapid accumulation of vast

amounts of data been more visible than in HEP, as

experiments have increasingly demanded more data-

points to reach the confidence levels required by physi-

cists to claim that a ‘finding’ is in fact a ‘discovery’

(5 standard deviations are the norm in HEP). The para-

digmatic case of Big Data in physics is CERN and the

Large Hadron Collider (LHC) experiments (Knorr-

Cetina, 1999; Kriege, 1996), though other projects

such as the Sloan Digital Sky Survey and other sky-

mapping experiments in astronomy and astrophysics

also produce terabytes of analysable data (Zhang and

Zhao, 2015). For example, one of the core CERN

experiments, Compact Muon Solenoid (CMS), pro-

duces around 1 petabyte (100 gigabytes) of ‘raw’ data

per second, and there are similar figures for the other

experiments. The quantities of data produced are only

expected to increase, although CERN currently only

stores in the order of 35 petabytes a year as the over-

whelming majority is filtered out. Yet a modern physics

experiment does not necessarily require the size and

complexity of CERN to reach the data-acquisition

numbers of CERN. The smaller-scale, Mexico-based

High-Altitude Water Cherenkov Observatory

(HAWC) international collaboration generates about

1 terabyte of data per day, just under the same order

of magnitude as the data produced at CERN, but –

unlike CERN – records all data for possible later ana-

lyses (Gitler and Klapp, 2016).

In big physics settings such as CERN, which

involves work in a number of highly specialised areas,

the multiple loci of legitimate interpretation are found

in the collectively-vetted effort. Locating these is some-

what more complex than the situations captured by

Collins and Evans’ (2007) portrayal of inter-expertise

dialogue and meta-expertise interdisciplinary manage-

ment, as the multiple expertises in CERN often overlap

and become too complicated for a single actor to fully

comprehend. Despite the detectors being physically

grouped at two sister sites near Geneva and there

being a known set of core group leaders, CERN is a

globally-distributed knowledge-producing network in

which the acquisition, handling and processing, and

interpretation of the data is carried out by several inde-

pendent communities within ‘the experiment’. The data

are cleaned even as it is being acquired, recorded and

then interpreted and re-interpreted in several steps in

which interpretative legitimacy is ‘lent’ to the expert

groups that intervene in each step. Once all the steps

come together, a final stable consensus is reached after

a long gruelling process of micro-data crafting, for

example, when a ‘discovery paper’ is published in

collaborative authorship. The importance of each par-

allel interpretational mesh-point and the locality of

each step is made most obvious by the number of

authors in contemporary discovery ‘megapapers’ – the

Physics Letter B paper announcing the discovery of the

Higgs boson was signed as ‘CMS collaboration’ and

‘ATLAS collaboration’ and jointly included more

than 6,000 authors. As a senior computational physicist

remarked in interview:

‘‘Nowadays even building the detectors has become an

industrial enterprise. In the past, a group or a small set

of groups was responsible for designing, building,

operating the whole detector, the calorimeter, the

vertex detector, particle identification detector [. . .]

Nowadays, each detector is an enterprise of many insti-

tutes, many people, so you don’t even get the overview

of the whole detector.’’

Though distributed among the collaboration teams,

the locus of legitimate interpretation remains within

‘the experiment’ as a whole; that is, within the CERN

community. The distributed interpretation makes it

impossible for a single member of the collaboration to

draw away into a personal interpretation of the entire

experimental setup, as Delfanti (2016) has described in

his discussion of deliberative democracy methods for

producing authorship in HEP. Once the ‘results’ have

been stabilised within each interpretative step in a multi-

plicity of primary inscriptions, they are then collectively

cohered into project-overarching secondary inscriptions

which are then put into collected tables of ‘definitive’

data, such as the massive Review of Particle Physics

(RPP) published by the Particle Data Group at the

Lawrence Berkley National Laboratory.

Bibliometric investigations (Basaglia et al., 2008)

and fieldwork at CERN by Reyes-Galindo suggest

that, as described by Lewis and Bartlett (2013) in bio-

informatics, computational physics is generally

regarded as a less prestigious activity than other areas

of research, despite its importance for the generation of

experimental outcomes. That programming and com-

putation in scientific settings – and specifically in phys-

ics – is, broadly speaking, regarded as ‘‘production

rather than research’’ (Slayton, 2013: 38) and is

known to be a feature not just of scientific computing

but of the whole field of programming (Ensmenger,

2012). It is therefore unsurprising that the critical com-

ponent of data analysis at CERN, infrastructure com-

puting, is generally looked down upon as ‘technical’

and ‘service’ work and is perceived as an activity at

some remove from the prestige of ‘real’ research.

Low-level data reconstruction, though seen as being

closer to ‘research’ and requiring significantly more spe-

cialised knowledge of physics, is still seen as being less

Bartlett et al. 7



prestigious than other research practices such as hard-

ware development. This work – save for a few individ-

uals who are considered the leading experts of their

fields – is the domain of the graduate students and

postdoctoral researchers who do most of the grunt

work. Nevertheless, informants in Reyes-Galindo’s

empirical research described the way in which recon-

struction is divided into many subspecialties. Each of

these requires intensive specialisation that is often

experiment-specific. Between these specialities hierar-

chies have formed, though in general reconstruction

work is of lesser status to that of conducting ‘original’

research. Speaking of the status of computational

work, a senior computational physicist at CERN

reflected that:

‘‘you’re not a technician because you still have a degree

in physics, often a PhD anyway, but nevertheless you

are not doing the bulk of the attraction of the

field . . . [computational work] is not itself, you know,

the most attractive topic to talk about.’’

In other words, computational physics is not only sub-

ordinate to other modes of physical thinking, it is a

dispreferred way of working and thinking when com-

pared to those which attracted physicists to the field in

the first place. The production of primary inscriptions

at CERN (the local experimental groups, e.g.

CMS, ATLAS) and the interpretation (not production)

of secondary inscriptions (overarching high-level ana-

lysis) are the most esteemed and desirable ‘scientific’

work, valued far above the ‘technical’ domain of

primary inscription analysis (both general and experi-

ment-specific IT services). Data are crafted according to

the sensibilities of physicists, and much of the compu-

tational and statistical expertise is found within the dis-

cipline. Yet all these practices are arranged within the

experimental organization. Through the coordination

of all these local practices, modern HEP crafts its

own data and keeps the locus of legitimation interpret-

ation firmly inside the scientific community. For all

their differences in epistemic culture, -omic biology

and HEP demonstrate important similarities in the

way in which they have incorporated ‘Big Data’.

Thoughts on the social sciences,

computational social science, and the

Locus of Legitimate Interpretation

So far, in this paper, we have analysed the ways in

which data are crafted within big biology and big phys-

ics, and which communities and bodies of expertise are

deemed to be the legitimate interpreters of that data. In

this section, we make some observations about the way

in which the application of Big Data to social science

questions can be enacted in a fundamentally different

way to the examples provided by the ‘harder’ sciences.

In the social sciences, Big Data can exist independent of

the labours of social scientists, described in this paper

as ‘found’. This is often posited as one of the epistemic

strengths of Big Data social science, despite the assump-

tions that must be made about data found outside the

discipline, regarding, for example, the comprehensive-

ness and representativeness of online populations, etc.

(Lazer and Radford, 2017). This is a fundamental

epistemic difference between the social and the natural

sciences with regard to the relationship between the

‘scientist’ and her ‘data’. For the most part, only physi-

cists and biologists are legitimate interpreters of Big

Data produced in physics and biology; the locus of

legitimate interpretation is firmly within the disciplin-

ary community. However, the ability to make a know-

ledge claim about the social that is treated as credible is

afforded to a much wider spread of people. As we dis-

cussed in the opening sections, the locus of legitimate

interpretation in Big Data applications to social science

questions is much more diffuse. Thus, the organisational

and epistemic model of Big Data science that we find in

the natural sciences does not find a direct reflection in

Big Data social science.

In this section, we provide some clear examples of

the way in which Big Data applications to social science

questions can be performed outside of established

social science communities. It is important to stress

that these examples are not used to suggest that they

are representative of BDCSS as a whole. While we have

conducted extensive sociological research on physics

and biology, as yet we have no solid research program

to this end. Rather, these examples are intended to

serve as illustrations of the way in which Big Data

can be performed and scientifically positioned as ‘legit-

imate’ social science. This is crucial because, as we show

in our final discussions, recent studies in the sociology

of physics have shown that analysis of physics ‘data’

performed outside of the traditionally-constituted locus

of legitimate interpretation is overwhelmingly rejected

as ‘crackpot science’ (Collins et al., 2017). This is true

even if the knowledge claims that are being produced

are the technically-savvy products of people with sig-

nificant expertise in physics or related disciplines.

Knowledge claims produced by outsiders are almost

never considered legitimate by the physics community,

and are often portrayed as the antithesis of ‘good’ phys-

ics. The boundaries of physics set by physicists match

very closely the boundaries of good physics as seen by

funders, policy makers, science journalists, etc. The

examples in this section show that, in the case of

‘social’ questions, the locus of legitimate interpretation

is ‘diffused’, extending outside the established, discip-

linary social sciences.
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We start with a Nature special feature article (Giles,

2012), which described the status of ‘computational

social sciences’ research. This article discussed several

examples, such as the research carried out by Liben-

Nowell and Kleinberg (2007) which supported existing

social science claims about social networks, as well as

that challenged established social science views

(Ugander et al., 2012). Critically, all the studies men-

tioned in the feature were carried out not by social sci-

entists but by computer scientists. Kleinman is quoted

describing how he ‘‘. . . realized that computer science is

not just about technology’’, but rather ‘‘[i]t is also a

human topic’’ (Giles, 2012: 448). Kleinberg also adds

how he thinks of himself ‘‘as a computer scientist who

is interested in social questions’’ (Giles, 2012: 450).

Nowhere in the feature is the absence of social science

knowledge and expertise portrayed negatively, except

possibly in terms of way in which these researchers

are not tied into addressing questions that are interest-

ing to those working in established fields of social

research. It is, according to this view in Nature, scien-

tifically legitimate for a computer scientist to conduct

research into ‘social phenomena’ despite having, in the

best cases, low-level working knowledge of social phe-

nomena, traditional social science methods and social

science theory.

To make the above asymmetry clearer, we next turn

to another Nature feature by the same author that dis-

cussed the opposite case, that of social scientist claiming

to be a legitimate interlocutor about (not in) a natural

science field. Giles (2006: 8) describes how sociologist

Harry Collins had to prove, through an incredibly dif-

ficult ‘imitation game’ test judged by a panel of gravi-

tational wave physicists, that through thirty years’

experience interacting directly with the gravitational

waves community he had acquired sufficient ‘inter-

actional expertise’ to meaningfully and legitimately

speak the language of gravitational waves (Collins

et al., 2006). As Giles comments, Collins’ point about

legitimacy was one of the most strongly contested pos-

itions of the 1990s ‘Science Wars’ in which some nat-

ural scientists were angered by the fact that

‘‘sociologists studying science did not understand the

disciplines involved, in part because they did not prac-

tice them’’ (Giles, 2006: 8). In fact, the asymmetry is

even more extreme when we realise that the Science

Wars criticism of social science legitimacy was not

about social scientists practising natural science

(which no sociologist of science would claim to do),

but indeed only on talking about the natural sciences.

While some in computational social science stress the

revolutionary aspects of their work, others pursue the

research agenda without exclamation on its novelty,

rending it normal and uncontroversial. Such work

includes people-centric sensing and social sensing to

track physical sensors in mobile devices to ‘‘learn

about (possibly hidden) social structures’’ (Campbell

et al., 2008: 20) and ‘‘infer social relationships’’

(Krishnamurthy and Poor, 2014: 3). In the latter, inter-

action through social media posts are analysed to pro-

duce models that ‘‘facilitate understanding the

dynamics of information flow in social networks and,

therefore, the design of algorithms that can exploit

these dynamics to estimate the underlying state of

nature’’ (Krishnamurthy and Poor, 2014: 3). As the

authors explain, the ‘‘motivation for th[eir] paper

stems from understanding how individuals interact in

a social network and how simple local behavior can

result in complex global behavior.’’ They defend their

methodology by pointing out that ‘‘[t]he underlying

tools used in this paper are widely used by the electrical

engineering research community in the areas of signal

processing, control, information theory, and network

communications’’ (Krishnamurthy and Poor, 2014:

19). Similar analytical forms have been applied to

studying emergency events (Xu et al., 2016), online

rumour detection (Liu and Xu, 2016), and appreciation

of cultural heritage (Pilato and Maniscalco, 2015).

Often connected in some way to the Institute of

Electrical and Electronics Engineers, these publications

operate in the space where computer science, social

media, and social analysis overlap, yet they are con-

ducted largely in isolation of the traditional knowledge

and expertise bases of social science.

The differences between the enactment and position-

ing of Big Data in the social and the natural science are

also clear in the work of another computer scientist

featured in the Nature article – Alex Pentland – and

his fascinating (and revealingly titled) book Social

Physics (Pentland, 2014). Here, ‘found’ big social data

is described as ‘‘the millions of digital bread crumbs

people leave behind via smartphones, GPS devices,

and the Internet’’ (p. x). To put it in the terms offered

by Latour and Woolgar (1986), the primary inscrip-

tions that constitute big social data are ‘written’ inde-

pendent of academic big social data practices. Social

Physics, and other recent pop-social science books

(such as Stephens-Davidowitz’s Everybody Lies), prom-

ise a new and revolutionary social science, in which soci-

ety is understood in terms of relationships between and

within data written by our interaction with, among

other things, the digital economy, and in which know-

ledge claims about society are made by experts in data

analysis, with the sensibilities of social science largely

irrelevant in the face of the new data-rich world. In this,

we hear echoes of the rhetoric of ‘hypothesis free’ sci-

ence that Big Data has brought to biology (Cooke

Bailey et al., 2014). This view was similarly put forward

in an academic review-cum-manifesto for computa-

tional social science in which, it is concluded that
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through computational social science ‘‘sociology in par-

ticular, and the social sciences in general, would

undergo a dramatic paradigm shift, arising from the

incorporation of the scientific method of physical sci-

ences’’ (Conte et al., 2012). Indeed, Pentland’s vision

(exciting though it is) for a ‘social science’ of studying

information exchange without knowledge of the con-

tent or meaning is indeed a radical (and revolutionary)

departure from the intellectual mission of much of 20th

century social science – that which aims for the kind of

comprehension of human socialities that can be gained

by slower, craft-orientated methods such as

ethnography.7

Will such a ‘new discipline’ be ‘‘an example of sta-

tistics-led research with no theoretical underpinning’’?

This is how Professor Susan McVie, professor of quan-

titative criminology at the University of Edinburgh,

responded to the publicity surrounding a recent paper

uploaded to the most important ‘hard’ science e-print

server, the arXiv (BBC, 2016; Wu and Zhang, 2016).

This paper claimed that, using supervised machine

learning, the authors – who work in an Electrical

Engineering department8 – had developed a system

for distinguishing criminals from non-criminals (or as

the authors label them, ‘normal people’), with criminals

successfully identified 89% of the time. McVie is quoted

by the BBC as stressing the various biases involved in

producing a criminal conviction – the ‘found data’ used

by Wu and Zhang – pointing out that ‘‘[t]his article is

not looking at people’s behaviour, it is looking at crim-

inal conviction’’. Using the vocabulary proposed here,

McVie is not only highlighting the weakness of naı̈vely

found data, but is demanding that the locus of legitim-

ate interpretation of ‘Big Data criminology’ remains

within criminology, a community able to draw on dec-

ades of collective knowledge of dealing with crime stat-

istics, as well as understanding the biases and cultural

differences in criminal justice systems, etc.9

Surprisingly, McVie’s view did not find support from

prestigious voices in ‘harder’ fields of science and tech-

nology. Quite the contrary. The MIT Technology

Review, for example, though acknowledging the study

as ‘‘controversial’’, supported Wu and Zhang by noting

that their work was consistent with a previous 2011

psychological experiment from Cornell University

(Emerging Technology from the arXiv, 2016). We

stress that we are not, per se, against the new possibi-

lities afforded by computational social science, but

rather worried by computational exercises such as Wu

and Zhang’s study that rely on the rhetorical weight of

Big Data to convey epistemological strength on its own.

It is telling of the state of things that even critical (yet

optimist) views on the impact of computational social

sciences on traditional social sciences call for social sci-

entists to ‘‘embrace Big Data’’ (González-Bailón, 2013),

while computational experts dealing with social phe-

nomena are rarely called to conversely embrace trad-

itional sociological tradition or thought in their

research.

Wu and Zhang did not engage with existing crimino-

logical research yet their claims to a contribution to

criminology were treated seriously. Their example,

egregious though it is, shows how the naı̈veté of a

‘hypothesis-free social analysis’ can mutate into a

pathological form in which knowledge claims are pro-

duced which turn back decades of careful empirical,

conceptual, and ethical work. Other recent research,

such as facial recognition of ‘sexual orientation’

through deep-learning algorithms (Wang and

Kosinsky, 2018) also work against the grain of

informed reflections on stigmatised populations and

reveals the intricate problems linked to disciplinary-

uninformed interpretations of ‘social’ Big Data. There

is therefore a problem beyond mere epistemological or

methodological quibbling in using ‘found’ data without

sociological insight. Pentland’s Social Physics is sub-

titled ‘lessons from a new science’, and this is perhaps

exactly the point. While biology and physics are, to a

greater or lesser degree, enacting ‘Big Data’ by absorb-

ing a new way of looking at the objects of their discip-

linary gaze into the body of their disciplines, the locus

of legitimate interpretation of claims about ‘the social’

is so broad that Big Data social science can be enacted

outside traditional social science disciplinary bound-

aries, even when it is conducted inside academic insti-

tutions, and afforded public legitimacy without much

say by social scientists. While we hope, like optimistic

social scientists such as Smith (2014), that in a ‘Big

Data social science’ sociologists will be required to

interpret (and critique) the outputs, we worry that the

cultural legitimacy of such demands appears to be

weaker than might be needed in order to make this so.

Discussion

The enactment of Big Data can tell us something about

the differences between disciplines and between epi-

stemic cultures, especially by concentrating on such

notions as ‘crafted’ and ‘found’ data and the ‘locus of

legitimate interpretation’. We have presented two dis-

ciplinary case studies on Big Data epistemic cultures,

illustrated their relationships to crafted and found data,

and shown how each disciplines’ locus of legitimate

interpretation is structured and connected to the cul-

tures of primary/secondary data producers and inter-

preters in each field. Physics, with a long tradition of

dealing with Big Data, ‘produces’ its own computer

scientists, and ‘Big Data’ physics is, mostly, conducted

within the disciplinary space of ‘physics’. In other

words, the way in which Big Data has been enacted is
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in response to, and in sensitivity to, the disciplinary

needs and priorities of physics.

As described, Big Data biology, a more recent devel-

opment than Big Data physics, has had to recruit

expertise from outside the discipline. Even though

there are claims made that Big Data biology is a revo-

lutionary new form of hypothesis-free science, the locus

of legitimate interpretation still remains firmly within

biology. Expertise in data analysis alone is not deemed

sufficient to make legitimate biological knowledge

claims. Biologists, as the creators of the primary

inscriptions and the holders of cultural and institutional

power, are the legitimate interpreters of Big Data biol-

ogy, with the computer scientists/bioinformaticians

who produce the ‘secondary inscriptions’ being depend-

ent on, and deferring to, biologists. Bioinformatics may

be an offshoot of biology, but it is tied inextricably to

the disciplinary culture and institutions of biology.

Both of these natural sciences enact Big Data science

in a significantly different way to that in which it is

being enacted in the social sciences.

Unlike the biologists and physicists, social scientists

in many cases do not to have disciplinary control over

the production of the Big Data that they will use – it is

not crafted but is, instead, found. As such, social sci-

entists can make no claims of exclusivity or control

over this data; anyone with the computational skills

can conduct an analysis of social media, and as

Metzler et al. (2016) suggest, it is rare that social scien-

tists have the required computational skills. So, as with

biology, in order to enact Big Data science, social sci-

ence must recruit computational and statistical expert-

ise. However, given that social scientists are not

(always) the crafters of big social data, their sensibilities

are not written into these inscriptions. Further,

claims that Big Data allows an atheoretical, hypoth-

esis-free analysis of the social gain traction due to the

low esteem in which much social science is held. The

consequence of this is that the locus of legitimate inter-

pretation is not firmly fixed within the communities

trained in the social sciences. Anyone can make an

acceptably credible knowledge claim, whether by

virtue of controlling (access to) the primary inscriptions

– as is the case with proprietary data – or on the basis of

bring to bear the tools and perspectives of ‘harder’

disciplines.

Kate Metzler (2016) quotes Clive Humby, the man

responsible for Tesco’s Clubcard scheme, as saying as

long as a decade ago that ‘data is the new oil’. In this

account, it is not just a resource, but the resource of the

21st century, and those who control the data will have

tremendous economic, social and political power (Boyd

and Crawford, 2012). Even as the ‘found’ character of

much big social data renders some questions tractable

and others unaskable, data grants power to those

asking social questions working with and within the

organisations – often private – which hold the data

(Beer, 2016). Metzler et al.’s (2016) survey of Big

Data research in the social sciences found that, out of

3077 respondents involved in Big Data research, just

over half (1690) had most recently used administrative

data, 927 used social media data, and 697 used com-

mercial/propriety data. In current BDCSS practice,

both the locus of legitimate interpretation and the own-

ership and control of data can lie outside the bound-

aries of social science as social scientists wrestle with

others over control of empirical materials and the right

to analyse it.

This contrasts sharply with physics. Bartlett and

Reyes-Galindo have carried out extensive empirical

analysis regarding the legitimacy of physics claims

made by scientists who are not professional, practising

physicists (Collins et al., 2017). This physics ‘boundary

work’ (Gieryn, 1983) has shed light on the sociological

structures of so-called ‘fringe’ or unorthodox physics

and, importantly, to the relationships between produ-

cers of physics’ primary inscriptions and outsiders to

the physics community. What is observed is that, in

physics, the legitimacy of primary and secondary

inscription production is highly closed in itself: those

that produce primary inscriptions belong to the same

social group (or network) as those that produce second-

ary inscriptions, and the legitimacy of interpreting the

results legitimately is based on belonging to these social

networks, not on personal characteristics or specific

skills.

There are cases in which ‘outsiders’ to these closed

networks attempt to create alternative readings of

established physics, such as when mathematically-

informed engineers (and particularly electrical engin-

eers) re-evaluate recognised theoretical claims or

experimental results. The ‘exclusion boundary work’

that follows is the same across all the fields of physics

explored. Outsiders are ignored when they are not sci-

entists, isolated when they are practising scientists, and

in the more extreme cases ridiculed and declared

‘cranks’ or ‘crackpots’ by the scientific community

(Reyes-Galindo, 2016). Compare this to the response

to a criminology paper produced by electrical engin-

eers; ‘social physics’ and hypothesis-free Big Data

social science have developed into legitimate areas

that are autonomous and authoritative despite their

revolutionary intent. The locus of legitimate interpret-

ation in physics presents strong social closure, while in

social science it is considerably more open.

Thus, while in physics outsiders who attempt to

overturn established knowledge claims or methods are

de-legitimised because of their status as an outsider, a

significant part of (for example) ‘social physics’ legiti-

macy-talk hinges on the strengths of being an outsider.
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By contrast, the physics community would and does act

swiftly in cases where not only individual knowledge

claims but also its professional legitimacy is contested.

With reference to our normative (rather than

descriptive) application of the concept of the ‘locus of

legitimate interpretation’, we draw attention to what

might be the consequences of the differences between

the tightly bounded locus of legitimate interpretation

found in biology and physics, and the much more dif-

fuse, contested locus found in the social sciences. The

Wu and Zhang episode suggests that an extreme flexi-

bility of the locus of legitimate interpretation can lead

to ‘pathological’ data-driven social science that can,

importantly, be taken seriously. Sensitivity to the

pathological dimensions of this kind of work is not

necessarily found outside of the social sciences – that

is, those with the technical expertise required to make

expert judgements. Furthermore, one can easily think

of research (involving stigmatised populations and

minorities, race and gender relations, etc.) in which the-

oretically and ethically uninformed data-driven social

science could have quite profoundly negative wider

impacts, if given legitimacy. At the very least, critical

accounts of Big Data sociology are required to coun-

terbalance the data-driven hype. Social scientists should

not be shy of performing their own boundary work.

While Big Data-driven social science has presented

itself as immensely disruptive to existing research, and

certainly introduces new tools, methods and possibili-

ties to probe societies and cultures, our research reson-

ates with previous discussions about the importance of

examining Big Data claims with greater scrutiny and

clarity (Beer, 2016). We resist the picture that the

future of social science is made up exclusively of Big

Data-given research, even while acknowledging that

Big Data sociology can become a parallel field of

research to ‘traditional’ sociology. However, we do

argue there is a key issue for social science in terms of

retaining and monitoring control over which collectives

and individuals constitute the locus of legitimate inter-

pretation in BDCSS. Unlike physics, this has been com-

plicated for social science due to the lack of substantive

base in computational mathematical methodologies,

and unlike both physics and biology, because of the

relative intellectual prestige of social science at the

‘softer’ end of the disciplines. This paper has argued

that STS provides the basis for important critique of

Big Data science. Following Eyal (2013), there is a

question of jurisdiction as to who has control over a

set of tasks and who are the legitimate interpreters of

the findings. There is also a question as to what social

and institutional arrangements need to be in place for

that authority to be maintained, and in what situations

it can be challenged. Developments in computation and

access to large data sets (as well as pre-existing

hierarchies) have meant that sociologists and other

social scientists face challenges to be the legitimate

interpreters of social data in ways that biologists and

physicists do not.
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Notes

1. Carrigan M. Emma Uprichard: Big Data and

‘Methodological Genocide’, editorial, Methodspace.

Accessed 9 September 2017. URL: https://www.method-

space.com/emma-uprichard-big-data-methodological-

genocide/

2. Indeed, this goes beyond mere hierarchies of disciplinary

prestige and we grant that there is a minimal ‘common-

sense’ sociological knowledge intrinsic to all individuals

living in any society; all socialised individuals must have

some tacit capacity to understand and analyse society in

order to live in society. By comparison, these individuals

need no such understanding of biology to keep their blood

flowing, or physics to prevent them spinning off into space.

3. It is important to note that these statistical associations

are not themselves ‘interpretations’. Bartlett, attending

a psychiatric genetics workshop, observed a senior bioin-

formatician present the statistical associations discovered

during their work who ended his presentation by saying

that he couldn’t tell you what any of this meant biologic-

ally, and that it was the job of the biologists present to

perform the interpretation. This anecdote also points us

towards where the locus of legitimate interpretation is to

be found in Big Data biology.

4. The distinction between found and crafted data is well

known within qualitative social science, though not

always articulated in these terms. For example, in diary

analysis, crafted diary data would involve asking (perhaps

even training) participants to complete a diary of their

experiences as part of the research (see Alaszewski et al.,

2007) whereas found diary data would be analysis of diary

entries the participants created independently of the

research (see Coffey, 2014).

5. Anderson (2006) boldly announced that the advent of the

‘Petabyte Age’ rendered theory and the scientific method

‘obsolete’. As with many commentators, he talked of ‘Big

Data’ in the language of a natural event – in this case as a

‘deluge’. Franks (2012), for example, steps up the level of
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destruction (disruption?) and describes it as a ‘tidal wave’,

while Steimle (2015) warns of us ‘drowning in Big Data’.

6. It is important to recognise that we are making a distinc-

tion here between bioinformatics as a recognisable com-

munity and bioinformatics as a legitimate discipline that

exists independently of biology.

7. There has been some excitement about a future social science

that moves beyond ‘outmoded’ methods devised for 20th

century societies, unfit for new, 21st century forms of social-

ity (see, for a starting point, Savage and Burrows, 2007).

8. Curiously, electrical engineers are well represented in

‘fringe’ physics communities (Collins et al., 2017).

9. In contrast to Wu and Zhang’s theoretically light work,

Williams et al. (2017) conducted an ESRC funded Big

Data study using classic criminological theory to inform

the collection, transformation, classification and modelling

of over 200 million tweets to identify their affordances and

limitations in relation to crime pattern estimation.

References

Alaszewski A, Alaszewski HP, Potter J, et al. (2007) Working

after a stroke: Survivors’ experiences and perceptions of

barriers to and facilitators of the return to paid employ-

ment. Disability and Rehabilitation 29(24): 1858–1869.

Anderson C (2006) The end of theory: The data deluge makes

the scientific method obsolete. Wired Magazine 23 June.

Anderson J, Brock R, Gershtein Y, et al. (2013) Benefits to

the U.S. from physicists working at accelerators overseas.

arXiv: 1312.4884.

Arribas-Ayllon M, Bartlett A and Featherstone K (2010)

Complexity and accountability: The witches’ brew of psy-

chiatric genetics. Social Studies of Science 40(4): 499–524.

Barad K (2007) Meeting the Universe Halfway: Quantum

Physics and the Entanglement of Matter and Meaning.

Durham, NC: Duke University Press.

Baren-Nawrocka TV (2013) The bioinformatics of genetic

origins: How identities become embedded in the tools

and practices of bioinformatics. Life Sciences, Society

and Policy 9(7). DOI: 10.1186/2195-7819-9-7.

Bartlett A (2008) Accomplishing sequencing the human genome.

Unpublished doctoral dissertation, Cardiff University.

Bartlett A, Lewis J and Williams ML (2016) Generations of

interdisciplinarity in bioinformatics. New Genetics and

Society 35(2): 186–209.

Bartlett A, Penders B and Lewis J (2017) Bioinformatics:

Indispensable, yet hidden in plain sight? BMC bioinfor-

matics 18(1): 311.

Basaglia T, Bell ZW, Dressendorfer PV, et al. (2008) Writing

software or writing scientific articles? IEEE Transactions

on Nuclear Science 52(2): 671–678.

BBC (2016) Convict-spotting algorithm criticised. Available

at: http://www.bbc.co.uk/news/technology-38092196

(accessed 22 December 2016).

Beer D (2016) How should we do the history of Big Data? Big

Data & Society 3(1). DOI: 10.1177/2053951716646135.

Borup M, Brown N, Kondad K, et al. (2006) The sociology of

expectations in science and technology. Technology

Analysis & Strategic Management 18(3–4): 285–298.

Boyd D and Crawford K (2012) Critical questions for big

data: Provocations for a cultural, technological, and schol-

arly phenomenon. Information, Communication & Society

15(5): 662–679.

Brown N and Michael M (2003) A sociology of expectations:

Retrospecting prospects and prospecting retrospects.

Technology Analysis and Strategic Management 15(1): 3–18.

Callon M (1998) Law of Markets. Oxford: Blackwell

Publishers.

Calvert J (2010) Systems biology, interdisciplinarity and dis-

ciplinary identity. In: Parker J, Vermeulen N and Penders

B (eds) Collaboration in the New Life Sciences. Farnham:

Ashgate, pp. 201–219.

Campbell A, Eisenman S, Lane N, et al. (2008) The rise of

people-centric sensing. IEEE Internet Computing 12(4):

12–21.

Chang J (2015) Core services: Reward bioinformaticians.

Nature 520: 151–152.

Check Hayden E (2014) The $1000 genome. Nature 507:

294–295.

Cockayne DG (2016) Affect and value in critical examin-

ations of the production and ‘prosumption’ of Big Data.

Big Data & Society 3(2). DOI: 10.1177/2053951716640566.

Coffey A (2014) Analysing documents. In: Flick U (ed.) The

Sage Handbook of Qualitative Data Analysis. London:

Sage, pp. 367–379.

Cole S (1983) The hierarchy of the sciences? American Journal

of Sociology 89(1): 111–139.

Collins FS, Morgan M and Patrinos A (2003) The human

genome project: Lessons from large-scale biology.

Science 300(5617): 286–290.

Collins HM and Evans R (2007) Rethinking Expertise.

Chicago, IL: University of Chicago Press.

Collins HM, Evans R, Ribeiro R, et al. (2006) Experiments

with interactional expertise. Studies in History and

Philosophy of Science Part A 37(4): 656–674.

Collins H, Bartlett A and Reyes-Galindo L (2017)

Demarcating fringe science for policy. Perspectives on

Science 25(4): 411–438.

Conte R, Gilbert N, Bonelli G, et al. (2012) Manifesto of

computational social science. The European Physical

Journal Special Topics 214(1): 325–346.

Cooke Bailey JN, Pericak-Vance MA and Haines (2014)

Genome-wide association studies: Getting to pathogenesis,

the role of inflammation/complement in age-related macu-

lar degeneration. Cold Spring Harbor Perspectives in

Medicine 4(12): a017186.

Delfanti A (2016) Beams of particles and papers: How digital

preprint archives shape authorship and credit. Social

Studies of Science 46(4): 629–645.

Durkheim E (1897 [2006]) On Suicide. London: Penguin

Books.

Emerging Technology from the arXiv (2016) Neural network

learns to identify criminals by their faces. MIT Technology

Review, 22 November. Available at: https://www.techno-

logyreview.com/s/602955/neural-network-learns-to-iden-

tify-criminals-by-their-faces/ (accessed 22 December 2016).

Ensmenger NL (2012) The Computer Boys take Over:

Computers, Programmers, and the Politics of Technical

Expertise. Cambridge, MA: MIT Press.

Bartlett et al. 13



Eyal G (2013) For a sociology of expertise: The social origins

of the autism epidemic. American Journal of Sociology

118(4): 863–907.

Franks B (2012) Taming the Big Data Tidal Wave: Finding

Opportunities in Huge Data Streams with Advanced

Analytics. Hoboken, NJ: John Wiley & Sons.

Galison P (1997) Image and Logic: A Material

Culture of Microphysics. Chicago, IL: University of

Chicago Press.

Garcia-Sancho M (2012) Biology, Computing and the History

of Molecular Sequencing: From Proteins to DNA, 1945–

2000. Basingstoke: Palgrave Macmillan.

Gieryn TF (1983) Boundary-work and the demarcation of

science from non-science: Strains and interests in profes-

sional ideologies of scientists. American Sociological

Review 48(6): 781–795.

Giles J (2006) Sociologist fools physics judges. Nature

442(7098): 8.

Giles J (2012) Making the links. Nature 488(7412): 448–450.

Gitler E and Klapp J (2016) High performance computer

applications. In: 6th international conference, ISUM

2015. Communications in computer and information science,

Mexico City, Mexico, 9–13 March 2015, p. 595,

Switzerland: Springer International Publishing.
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