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Abstract

Despite the remarkable performance of gen-

erative large language models (LLMs) on

abstractive summarization, they face two sig-

nificant challenges: their considerable size

and tendency to hallucinate. Hallucinations

are concerning because they erode reliability

and raise safety issues. Pruning is a technique

that reduces model size by removing redun-

dant weights, enabling more efficient sparse

inference. Pruned models yield downstream

task performance comparable to the original,

making them ideal alternatives when operat-

ing on a limited budget. However, the effect

that pruning has upon hallucinations in ab-

stractive summarization with LLMs has yet

to be explored. In this paper, we provide an

extensive empirical study across five summa-

rization datasets, two state-of-the-art pruning

methods, and five instruction-tuned LLMs.

Surprisingly, we find that hallucinations are

less prevalent from pruned LLMs than the orig-

inal models. Our analysis suggests that pruned

models tend to depend more on the source

document for summary generation. This leads

to a higher lexical overlap between the gen-

erated summary and the source document,

which could be a reason for the reduction in

hallucination risk.1

1 Introduction

Abstractive summarization is the task of distill-

ing the key information from a document into a

summary that may contain novel text not present

in the original document (Cohn and Lapata, 2008;

Saggion and Poibeau, 2013; Lin and Ng, 2019).

Generative large language models (LLMs) have

demonstrated strong performance on abstractive

summarization (Ouyang et al., 2022; Touvron

etal., 2023; Almazrouei et al., 2023; OpenAI

et al., 2024; Zhang et al., 2024). However, they

face two significant challenges: Their substantial

∗ Equal contribution.
† Work done independently of AstraZeneca.
1https://github.com/casszhao/PruneHall.

size requires extensive computational resources

for training and inference; and they tend to hal-

lucinate, i.e., generate nonfactual contents not

supported by the source document (Zhao et al.,

2020; Xu et al., 2023). Figure 1 shows an il-

lustrative example of hallucinated content in a

generated summary.

On the one hand, hallucinations not only under-

mine the performance of models but also introduce

critical safety risks, ultimately eroding the trust of

end users (Milintsevich and Agarwal, 2023; Tang

et al., 2023a; Narayan et al., 2023; Zhao and Shan,

2024). For example, LLM-generated summaries

in the legal or health domain can contain inaccu-

rate information that poses real-life harms (Zhao

et al., 2022a; Weidinger et al., 2022).

On the other hand, LLMs such as GPT-3.5

(Ouyang et al., 2022), GPT-4 (OpenAI et al.,

2024), and Llama-2 (Touvron et al., 2023) demand

substantial hardware resources. As an indication,

GPT-3 (175B) requires at least five NVIDIA

A100 GPUs with 80GB of memory each for

half-precision inference (Frantar and Alistarh,

2023). This creates barriers for those without

access to costly computational resources, ulti-

mately hindering inclusivity in NLP (Schwartz

et al., 2020; Weidinger et al., 2022). To tackle

this issue, pruning techniques enable efficient

sparse inference by removing redundant weights,

while maintaining comparable performance (Sun

et al., 2024). Pruned models therefore appear as at-

tractive alternatives for abstractive summarization

when computational resources are constrained.

In abstractive summarization, model halluci-

nations are a thoroughly studied subject (Cao

et al., 2020; Durmus et al., 2020; Raunak et al.,

2021; Narayan et al., 2023; Laban et al., 2023).

Similarly, the effect of pruning on model

performance in abstractive summarization bench-

marks was also explored more recently (Dun

et al., 2023; Jaiswal et al., 2024). However, the

relationship between pruning and hallucination
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Figure 1: An example of a hallucination (highlighted

text) in abstractive summarization.

risk has yet to be explored. Given the appeal of

greater efficiency with comparable downstream

performance it is important to establish how trust-

worthy summaries generated from pruned models

are. Therefore, we seek to answer the follow-

ing question: Are hallucinations more or less

prevalent in LLMs after pruning?

To this end, we empirically investigate the risk

of generating hallucinated content in pruned mod-

els across five LLMs, two state-of-the-art pruning

methods, and five summarization datasets. Sur-

prisingly, our results show that pruned models are

less prevalent in hallucinations compared to the

original LLM. To understand this phenomenon,

we further investigate the impact of different spar-

sity levels on hallucination patterns. Our analysis

shows that hallucination risk decreases as spar-

sity increases, regardless of the pruning methods

tested. Furthermore, our results suggest that prun-

ing encourages the model to rely more on the

source document during generation, resulting in

summaries that are lexically more similar to the

source document.

2 Related Work

2.1 Hallucinations in Summarization

In abstractive summarization, a model is expected

to generate a concise summary of the source doc-

ument. However, prior work observed that models

tend to generate hallucinatory content that is not

based on or cannot be entailed from the source

document (Vinyals and Le, 2015; Rohrbach et al.,

2018; Cao et al., 2018; Maynez et al., 2020;

Raunak et al., 2021; Falke et al., 2019; Maynez

et al., 2020; Zhao et al., 2022b; Chen et al.,

2022). For example, Falke et al. (2019) found that

25% of the model generated summaries contain

hallucinated content. On the other hand, auto-

matic summary quality evaluation metrics such

as ROUGE (Lin, 2004) and BERTScore (Zhang

et al., 2020) do not correlate with the degree

of hallucinations appearing in summaries (Zhou

et al., 2021). For instance, Zhou et al. (2021) show

that even if a summary contains a large amount

of hallucinatory content, it can still achieve a high

ROUGE score. This has opened up new research

directions that develop approaches to detect and

evaluate hallucinations (Zhou et al., 2021; Durmus

et al., 2020; Guerreiro et al., 2023; Ji et al., 2023),

as well as mitigate them (Xiao and Wang, 2021;

Choubey et al., 2023; King et al., 2022).

2.2 Measuring Hallucination Risk

Evaluation metrics for measuring hallucina-

tion risk can be broadly categorized as: (a)

entailment-based, (b) question-answering (QA),

and (c) text-generation based. Entailment-based

methods (Kryscinski et al., 2020; Laban et al.,

2022) use pre-trained language models to com-

pute the entailment score between the source and

the generated summary. The higher the entail-

ment score, the more consistent a summary is

with respect to the source. QA methods decom-

pose the task to a question answering problem

(Wang et al., 2020; Deutsch et al., 2021; Durmus

et al., 2020). Finally, text-generation based meth-

ods use off-the-shelf models to quantify the risk

of hallucinations (Yuan et al., 2021; Son et al.,

2022). A representative approach is the Halluci-

nation Risk Measurement (HaRiM+), which uses

the log-likelihoods from a reference-free decoder

model to estimate hallucination risk in a summary

at the token level (Son et al., 2022). More recently,

Laban et al. (2023) examined instruction-tuned

LLMs as reasoners for factual assessments (i.e.,

assessors of hallucination prevalence) in abstrac-

tive text summarization. They demonstrated that

many of these LLMs struggle to compete with

previous entailment-based methods.

2.3 Pruning Large Language Models

Model compression is the task of reducing the

memory footprint of a model (Ganesh et al., 2021).

Pruning is a popular technique that removes re-

dundant weights from the model (LeCun et al.,

1989). Weights may be removed individually (un-

structured pruning), according to defined blocks
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(semi-structured pruning), or in relation to model

components (structured pruning) (Blalock et al.,

2020; Mishra et al., 2021; Ma et al., 2023).

As the size of LLMs surpasses billions of param-

eters, pruning techniques that require re-training

become impractical. Instead, post-training com-

pression aims to reduce model size using only

a small calibration dataset (Nagel et al., 2020;

Williams and Aletras, 2023). In this setting,

Frantar and Alistarh (2022) define the layer-wise

compression problem, with the aim of creat-

ing a compressed version of a given layer that

functions as closely as possible to the original.

State-of-the-art post-training pruning techniques,

such as SparseGPT (Frantar and Alistarh, 2023)

and Wanda (Sun et al., 2024), build upon this,

offering layer-wise solutions. SparseGPT in-

troduces an efficient approximation that relies

upon an iterative weight update process us-

ing Hessian inverses, inspired by Optimal Brain

Surgeon (Hassibi et al., 1993). Wanda further

improves upon efficiency by avoiding a weight

update procedure, enabling pruning in a single

forward pass.

In practice, the sparsity induced by pruning

enables substantial improvements in inference

performance across a variety of hardware. On

a CPU, Frantar and Alistarh (2023) demonstrate

a 1.82× speedup with 50% unstructured spar-

sity, using the DeepSparse engine (Neural Magic,

2021). Separately, they observe a 1.54-1.79×
speedup for feed-forward layers on an NVIDIA

Ampere GPU, using 2:4 semi-structured sparsity

(Mishra et al., 2021).

Recent pruning approaches (such as SparseGPT

and Wanda) can be applied to decoder-only

LLMs with minimal impact upon common-sense

reasoning (Sun et al., 2024) or summarization

performance (Jaiswal et al., 2024). Interestingly,

related studies suggest that pruning can reduce

social bias and toxicity (Xu and Hu, 2022) and im-

prove resilience to ‘jailbreaking’ attacks (Hasan

et al., 2024). However, it remains unclear how

pruning affects hallucination risk in LLMs.

3 Methodology

3.1 Models

We experiment with the following publicly avail-

able LLMs: (1) the Llama-2 (Touvron et al.,

2023) model family (7B, 13B, and 70B); (2) Mis-

tral 7B (v0.1) (Jiang et al., 2023); (3) Falcon 7B

(Almazrouei et al., 2023); and (4) the OPT-IML

(Iyer et al., 2023) model family (1.3B and 30B).

We opt for decoder-only instruction-tuned mod-

els due to their efficacy in zero-shot abstractive

summarization tasks (Tang et al., 2023b; Adams

et al., 2023; Laskar et al., 2023).

3.2 Pruning Methods

We consider three different pruning methods:

one standard baseline (layer-wise magnitude) and

two state-of-the-art techniques (SparseGPT and

Wanda). Formally, these pruning methods pro-

vide a saliency score Sij for each element of the

weight matrix Wij in a given layer. The elements

corresponding to the k smallest saliency scores

are the target weights to be pruned, where k is

determined by the sparsity ratio. The primary dis-

tinction between our selected pruning methods

lies in their saliency score calculation metrics. In

a post-training setting, pruning metrics can ad-

ditionally incorporate layer activations, X. The

activations for each layer of the model are com-

puted through performing a forward pass with the

calibration data. We follow Sun et al. (2024) in

using the same calibration data for each model,

specifically 128 examples randomly sampled

from C4 (Raffel et al., 2020).

Magnitude (Hagiwara, 1994; Han et al., 2015)

To offer a lower bound for the performance of

pruned models, we employ layer-wise weight

magnitude pruning. Here, the saliency score is

simply the magnitude of each weight:

Sij = |Wij |

SparseGPT (Frantar and Alistarh, 2023) The

SparseGPT algorithm is an iterative procedure that

offers an efficient approximation to the exact layer

reconstruction. The effective saliency criterion is

Sij =
[

|W|2/diag
(

(XX
T + λI)−1

)]

ij

where λ is a dampening parameter to enable

inversion of the Hessian, XX
T + λI.2

Wanda (Sun et al., 2024) In contrast, Wanda

avoids a computationally expensive weight update

procedure, instead relying upon only the weight

magnitudes and norm of the input activations:

Sij = |Wij | · ||X||2

This approximates SparseGPT when considering

only diagonal elements of the Hessian for λ = 0.

2We follow Frantar and Alistarh (2023) in usingλ = 0.01.
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# Prompt Template

A Summarize in a single short paragraph the context below:

[document]

The summary is: [summary]

B Summarize in a couple of sentences the document below:

[document]

The summary is: [summary]

C Give me a short summary of the below:

[document]

The summary is: [summary]

Table 1: Each prompt template consists of the task

instructions (italic) and the source [document].

The LLM then generates the [summary].

Sparsity Level Following previous work (Fantar

and Alistarh 2023; Sun et al., 2024), we evaluate

our pruning methods across both semi-structured

and unstructured settings:

• 2:4 semi-structured sparsity: Two weights

in every contiguous block of four must be

zero, providing a total of 50% sparsity. This

sparsity pattern is required to enable hard-

ware acceleration on GPUs (Mishra et al.,

2021).

• 50% unstructured sparsity: To enable com-

parison, we use a sparsity level of 50%

for unstructured pruning, unless otherwise

stated.

We do not explore pruning above 50% sparsity as

language modeling performance collapses shortly

beyond this threshold (Frantar and Alistarh, 2023;

Sun et al., 2024). Maintaining language model-

ing performance is essential for the generation

of high-quality summaries, enabling comparison

between the models and their pruned counterparts.

3.3 Prompting

LLMs are known to be sensitive to prompt design

(Petroni et al., 2019; Elazar et al., 2021; Fierro

and Søgaard, 2022). To mitigate the effect of

prompt variability, we summarize each document

using three distinct prompt templates (Table 1).

Each template instructs the model to summarize

a given document in a slightly different manner,

offering three summaries for each document. We

then evaluate all three summaries by averaging

the scores.

For each model family, we follow the prompt

formatting used in the original work. In the case

of Llama-2 and Mistral, this includes the use of

Source Reference

Dataset # Mean Max Mean Max

FactCC 311 634.2 1838 17.4 63

Polytope 634 575.1 1781 64.6 128

SummEval 100 407.8 589 65.1 101

Legal Contracts 85 237.8 1106 21.6 61

RCT 53 307.5 447 68.7 174

Table 2: The number of source documents in

each dataset (#), and the mean and maximum

length (in words) for the documents and reference

summaries.

[INST] and [/INST] tokens to delimit user

instructions. For the Falcon and OPT-IML model

families, which were not trained with a specific

prompt format, we use the prompts as is (Table 1).

3.4 Summarization Datasets

We include the following summarization datasets:

(1) FactCC (Kryscinski et al., 2020); (2) Poly-

tope (Huang et al., 2020); (3) SummEval (Fabbri

et al., 2021); (4) Legal Contracts (Manor and Li,

2019); and (5) RCT summaries (Wallace et al.,

2021). FactCC, Polytope, and SummEval are all

different subsets of the CNN/DailyMail news ar-

ticle dataset (Nallapati et al., 2016), covering a

variety of topics. Legal Contracts consists of legal

text snippets from the terms of service for various

products and services. Finally, RCT combines the

abstracts from randomized control trials with their

corresponding human-written conclusions from

systematic reviews, i.e., the conclusions are used

as the target summary. For simplicity, we select

instances in RCT where there is a one-to-one

mapping between abstract and target summary.

We use the test set from each dataset and re-

move any duplicates if any exist. Table 2 provides

detailed dataset statistics.

3.5 Evaluation of Summarization Quality

We evaluate the quality of generated summaries

against the corresponding reference summary, us-

ing a subset of the ROUGE family of metrics

(Lin, 2004) and BERTScore (Zhang et al., 2020).3

From ROUGE, we use two n-gram overlap met-

rics (ROUGE-1 and ROUGE-2) and the longest

sequence overlap metric (ROUGE-L).

3.6 Hallucination Risk Metrics

To automatically evaluate the hallucination risk

in the generated summaries, we use standard

3For FactCC, we use the extracted claim as the reference.
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automatic metrics that compare directly the

source document and the corresponding generated

summary.

HaRiM+ (Son et al., 2022) HaRiM is based on

the idea that over-reliance on decoder context dur-

ing generation leads to hallucinations. Given a

summary and a reference document, HaRiM+ first

uses a pre-trained sequence-to-sequence model

(S2S, an encoder-decoder model) to calculate

the token probabilities in the summary given

the reference document as input. A pre-trained

decoder-only model is used as a secondary model

(Aux) to compute summary token probabilities,

i.e., no input document is provided to summarize.

HaRiM+ therefore uses Aux token probabilities

to regularize S2S token probabilities and detect

hallucinations by:

HaRiM =
1

L

L
∑

i=0

(1− pS2S)(1− (pS2S − pAux))

where L is the sequence length, pS2S the pre-

dicted probability of a token generated by the

model given the source document, and pAux the

probability of the same generated token from

the auxiliary model.

HaRiM+ extends HaRiM through adding the

S2S log-likelihood of tokens, and applying a

scaling hyperparameter λH :4

HaRiM+ =
1

L

L
∑

i

log(p(yi | y<i;X))−λHHaRiM

Intuitively, a higher HaRiM+ score indicates that

the summary is more likely to be faithful to the

source document, i.e., less likely to contain hallu-

cinations. Son et al. (2022) also showed that the

first sequence-to-sequence model can also act as

a secondary model, with equivalent performance.

SummaC (Laban et al., 2022) This metric uses

an off-the-shelf entailment model to assess the

consistency between a source document and a

generated summary. First, the document and sum-

mary are split into sentences, with the document

sentences (N ) being the hypothesis and the gen-

erated summary sentences (K) being the premise.

The second step is to create an K ×N matrix of

entailment scores from the pre-trained model. A

generated sentence with a low entailment score

4We follow Son et al. (2022) in using λH = 7.

to any of the document sentences is a potential

hallucination.

SummaCZS obtains the row-wise maximum en-

tailment score, which leads to a vector E of size

K. SummaCConv obtains vector E by using a

convolutional model over each row K, to obtain

a single score. In both metrics, each element in

E can be interpreted as the consistency score for

each sentence in the summary. E is averaged to

obtain a single summary consistency score.

Hallucination Risk Ratio (HRR) To compare

the hallucination risk of pruned models relative

to the original, we compute a ratio using any one

of the hallucination risk metrics:

HRR =
Hallucination RiskOriginal

Hallucination RiskPruned

A lower HRR indicates that the pruned model

has a lower hallucination risk than the origi-

nal. This contrasts the hallucination risk metrics,

where a higher score indicates a lower risk for a

given model.

3.7 Human Evaluation

We also conduct a human evaluation task to com-

pare the hallucination prevalence between the

original and pruned models. For this purpose,

we randomly sample 100 distinct source docu-

ments from FactCC, Polytope, and SummEval.

We selected these datasets because they consist

of news articles, making them suitable for human

evaluation without requiring extensive domain ex-

pertise. We recruited three participants who are

native speakers or proficiently fluent in English.

Following Lango and Dusek (2023), we ask them

to answer the following questions for compar-

ing the summaries generated by the original and

pruned models:

Q1. Hallucinations: Which summary contains

more hallucinations (i.e., content that is not

supported by the source document)?

Q2. Omission: Which summary is missing more

crucial information from the document?

Q3. Repetition: Which summary contains more

repetitive information?

Q4. Alignment: Which summary is more seman-

tically aligned with the source document?

Identifying hallucinations in text is challenging

and requires careful reading and attention to nu-

anced facts (Laban et al., 2023). Therefore, we
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Magnitude SparseGPT Wanda

Model – 2:4 50% 2:4 50% 2:4 50%

Falcon 7B 19.93 303.22 482.11 52.11 37.10 85.68 38.93

Llama-2 7B 6.49 78.29 19.07 10.79 7.94 12.46 7.93

Llama-2 13B 5.71 10.73 7.98 8.68 6.80 9.58 6.94

Llama-2 70B 4.30 6.89 5.61 6.51 5.18 6.45 5.23

Mistral 7B 6.32 9.55 7.96 9.21 7.18 9.85 7.26

OPT-IML 1.3B 14.68 166.09 1391.46 24.92 18.03 25.11 17.94

OPT-IML 30B 10.56 246.42 57.88 11.61 10.74 12.44 10.74

Table 3: Perplexity (↓) of original and pruned

models on the held-out set of WikiText.

first perform a calibration run on a held-out set

of ten documents and their generated summaries.

Two of the participants are then presented with

the set of 100 original documents, alongside two

generated summaries: one from a pruned model

and the other from the original model. The or-

der of the documents is shuffled and information

about which model generated the summary is not

disclosed to the participants. Similar to Xu et al.

(2023), we use the third participant as an ad-

judicator for disagreements. The inter-annotator

agreement is computed using Cohen’s kappa IAA

(κ), as the average between the two participants

and the adjudicator.

3.8 Implementation Details

We use the model implementation and weights

available from Hugging Face (Wolf et al., 2020).

We perform experiments using either one or two

NVIDIA A100 (SXM 80GB) GPUs. For the prun-

ing methods, we use the hyperparameters from

Frantar and Alistarh (2023) and Sun et al. (2024).

For summary generation we use greedy de-

coding (i.e., sampling the token with the highest

probability) for better reproducibility. We con-

tinue to sample tokens until we reach either (a)

the end of sequence token, or (b) the maximum

sequence length of the model.

4 Results

4.1 Language Modeling

We first compare language modeling performance

between the original and pruned models. Follow-

ing Frantar and Alistarh (2023) and Sun et al.

(2024), we compute perplexity on the WikiText

test set (Merity et al., 2017), shown in Table 3.

Overall, pruned models consistently generate

text with higher perplexity than their original

counterparts. Unsurprisingly, magnitude pruning

routinely produces the highest perplexity. In many

cases, the increase over the original model (de-

noted by ‘-’) is substantial. For example, we

observe more than a twentyfold increase for

OPT-IML 30B, from 10.56 to 246.42. In con-

trast, SparseGPT and Wanda achieve perplexity

close to the original for the majority of the models.

Surprisingly, Falcon 7B records higher perplex-

ity across all pruning methods, e.g., 85.68 when

applying Wanda from 19.93 without pruning.

Due to the substantial degradation in language

modeling performance, we omit magnitude prun-

ing from further analysis. For the same reason, we

also exclude the Falcon 7B and OPT-IML 1.3B

models.

4.2 Summarization

Table 4 shows summarization performance

(ROUGE-1/2/L & BERTScore) across all

datasets.5 We first observe that the original mod-

els perform comparably for BERTScore across

most datasets. For example, in Legal Contracts,

Llama-2 13B records a BERTScore of 84.75

compared to 84.90 from OPT-IML 30B. We only

observe larger performance deviations in the case

of RCT, with the original Mistral 7B obtaining the

highest BERTScore (88.46) and OPT-IML 30B

the lowest (83.12). This suggests that all LLMs

generate summaries that are equally semantically

similar to the reference summary. Compared to

BERTScore, the scores of the original models

in lexical overlap metrics (ROUGE-1/2/L) differ

largely not only across models, but also across

datasets. For example, Llama-2 7B achieves

the second highest ROUGE-L score in RCT

(33.50) and the lowest score in FactCC (11.51).

Similarly, in RCT, Mistral 7B records an increase

of 34.65 (46.16) for ROUGE-L, making it the

best performing original model for this metric.

Comparing the performance between original

and pruned models, we find that they perform com-

parably in the majority of cases. For SparseGPT,

the summaries score significantly higher (across

all metrics) than those from the original model

in 19 out of 100 comparisons, while they score

significantly lower in 11 out of 100 (bold scores;

paired t-test; p < 0.05). The results are similar

for Wanda, where pruned models perform sig-

nificantly higher in 20 out of 100 comparisons

and significantly lower (underlined scores) in 26

5We obtain comparable results using 50% unstructured

sparsity, which are omitted for brevity.
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Llama-2 7B Llama-2 13B Llama-2 70B Mistral 7B OPT-IML 30B

Dataset Method ROUGE-1/2/L BS ROUGE-1/2/L BS ROUGE-1/2/L BS ROUGE-1/2/L BS ROUGE-1/2/L BS

FactCC

– 13.99 / 6.41 / 11.51 84.60 15.14 / 6.39 / 12.30 84.39 15.04 / 6.29 / 12.11 84.75 14.83 / 8.21 / 12.70 84.78 23.51 / 12.68 / 20.48 85.71

SpGPT 12.46 / 6.07 / 10.55 84.15 15.34 / 6.62 / 12.75 84.76 14.78 / 6.80 / 12.29 84.68 14.43 / 8.52 / 12.62 84.45 18.52 / 12.05 / 16.89 85.04

Wanda 11.04 / 5.94 / 9.53 80.57 15.64 / 7.32 / 13.09 84.78 15.09 / 6.88 / 12.47 84.72 13.67 / 8.30 / 12.02 84.34 17.91 / 11.68 / 16.38 83.94

Polytope

– 38.92 / 18.19 / 25.86 85.41 38.63 / 17.51 / 25.34 84.91 39.28 / 17.48 / 25.78 85.48 40.27 / 22.69 / 28.65 85.63 33.06 / 22.81 / 27.74 86.54

SpGPT 33.98 / 18.14 / 24.45 84.88 35.99 / 16.74 / 25.01 85.01 38.16 / 18.51 / 25.89 85.31 39.07 / 24.21 / 29.54 85.58 33.39 / 26.32 / 29.02 87.01

Wanda 30.88 / 15.39 / 21.77 83.09 37.33 / 19.29 / 26.68 85.23 38.74 / 18.80 / 26.58 85.42 37.08 / 23.78 / 28.76 85.34 30.14 / 22.72 / 25.85 86.03

SummEval

– 40.39 / 18.73 / 26.61 85.42 40.36 / 18.00 / 25.88 84.78 41.52 / 18.78 / 26.82 85.58 43.94 / 26.34 / 32.04 86.05 51.93 / 36.55 / 41.38 86.94

SpGPT 38.77 / 23.04 / 27.81 85.36 40.55 / 18.42 / 27.15 85.33 41.58 / 19.69 / 27.65 85.61 43.77 / 28.00 / 33.33 86.03 50.00 / 37.16 / 41.64 86.73

Wanda 37.78 / 23.95 / 28.82 85.12 44.31 / 23.51 / 31.58 86.03 41.57 / 19.44 / 27.67 85.57 45.11 / 29.95 / 34.84 86.22 44.48 / 33.57 / 36.90 86.12

Legal
Contracts

– 18.75 / 6.20 / 13.93 84.73 21.12 / 6.90 / 15.41 84.75 21.66 / 7.07 / 16.19 85.60 17.52 / 6.21 / 13.70 84.78 22.96 / 7.45 / 18.30 84.90

SpGPT 16.84 / 5.98 / 12.80 84.17 18.99 / 6.11 / 14.41 84.90 21.74 / 7.42 / 16.73 85.33 18.56 / 6.90 / 14.51 84.76 21.18 / 7.22 / 17.15 84.49

Wanda 14.22 / 4.94 / 11.14 81.52 18.80 / 6.37 / 14.53 84.41 22.13 / 7.51 / 16.72 85.55 18.14 / 6.37 / 13.83 84.79 19.10 / 6.79 / 15.36 81.86

RCT

– 45.29 / 26.89 / 33.50 86.97 39.87 / 22.01 / 28.56 86.43 37.79 / 20.98 / 28.05 86.25 53.66 / 40.66 / 46.16 88.46 24.62 / 18.20 / 21.33 83.12

SpGPT 50.57 / 37.40 / 43.12 87.89 37.81 / 22.40 / 29.37 86.26 40.19 / 25.35 / 31.97 86.57 56.93 / 47.79 / 52.45 89.17 25.22 / 21.50 / 23.61 77.39

Wanda 38.79 / 28.59 / 33.12 86.06 36.90 / 23.07 / 28.82 86.11 39.61 / 24.79 / 31.60 86.49 59.29 / 50.02 / 54.83 89.40 31.59 / 28.84 / 30.49 70.64

Table 4: ROUGE-1/2/L (↑) and BERTScore (BS; ↑) for the original models (–) and their pruned

counterparts (SparseGPT and Wanda). Values in bold indicate that the pruned model scores significantly

higher than the original while underlined values denote a significantly lower score (paired t-test;

p < 0.05).

Llama-2 7B Llama-2 13B Llama-2 70B Mistral 7B OPT-IML 30B

SparseGPT Wanda SparseGPT Wanda SparseGPT Wanda SparseGPT Wanda SparseGPT Wanda

Dataset Metric 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50% 2:4 50%

FactCC

HaRiM+ 0.98 0.95 0.94 0.95 0.77 0.95 0.69 0.91 0.93 0.96 0.93 0.96 0.93 0.94 0.91 0.94 0.83 0.87 0.87 0.85

SummaCconv 0.64 0.82 0.56 0.81 0.76 0.83 0.64 0.84 0.76 0.92 0.77 0.90 0.79 0.88 0.74 0.86 0.80 0.86 0.84 0.83

SummaCzs 0.47 0.65 0.39 0.65 0.50 0.61 0.41 0.61 0.63 0.86 0.63 0.83 0.76 0.85 0.68 0.82 0.80 0.87 0.85 0.83

Polytope

HaRiM+ 0.97 0.97 0.97 0.97 0.78 0.93 0.71 0.85 0.94 0.96 0.95 1.00 0.95 0.95 0.94 0.96 0.87 0.93 0.92 0.88

SummaCconv 0.67 0.83 0.69 0.83 0.70 0.78 0.65 0.79 0.77 0.93 0.78 0.92 0.78 0.82 0.76 0.84 0.86 0.95 0.91 0.92

SummaCzs 0.64 0.85 0.64 0.75 0.58 0.69 0.56 0.69 0.75 0.88 0.74 0.83 0.76 0.81 0.75 0.84 0.88 0.95 0.92 0.93

SummEval

HaRiM+ 0.88 0.93 0.81 0.93 0.80 0.97 0.69 0.96 0.95 0.98 0.95 0.98 0.93 0.94 0.92 0.95 0.91 0.92 0.90 0.89

SummaCconv 0.55 0.81 0.46 0.76 0.67 0.81 0.59 0.81 0.78 0.96 0.79 0.93 0.79 0.85 0.77 0.87 0.86 0.88 0.83 0.85

SummaCzs 0.49 0.75 0.4 0.68 0.56 0.71 0.49 0.66 0.70 0.92 0.70 0.88 0.79 0.84 0.76 0.88 0.86 0.89 0.85 0.86

Legal
Contracts

HaRiM+ 0.99 0.85 0.90 0.85 0.83 0.88 0.76 0.88 0.87 0.92 0.89 0.95 0.85 0.94 0.89 0.93 0.85 0.89 0.81 0.83

SummaCconv 0.98 0.85 0.93 0.94 0.82 0.81 0.76 0.81 0.79 0.88 0.83 0.91 0.83 0.92 0.92 0.89 0.85 0.88 0.81 0.86

SummaCzs 1.01 0.86 0.96 0.90 0.93 0.86 0.88 0.88 0.85 0.93 0.88 0.95 0.88 0.92 0.93 0.92 0.93 0.96 0.94 1.00

RCT

HaRiM+ 0.92 0.96 0.87 0.92 0.86 0.99 0.80 0.97 0.93 0.96 0.93 0.97 0.93 0.96 0.93 0.95 0.85 0.88 0.83 0.87

SummaCconv 0.69 0.86 0.70 0.88 0.78 0.89 0.79 0.88 0.82 0.92 0.82 0.93 0.82 0.88 0.81 0.87 0.83 0.88 0.79 0.88

SummaCzs 0.71 0.83 0.71 0.82 0.69 0.81 0.70 0.82 0.79 0.90 0.79 0.90 0.84 0.89 0.82 0.89 0.77 0.80 0.77 0.83

Average

HaRiM+ 0.95 0.93 0.90 0.92 0.81 0.95 0.73 0.91 0.92 0.96 0.93 0.97 0.92 0.95 0.92 0.95 0.87 0.90 0.87 0.87

SummaCconv 0.70 0.83 0.67 0.85 0.74 0.82 0.68 0.83 0.78 0.92 0.80 0.92 0.80 0.87 0.80 0.87 0.84 0.89 0.84 0.87

SummaCzs 0.67 0.79 0.62 0.76 0.65 0.74 0.61 0.73 0.74 0.90 0.75 0.88 0.81 0.86 0.79 0.87 0.85 0.90 0.86 0.89

Table 5: Hallucination risk ratio (HRR) between the original and the pruned model (values less than one

are highlighted, indicating that the pruned model has a lower hallucination risk than the original model),

averaged across all data points over the three prompts for each dataset. Bold values denote significant

differences between the pruned and the original model (paired t-test; p < 0.05).

out of 100. We also find that models pruned

with SparseGPT perform more consistently com-

pared to those pruned using Wanda. For example,

Llama-2 7B pruned with SparseGPT records a

BERTScore of 84.17 for Legal Contracts, com-

pared to 81.52 with Wanda, and 84.73 from

the original.

Comparing across model sizes for Llama-2,

pruning seems to be less impactful as model size

increases. For SparseGPT, we find that the pruned

model is comparable (by any metric) in 15 out of

20 comparisons for Llama-2 7B, 18 out of 20 for

Llama-2 13B, and in all 20 for Llama-2 70B.

These findings suggest that the summarization

performance between pruned and original models

is at least comparable.

4.3 Hallucination Risk

Table 5 shows the HRR (Section 3.6) for all

models and datasets, using each hallucination risk

metric.6

Pruning Reduces Hallucination Risk. In al-

most all cases, irrespective of the pruning method

or sparsity pattern (i.e., 2:4 or 50%), the results

show that pruned models have a lower hallu-

cination risk (i.e., values lower than 1.0). We

find only a single exception, Llama-2 7B pruned

with SparseGPT (2:4) for Legal Contracts, with

a SummaCZS ratio of 1.01. More importantly,

6For reproducibility and transparency, we include the

full results (i.e., absolute hallucination risk scores) in this

link due to space constraints.
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pruned models record significantly lower HRRs

(paired t-test; p < 0.05). This applies to 284 out

of 300 total comparisons across datasets, models,

pruning methods, and sparsity patterns. For exam-

ple, we observe significantly lower scores across

all metrics for Llama-2 7B with SummEval. In

particular, SummaCZS scores more than halve for

2:4 semi-structured SparseGPT (0.55) and 2:4

semi-structured Wanda (0.49).

These findings seem counter intuitive, con-

sidering that pruned models typically perform

comparably to original models in summarization

(Table 4). As both language modeling and sum-

marization performance remains comparable, we

hypothesize that the parametric knowledge re-

moved by pruning (Namburi et al., 2023) ‘‘forces’’

the model to rely more on the source docu-

ment during generation and in turn reducing

hallucination risk. We examine this further in

Section 5.

Semi-structured Pruning Mitigates Hallucina-

tion Risk. We observe consistently lower HRRs

when pruning with semi-structured sparsity (2:4

pattern), versus unstructured pruning at the same

sparsity level (50%). Semi-structured pruning

records a lower HRR across all three metrics in 59

out of 65 cases with SparseGPT, and in 55 out of 65

cases with Wanda. We note that semi-structured

pruning sometimes produces a substantially lower

HRR than unstructured pruning. For example,

semi-structured pruning for Llama-2 13B with

Wanda records an average SummaCZS HRR of

0.61 versus 0.73 with unstructured pruning.

Unstructured pruning allows weights to be re-

moved in any pattern, enabling pruning according

to the optimal layer-wise solution. In contrast,

semi-structured pruning constrains the solution

space to only the subset that satisfies the de-

sired sparsity pattern (e.g., 2:4, removing two

weights in every contiguous block of four). In-

evitably, even influential weights with relatively

high layer-wise saliency scores may be removed.

As semi-structured pruning deviates from the op-

timal layer-wise solution, a higher proportion of

important weights are therefore removed. This

likely includes relevant parametric knowledge

(Namburi et al., 2023), potentially requiring such

models to rely more on the source document for

generation.

To investigate this, we compute lexical overlap

(using ROUGE-1/2/L) between summaries and

their source documents across all models, datasets

and pruning methods. We find that summaries

from models pruned with 2:4 sparsity result in

higher lexical overlaps in 114 out of 150 compar-

isons (three ROUGE metrics, five datasets, five

models, two pruning methods) compared to mod-

els with 50% unstructured pruning, supporting

our hypothesis.

SummaC and HaRiM+ Moderately Agree.

Considering the average results across datasets,

we observe mixed signals from SummaC-based

HRRs versus HaRiM+ HRRs. For example,

SummaCConv with SparseGPT (2:4) shows that on

average, Llama-2 7B benefits most over the origi-

nal (0.70), followed by Llama-2 13B (0.74). On the

contrary, for HaRiM+with 2:4 sparsity, summaries

from Llama-2 13B appear to yield the largest re-

ductions in hallucination risk on average (0.81

with SparseGPT and 0.73 with Wanda), followed

by OPT-IML 30B (0.86 with both SparseGPT

and Wanda). As the results between hallucina-

tion risk metrics differ, we want to shed light

on how well they agree with each other. There-

fore, we compute Pearson’s correlation coefficient

between all HRR metrics, across all datasets, mod-

els and pruning methods. Unsurprisingly, both

SummaC-based metrics show a strong correlation

between them (0.82 averaged across all datasets,

models and pruning methods). We also find mod-

erate correlations between HaRiM+ and SummaC

metrics (0.45 between HaRiM+ and SummaCZS;

0.53 between HaRiM+and SummaCConv).

This is expected, as each metric group com-

putes hallucination risk with different motivations

(SummaC-based metrics use entailment methods

over the summary and document, while HaRiM+

uses token-level predictive likelihood). This ex-

plains partly the moderate correlation between

them, also highlighting that it can be beneficial to

use HaRiM+ and SummaC in conjunction.

4.4 Human Evaluation

Table 6 shows human evaluation results for

the questions presented in Section 3. To offer

a fair selection of models, we use summaries

generated by the pair that benefited the most

(Llama-2 7B) and the least (Mistral 7B) in

terms of hallucination risk (i.e., the largest and

smallest improvements in Table 5). We then

select the corresponding summaries from the

pruned counterpart, specifically SparseGPT (2:4)
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Halluc. Omiss. Repet. Align.

Model Q1 (↓) Q2 (↓) Q3 (↓) Q4 (↑)

Llama-2 7B 31 5 0 28

w/ SparseGPT 14 18 9 21

IAA (κ) 0.82 0.63 0.62 0.53

Mistral 7B 12 9 0 31

w/ SparseGPT 10 13 5 23

IAA (κ) 0.87 0.61 0.67 0.59

Table 6: Human evaluation results. Values denote

the number (out of 100) of summary preferences

by participants for the corresponding category.

Bold denotes the best performing model per

question.

which obtained the most consistent summarization

performance (Section 4.2).

Original Models Hallucinate More. Sum-

maries generated by the original Llama-2 7B

model contain hallucinations in 31 cases (out

of 100) compared to 14 with SparseGPT applied.

In comparison, the results for Mistral 7B also

suggest that 10 (out of 100) summaries from

Mistral 7B pruned with SparseGPT contain hal-

lucinations, compared to 12 summaries generated

using the original model (i.e., a smaller difference

compared to Llama-2 7B).

This aligns well with our initial expectations and

HRR results (Table 5), as Mistral 7B benefits less

from pruning in terms of hallucination risk com-

pared to Llama-2 7B. For example, considering

SummaCZS for SummEval, Llama-2 7B pruned

with SparseGPT approximately halves the hallu-

cination risk (0.49) compared to 0.79 with Mistral

7B. From analyzing human evaluation results, we

found that the large difference between pruned

and original Llama-2 7B is predominantly driven

by major factual errors (discussed in Section 6).

Original Models Omit and Repeat Slightly

Less. With substantial (0.61–0.80) agreement

between participants, the results agree that both

original models had no repetitions in their sum-

maries and omitted less important information

compared to pruned model summaries (e.g., nine

instances with Mistral 7B compared to 13 with its

pruned version with SparseGPT).

Comparing how well the summaries semanti-

cally align with the source document, the results

show a preference towards the original mod-

els (with moderate agreement; 0.40–0.60). For

example, 28 (out of 100) summaries of the

original Llama-2 7B were selected as more

aligned compared to 21 summaries when pruned

with SparseGPT.

5 Impact of Pruning Sparsity on

Hallucination Risk

To better understand previous observations and

test our hypothesis (i.e., sparsity likely encour-

ages models to focus more on the source document

during generation), we analyze hallucination risk

across different sparsity levels. We additionally

track the lexical overlap (using ROUGE-1/2/L)

and semantic overlap (using BERTScore) between

the generated summary and the source document.

Our hypothesis is: If lexical overlap positively cor-

relates with sparsity levels, it suggests that pruned

models may rely more on the source document for

generation.

Figure 2 shows the summarization performance

ratio (ROUGE-1/2/L and BERTScore; ratio com-

puted as pruned over original) and HRR (↓) for

five LLMs and two pruning methods, across in-

creasing levels of unstructured sparsity (10% to

50%). We only consider unstructured sparsity,

since the 2:4 semi-structured pattern enforces a

fixed sparsity level of 50%. The ratio for each

metric is averaged across datasets for brevity,

with error bars indicating standard deviation. For

summarization performance, a ratio higher than

1.0 indicate that the pruned model performs better

than the original, whereas a HRR lower than 1.0

indicates that summaries from the pruned model

have a lower hallucination risk.

Hallucination Risk Reduces as Sparsity In-

creases. Results consistently show that hallu-

cination risk reduces as sparsity levels increase,

across all models and pruning methods. For ex-

ample, with Llama-2 13B and Wanda, SummaCZS

HRR reduces from 0.98 at 10% sparsity, to 0.90 at

30% to finally 0.73 at 50%. Moreover, OPT-IML

30B displays a remarkably linear improvement

(i.e., with SparseGPT the HRR is 1.00 at 10%

sparsity, 0.95 at 30% and 0.90 at 50%, for all hal-

lucination risk metrics). These findings suggest

that increasing sparsity to moderate levels (up to

50%) does indeed appear to reduce hallucination

risk in generated summaries.

Semantic and Lexical Overlaps Differ. Ob-

serving the lexical (ROUGE) and semantic

1171

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/ta

c
l/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
6
2
/ta

c
l_

a
_
0
0
6
9
5
/2

4
7
0
7
8
7
/ta

c
l_

a
_
0
0
6
9
5
.p

d
f b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 S

H
E

F
F

IE
L
D

 u
s
e
r o

n
 0

5
 N

o
v
e
m

b
e
r 2

0
2

4



Figure 2: Ratio between a pruned model and the original across five sparsity levels, three hallucination risk metrics

(lines with circled markers; lower means pruned is better) and four summary generation performance metrics

(gray dotted lines; higher means pruned is better). The ratio for each metric is averaged across all datasets, with

error bars indicating standard deviation.

(BERTScore) similarity ratios between document

and generated summary across sparsity levels,

the outcomes are mixed. In almost all cases for

both pruning methods, BERTScore results remain

comparable to the original model (close to 1.0)

up to 50% sparsity, with minimal deviation across

datasets. This shows that summaries from pruned

models are as semantically similar to the source

document as those from original models, across

all sparsity levels.

However, there is a stark contrast with

ROUGE-1/2/L. For Llama-2 models, ROUGE-

based ratios appear to decrease until 30% sparsity,

then increase substantially and peak above 1.0

(the original model baseline) at 50% sparsity. For

Mistral 7B and OPT-IML 30B, we observe that

ROUGE-based ratios increase above 1.0 (higher

than original) from a lower sparsity (20%). As

summaries from pruned models remain as se-

mantically similar to the source document as

those from original models, their higher lexical

overlap with the source document indicates that

pruned models focus more on the input document

to generate a summary.

Higher Lexical Overlap, Lower Hallucination

Risk. Surprisingly, we observe an inversely

proportional relationship between ROUGE-based

ratios and HRRs. We hypothesize that a higher

lexical overlap with the source document is a pos-

sible reason for the lower hallucination risk. To

ROUGE-1/2/L

Model SparseGPT Wanda

Llama-2 7B −0.69 / −0.89 / −0.90 −0.45 / −0.86 / −0.79

Llama-2 13B −0.70 / −0.77 / −0.84 −0.72 / −0.78 / −0.85

Llama-2 70B −0.39 / −0.86 / −0.84 −0.69 / −0.86 / −0.86

Mistral 7B −0.91 / −0.97 / −0.97 −0.88 / −0.96 / −0.97

OPT-IML 30B −0.70 / −0.93 / −0.89 −0.93 / −0.94 / −0.93

Table 7: Averaged Pearson’s correlation co-

efficient (r) between hallucination risk and

ROUGE-based metrics (calculated between the

generated summaries and the source documents)

across sparsity levels. Bold values indicate

significant correlations (p < 0.05).

assess this, we calculate Pearson’s correlation co-

efficient, averaged across sparsity levels between

all HRR and ROUGE-based metrics (Table 7,

significant correlations in bold; p < 0.05).

We note a strong significant inverse correlation

(Pearson’s r < −0.8) for both pruning methods

for ROUGE-2/L across almost all models (exclud-

ing Llama-2 13B) and r < −0.4 for ROUGE-1.

This suggests that a higher lexical overlap could

be responsible for the reduced hallucination risk,

while increasing sparsity appears responsible for

an increasing lexical overlap. In particular, we

find an almost perfect negative relationship be-

tween ROUGE-based ratios and HRRs (−0.97

with SparseGPT) for Mistral 7B. This corrob-

orates findings from the study by Durmus et al.

(2020), which shows that summaries with a higher
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Source Document Generated Summary

FactCC #205 Hallucination (Q1)

What do we have for the contestant on ‘‘The Price Is Right’’?

A brand-new car! Whoops. [. . . ] model Manuela Arbelaez

accidentally revealed the correct answer [. . . ]

The contestant on ‘‘The Price Is Right’’ accidentally revealed the

correct answer to a guessing game for a new Hyundai Sonata

[. . . ]

SummEval #86 Omission (Q2)

[. . . ] Patrick Kluivert has made a winning start in World Cup

qualifying as coach [. . . ] The Caribbean island team advanced

to the second qualifying round in CONCACAF for the 2018

tournament [. . . ]

Patrick Kluivert [. . . ] has successfully led Curacao to the second

qualifying round in CONCACAF for the 2018 tournament. [. . . ]

SummEval #33 Repetition (Q3)

[. . . ] auction at Sotheby’s on Wednesday. While the 13 letters

were expected to bring in anywhere from $300,000 to $600,000,

[. . . ] estimated to bring in anywhere from $300,000 to $600,000,

but [. . . ]

[. . . ] The 13 letters were expected to bring in anywhere from

$300,000 to $600,000, but received no bids. [. . . ] The letters were

estimated to be worth between $300,000 and $600,000. [. . . ]

FactCC #136 Alignment (Q4)

Deion Sanders is such a dad. The NFL legend called out Deion

Sanders Jr. on Twitter for saying he only eats ‘‘hood doughnuts.’’

In response, the elder Sanders [. . . ] reminded his son he has a

trust fund, a condo and his own clothing line called ‘‘Well Off’’

[. . . ]

Deion Sanders Jr. is a Southern Methodist University wide re-

ceiver and aspiring entrepreneur who loves ‘‘hood doughnuts’’

and has a trust fund, condo, and clothing line called ‘‘Well Off.’’

[. . . ]

Table 8: Examples of errors in generated summaries corresponding to the human evaluation questions

and the context from the source document.

lexical similarity to the source document are less

likely to contain hallucinations.

6 Qualitative Analysis

Following the human evaluation (see Sections 3.7

and 4.4), we review specific cases, highlighting

issues with the summaries generated by pruned

models in Table 8.

Hallucinations. Our analysis of the human eval-

uation task results suggests that hallucinations in

the summaries from both Llama-2 7B and Mistral

7B are either: (a) additional information not sup-

ported by the source document, or (b) modified or

misplaced information from the source document

(e.g., FactCC #205).

Omissions. Omission is a category where we

found a few instances of disagreement be-

tween the participants. In general, participants

agree in clear cases like SummEval #86 (e.g.,

‘‘2018 tournament’’ should be ‘‘2018 World

Cup’’). Comparatively in disagreements, omit-

ted information is more nuanced and difficult to

detect, such as important details from the source

document (e.g., missing dates).

Repetitions. Interestingly, we find that sum-

maries containing repetitions occur when the

source document also contains repeating informa-

tion (e.g., the price range ‘‘$300,000 to $600,000’’

duplicated in SummEval #33).

Alignment. The generated summaries that are

less aligned to the source document do not nec-

essarily contain any hallucinations, omissions,

or repetitions. However, we found that they do

not entirely convey the original meaning of the

source document. For example in FactCC #136,

the source describes Deion Sanders Jr. being

publicly scolded by his father for downplaying

his wealthy lifestyle. However, this particular

piece of information is not conveyed in the

generated summary.

7 Conclusion

We conducted an extensive study to assess the

hallucination risk of LLMs after pruning. We

experimented with two state-of-the-art pruning

methods applied to five instruction-tuned LLMs.

We measured the hallucination risk using three

established automatic metrics, in addition to a

human evaluation. Our results show that as

models are pruned to moderately high sparsity

levels, the risk of generating hallucinating con-

tent decreases. Our analysis suggests that pruned

models tend to generate summaries that have a

greater lexical overlap with the source docu-

ment, offering a possible explanation for the lower

hallucination risk.

In future work, we plan to explore the rela-

tionship between hallucination risk and model

quantization (Dettmers et al., 2022; Frantar et al.,

2023) and also expand to tasks such as open-book
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question answering (Ciosici et al., 2021) and

machine translation (Guzmán et al., 2019). Fi-

nally, an interesting direction is to investigate the

relationship between hallucination risk and expla-

nation faithfulness (Chrysostomou and Aletras,

2022; Zhao and Aletras, 2023).
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