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Abstract

The Planted and Regrowth forests (TPRFs) are one most low-cost component for
recovering biomass-stored carbon in the tropics. Nevertheless, challenges persist in
pinpointing which elevational ranges exhibit the largest carbon accumulation rate
(Yrapia )» due to the highly inconsistent previous assessments. This prevents the
selection of optimal locations for implementing large-scale reforestation in the tropics.
Here we proposed a refined approach that used a carbon accumulation threshold (< 80%
of the maximum value) to quantify y,gp;q in TPRFs at various elevations. We find that
Yrapia increases with elevations from 300 m to 1000 m and declines at
elevations >1000 m. TPRFs at elevation ~1000 m exhibit three times more y,4piq than
lowland TPRFs. This optimal elevation, highly dependent of background temperatures,
varies slightly but significantly across different mountains. These findings provide
guidelines for policymakers to determine the optimal elevations from regional to

continental scales when implementing reforestation initiatives in the tropics.

Introduction
Tropical forests account for approximately 40-50% of global forest carbon sink"
2. Nevertheless, tropical forests are under threat from ongoing deforestation, with high
risks of flipping into a net carbon source® . Thus, it is essential to regenerate tree cover
pan-tropically, either in areas where forests have historically existed (termed
‘reforestation’) or where they have never existed before (termed ‘afforestation’)’.
Forest cover can either return naturally following land abandonment (natural regrowth
forests) or intentionally (planted forests). These have been recognized as one of the
most low-cost approaches for recovering biomass-stored carbon in the tropics®?®,.
Nonetheless, a comprehensive analysis on the optimal locations for implementing
afforestation and reforestation is still lacking®. One key aspect to be considered when
implementing afforestation and reforestation for climate mitigation is the carbon

10,11

accumulationrate ™ ', a factor varying significantly with elevation. Recent studies have

12-16

attempted to use in situ data and high-resolution European Space Agency Climate
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Change Initiative (ESA-CCI) aboveground biomass (AGB) datasets to quantify the
carbon accumulation rates in forests'® !”"18, Among them, some studies highlighted the
existence of elevational patterns of biomass carbon in tropical forests, although these
patterns vary across studies'®®. For instance, some found that tropical biomass carbon
declined'?? or increased®* 2* monotonically with elevation, while others indicated U-
shaped®?’ or inverted U-shaped?® elevational patterns. Overall, we still lack a large-
scale understanding of how the carbon accumulation rate varies with elevation in the
tropics®® . This is partly due to the fact that trees at different elevations were often at
diverse growth stages, with various carbon accumulation rates related to age, i.e., higher
in young than in mature forests®" 32, Current studies commonly used a stand age
window to determine the temporal position along a Chapman—Richards curve!'® for
calculating the carbon accumulation rate’. However, the rates of carbon accumulation,
as estimated from different stand ages, may lead to contradictory assessments,
complicating the determination of their elevational patterns on large scales®. It is thus
necessary to develop approaches that enable comparing forest biomass carbon
accumulation rates at the same growth stage across various elevations.

Here we conducted a pan-tropical analysis of the growth trajectories in the
Tropical Planted and Natural regrowth forests (TPRFs) (Figure 1a). We proposed a
refined approach that used a carbon accumulation threshold (< 80% of the maximum
value), to quantify the biomass carbon accumulation rate (¥;qpiq) of TPRFs regarding
their rapid growth phase prior to reaching maturity**, which is the most important stage
during tree’s lifespan for accumulating biomass carbon. Our analysis reveals a robust
and consistently increasing trend in y,qpiq at elevations from 300 m to 1000 m, but a
subsequently declining trend when elevations > 1000 m. This optimal elevation also
varies across mountains with different background temperatures. Our findings can help
guiding reforestation initiatives at the optimal elevations from regional to continental

scales in the tropics.

Results
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Overview of experimental procedures

Instead of using fixed stand ages, here we use the time at which a certain biomass
carbon threshold is reached, to estimate y;.qp;q across varying elevations. As such,
the rapid growth age is defined as those before the year when the biomass carbon
reaches 80% of its peak value predicted by the Chapman—Richards model™,
specifically the median biomass carbon of old-growth forests with stand age =100
years within each elevation bin (Figures S1 and S2). It coincides with the year at
which the growth rate experiences a slowdown breakpoint in the relationship with
stand age as stand age increases (see Experimental Procedure for details, Figure
S3). Since different datasets have different strengths and weaknesses; in-situ data
provide high precision but are limited by their spatial and temporal consistency, while
satellite-based data typically offer comprehensive coverage but often contain noise in
specific areas. On the other hand, model-based data are global in scope but generally
have low resolution and lack consistent validation; thus, we integrated four
independent forest biomass and carbon datasets to conduct a constraint assessment of
elevation-driven variations in y,qpiq: (1) Dataset 1: in situ observations of the total
forest biomass (aboveground and belowground), sourced from published literature

compilation® and the Smithsonian Institution’s Global Forest Carbon database®

GFC

(hereafter ¥ygpia

); (i1) Dataset 2: the total forest biomass carbon derived from the

satellite-based 100 m resolution single-year product of ESA-CCI AGB'’ (yfﬁg{dca );

(ii1) Dataset 3: a 0.1° resolution time-series dataset of carbon stock in total live

woody biomass, generated through machine-learning (ML)*’ (¥ pqpiq); and (iv)

Dataset 4: a ~0.07° resolution time-series dataset of net ecosystem productivity

(NEP) simulations obtained from the BEPS (Boreal Ecosystem Productivity

BEPS

Simulator)®® model (Vrgpig

). We also examined the elevational gradient of carbon
accumulation rates by comparing the rates with the growth rate of tree height
GEDI

(Vrapia)> Which was obtained independently from 30 m resolution spaceborne LiDAR

observations in 2019 by the Global Ecosystem Dynamics Investigation (GEDI)*
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(Dataset 5). Corresponding stand age data and methods used to quantify y;.qpiq for
each carbon dataset were introduced in Table 1. Here, we focused exclusively on
forests with over 80% of the area covered by newly planted or naturally regrown
trees, situated at low-to-mid elevations up to 2000 m above mean sea level (a.m.s.1.)

as most afforestation and reforestation are implemented below this elevation*”.

Continental-scale elevational pattern of Vrapia

The average growth rate of TPRFs before 80% of the peak biomass, ¥yapia,
estimated from the four biomass carbon datasets (Table 1, Figure 1a) all shows no

significant elevation-dependence at lowlands (elevation < 300m), whereas there is a

strong effect of elevation above 300m (Figures 1b-1e). Generally, mountainous yﬁfpcid

increases substantially (slope = 0.03640.0005 MgC-ha'yr! m'; P < 0.05) from
1.4140.26 MgC-ha'yr! at an elevation of 290450 m (P<0.001) to 4.6540.71 MgC-ha"
lyr! at 1090450 m (P < 0.001) and then declines as elevation exceeds approximately
1090450 m (slope = -0.0072+0.0059 MgC-ha'yr'm™!, P=0.35). TPRFs at elevations

of 1000 m demonstrate the highest ySr¢

rapid»> accumulating approximately 3.0 times more

biomass carbon per year than that of their lowland counterparts (Figure 1b). Notably,

this “inverted U” elevational trend is consistently observed in yfcfz‘,“l-;ica (Figure 1c),

in which y;50:2“" is 2.1940.16 MgC-ha'yr" at 290450 m (P < 0.001), 3.9440.41
MgC-halyr! at 1090450 m (P < 0.001) and falls to 2.1940.17 MgC-ha'lyr! at

1970450 m (P < 0.001). Similar patterns are also evident in y

wpia (Figure 1d) and

yf(ﬁﬁ-fi (Figure 1e), although their average magnitudes and corresponding slopes of the

increasing elevational trends are much smaller due to the coarse spatial resolutions of

the datasets. The elevation dependence is also supported by the growth rate of tree
height (yﬁzﬁfj) calculated from an independent, widely-used spaceborne LiDAR tree

height dataset (Figure 1f).

We then compared the elevational pattern of y;.4p;q between the natural regrowth
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and planted forests, between the broadleaved and needle-leaved forests, between the
forests located in south- and north facing slopes of mountains, and among different tree
genera*! (Figure 2). While the overall elevational patterns in y,qpiq are still valid,
Yrapia Of planted forests increases more rapidly with elevation than that of natural
regrowth forests in areas below 1000 m; conversely, in areas above 1000 m, natural
regrowth forests show more pronounced negative elevational gradients in their growth
rate than planted forests (Figures 2a, 2d and 2g). The elevational patterns of V,gpiq
also differ between the broadleaved and needle-leaved forests. Generally, the
broadleaved forests have a higher value of mean ¥,.4p,;q compared with needle-leaved
forests, while the elevational gradients of y;4p;q are more pronounced in needle-
leaved forests than in broadleaved forests (Figures 2b, 2e and 2h). We also found
consistent elevational patterns of y,gpiq from 300 m to 1000 m in some specific tree
genera (Figure S4). However, their elevational patterns above 1000 m were unclear
due to the limited availability of biomass carbon data above 1000 m. Additionally, there
are no significant differences in the elevational patterns of y,4piq between south- and
north facing slopes (Figures 2g-2i). This finding aligns with the results observed by
Maass et al. (2002)*, Mendez-Toribio (2016)*, and Madhumali et al. (2023)*’, which
reported insignificant differences in tree height between south- and north- facing slopes
in tropical mountains.

Notably, the above-mentioned elevational patterns of y,qp;q cannot be correctly
represented by approaches that necessitate assuming a specific stand age to estimate the
carbon accumulation rate, which theoretically varies with the assumed stand age
(Figure 3a). This is due to the fact that, in the real world, at elevations below 1000 m,
the sensitivities of carbon accumulation to elevation are mostly positive and increase
with stand age in a range from 1 to approximately 20-25 years (black points, Figure
3¢). Conversely, as stands age is beyond 30 years, the sensitivities decline and become
negative. In contrast, at elevations above 1000 m, the sensitivities of carbon
accumulation to elevation are mostly negative and decrease with stand age rapidly after

the age of 20 years (black triangle, Figure 3c¢). This implies that TPRFs at elevations
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of 1000m exhibit the fastest growth between 20 and 25 years, while TPRFs at elevations
<300m or > 1000m achieve peak growth rates beyond 30 years (Figure 3c¢). In addition,
we also found that planted forests achieves their peak growth rates earlier (about 20
years) than natural regrowth forests (about 25 years) (Figure S5).

We then explored various stand age windows (i.e., from zero to 20, 24, 28 and 32
years of age) for calculating the biomass average accumulation rate along the
Chapman—Richards curve to assess the reliability of stand-age-based approaches
(Figure 3d), in comparison with using different peak biomass thresholds (i.e., from
zero to the time of reaching 70%, 80% and 90% of the maximum value). We found that
the biomass carbon accumulation rate exhibits a positive relationship with elevation
below 1000 m when selecting stand age thresholds of less than 20 and 25 years (red
and yellow fitted lines, Figure 3d) and becomes independent of elevation when 28
years are used as the threshold (green fitted line, Figure 3d). However, shifting into
negative trends occurs when opting for a threshold stand age of 32 years (dark blue
fitted line, Figure 3d). These results suggest that using a fixed stand age threshold to
compare the carbon accumulation rate may lead to various elevational patterns that are
difficult to be interpreted.

In contrast, Y,qpiq estimated using different stand age at which a biomass
threshold is reached (Figure 3b), identified by 70%, 80% and 90% of the maximum
biomass on the Chapman—Richards curve, show consistent elevational patterns (Figure
3f). We further verified that stand ages (agergpiq) With rapid accumulation rate
identified using our biomass carbon thresholds are comparable with the observed stand
age at which a breakpoint is found in the relationship between the carbon accumulation
rate and sand age (Figure S3). Results indicate that the estimated age,qpiq using 80%
carbon accumulation window coincide the best with those estimated from observed data
(Figure 3e). Overall, y;qpiq is insensitive to various moving windows lengths and
enables a reasonable comparison across elevations, ensuring the robustness of our

findings.
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Climate drivers of elevational gradients in V,qpiq

The carbon accumulation rate is determined by two gross carbon fluxes: gross
primary production (GPP) and total respiration (TER)>*>!. Over a decadal time span,
nearly all augmented carbon goes into stand biomass, while the dynamics of soil carbon
are much slower™> >3, Consequently, we used BEPS-simulated NEP (GPP minus TER,
Dataset 4)** which exhibits a more comparable magnitude with the carbon
accumulation rate than net primary production (NPP) (Figure S7), as a proxy to explore
the intra-annual variation of their elevation dependence on a monthly time scale.

Our analyses indicate that at elevations < 1000 m, GPP and TER both show positive
correlations with elevation, but their intra-annual sensitivities differ greatly (Figure 4a).
Low-land forests experience stronger high-temperature stress (> 24°C) from April to
September due to the negative elevational gradients in temperature (Figure 4c),
resulting in a sharper decrease in GPP than in TER (Figure 4g). This discrepancy causes
greater negative sensitivities of GPP to elevation compared with TER (Figure 4i),
thereby leading to positive elevational gradients in NEP from April to September
(Figure 4a). Furthermore, the decrease in VPD with elevation (Figure S8a), emerges
as the second crucial factor in co-driving the increasing trend in GPP with elevation.
Large VPD serves as a valuable proxy for atmospheric dryness and often imposes
significant constrains on GPP in tropical forests®**8, thus highlighting the impact of
elevational on NEP during periods of high-temperature stress (Figure 4i). During the
high-precipitation months from April to September (Figure 4e), elevation-associated
variations in precipitation exert a nearly equivalent inhibitory effect on both GPP and
TER (Figures 4h and 4i). Consequently, the asynchronous elevational sensitivities of
GPP and TER to temperature primarily contribute to the positive response of NEP
(orange curve) to elevation (< 1000 m).

At elevations above 1000 m, forests grow in moderate temperature conditions
(average monthly MAT< 24°C) (Figure 4d). In this condition, NEP shows insignificant
elevational gradients from April to November (Figure 4b), due to the consistent

elevational sensitivities of GPP and TER to temperature (< 24°C) (Figure 4g). During
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the low-precipitation months from December to March, elevation-associated variations
in precipitation (Figure 4f) exerts divergent impacts on GPP and TER (Figure 4h).
This discrepancy results in a negative elevational pattern of GPP and a positive
elevational pattern of TER (Figures 4b and 4j), thereby leading to negative elevational
gradients in NEP from December to March (Figure 4b). The asynchronous elevational
sensitivities of GPP and TER to precipitation primarily contribute to the negative
response of NEP at elevations > 1000 m.

Overall, the pronounced elevational patterns in MAT, VPD and precipitation

primarily drive the seasonally-dependent but divergent sensitivities of GPP and TER to

elevation. These impacts contribute to the increasing elevational trend of yffzﬁfi at

elevations < 1000m and the decreasing elevational trend of yf(fzﬁfi at elevations > 1000

m. In contrast, soil moisture (SM) (Figures S8c-S8d) and total photosynthetically
active radiation (PAR) (Figures S8e-S8f) exhibit lower sensitivity to elevation and play

less important roles (Figures 4i-4j).

Variations at individual mountains

We further examined the elevation patterns of )/fcﬁfifi and corresponding driving

mechanisms across four mountainous areas: the Sierra Madre del Sur mountain in North
America (SMS), the Ethiopian Highlands mountain in Africa (EH), the Serra do

Espinhaco mountain in South America (SE), and the Eastern Ghats mountain in Asia

(EG) (Figure Sa). yffzﬁfi in individual mountains shows an increase with elevation in

low-to-mid elevation, followed by a decline as elevation continues to increase (Figures
Sb-5e), consistent with the results for entire tropical mountain regions (Figure 1).
Mechanism analyses also support that the positive elevational gradient of y;.gpiq 1S
mainly attributed to the asymmetrical response of GPP and TER to temperatures
(Figures S9 and 5i-51); while the negative elevational gradient of ¥;.qpiq is due to the

divergent response of GPP and TER to precipitation (Figures S9 and Sm-5p).

However, the optimal elevations where show the yfcﬁopifi peak varies across
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different mountains. Among the four studied mountains, the Eastern Ghats mountain
experiences the highest mean temperature (average monthly TMF = 26.61°C) (Figure

5f) and thus has a highest optimal elevation (1390 m), corresponding to the places with

greatest yffzﬂfz (Figure 5e). This results in the smallest elevational sensitivity in

yfcﬁﬁfi (Figure 5h). Conversely, the Serra do Espinhago mountain has the lowest mean

temperature (average monthly TMF = 23.67°C) (Figure 5f) and shows the lowest

optimal elevation (900 m) (Figure 5d). This leads to the sharpest elevational trend in

]/ffppi‘zl (Figure 5h). Overall, the optimal elevations with highest yffpf’ig in the four

mountains are ranked as follows: Eastern Ghats (1390 m) > Ethiopian Highlands (1200

m) > Sierra Madre del Sur mountain (1000 m) > Serra do Espinhaco (900 m) (Figure

5¢g); and in the opposite, the elevational sensitivities of yffppifi are ranked as: Serra

do Espinhago > Sierra Madre del Sur mountain > Ethiopian Highlands > Eastern Ghats
(Figure 5Sh).

Discussion

Afforestation and reforestation stand out as pivotal land-based actions for
mitigating climate change, especially in the context of diminishing net gains from CO-
fertilization and increasingly negative impacts on tree growth from climate warming>°.
Tropical mountain forests exhibit a large potential for carbon accumulation® .
However, the expansion of a new agricultural frontier has caused significant tree cover
loss in tropical mountain forests during the 21st century®! %2, Thus, tropical mountains
have emerged as a region with significant potential for implementing reforestation and
afforestation efforts for future climate mitigation*”.

Challenges persist in pinpointing optimal elevations for afforestation and
reforestation in the tropics>’. Previous field studies generally presented inconsistent

elevational patterns of carbon accumulations rate!®: 20 22-26. 30, 63

. Studies, mainly
focusing on the net carbon dynamics of mature forests, observed a monotonically

decreasing trend of biomass carbon with elevation at a large elevational range (0-5000
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m)?> 2530 Other studies that accounted for both young and mature forests found that
biomass carbon accumulation rate show an inverted U-shaped?® curve along increasing
elevation with a transition at approximately 1600 m?* %, Stand age differences across
elevations likely introduce considerable uncertainties when comparing carbon
accumulation rates across various elevations.

Notably, such stand-age-associated discrepancy across elevations raises an
important issue — how to choose an appropriate time period along a Chapman—
Richards curve for quantifying the carbon accumulation rate at different elevations’.
For instance, young secondary forests (< 40 years old) can accumulate 11 to 20 times
more biomass carbon than the mature forests®! 2. Studies using the same stand age
window for different elevations to estimate the carbon accumulation rate’ may bring
uncertainties when comparing the carbon accumulation rate at various elevations'?, as
the stand age varies greatly at different elevations in the real world®. This provides
explainations for previous studies that have observed diverse elevational patterns of the
carbon accumulation rate” 2> 3°. Thus, previous studies mostly did not accounted for
the uncertainties introduced by different stand age and likely compared the carbon
accumulation rate of forests at different growth stages®. This can be reflected by the
analysis regarding the relationship between biomass carbon accumulation rate and
elevations, using 24, 28, and 32 years of age as thresholds, which showed positive,
insignificant, and ultimately negative trends, respectively (Figure 3d).

To reduce such uncertainties from stand age, we proposed a refined approach that
used a carbon accumulation threshold (< 80% of the maximum value) rather than the
stand age window to define the analysis time period. This novel approach enables
comparing the carbon accumulation rates during the rapid growth periods in both low-
and mid-elevation TPRFs (Figure 3b), revealing a robust, consistent and positive
elevational gradient in ¥,qpiq Within elevation below 1000 m and conversely a
negative elevational gradientin y,4,;q Within elevation above 1000 m. (Figures 1 and
3f). This discovery helps to reconcile the diverging elevational trends that were

60, 63, 65

observed in previous studies and provides a benchmark for comparing the
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biomass carbon accumulation rate (Vyqpiq) of forests across elevations.

We further found that seasonal variations in temperature and atmospheric dryness
play key roles in the positive elevational gradient of y;.qp;q at elevations < 1000 m.
This is probably attributed to the decreases of high-temperature stress®® and
atmospheric dryness constraint™* with elevation (Figures 4c and S8a). This finding is
consistent with previous analyses, which found the greatest threat of high-temperature
to the biomass carbon accumulation rate in lowland TPRFs®” %, In contrast, TPRFs
above 1000m often live in less hot temperatures® and thus Yrapia €xhibits less impact
from high-temperature stress. Conversely, precipitation becomes the most important
climatic limiter, as elevations above 1000 m generally have small rainfall®>. The
constraint on GPP from low precipitation, which also causes an increase in TER, is
typically severe from December to March, resulting in a negative elevational pattern of
Yrapia at elevations above 1000m. Therefore, elevations of around 1000 m likely
encounter less high temperature and water stress (Figures 4c-4f), making these regions
optimal for potential reforestation efforts aimed at climate mitigation.

Notably, the elevational pattern of y,4,;q may be further exacerbated by ongoing

climate warming’® 7!

, as future extreme high temperatures and atmospheric drying
could impose more substantial limitations on carbon accumulation rates in the
lowlands’> 73. With the declining strength of carbon sinks in lowland tropical forests®®,
the importance of montane systems for carbon management may be increasing in the
future’®. Climate change may also bring various impacts on the elevational gradients in
carbon accumulation between the planted and natural growth forests, and between the
broadleaved and needle-leaved forests, as well as in different mountains, due to their
diverse climatic sensitivities'® '8, Worthy of noting is that disturbances from human
activities'® '® also decrease with elevation (Figure S10b) and may also contribute to
the increasing elevational trend of ¥;.4p;q in TPRFs (Figures S10c¢ and S10d).

In summary, using multiple data streams, as well as modelling and mapping

approaches, our analysis reveals a robust and consistently increasing trend in ¥yqpiq at

elevations between 300 m and 1000 m, but a subsequently declining trend when
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elevations > 1000 m. Thus, 1000 m shows to be the optimal elevation for accumulating
biomass carbon in TPRFs, while this threshold varies slightly across different
mountains. Our findings underscores the importance of incorporating elevation as a
global factor when estimating biomass carbon sinks, and when considering suitable
areas for reforestation and afforestation, addressing both scientific understanding and

policy considerations.

EXPERIMENTAL PROCEDURES
Methods
General summary

In order to conduct a constraint assessment of elevation-driven variations in the
biomass carbon accumulation rate in the rapid growth stages (Vrgpiq), we firstly
collected five independent forest biomass, carbon flux, and height datasets. (i) Dataset
1: in situ observations of total forest biomass (aboveground and belowground) from
published literature compilation’ and the Smithsonian Institution’s Global Forest
Carbon database (ForC)%; (ii) Dataset 2: total forest aboveground biomass carbon
derived from the satellite-based 100 m resolution single-year product of European
Space Agency Climate Change Initiative (ESA CCI) aboveground biomass (AGB)'7;
(ii1) Dataset 3: a 0.1° resolution time-series dataset of carbon stock in total live woody
biomass, generated through machine-learning (ML)*’; (iv) Dataset 4: a 0.072727°
resolution time-series of net ecosystem productivity (NEP) simulations obtained from
the BEPS (Biosphere-atmosphere Exchange Process Simulator)*® model; and (v)
Dataset 5: a 30 m resolution tree height dataset from spaceborne LiDAR observations
in 2019 by the Global Ecosystem Dynamics Investigation (GEDI)*’.

While Dataset 1 includes information on stand ages, Datasets 2- 5 do not provide
this information. Consequently, we needed to supplement Datasets 2- 5 with stand age
data from other sources before proceeding with the subsequent analysis. For ESA-CCI

AGB data (Datasets 2) and GEDI tree height data (Datasets S), we utilized the 30 m

resolution satellite-based tropical moist forest cover change dataset (TMF)*! to identify
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natural regrowth (TRF) pixels where a conversion from deforested land to forest
occurred, termed “Secondary Forest” in the TMF dataset (see more detail later in
methods). The consecutive years during which the land remained forest-covered were
then used to estimate the stand age in years'® for these TRF pixels. We also employed
a satellite-based global plantation years dataset*” with a resolution of 30 m to identify
planted forest (TPF) pixels and their corresponding planting years. For the 0.1°
resolution time-series machine-learning live woody biomass data provided by Xu et al.
(2021)*7 (Dataset 3) and the 0.072727° resolution time-series BEPS-modeled NEP data
(Dataset 4), we identified TPRF pixels where non-forests converted to forested lands
based on the 0.05° resolution MODIS MCD12C1 landcover products*’. And then, we
supplemented the elevation data for these five independent datasets with Shuttle Radar
Topography Mission (SRTM) DEM data’ extracted from global digital elevation model
(DEM) maps.

After supplementing the information on stand age and elevation, we analyzed the
Yrapia ©f TPRFs across the elevation gradient based on these five biomass-related

datasets. It is essential to highlight that we applied a space-for-time analogy with the

Chapman-Richards curve'® (Equation 1) to estimate yfcfzﬁd, yfj;,qiaca and yﬁfﬁ-fi at

an elevation bin of 100 m and a moving window step of 80 m. Previous studies
commonly used a stand age window to determine the temporal position along a
Chapman-Richards curve for calculating the carbon accumulation rate’. Nevertheless,
the rates of carbon accumulation, as estimated from different stand age windows, vary
largely (Figure 3a). Here, we use a carbon accumulation window approach to estimate
the biomass carbon accumulation rate of TPFs during their rapid growth phase (Vrapia)
across varying elevations (Figure 3b). The rapid growth stand age is defined as the
time before the maturity year when the biomass carbon reaches 80% of its peak value
predicted by the Chapman—Richards model, specifically the median biomass carbon of
old-growth forests with stand age =100 years within each elevation bin. The grid cells
corresponding to old-growth forests (=100 years of age) were identified based on stand

age information sourced from a global database of forest carbon provided by Anderson-
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Teixeira et al*®. Subsequently, the Yrapia 18 calculated as the slope of the linear
regression fit between live biomass carbon and forest stand age of TPRFs before
reaching the defined maturity age (inset in Figures 1b-1c, 1f; and S1-S2). It implies
that this approach enables comparisons of the biomass carbon accumulation rate in
TPRFs during their rapid growth stage, reducing uncertainties arising from differences
in stand age across various elevations.

Y,=A(1l—e ") + e A, kand c>0 (1)
Where Y; refers to the biomass carbon at age t; A is the median biomass carbon of
old-growth forests with stand age =100 years within each elevation bin; £ is a growth
rate coefficient of Y; as a function of age; c is a coefficient that determines the shape

of the growth curve; and ¢ is an error term.

While the yfcfzfid, yf(f;,“i;f“ and yTGpriﬁi are estimated using the space-for-time

method, the y%fpid and yfcﬁﬁfl are obtained using time series methods. Specifically,

Vrapia 18 estimated as the slope of the fitted linear regression fit between annual live

biomass carbon and stand age over the entire time series period for each TPRF (inset

in Figure 1d), since their stand ages typically span less than 20 years. On the other

BEPS

hand: Yrapid

is calculated as the mean NEP for each TPRF over the same period

(Figure 1e).

In addition to examining the entire tropical mountain zones, we analyzed the
changes in ¥,qpiq With elevation across four specific mountains: the Sierra Madre del
Sur in North America (SMS), the Ethiopian Highlands in Africa (EH), the Serra do
Espinhaco in South America (SE), and the Eastern Ghats in Asia (EG), using time-
series BEPS-modeled net ecosystem productivity (NEP) data (Figures Sb-e).
Furthermore, we conducted a comprehensive assessment to explore the driving
mechanisms behind the elevational gradients in Y454, both across the entire tropical
regions (Figure 4) and among the individual mountains (Figure 5).

The overall technical roadmap is shown in Figure S11 and detailed estimation

steps for each dataset are described in the subsequent sections.
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Estimation of the biomass carbon accumulation rate based on in situ forest biomass
data (Dataset 1) using the space-for-time analogy

We used a global forest biomass carbon dataset that provided field measurements
of plant biomass carbon (including both above- and below-ground biomass carbon) (in
MgC ha''), stand age (in years), elevation (in meters), pre-disturbed land cover
information and plant establishment method (e.g. natural regrowth or planted)® 3¢, In
cases where records lacked elevation information, we supplemented the elevation data
from Shuttle Radar Topography Mission (SRTM) DEM data’. Finally, the dataset
comprised 2,693 aboveground carbon estimates within tropical regions, originating
from 518 distinct sites and encompassing data from 164 studies (Figure 1a).

Due to the limited availability of time-series observations for each site (mostly
spanning over one or two years)’, we employed a space-for-time analogy to estimate
the carbon accumulation rate. In contrast to time-series analysis, which quantifies
changes in plant carbon over time at each site, the space-for-time analogy estimates an
average carbon accumulation rate across all sites within a specific elevation range.
Figure 1b was produced at an elevation bin of 100 m and a moving window step of 80
m. We conducted additional analyses with various combinations of elevation bins and
moving window steps to assess the robustness of the results (Figure S12).

In addition, using the plant establishment and pre-disturbed land cover information
recorded in this database, along with 500 m resolution MODIS MCD12Q1 v061 land

cover data®® and 90 m resolution DEM data”, we further conducted a comparative

analysis of the elevational patterns of yfcfpcl-d between natural regrowth and planted

forests (Figure 2a), between broadleaved and needle-leaved forests (Figure 2b),
between south- and north-facing slopes of mountains (Figure 2¢), and different land

use types before afforestation, reforestation or both (Figure S13).

Estimation of the biomass carbon accumulation rate based on the 100 m resolution

total biomass carbon derived from the ESA-CCI aboveground biomass (AGB)
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product (Dataset 2) using the space-for-time analogy
We first obtained the aboveground biomass (AGB) records for 2018 from the 100

m resolution ESA-CCI product'’

, which used elevation data to reduce errors arising
from the differences in radar backscatter between slopes facing the radar and those
facing away. We then used the root-to-shoot ratio developed from field measurements
to estimate the below-ground biomass (BGB) from the ESA-CCI AGB data®” °.
Subsequently, biomass carbon was estimated from the sum of AGB and BGB by
multiplying by a constant coefficient (0.49)7® 7. It is important to acknowledge
potential uncertainties in these estimates, considering that AGB and BGB may exhibit

distinct elevational patterns globally’: 788!,

To estimate the yfjﬁiaca for natural regrowth forests (TRFs), we utilized the 30

m resolution satellite-based tropical moist forest cover change dataset (TMF)*!' to
identify TRF pixels. This dataset tracked the extent and alterations of tropical moist
forests over the past three decades*' and characterized the degraded forests and
secondary forests at a spatial resolution of 30 m and a yearly temporal resolution,
generated from Landsat data spanning from 1982 to 2019. Degraded forests, in this
dataset, were defined as tree-covered pixels for which disturbances were visible for a
short time period (between 3 months and 2.5 years maximum), whereas secondary
forests were defined as pixels with natural regrowth vegetation after an absence of tree
cover for more than 2.5 years'®. In this study, we only selected the secondary forests
for TRF analysis. Furthermore, we also removed the oil palm plantations from the TMF
secondary forests following the methodology of Heinrich et al.'®. Stand age for TRFs
was estimated as duration since the most recent disturbance event for any recovering
forest pixel in tropical moist forests, based on the annual number of detected
disturbances in the TMF dataset. Subsequently, we superimposed the 30m resolution
stand age map onto the 100 m resolution total biomass carbon map derived from ESA-
CCI AGB production, calculating the average stand age for each ESA-CCI grid cell.
Only those 100 m resolution ESA-CCI grid cells, where stand age information was

presented in more than 10 sub-grid pixels with 30 m resolution, were included in our
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analysis. Finally, we employed a space-for-time analogy with the Chapman—Richards

curve to estimate yf,f;,“i:lca for natural regrowth forests at an elevation bin of 100 m

and a moving window step of 80 m (Figure 2d).

Similarly, to estimate the yf(fgifica for planted forests (TPFs), we first utilized a

30 m resolution global map of plantation planting years (GPY) spanning from 1982 to
2020 to identify TPF pixels. The GPY dataset includes two tree categories: tree crops
and planted forests. We retained only the 100 m resolution ESA-CCI grid cells that
were overlapped with more than 10 sub-grid pixels identified as “planted forest” at 30

m resolution. Subsequently, we employed a space-for-time analogy with the Chapman—

Richards curve to estimate yfcfﬁi:lca for TPFs at an elevation bin of 100 m and a

moving window step of 80 m (Figure 2d).

It is worth noting that the yfcf;fiaca in Figure 1c¢ is the result of using both TPFs

and TRFs data. For TPFs, we used the species information recorded in the GPY dataset
to classify them into broadleaved and needle-leaved forests. For TRFs, we classified
them into broadleaved and needle-leaved forests based on the 500 m resolution MODIS

MCD12Q1 v061 land cover data*. Subsequently, we analyzed the elevational patterns
of yf‘f;,‘lijica for broadleaved and needle-leaved forests, respectively (Figure 2e), and

between south- and north-facing slopes of mountains (Figure 2f).

Furthermore, we conducted an extensive analysis at the tree genus level by
integrating a comprehensive in situ mega-database of tropical African vascular plant
distributions compiled from 13 datasets*. In this analysis, we selectively considered
tree species that met specific criteria: they had to have at least four sites in the 100m
bin within a single elevation bin (100 m) and spanned at least three elevation bins
between elevations of 300 to 1000 m, as there is no sufficient data for analysis above
1000 m. Moreover, we excluded data points exhibiting anomalously high biomass
carbon values (> 200 MgC-ha™') for trees aged 1 to 3 years or demonstrating an
exceptionally high biomass carbon accumulation rate (> 15 MgC-ha'yr'!). Adhering to

these stringent selection criteria, our analysis finally included 4 species with a total of
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215 records (Figure S4).

Estimation of the biomass carbon accumulation rate based on a time-series 0.1°
resolution live biomass dataset from 2000 to 2019 (Dataset 3)

A global vegetation live biomass dataset was generated by integrating ground
inventory data and remote sensing observations, including airborne laser scanning
(ALS) data and the satellite LIDAR inventory of global vegetation height structure
information. This dataset was developed using a self-improving ML algorithm?’. It
provides global time-series (2000-2019) and annual live biomass data at 0.1° resolution,
covering terrestrial ecosystems worldwide. Extensive validation efforts have been
conducted based on over 100,000 in situ observations®’. This dataset used elevation
data by incorporating SRTM data into machine learning techniques to capture
topographical features, thereby enhancing the accuracy of carbon stock estimates across
different elevations®’. Importantly, this dataset has found widespread application in
studies pertaining to forest carbon dynamics®?%°.

In this study, the biomass carbon accumulation rate was estimated using time-series
methods, as delineated in the following procedural steps.

First, we identified the TPRFs within the latitudinal range of 23.5°S-23.5°N based
on MODIS MCDI12C1 landcover  products (version v6.1)%
(https://Ipdaac.usgs.gov/products/med12c1v006/), which are available from 2001 to
2019 and exhibit comparable spatial resolutions (0.05°) with the 0.1° resolution ML-
derived live biomass data. Stand ages were then determined using the following
approach®-8%: (1) Firstly, tropical regions were classified into two categories: forest and
non-forest lands. Forest pixels include five land cover types: evergreen needle-leaved
forests, evergreen broadleaved forests, deciduous needle-leaved forests, deciduous
broadleaved forests, and mixed forests; (2) Then, the commencement of growth periods
was designated as the year when a transition occurred from non-forest to forest;
Conversely, termination of growth periods was marked when a transition occurred from

forest to non-forest; and (3) the stand age was calculated as the temporal length between
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the commencement and termination of growth periods. Given the accessibility of
MODIS landcover maps from 2001 to 2019, the estimated stand ages in our study
encompass only immature stages, ranging from 1 year to 18 years. It is pertinent to note
that, in reality, forests often commence regrowth before being visually identified in
remote sensing imagery, potentially resulting in an underestimation of TPRF stand ages.

Second, to align the stand age map with the coarse spatial resolution (0.1°) of
gridded forest biomass carbon data, we employed a 2x2 search window (size: 2x2 0.05°
pixels) to track land cover changes. Only pixels meeting the specific criteria were
included in the analysis: (1) all four pixels within the 2x2 search window were
classified as non-forest lands in the year 2001; (2) more than half of the 0.05° pixels
within the 2x2 search window transitioned from non-forest to forest lands during the
same period; and (3) the duration of the growth period should exceed 8 years, ensuring
the reliability of carbon accumulation rate calculations. Applying these criteria, a total
of 1,754 0.1°X0.1°grids were selected for analysis.

Finally, for each selected 0.1° grid cell, scatter diagrams were plotted to illustrate
the relationship between stand age and annual live biomass carbon. The OLS linear
regression model was employed to establish a linear regression fit, with its slope
designated as the biomass carbon accumulation rate (inset in Figure 1d). To mitigate
potential uncertainties arising from data anomalies, pixels exhibiting unreasonably high
carbon accumulation rates (i.e., a linear regression slope > 15 MgC-ha'yr!) were
excluded following the screening approach used in recent studies’. Ultimately, a total

of 1, 512 TPREF grid cells were included in the final analysis (Figure 1a).

Exploring the elevation pattern of NEP based on model-simulated time-series carbon
[flux datasets spanning from 2000 to 2019 (Dataset 4)

It was observed that, on a decadal time span, nearly all augmented carbon goes
into stand biomass during the initial period following afforestation, while the dynamics
of soil carbon are much slower’> 3>, NEP can therefore be used as a proxy for the

biomass accumulation rate. Here, we used the time-series NEP dataset simulated by the
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Boreal Ecosystem Productivity Simulator (BEPS) model?®

, providing daily carbon
fluxes at a resolution of 0.072727° spanning from 1981 to 2019. We resampled the
time-series BEPS NEP datasets into 0.1° using the nearest-neighbor method and
overlapped them with the 0.1° TPRF grid cells identified for 0.1° resolution ML -
derived live biomass data. We then calculated the mean NEP during the growth period
for each TPRF grid cell derived from MODIS MCDI12C1 landcover products (Figure
le).

Furthermore, we estimated the proportion of TRFs pixels (30 m resolution)
identified using TMF data; and estimated the proportion of TPFs pixels (30 m
resolution) identified based on GPT data within each 0.1° TPRF grid cell. If the
proportion of TRF pixels was greater than that of TPF pixels, we classified the 0.1°
TPRF grid cell as a natural regrowth forest; otherwise, it was classified as a planted
forest. Similarly, we classified the 0.1° TPRF grid cells into broadleaved and needle-
leaved forests, as well as north-facing and south-facing forests, based on the land cover
data from MCD12C1 v061* and high resolution DEM data”. Subsequently, we

compared the elevational patterns of y,4p;q in various areas and different forest types

(Figures 2g-2i).

Estimation of the tree height growth rate based on GEDI tree canopy height data

Tree height data were extracted from a global map of forest canopy height with 30
m resolution for the year 2019°°. This map was produced by integrating LIDAR-derived
canopy height metrics, specifically from the GEDI level 2 product, with Landsat multi-
temporal surface reflectance data. This dataset underwent calibration against elevation
during its generation, utilizing the Shuttle Radar Topography Mission (SRTM)”
elevation data in its regression model. This calibration improves the accuracy of tree
height measurements, particularly in hilly or mountainous regions®.

To further mitigate uncertainties in the LiDAR tree height data, a comparative
analysis was conducted with another widely used dataset on tree height®. The selection

process involved retaining only those pixels where the two tree height datasets
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exhibited a high level of consistency, with tree height difference <£5 m (Figure S14).

Subsequently, we employed a space-for-time analogy to calculate the tree height
growth rate (Figure 1f) within a specific elevation interval of 100 m using a moving
window step of 80 m. This approach closely mirrors that employed for calculating the

carbon accumulation rate from the ESA-CCI-derived biomass carbon data.

Exploring the impact of the differences in elevation patterns of monthly GPP and
TER on the elevation patterns of NEP.

Given that the increasing elevational patterns of carbon accumulation rates were
predominantly observed between March and September (Figure 4a), our investigation
thus focused on identifying potential environmental drivers at the monthly time scale.
Currently, there is a lack of available data pertaining to monthly plant carbon
accumulation rates in TPRFs. Our analyses uncovered a strong correlation between the
net ecosystem productivity (NEP) and the rate of plant carbon accumulation (Figure
S7a, P < 0.001, slope=1.14, R*=0.5), closely aligning with the 1:1 diagonal line. We
therefore used NEP as a proxy of carbon accumulation rate to explore its potential
environmental drivers in TPRFs. NEP, in this context, is defined as the difference
between the amount of organic carbon fixed by photosynthesis in an ecosystem (gross
primary production, GPP) and total ecosystem respiration (the sum of autotrophic and
heterotrophic respiration, TER).

Worthy of note is that, although NPP is strongly linearly correlated with the carbon
accumulation rate, it exhibits a much larger magnitude compared with the carbon
accumulation rate (Figure S7b, P < 0.001, slope = 0.21, R? = 0.4). This is because
biomass carbon accumulation is one of the four components of NPP, while the other
three components, foliage turnover, fine root turnover, and mortality, can occupy 50%
to 80% of NPP®. For young forests, mortality is usually very low. In tropical forests,
the foliage and fine root turnovers to the soil would decompose within a few years,
resulting in little change in the soil organic matter>> >3, Therefore, NEP performs as a

better proxy for the biomass carbon accumulation rate (only stemwood and coarse root
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biomass accumulates with time) compared with NPP.

For our investigation, we utilized a global carbon flux product created by Chen et
al.*® using the BEPS model. It provides the global daily GPP, TER and NEP at a spatial
resolution of 0.07272727° (~10 km) from 1981 to 2019. The BEPS model is a process
based diagnostic model driven by remotely sensed vegetation parameters, including
biophysical variables such as Leaf Area Index (LAI), climate data (temperature and
precipitation), nitrogen deposition, and atmospheric CO> concentrations. It initializes
carbon pools based on historical net primary production (NPP) data from 1901. The
model simulates carbon dynamics by stratifying biomass carbon into four pools (leaf,
stem, coarse root, and fine root) and soil carbon into nine pools. Key processes include
heterotrophic and autotrophic respiration, as well as net ecosystem production (NEP),
which is derived from gross primary production (GPP) minus total respiration. In
comparison with 15 prognostic models used by Global Carbon Project (GCP), BEPS is
among the best in terms of Pearson’s coefficient (R?) and root mean square error
(RMSE) between simulated and the observation-based annual global residual land sink
(RLS)*.

Although the BEPS model has a resolution of approximately 0.07272727°, it can
still effectively capture differences along elevation gradients. As shown in Figure 15,
in the Eje Volcanicao Transversal Mountain range in North America, along the latitude
of 18.5°N and longitude ranging from 104°W to 96°W, there are 83 grid cells at a 10
km x 10 km resolution distributed below an elevation of 2000 m. This implies that the
10 km resolution data has sufficient capability to capture the elevation gradients below
2000 m and corresponding variations of ecological factors associated with these
elevations.

Although many studies have demonstrated the satisfactory performance of the
BEPS model in simulating the global carbon sink”, some uncertainties may still
remain®?. For instance, BEPS model used MODIS LAI as an essential input data to
simulate NEP, while MODIS LAI is found to be less accurate in mountainous areas

compared to flatlands®>. This may bring uncertainties in assessing the elevational
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pattern of NEP®*. Additionally, BEPS model mainly relies on the maximum
carboxylation rate (Vemax)’> to simulate GPP, while other photosynthesis-related
parameters that may vary with elevation are mostly overlooked”. Although results are
vertified by multiple biomass- and height- related datasets, assessments are needed in

the future based on accurately simulating the GPP, TER, and NEP.

Investigation of climatic drivers influencing the elevational patterns in GPP and TER
using a multiple linear regression model

Prior research has suggested that precipitation, air temperature, sunlight, vapor
atmospheric dryness, and soil moisture are potential key factors in influencing the rate
of carbon accumulation in tropical forests. In this study, we delved into the impacts of
five key drivers, i.e. the mean air temperature (MAT), the vapor pressure deficit (VPD),
precipitation (PRE), soil moisture (SM), and total photosynthetically active radiation
(PAR) on the rate of carbon accumulation in restored forests (Figures 4 and S8). For
our analyses, we used the time-series mean air temperature, VPD and precipitation from
the TerraClimate global gridded meteorological and water balance variables dataset®’.
SM data was from the RSSSM global surface soil moisture dataset®®. Total PAR data
were from 0.05° resolution MODIS-derived global land products of total
photosynthetically active radiation from 2000 to 2019%°. Given the distinct spatial
resolutions of these products (Table S1), all variables were resampled to a 0.1° spatial
resolution and monthly for the analyses. It is worth noting that air temperature, VPD,
and soil moisture are represented as daily means on a monthly scale, while radiation
and precipitation are presented as daily totals on a monthly scale.

Due to the significant differences in the elevation gradients of GPP and TER
between months experiencing high-temperature stress and those without high-
temperature stress, we then separately quantified the contributions of the elevation
gradient of climatic drivers, specifically MAT, VPD (only for GPP), PRE, SM, and total
PAR (only for GPP), to the elevational gradient of GPP or TER for the months under

high-temperature stress and those without such stress, respectively. This quantification



722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

dGPP

was achieved by decomposing the elevation gradient of GPP (—delevation

) and TER

dTER
delevaion

(

) for each warm month into the additive contributions of five or four

ay

X
—) , which was represented as the product of the partial
delevation

components X (

o : : )¢ . . :
derivative against that variable X as X and the elevation gradient of X itself as

dX . .
———— 80 a5 shown in Equation (1).
delevation
ay _ ay dMAT aY dVPD aY dPRE aY dSM +
delevation  OMAT delevation dVPD delevation OPRE delevation JSM delevation
dY  d PAR _ ( ay )MAT ( ay ) VPD ( ay )PRE
0 PAR delevation ~ \delevation delevation delevation
( day )SM + ( day ) PAR ‘e (1)
delevation delevation

where g—;{ represents the sensitivity of ¥ (GPP or TER) to an explanatory variable X
(MAT, VPD, PRE, SM, total PAR [only for GPP], respectively). These sensitivities
were estimated as the regression coefficients of a multiple linear regression performed
(or )

represents the sensitivity of ¥ or X to elevation (300-1000 m or 1000-2000 m) for each

ay
delevation

ax
delevation

with GPP or TER against all listed explanatory variables.

warm month. The sensitivity was calculated as the slope of the simple linear regression

of mean Y (or X) values against the elevation.

Analysis of potential uncertainties arising from forest biomass carbon data, carbon
accumulation rate calculations, soil fertility, types of disturbances, and various sub-
regions

The reliability of forest biomass carbon data is a pivotal factor influencing the
calculation precision of the biomass carbon accumulation rate. Previous studies have
suggested that the ESA-CCI data may underestimate AGB in regions characterized by
high AGB density (> 250 Mg ha™!), particularly in low-elevation tropical forests'’. To
address this issue, we refined the bias in the ESA-CCI-derived total biomass data by
integrating in situ observations, using the techniques proposed by Zhao et al.'®. An

upward trend persists in the biomass carbon accumulation rate with elevation from 300
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m to 1000 m based on the adjusted biomass carbon data (slope = 0.20+0.05 MgC-ha'!
yr'' m!; mean carbon accumulation rate = 2.94+0.28 MgC-ha™! yr'!, Figure S16). This
consistency aligns with our findings based on the original ESA-CCI-derived total
biomass carbon data (slope = 0.23+0.04 MgC-ha'yr''m!; the mean rate = 2.85+0.28
MgC-halyr’!, Figure 1e).

To determine the biomass carbon accumulation rate of TPRFs during the rapid
growth phase across various elevations, this study initially focused on data points where
the biomass carbon was below 80% of that in old-growth forests for analysis.
Subsequently, we adjusted these thresholds to 70% and 90% to examine their potential
effects on the elevation dependence of the biomass carbon accumulation rate (Figure
3f). Results reveal very slight variations in the slopes of the linear regression curve
between biomass carbon accumulation rate and elevation (for altitudes between 300 m
and 1000 m: 70% threshold: slope = 0.11+0.05 MgC-ha'yr'm!; 80% threshold: slope
=0.23+0.04 MgC-ha'lyr'm™; 90% threshold: slope = 0.19+0.06 MgC-ha'lyr'm™). We
further verified the results of this method for detecting the rapid growth stand age
(agerapia) With the observed age,qpiq, which was determined as the stand age when
there was a break point change in the relationship of five-years carbon accumulation
rate and age. This time point was identified using segmented regression models'‘!
(Figure S3). Results indicated that the estimated agerqpiq using the 80% peak
biomass coincided well with those estimated from the derivative change of
accumulation rates (Figure 3e).

Human activities have the potential to influence the biomass carbon accumulation
rate in TPRFs'®. Here, we both tested the intrinsic influences from previous land use
types before converting to TPRFs and external influences from surrounding non-forest
lands. The fraction of non-forest lands (urban and croplands) nearby the TPRFs
(neighboring 10x10 1km resolution pixels) decreases with elevation, contributing
slightly to the increasing elevational trend of the carbon accumulation rate in TPRFs
(Figure S10). In contrast, the elevational patterns in TPRFs that used to be shifting

cultivation and pasture both show marginally small variations (Figure S13). Worthy of
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note is that, we did not analyze other land use types, such as fire, clear-cut harvest, and
mining, due to a lack of sufficient biomass carbon data across the studied elevation
range.

Moreover, organic carbon (https://openlandmap.org), total phosphorus'®?, sand and
clay concentrations (https://openlandmap.org) in soil all exhibited insignificant trends
(P>0.05) along with elevation (Figure S17), indicating a limited influence of soil
fertility on the elevation dependence of carbon accumulation rate.

All these additional analyses confirm the robustness of our findings regarding the

elevational patterns of biomass carbon accumulation rates in TPRFs.

Resource availability
Lead contact
For further information on the analysis, please contact the corresponding author,
Yongxian Su (yxsu@rcees.ac.cn).
Materials availability
This study has not generated any new, unique materials.
Data and Code Availability
All the original datasets used in this research are publicly available from their

sources: a global Forest Carbon database (ForC): https://github.com/forc-db; ESA-CCI

AGB map: https://catalogue.ceda.ac.uk/uuid/af60720c1e404a9¢9d2c145d2b2ead4e;

0.1° global live biomass carbon: https://zenodo.org/records/4161694; Carbon flux

(GPP/TER/NPP/NEP)  simulations  obtained from the BEPS  model:
https://datadryad.org/stash/landing/show?id=d0i%3A10.5061%2Fdryad.q573n5tgb;

Jung et al.’s FLUXCOM data: https://fluxnet.org/data/fluxnet2015-dataset/ ; Tree

height dataset: https://glad.umd.edu/dataset/GLCLUC2020;

https://www.nature.com/articles/s41559-023-02206-6; JRC-TMF dataset

(https://forobs.jrc.ec.europa.eu/TMF/ download/); MCDI12C1 v061 Iland cover:

https://Ipdaac.usgs.gov/products/med12¢1v061/; TerraClimate MAT, VPD, PRE:

https://www.climatologylab.org/terraclimate.html;  Global = remote-sensing-based
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surface soil moisture (RSSSM): https://doi.pangaea.de/10.1594/PANGAEA.912597;

BESS total PAR: https://www.environment.snu.ac.kr/bess-rad; Plantation year dataset:

https://figshare.com/articles/dataset/A_global map of planting_years_of plantations

/19070084/1; Global reforestation potential map: https://zenodo.org/records/883444;

Global soil total phosphorus concentration dataset:

https://doi.org/10.6084/m9.figshare.14583375.v9; Global soil organic/sandy/clay

carbon dataset: https://zenodo.org/records/2525663;

https://doi.org/10.5281/zen0d0.2525662; https://doi.org/10.5281/zenodo.2525553;

Tree species dataset:_https://gdauby.github.io/rainbio/index.html

The code used for this analysis is available in a Zenodo repository at

https://doi.org/10.5281/zen0do.13922571 (ref.103).
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TABLE

Table 1 Independent biomass, carbon, and height datasets and corresponding methods to quantify the y;,4p;q (see Experimental Procedure for

details).
NO. Biomass carbon | Biomass carbon | Stand age data | Stand age estimation R Acrony
. Yrapia estimation method
proxies data sources sources method ms
Dataset 1 | forest biomass (in | Smithsonian Institution’s Global Forest | Original —stand  age | Vrqpia Was determined as GFC
situ, global) Carbon (ForC) database ¢ and other in-situ | records the slope of linear regression Vrapia
datasets’ fit between observed forest
Dataset 2 | Aboveground forest | ESA-CCI"’ Cover change map of | Stand age of natural | biomass carbon densities | gsa_ccr
biomass (100m, tropical moisture | regrowth forests was | and the stand age of TPRFs Vrapia
global, 2018) forest (TMF) (30m, | determined based on | where biomass carbon was

Dataset 5 | Forest canopy height | GEDI LiDAR | Tropical, 1982- | TMF cover change data. | less than 80% of old-growth p—

dataset (30m, global, | dataset* 2019)*" and global | Stand age of planted | forests (stand age = 100 Vrapia
2019) plantation years | forests was calculated | years) simulated in the
dataset (GPY) (30m, | based on GPY dataset. | Chapman—Richards curve
global, 1982-2020)* using the space-for-time
method.

Dataset 3 | Total live woody | Machine-learning | MODIS MCDI12CI | Stand age Was | Vrapia Was determined as ML
biomass (0.1°, | (ML)-derived landcover  products | calculated based on the | the slope of linear regression Vrapia
global, 2000-2019) | terrestrial live | (0.05°, global, 2001- | time series MODIS | fit between biomass carbon

biomass dataset®”’ 2019)% MCDI2CI1 land cover | and stand age of TPRFs
Dataset 4 | Net ecosystem | BEPS model*® dataset. using  the  time-series BEPS
productivity analysis method. Vrapid
(0.07273°,  global,
1981-2019)
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FIGURE CAPTIONS
Figure 1. Average carbon accumulation rates (¥ ,q4piq) in TPRFs by elevation up to

2000 m above mean sea level (a.m.s.l.). a, In-situ sites of field measurements and grid

cells of raster-based data used in this study. Purple triangles represent in situ sites of

forest biomass data used for yffpcid estimation. The dots in different green colors

represent the 100 m x 100 m grid cells used for y/gp"" or v apy estimation. Black

dots represent the 0.1° x 0.1° grid cells used for y;qn;q OF Yiuniy estimation. b-f,

Elevation pattern of annual yyasia (), Vrapia © (©), Viawia (D), Viasiq (€) and

yff,% (f), respectively. The dashed lines represent the linear fit between ¥;.qpiq and

elevation, with shading representing the 95% confidence interval. Significant
relationships (P<:0.05) are denoted in blue, and insignificant ones (P>0.05) in grey. In
panels b, ¢, and f, each histogram represents the slope of the corresponding ordinary
least squares (OLS) regression line (orange dashed lines in the inset plot)’ between
biomass carbon and age during the rapid growth stage of forest (y,qpiq) before reaching
maturity (black dashed vertical lines in the inset plot, representing 80% of its maximum
biomass carbon and grey dashed lines in the inset plots represent the fitted Chapman—
Richards curve) within each elevation bin (100+50 m in an 80 m step) using the space-
for-time analogy. Color gradients of histogram graphs indicate the R? between
simulated and observed ¥;qpiq 1n each elevation bin. Error bars indicate one standard
error. In panel d, black dots represent the slope of the corresponding linear regression
curve (orange dashed lines in inset plot) between model-simulated plant carbon
densities and stand age, using the time-series data from each TPRF. In panel e, each
black triangle represents the mean NEP of each targeted TPRF, with error bars
indicating one standard error. Numbers at the top of panels d and e represent the slope
of linear regression between ¥,qp;q and elevation, with significance indicated in the
legend as » P<0.5, * P<0.1, **P<0.01, and ***P<0.001. Notably, the assessment of the

relationship between ¥;.4p;q and elevation is only up to 1300 m based on in-situ data
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(panel a), while analyses using other datasets (panels b-f) are up to 2000 m.

Figure 2. Elevational patterns of average carbon accumulation rates (¥;qpiq)

derived from three datasets across various forest characteristics at elevations up

to 2000 m above mean sea level (a.m.s.l.). a, d, g, The elevational patterns of
Yrapia @), Viapia *" (d) and y;.5% () in natural regrowth compared to planted

forests. The same as for a, d, g, but in broadleaved compared to needle-leaved forests.
¢, f, i, The same as for a, d, g, but in north-facing compared to south-facing slopes of
mountains. In panels a-f, each dot represents the mean y,4,;4 for each elevation bin
(100£50 m in an 80 m step), estimated based on the Chapman—Richards curve, with
the error bars indicating one standard error in each elevational bin. In g-i, each dot
represents the mean NEP for each targeted forest grid cell, with the error bars indicating
one standard error. The lines in panels a-i represent the linear fit between 4,4 and
elevation, with shading indicating the 95% confidence interval. Significant
relationships (P<<0.05) are denoted by solid lines, and insignificant ones (P>0.05) are
represented by dashed lines. Numbers at the top of panels represent the slope of linear
regression between y,4p;q and elevation, with significance indicated in the legend as

* P<0.5, * P<0.1, **P<0.01, and ***P<0.001.
Figure 3. The influence of stand age on the elevational pattern of Y,4,iq. 2,

Illustrations of the fixed stand age approach for calculating the carbon accumulation
rate. The slopes of three blue dashed curves represent the carbon accumulation rates
during Ty -T2, T2 -T3 and T -T3 time periods, respectively. b, [llustrations of the carbon
accumulation window approach for calculating ¥;.qpiq. The slopes of red solid and red
dashed curves represent the y;qpiq at low- (i.e., <500 m) and mid-elevations (i.e., 500
-1500 m* #), respectively. The selected window is intensified when carbon
accumulation reaches 80% of the median biomass carbon of old-growth forests (stand
age > 100 years). The black solid and dashed curves represent the Chapman—Richards
curves for TPRFs at low- and mid-elevations, respectively. ¢, Sensitivity of total

biomass carbon derived from ESA-CCI data to elevation (i.e., 300-1000 m and 1000-
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2000 m) across different stand ages. Sensitivity is defined as the slope of the linear
regression curve illustrating the relationship between biomass carbon and elevation
within each one-year stand age bin (Figure S6). d, Elevational patterns of biomass
carbon accumulate rates using diverse stand age windows (i.e., 20, 24, 28, and 32 years
of age) to locate the analysis period along the Chapman—Richards curve, as used in
previous studies®. e, Comparisons between the stand ages (age,qpiq) With rapid
accumulation rate identified using 80% peak biomass thresholds and observed
agerqpia> which was determined as the stand age when there was an abrupt change with
the relationship with stand age as stand age increases. f, Elevational patterns of biomass
carbon accumulate rates using different peak biomass thresholds (i.e., from zero to the
time of reaching 70%, 80% and 90% of the maximum value). In panels d and f, each
dot represents the slope of the corresponding ordinary least squares (OLS) regression
curve between ESA-CCI-derived total biomass carbon and the stand age within given
age windows (d) or using different peak biomass thresholds (f) at a given elevation bin
(100150 m in an 80 m step). The colored curves depict the linear regressions between
Yrapia and elevation, ranging from 300 m to 1000 m and 1000 m to 2000 m,
respectively.

Figure 4. Impact of climatic factors on the elevation patterns of seasonal carbon
fluxes. a-b, Linear regressions between each month’s GPP (red), TER (blue), NEP
(orange) simulated by the BEPS model (Dataset 4)*® and elevation for ranges of 300-
1000 m (a) and 1000-2000 m (b), respectively. e-f, Linear regressions between each
month’s mean air temperature (MAT) (¢-d) or precipitation (PRE) (e-f) and elevation
for ranges of 300-1000 m (¢, e) and 1000-2000 m (d, f), respectively. Shadings indicate
95% confidence intervals. Significant relationships (P<:0.05) are shown in solid lines,
and non-significant relationships (P>0.05) in dashed lines. g-h, Changes in monthly
GPP and TER with MAT (g) or PRE (h), respectively. Each dot denotes the median
value of GPP (red) (or TER [blue]) within a 1°C MAT bin (or 20mm PRE bin),
respectively. Error bars depict one standard deviation. The dashed curves are fitted

using local polynomial regression based on the ‘loess’ function in the R ‘stats’ package
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with default settings. The solid curves in panel g represent the linear fitting regressions
between the GPP, TER, and MAT for MAT higher than 24°C, while in panel h represent
the linear fitting regressions between the GPP, TER, and PRE for PRE lower than 150
mm. In panels ¢-d and g, the brown background indicates that MAT is =24°C. In panel
h, the light blue background indicates that PRE <150 mm. i-j, Absolute contributions
of the elevational trends in climate factors to the elevational variations in GPP and TER
determined by the multiple linear regression model for months with MAT = 24°C (i)
and < 24°C (j), respectively. Error bars represent one standard error. The asterisks
indicate the P values: * P<0.05, **P<0.01, and ***P<0.001.

Figure 5. Elevational patterns of yffzﬂfl and the underlying mechanisms across

four mountains. a, Locations of four tropical mountains: the Serra do Espinhago
mountain in South America (SMS), the Ethiopian Highlands mountain in Africa (EH),

the Serra do Espinhaco mountain in South America (SE), and the Eastern Ghats

mountain in Asia (EG). b-e, Elevational pattern of )/f(fppifl in four mountains. Blue

dashed curves and red solid lines represent the smoothed trend fitted by a generalized
additive model (GAM) and the linear fit at both sides of each threshold, respectively. f,

Elevational pattern of mean air temperature and precipitation in four mountains. g, The

optimal elevation, i.e., the places with the highest values of y2EFS in four mountains.

rapid

h, Elevational sensitivity of yffzﬁfi below (green histogram) and above (grey

histogram) the optimal elevation in four mountains. i-l, Absolute contributions of the
elevational trends in climate factors to the elevational variations in GPP and TER
determined by the multiple linear regression model for months with MAT = 24°C in
SMS (i), EH (j), SE (k), and EG (1), respectively. m-p, Absolute contributions of the
elevational trends in climate factors to the elevational variations in GPP and TER for
months with MAT < 24°C in corresponding four mountains. Error bars represent one

standard error.
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Table

1
2

Table 1 Independent biomass, carbon, and height datasets and corresponding methods to quantify the ¥,4p;q (see Experimental Procedure for

details).
NO. Biomass carbon | Biomass carbon | Stand age data | Stand age estimation R Acronyms
. Yrapia estimation method
proxies data sources sources method
Dataset 1 | forest biomass (in | Smithsonian Institution’s Global Forest | Original stand age | ¥Vrqpia Was determined as the GFC
situ, global) Carbon (ForC) database ¢ and other in-situ | records slope of linear regression fit Vrapid
datasets’ between  observed  forest
Dataset 2 | Aboveground forest | ESA-CCI"’ Cover change map of | Stand age of natural | biomass carbon densities and ESA—CCI
biomass (100m, tropical moisture | regrowth forests was | the stand age of TPRFs where Vrapid
global, 2018) forest (TMF) (30m, | determined based on | biomass carbon was less than

Dataset 5 | Forest canopy height | GEDI LiDAR | Tropical, 1982- | TMF cover change | 80% of old-growth forests p—

dataset (30m, global, | dataset® 2019)4% and global | data. (stand age = 100 years) Vrapid
2019) plantation years | Stand age of planted
dataset (GPY) (30m, | forests was calculated | simulated in the Chapman—
global, 1982-2020)* | based on GPY dataset. | Richards curve using the
space-for-time method.

Dataset 3 | Total live woody | Machine-learning | MODIS MCDI12C1 | Stand age was | Yrapia Was determined as the ML
biomass (0.1°, | (ML)-derived landcover products | calculated based on the | slope of linear regression fit Vrapia
global, 2000-2019) | terrestrial live | (0.05°, global, 2001- | time series MODIS | between biomass carbon and

biomass dataset®’ 2019)% MCDI12Cl1 land cover | stand age of TPRFs using the
Dataset 4 | Net ecosystem | BEPS model*® dataset. time-series analysis method. BEPS
productivity Vrapid
(0.07273°,  global,
1981-2019)
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Figure S1. yf,’;rfid for each elevation bin (100+50 m) in 80 m step. Grey points

represent in situ tree biomass carbon. The Grey dashed curves represent the smoothed
trend fitted by Chapman Richards growth model, which was used to find the mature
age threshold when the accumulated carbon reached 80% of median carbon of old-
growth forest (the black crosses). Error bar indicates one standard error. Brown dashed
lines represent the linear regression curves between in situ tree biomass carbon and
stand age of all sites of TPRFs during the rapid growth stage of trees before approaching
maturity within the given elevation bin. Shading represents the 95% confidence interval.
Significance of linear regression is indicated in the legend as: « P<0.5, * P<0.1,

**P<0.01, and ***P<0.001.
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Figure S2. yranii’' for each elevation bin (100+50 m) in 80 m step. Grey points

denote the median biomass carbon value calculated for each stand age bin (*1year).

Grey dashed curves represent the smoothed trend fitted by Chapman Richards growth

model, which was used to find the mature age threshold when the accumulated carbon

reached 80% of median carbon of old-growth forest (the black crosses). Error bar

indicates one standard error. Brown dashed lines represent the linear regression curves

between ESA-CCI-derived total biomass carbon and stand age of all sites of TPRFs

during the rapid growth stage of trees before approaching maturity within the given

elevation bin. Shading represents the 95% confidence interval. Significance of linear

regression is indicated in the legend as: « P<0.5, * P<0.1, **P<0.01, and ***P<0.001.
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Figure S3. Illustrations for determining the stand age (age;qp;q) of the rapid

growth phase in TPRFs. age,;,;q was defined as the stand age when there was a
break point of the relationship with stand age as stand age increases. Panels a-c¢ are
examples of agerqp,iq thresholds indentified for three altitude ranges: 560-660 m (a),
720-820 m (b), and 880-980 m (c), respectively, based on ESA-CCI data. The black
dots represent the slopes of ordinary least squares regression applied to applied to the

relationship between biomass carbon and stand ages for each five-year interval,

defining y/gpig"¢" for each five years bin. Grey dashed curves and black solid lines

represent the smoothed trend fitted by a generalized additive model (GAM) and the
linear fits at both sides of each threshold, respectively. The agerqpiq with an abrupt
change between the relationship with stand age as stand age increases was identified
using the segmented package in R. Red vertical dashed line represents the observed
agerqpiq indetified using this method. Blue vertical dashed line represents the
simulated age,qpiq identified by 80% of the maximum value on the Chapman—

Richards curve.
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Figure S5. Sensitivity of total biomass carbon derived from ESA-CCI data to
elevation (i.e., 300-100 m and 1000-2000 m) across different stand ages for natural
regrowth (a) and planted forest (b), respectively. Sensitivity is defined as the slope
of the linear regression curve illustrating the relationship between biomass carbon and
elevation within each one year stand age bin. Significant relationships (P<0.05) are

shown in black samples, and non-significant relationships (P>0.05) in grey samples.
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Figure S6. The elevational patterns of ESA-CCI-derived biomass carbon in TPRFs
with different stand age classes. The dots represent the mean biomass carbon of all
TPRF grid cells at each 100 m elevation bin; while error bars represent the
corresponding one standard deviation. Green and blue curves represent the linear fitting
regressions between the biomass carbon accumulation and elevation for elevation from
300 to 1000 m and elevation from 1000 to 2000 m, respectively. Shading represents the
95% confidence interval. Significance of linear regression is indicated in the legend as:

* P<0.5, * P<0.1, **P<0.01, and ***P<0.001.
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Figure S8. Elevational patterns of seasonal climate factors in TPRFs.

Linear regressions between monthly VPD (a-b), soil moisture (SM) (¢-d) or total
photosynthetically active radiation (Total PAR) (e-f) and elevation for range of 300-
1000 m (a, ¢, e) and 1000-2000 m (b, d, f), respectively. Shadings indicate 95%
confidence intervals. Significant relationships (P<0.05) are shown in solid lines, and
non-significant relationships (P>0.05) in dashed lines. Significance of linear regression

is indicated in the legend as: * P<0.5, * P<0.1, **P<0.01, and ***P<0.001.
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Figure S9. Sensitivity of carbon fluxes to elevation and the climatic driving
mechanisms in four individual mountains. a-d, Seasonality of elevational sensitivity
of GPP (red), TER (blue), NEP (orange) simulated by the BEPS model (Dataset 4) *°
for elevations between 300 and 1000 m (al-d1) and for elevations between 1000 and
2000 m (a2-d2) in four individual mountains. Error bars represent one standard error.
e-h, Changes in monthly GPP and TER with MAT in four individual mountains. Each
dot denotes the median value of GPP (red) (or TER [blue]) within a 1°C MAT bin and
error bars depict one standard deviation. The asterisks indicate the P values: *P<0.05,
*#P <0.01, and ***P < 0.001. i-1, Seasonality of MAT and elevational sensitivity of
TER for elevations between 300 and 1000 m (il1-11) and for elevations between 1000
and 2000 m (i2-12) in four individual mountains. The upper, center, and bottomed lines
in the brown boxplot indicate the first, median, and third quartiles of monthly MAT.
The blue points indicate the slope of linear regressions between PRE and elevation.

Error bars represent one standard error.
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Figure S10. Land use characteristics and potential influences on the elevational

pattern of yf,f;,‘i;,“’ in TPRFs. a, The ratio of restorable forests to total land area for

different elevation bin. The reforestation potential data was extracted from a global
reforestation potential mapproposed by Griscom et al.>, while the total land area was
calculated from MODIS MCD12C1 landcover products®. b, The fraction of non-forest
lands (urban and croplands) nearby the TPFs (neighbouring 10x10 1 km resolution
pixels), calculated based on MODIS MCD12C1 landcover products®. ¢, The elevation

patterns of y;asiz°“" in TPRFs where their nearby fractions of non-forest lands are >

0.5%. d, The elevation patterns of yf‘f;,“i;lca in TPRFs where their nearby fractions of

non-forest lands are < 0.5%.
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Figure S12. The elevation patterns of ¥;.;i4

in TPRFs using various

combinations of elevation bin and step settings. Each histogram represents the slope
of the corresponding ordinary least squares regression (OLS) curve between in situ tree
biomass of all sites of TPFs during the rapid growth stage of trees before approaching
maturity (80% of the maximum biomass carbon) within the given elevation bin and
moving step, using the space-for-time analogy method. R? of OLS regression is shown
in a light-dark color gradient. Significance of OLS regression is indicated in the legend
as: ¢ P<0.5, *P<0.1, **P<0.01, and ***P<0.001. The error bars indicate one standard
error of the estimated carbon accumulation rates. The dotted lines with shading
represent the linear fitting curves between plant carbon accumulation rates and
elevation with 95% confidence interval. Significant relationships (P<0.05) are shown

in blue shading color while insignificant ones (P>0.05) are displayed in grey shading.
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Figure S13. The elevation patterns of yf‘fgid in TPRFs which used to be different

land use types before afforestation. a, The elevation patterns of y;,y;; in TPRFs

where were pasture lands before afforestation. b, The elevation 55, in TPRFs

where were shifting cultivation before afforestation. Each histogram represents the
slope of the corresponding ordinary least squares regression (OLS) curve between in
situ tree biomass of all sites of TPFs during the rapid growth stage of trees before
approaching maturity (80% of the maximum biomass carbon) within each elevation bin
(100+50m in 80m step) using the space-for-time analogy method. R? of OLS regression
is shown in a light-dark color gradient. Significance of OLS regression is indicated in
the legend as: * P<0.5, *P<0.1, **P<0.01, and ***P<0.001. The error bars indicate one
standard error of the estimated carbon accumulation rates. The dashed lines with
shading represent the linear fitting curves between plant carbon accumulation rates and
elevation with 95% confidence interval. Significant relationships (P<0.05) are shown

in blue shading color while insignificant ones (P>0.05) are displayed in grey shading.
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Figure S15. Topography variations (10 km resolution) of the Eje Volcanico
Transversal mountain range in North America. a, DEM map at a 10 km resolution.
b, Elevation data along the black line (Latitude:18.5°N; Longitude: 104°W ~ 96°W) on
the DEM map extracted from this 10 km resolution DEM for Eje Volcanico Transversal

mountain range.
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Figure S16. The elevation patterns of biomass carbon accumulation rates in TPFs
based on adjusted ESA-CCI data. Each histogram represents the slope of
corresponding ordinary least squares regression (OLS) curve between satellite-based
tree biomass carbon and stand age of all pixels of TPFs within the given elevation bin
(100+50 m in 80 m step), using the space-for-time analogy method (Methods). R? of
OLS regression are shown in a light-dark color gradient. The error bars indicate one
standard error. Significance of OLS regression is indicated in the legend as: ¢ P<0.5,
*P<0.1, **P<0.01, and ***P<0.001. The error bars indicate one standard error of the
estimated carbon accumulation rates. The dashed lines with shading represent the linear
fitting curves between plant carbon accumulation rates and elevation with 95%
confidence interval. Significant relationships (P<0.05) are shown in blue shading color

while insignificant ones (P>0.05) are displayed in grey shading.
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Figure S17. The elevation patterns of soil fertility in TPRFs. The elevation patterns
of soil organic carbon®, total phosphorus®, sand'® and clay!! concentrations, respectively.
Each dot represents the mean values of corresponding soil nutrient concentration of all
soil layers at each TPRF site. Error bars represent one standard error. The solid lines
represent the linear fitting curves between soil fertility and elevation. Shading

represents the 95% confidence interval.
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Table S1. Information on the data used in this study.

Name Parameters  Spatial Temporal Reference Applications
resolution  resolution
Field observation Plant carbon, Multiple Multiple Cook-Pattonet To calculate
sites stand age and al., 2020% carbon
disturbance Anderson- accumulation
type Teixeira et al., rate
2018'
ESA-CCI forest AGB 100 m Yearly Santoro & To extract
above-ground Cartus, 20213 forest AGB
biomass product
Global vegetation AGB 0.1° Yearly Xu et al, To extract
live biomass 2021 forest AGB
MCDI12C1 v061 Land Cover  0.05° Yearly Friedl & Sulla- To  identify
Menashe, forest
2022° regrowth
period
Terra Climate MAT, VPD, 1/24°, ~4- Monthly Abatzoglou et To extract
PRE and SM  km al., 2018% environmental
variables
BESS PAR Total PAR Skm Daily Ryu et al, Toextracttotal
20181 PAR variable
Global remote- Surface soil 0.1°, ~ ~10days Chen et al, To extract soil
sensing-based moisture 10 km 2021" moisture
surface soil variable
moisture (RSSSM)
dataset
Global carbon flux GPP, TER, 0.07272727 Daily Chen et al.,, To extract
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(GPP/NPP/NEP)

simulation product

Tropical moist
forests

FLUXCOM data
Tree height

Tree height

Global reforestation
potential map
Global soil total
phosphorus
concentration
dataset

Global soil organic

carbon dataset

Global soil sandy
content dataset
Global

soil clay

content dataset
RAINBIO  mega

database

NEP and
NPP
forest cover

change

NEP

tree height

tree height

reforestation

potential

total

phosphorus

soil organic

carbon
soil  sandy
concentratio
ns
soil clay
concentratio

ns

tree species

°~10 km

30 m

0.5°

10m

30m

lkm

0.05°

250m

250m

250m

Multiple

19

Yearly

Yearly

Multiple

2019"8

Vancutsem et

al., 2021"
Jung et al,
2017

Lang et al,
2023’

Potapov et al.,
2021°
Griscom et al.,

2017°

He et al,

2021°

Hengl &
Wheeler.
2018*

Hengl et al,

2018

Hengl et al,

2018

Dauby et al.,

20162

carbon  flux
variables

To calculate

forest age
To extract
NEP

To extract tree
height

To extract tree
height

To extract
reforestation
potential area
To extract soil
fertility

variables

To extract soil
fertility
variables

To extract soil
fertility
variables

To extract soil
fertility
variables

To extract tree
species

information



SRTM DEM elevation 30m - Van Zyl et al., To extract

2001%° elevation
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