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Abstract

Magnetic flux tubes in the presence of background rotational flows, known as solar vortex tubes, are abundant
throughout the solar atmosphere and may act as conduits for MHD waves to transport magnetic energy to the upper
solar atmosphere. We aim to investigate the Poynting flux associated with these waves within solar vortex tubes.
We model a solar vortex tube as a straight magnetic flux tube with a background azimuthal velocity component.
The MHD wave solutions in the equilibrium configuration of a vortex tube are obtained using the Shooting
Eigensolver for SolAr Magnetohydrostatic Equilibria code and we derive an expression for the vertical component
of the Poynting flux, Sz, associated with MHD modes. In addition, we present 2D visualizations of the spatial
structure of Sz for different MHD modes under different background flow strengths. We show that Sz increases in
the presence of a background rotational flow when compared to a flux tube with no rotational flow. When the
strength of the background flow is greater than 100 times the strength of the perturbation, the Sz associated with
non-axisymmetric (|m|> 0) modes increases by over 1000% when compared to a magnetic flux tube in the absence
of a background rotational flow. Furthermore, we present a fundamental property of solar vortices, namely that
they cannot solely produce an upward Poynting flux in an untwisted tube, meaning that any observed Sz in straight
flux tubes must arise from perturbations, such as MHD waves.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar chromosphere (1479); Solar
oscillations (1515); Solar atmosphere (1477)

1. Introduction

The mechanisms that maintain the temperature of the solar
corona remain elusive despite considerable progress over recent
years in the understanding of both AC (T. Van Doorsselaere
et al. 2020) and DC (D. I. Pontin & E. R. Priest 2022) heating
mechanisms. However, it is evident that the magnetic field
plays a dominating role in the supply and transport of energy
available for the heating of solar plasma.

One method by which energy can be transported from the
photosphere to the corona is through magnetohydrodynamic
(MHD) waves generated at the photosphere. However, MHD
waves face many challenges in making it to the corona, where
their energy can be available for heating. Transverse (cross-
field) structuring is essential for magnetic waveguides to exist
in the solar atmosphere to support the propagation of MHD
waves. Classically, features acting as magnetic waveguides,
such as coronal loops, sunspots, pores, spicules and promi-
nences, to name a few, have been modeled as static, straight
magnetic flux tubes to study their feasibility in supporting MHD
wave propagation. However, it has recently become evident that
magnetic vortex tubes, such as solar tornadoes and spinning solar
jets, may also act as MHD waveguides, channeling increased
amounts of energy flux to the corona (N. Yadav et al. 2020, 2021;
A. J. Finley et al. 2022; H. Kuniyoshi et al. 2023; S. S. A. Silva
et al. 2024). Furthermore, rotational motions of solar jets are
present in both numerical simulations (J. J. González-Avilés
et al. 2019; S. Skirvin et al. 2023) and observations
(Y. Suematsu et al. 2008; R. Sharma et al. 2017, 2018),

making it difficult to diagnose the properties of MHD
waves guided by these structures using the model of a static
magnetic flux tube. Moreover, rotational motions are frequently
reported in both observations and numerical studies in relation to
MHD waves and/or untwisting of the magnetic field (e.g.,
S. Wedemeyer-Böhm et al. 2012; K. Tziotziou et al. 2018, 2020;
M. Murabito et al. 2020; Y. Aljohani et al. 2022; V. Liakh &
R. Keppens 2023; E. Petrova et al. 2024). Magnetic vortex tubes
can be modeled as straight magnetic flux tubes but in the
presence of background rotational plasma flows, with implica-
tions for the spectrum of MHD waves that can be supported.
Features resembling vortex tubes are ubiquitous throughout the
solar atmosphere (K. Tziotziou et al. 2023); therefore, it is vital
to develop the theory and understanding of MHD wave
properties in the presence of rotational plasma motions to
correctly diagnose them in solar observations and numerical
simulations.
The stability of MHD modes in an equilibrium containing

background rotational flows has been studied in a solar
(R. Soler et al. 2010; T. V. Zaqarashvili et al. 2015; O. Cher-
emnykh et al. 2018) and astrophysical (R. Keppens et al. 2002;
N. Brughmans et al. 2024) context. However, literature on the
broad spectrum of MHD modes and their observability in
rotating magnetic flux tubes is limited. Although, the spectrum
of MHD waves in magnetic flux tubes in the presence of
background rotational flows has been explored in both an
adiabatic (C. Wang et al. 2004; S. J. Skirvin et al. 2023) and a
non-adiabatic context (J. Hermans & R. Keppens 2024). In
both cases, it is found that the modes are altered by the
background flow providing a Doppler shift to the continua,
modifying the shape of the eigenfunctions from the case of a
static flux tube, with implications for interpreting observational
data of MHD waves in rotating structures.
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The Poynting flux vector is an important quantity to
understand the magnetic energy transfer by waves in the
structured solar atmosphere. A study by M. Goossens et al.
(2013) derived expressions for the energy fluxes associated
with transverse (m= 1) kink waves in pressureless flux tubes
with a piecewise constant density. The authors demonstrated
how calculating the vertical component of the Poynting flux
when using classic, volume-filling bulk Alfvén waves can
significantly overestimate the real energy flux carried by
transverse MHD kink waves in the presence of spatial
structuring. Moreover, the wave energy fluxes associated with
axisymmetric MHD waves (m= 0) in photospheric magnetic
flux tubes were investigated by M. G. Moreels et al. (2015).
This study built on the work by M. Goossens et al. (2013)
through the inclusion of plasma pressure, and these expressions
have been exploited in numerous observational results over
recent years to determine the energy fluxes from observations
of MHD waves in the solar atmosphere (e.g., S. D. T. Grant
et al. 2015; P. H. Keys et al. 2018). However, these derivations
assume a static magnetic flux tube, and it is unclear how the
presence of background flows may affect the Poynting flux
carried by MHD waves.

This paper is structured as follows: in Section 2, we lay out
the equations necessary to conduct an analytical investigation
into the Poynting flux associated with MHD modes in rotating
flux tubes. In Section 3, we obtain the wave solutions in a
rotating equilibrium using the Shooting Eigensolver for SolAr
Magnetohydrostatic Equilibria (SESAME) code (S. J. Skirvin
et al. 2021, 2022, 2023), and derive an expression for the
vertical component of the Poynting flux, Sz, associated with
MHD waves in such an equilibrium configuration. We present
2D visualizations demonstrating how Sz may appear for
different modes under varying strengths of the background
flow, and explore how the presence of a background rotational
flow affects the magnitude of the Poynting flux when compared
with the static case. In Section 4, we summarize our findings
and outline future work.

2. Methods

To investigate the Poynting flux in solar vortex tubes, we
work in a cylindrical geometry (r, j, z) and consider a straight
and untwisted flux tube, such that the background magnetic
field vector can be written as B0= (0, 0, B0,z). The flux tube
under investigation exhibits rotational behavior, and the
radially dependent background velocity field vector is given by
v0= (0, v0,j(r), 0). For simplicity, we will consider a solid
body rotation, such that the background rotational flow is
described as

( ) ( )=jv r Ar, 10,

where A is the amplitude of the rotational flow.
The ideal MHD equations used in this study are
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where ρ, v, p, B, γ, and μ denote plasma density, plasma

velocity, plasma pressure, magnetic field, the ratio of specific

heats (taken γ= 5/3), and the magnetic permeability, respec-

tively. Physical effects such as gravity, flux tube expansion,

and nonideal terms are neglected in the current study. In the

lower solar atmosphere, it should be noted that magnetic flux

tubes possess significant nonvertical magnetic field as a result

of flux tube expansion to maintain pressure balance, due to

gravitational stratification; however, this effect can be con-

sidered to be negligible in the current study, due to the analysis

in the local plasma environment. Since the equilibrium

quantities depend on r only, the perturbed quantities can be

Fourier analyzed with respect to the ignorable coordinates j, z,

and time t, and put proportional to

[ ( )]j w+ -i m kz texp ,

where m is the azimuthal wavenumber, k is the vertical (parallel

to the magnetic field) wavenumber, and ω is the wave

frequency.
To obtain the wave solutions for the flux tube equilibrium

under consideration, Equations (2)–(5) are linearized, resulting
in a system of two differential equations containing the total

pressure perturbation P̂T and the Lagrangian displacement

perturbation in the radial direction x̂r r (see, e.g., T. Sakurai
et al. 1991; M. Goossens et al. 1992), which can be written as
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Quantities cs
2, vA

2 , and cT
2 define the squares of the equilibrium

local sound, Alfvén and cusp (tube) speeds, respectively. The

quantity Ω represents the Doppler-shifted frequency as a result

of the background plasma flow.
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Equations (7) and (8) can be combined to create a single,

second-order differential equation in either x̂r r,
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Equations (17) and (20) reduce to the well-known Bessel

equations presented in P. M. Edwin & B. Roberts (1983) when

the plasma inside and outside the flux tube is uniform and does

not depend on the spatial coordinate r.
For a nonuniform plasma, the governing Equations (7) and

(8) possess regular singularities where the wave frequency
matches the local characteristic frequencies at

( ) ( )w = j
m

r
v r kv , 230, A

( ) ( )w = j
m

r
v r kc . 24T0,

Equations (23) and (24) define the flow continua modified by

the local Alfvén (ΩA) and slow (ΩT) frequencies, respectively.

In ideal MHD, the wave solutions existing inside the continua,

with positions given by Equations (23) and (24), are known as

“quasi-modes” where the wave frequency becomes a complex

quantity (A. De Groof & M. Goossens 2000; J. P. H. Goedbloed

& S. Poedts 2004; M. Geeraerts et al. 2022), and the waves may

be resonantly damped or become unstable. However, given that

the rotational flow profile in the present study depends linearly

on the radial coordinate, the continua in this case reduce to single

point values.
Obtaining an equilibrium in a rotating magnetic flux tube is

achieved in the same manner outlined in S. J. Skirvin et al.
(2023). In order to maintain total pressure balance across the
waveguide, the following expression must be satisfied
(M. Goossens et al. 2011):
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Integration of Equation (25) yields

( )
m

r+ =p
B

A
r

2 2
, 26

z0
2

2
2

where the constant of integration is absorbed into the gas

pressure term, p, and corresponds to the plasma pressure on the

axis of the cylinder where the amplitude of the flow is zero

(see, e.g., O. Cheremnykh et al. 2018). Under the photospheric

conditions considered in this work, the total pressure balance is

achieved by an increase in temperature to balance the increase

in azimuthal flow amplitude toward the boundary of the

flux tube.
The presence of a background rotational flow not only

modifies the equilibrium pressure balance relationship but also
affects the continuity conditions on the boundary of the
waveguide. Considering a magnetic flux tube in the presence of
a background rotational flow, the resulting boundary continuity
conditions state, for the Lagrangian displacement in the radial
direction and the total pressure perturbation:

ˆ ∣ ˆ ∣ ( )x x== = , 27re r a ri r a

ˆ ˆ ˆ ( )
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⎞
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r
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P P
v

a
. 28Te r a Ti

i

ri

r a

0 0,
2

Here, plasma variables inside the flux tube are denoted by

subscript i, and outside the flux tube are denoted with subscript e.

The change in boundary conditions are accounted for in the

numerical eigensolver, and a pair of eigenvalues will only be

retrieved for values satisfying the above conditions.

3. Results

3.1. MHD Wave Solutions in a Rotating Magnetic Flux Tube

Consider a magnetic flux tube under photospheric conditions
where the characteristic speeds both inside and outside the tube
can be defined as ci= 1, ce= 1.5ci, vAi= 2ci, and vAe= 0.5ci,
with internal density ρi= 1. This choice of equilibrium
parameters results in a density contrast between the internal
and external plasma to be roughly ρi/ρe= 0.567 such that the
flux tube is underdense with respect to the external plasma. The
amplitude of the background rotational flow is chosen as
A= 0.1, such that v0,j= 0.1r and the flow is both subsonic and
sub-Alfvénic throughout the domain. This choice of flow
amplitude allows us to investigate the effect of the rotating tube
on the possible trapped MHD waves within and study their
magnetic energy transport without entering the regime of any
flow-driven instabilities such as Kelvin–Helmholtz or encoun-
tering the nonlinear regime.
First, it is necessary to obtain the MHD wave solutions to

Equations (17) and (20) with the associated boundary conditions
provided by Equations (27) and (28). To do so, a numerical
eigensolver is implemented because both Equations (17) and
(20) have no known closed-form analytical solutions without
making assumptions that somehow reduce the mathematical
complexity. Therefore, investigating the properties of wave
modes propagating within an equilibrium that is nonuniform
must be done numerically. The numerical approach used in
this study utilizes the numerical eigensolver SESAME
developed and applied in S. J. Skirvin et al. (2021, 2022)
for nonuniform magnetic slabs and nonuniform flux tubes,
respectively, in addition to the study of MHD wave modes in
rotating photospheric tubes by S. J. Skirvin et al. (2023). The
SESAME code obtains the wave solutions, k and ω, for a
given azimuthal wavenumber m and matches the necessary

3
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boundary conditions of ξr and PT for a provided equilibrium
configuration.

The SESAME solutions are shown on the dispersion
diagram in Figure 1 for sausage, kink, and fluting modes with
azimuthal wavenumbers m= 0, ±1, and ±2, respectively, in a
rotating photospheric flux tube with amplitude of rotation
v0,j= 0.1r. As reported by S. J. Skirvin et al. (2023) the
presence of a background rotational flow has no considerable
effect here on the solutions for the axisymmetric m= 0 sausage
mode; however, there may be some modification of the
solutions in the thin-tube limit. This is expected because,
although in Equations (7)–(16) the background azimuthal flow
is usually multiplied by the azimuthal wavenumber m, there are
some instances where v0,j is present independent of m—for
instance, in the expressions of the variables Q and T in
Equations (15) and (16), respectively.

Figure 1 highlights the effect of the rotational flow on non-
axisymmetric modes (e.g., m=±1, ±2) and indicates the
position of the flow-modified slow continua. It is clearly
evident that the eigenvalues of the slow body and slow surface
modes follow the respective continua, which depend on
azimuthal wavenumber m. The phase speed of the positive
modes (e.g., m> 0) is increased compared to the scenario of no
background rotational flow, as these modes rotate in the same
direction as the background flow and their propagation is
supported and enhanced by the flow. On the other hand, the
phase speed of the negative modes (m< 0) is reduced, as these
modes rotate against the direction of the flow and their
propagation is suppressed. Moreover, for the negative modes
rotating against the flow, the slow modes (slow body and slow
surface) do not appear to exist in the thin-tube (long-
wavelength) limit; instead, they become absorbed into the
flow-modified slow continuum, where they may become
resonantly damped or unstable. For the negative modes, the
fast surface kink mode follows the trajectory of the flow-
modified Alfvén continuum and is absorbed by this in the long-
wavelength limit regime. The fast surface fluting m=−2

modes also follow their respective Doppler-shifted Alfvén
continuum; however, due to the greater shift to their continuum
resulting from the higher-order azimuthal mode, solutions that
typically exist in the leaky regime for photospheric conditions
(ω/k> ce) are now shifted into the trapped regime. In a
uniform static magnetic flux tube, the phase speed of the fast
surface fluting mode tends toward the kink speed in the long-
wavelength limit. However, in the presence of a background
rotational flow, it appears to follow the trajectory of the flow-
modified Alfvén continuum with m=−2, where it then
appears to merge with the slow body mode branch. This
merging may be an interesting focus of future studies, and the
location of the sharing of properties between the two modes
will be dependent, on a case-by-case basis, on particular flow
amplitudes and background plasma equilibrium values.

3.2. Derivation of Expression for Sz for MHD Modes in a
Rotating Flux Tube

Once the MHD wave solutions are obtained for a given
equilibrium configuration of a magnetic flux tube, it is possible
to investigate the Poynting flux associated with these modes.
The Poynting flux, S can be written as

( )
p

= ´S E B
1

4
. 29

The Poynting vector S describes the direction in which

magnetic energy is flowing, and its magnitude is expressed in

Wm−2. From this point, we will drop the 1/4π term,

representing the magnetic permeability, and absorb it into

magnetic field variable B. Using the MHD expression for the

definition of the electric field E, Equation (29) becomes

( ) ( )= - ´ ´S v B B. 30

Similarly to the analysis procedure undertaken in Section 3.1,

the Poynting flux vector can be linearized to study the

contribution from different wave modes. However, typically

Figure 1. The dispersion diagram for a rotating photospheric flux tube with v0,j = 0.1r, indicating the wave solutions obtained with SESAME. Red curves denote the
sausage m = 0 mode, blue curves highlight the m = ±1 kink mode, and green curves denote fluting m = ±2 modes. The dashed blue and green curves indicate the
flow-modified slow continuum for the m = 1 kink mode and m = 2 fluting mode, respectively. The dashed gray curve indicates the flow-modified Alfvén continuum
for the m = −1 kink mode.

4
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after linearizing, when considering wave energy fluxes, the

first-order terms average out over a wavelength (due to the

equal contribution from positive and negative values). There-

fore, to study the energy fluxes associated with MHD waves,

we should also consider the second-order terms, which are

inherently nonlinear in nature. To do so, we follow an approach

similar to that described in Section 9.3 of the book by

A. Walker (2005), which allows us to use quantities that are

averaged over a complete cycle of the wave (M. Goossens et al.

2013). This approach demonstrates how treating the variables

as products of complex conjugates can result in expressions for

the energy flux that are quadratic in nature, but arise from only

first-order reduced MHD equations (M. Goossens et al. 2013;

M. G. Moreels et al. 2015). Given the fact that we are only

interested in trapped MHD waves in this study, which can be

expressed solely in terms of real-valued variables (as opposed

to complex quantities), we will linearize the Poynting flux

vector but include second-order terms in the expansion. Now,

let us use subscript 0 to denote equilibrium quantities and

subscript 1 to denote the small perturbations. The linearized

Poynting vector can be expressed in the following terms:

( ) ( )

( ) ( )

( )

( ) ( ) ( )

     

     

  

     

=- ´ ´ - ´ ´ -

- ´ ´ - ´ ´

- ´ ´ -

- ´ ´ - ´ ´

S v B B v B B

v B B v B B

v B B

v B B v B B . 31

0 0 0

T1

1 0 0

T2

0 0 1

T3

0 1 0

T4

1 0 1

T5

0 1 1

T6

1 1 0

T7

It can be seen that there are seven terms describing the total

Poynting flux in Equation (31) comprising the interaction

between the background rotating plasma and the perturbations

resembling the MHD waves. The MHD Poynting flux vector

can be decomposed into two separate contributions, one

relating to the vertical transport of horizontal magnetic field

and another connected with the horizontal buffeting of vertical

magnetic fields (S. Shelyag et al. 2012). In this study, the

equilibrium magnetic field is purely vertical, such that we only

model the contribution from horizontal motions of the vertical

magnetic field as a mechanism for producing vertical Poynting

flux. From this point, all variables can be assumed to be

perturbations unless subscripted with 0.
The background equilibrium configuration assumed in this

study consists of a straight magnetic flux tube with a
background v0,j component that is linear in the radial direction.
The term in Equation (31) labeled T1 represents the Poynting
flux solely from the background plasma; therefore, this term is
of zero order and represents the Poynting flux associated with
the magnetic vortex tube itself. This term contributes only to
the azimuthal component of the Poynting vector and does not
produce any net upward magnetic energy flux. Explicitly, this
can be written as

ˆ[( ) ] ˆ ˆ ( )j´ ´ = + +jv B B r v B z0 0 , 32z0 0 0 0, 0,
2

which is a fundamental result, because any magnetic solar

vortex tube in observations or numerical simulations must

contain a significant azimuthal component of the magnetic field

vector, complemented by an azimuthal or vertical velocity field

component, in order to self-generate an upward Poynting flux.

Therefore, the magnitude of Sz associated with solar vortices

will heavily depend upon the pitch angle of the background

magnetic field (B0,j/B0,z), which should be incorporated and

investigated in future work. The fact that solar vortex tubes

with very small pitch angles (B0,j= B0,z) produce very little

vertical Poynting flux may explain why the horizontal

component of the Poynting flux has been suggested to be

important in the solar atmosphere (S. S. A. Silva et al. 2022).

Therefore, any vertical Poynting flux produced in straight

rotating magnetic flux tubes must be a result of perturbations

only, and may be interpreted as the Poynting flux associated

with MHD waves guided by the vortex tube. In fact, the full

inclusive expression for the vertical Poynting flux Sz in a

twisted magnetic flux tube with background flow is given by

[( ) ] ( ) ( )´ ´ = -j j jv B B B v v B B , 33z z z0 0 0 0, 0, 0, 0, 0,

highlighting the necessity for a twisted magnetic tube for the

presence of a background Poynting flux component in the

vertical direction.
In this study, we are most interested in Sz, as this represents

the magnetic energy transported upward along the vertical
magnetic field, which would be available for heating in the
upper atmosphere. The components of first order, given by
terms highlighted T2, T3, and T4 in Equation (31), which
contribute to the vertical Poynting flux, can be written as

( )= - j jS v B B . 34z z0, 0,

The above expression demonstrates that the vertical component

of the Poynting flux is zero, as expected for the first-order

terms, unless there is a background flow that can advect the

flux associated with the wave. The background flow does not

need to be along the axis of the tube; in this case, the flow is

around the tube axis. However, as the magnetic field is vertical,

an upward magnetic energy flux is generated.
The components of second order, terms 5, 6, and 7 in

Equation (31), of the vertical Poynting flux can be written as

( ) ( )= + +j j j jS B B v B v v B B . 35z z r r z0 0,

The above expression indicates the quadratic terms to Sz that

will not cancel out one another when averaged over a full cycle

of the wave. Therefore, by combining the first- and second-

order terms of Sz (remembering that the zero-order expression

is zero for the z component), the full Sz expression is given by

( ) ( )= - + + +j j j j j jS v B B B B v B v v B B . 36z z z r r z0, 0, 0 0,

Equation (36) contains both the background plasma flow and

the perturbations of components of the velocity and magnetic

field associated with MHD waves in a magnetic flux tube. The

numerical eigensolver SESAME finds the wave solutions for a

given equilibrium by matching the necessary boundary

conditions for PT and ξr provided in Equations (27) and (28).

Therefore, it would be instructive to write Equation (36) in

terms of quantities relating to the plasma environment and the

eigenfunctions PT and ξr. Following M. Goossens et al. (1992),

we can use the following expressions:

( )x= - Wv i , 37r r
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Inserting Equations (37)–(41) into Equation (36) yields the

following:
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Equation (42) provides, to the best of our knowledge, the
first explicit expression describing the field-aligned Poynting
flux associated with MHD waves in a solar vortex tube
resembling a straight untwisted magnetic flux tube with a
background rotational flow. However, Equation (42) is
extremely complex, as the spatial structure of the eigenfunc-
tions will also depend upon the wavenumber and specific mode
under investigation. For example, in the long-wavelength limit,
as k approaches zero, the azimuthal perturbation of displace-
ment is dominant for the fast surface mode over the vertical
displacement component, with obvious implications in deter-
mining which term is dominant in Equation (36).

It is easy to validate Equation (42) against previously
obtained analytical expressions for the Poynting flux in less
complicated equilibrium configurations. For example, if the
presence of a background flow is neglected (v0,j= 0), we can
see from Equations (36) or (42) that

( ) ( )= +j jS B B v B v , 43z z r r0

which, using Equations (37)–(41), can be written as

( ) ( )w x x= +jS kB . 44z z r0,
2 2 2

The work by M. Goossens et al. (2013) adopts the complex

conjugate approach outlined in A. Walker (2005). They also

assumed a pressureless plasma such that c= 0 (sound speed)

and ξz= 0. In addition, they studied the m= 1 kink mode;

therefore, following the approach of M. Goossens et al. (2013),

it is clear that Equation (44) can be written as

( · ) ( )*w x x=S kB , 45z z0,
2

which can be manipulated to

( · ) ( )*r w x x=S v , 46z ph0 A
2

where vph= ω/k and w = k vA
2 2

A
2. Equation (46) agrees with

Equation (13) from M. Goossens et al. (2013) when averaged

over a complete wavelength.
In a magnetic flux tube with no background rotational flow,

Equation (42) can be expressed in terms of PT and ξr as

( )
( )

⎛
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r w
r w
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2 0,
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2 2
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2
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2

We can substitute m= 0 into Equation (47) to recover Equation

(5) from M. G. Moreels et al. (2015), where the authors were

investigating the energy fluxes associated with sausage modes

in photospheric flux tubes. Substituting m= 0 yields

( )r w x=S kv , 48z r0 A
2 2

which can be rewritten as

( )*r wx x=S v k v , 49z r r ph0 A
2

as derived in M. G. Moreels et al. (2015) when considering

averaging of the wave energy flux over a full wavelength.

Therefore, we can be confident that Equation (42) describes the

field-aligned component of the Poynting flux associated with

MHD waves in rotating flux tubes.

3.3. Amplitude Ratios

Throughout the preceding derivation for Sz associated with
MHD modes in rotating magnetic flux tubes, we are free to
choose the relative amplitudes of the perturbations (i.e., the
strength of the wave) for the eigenfunctions ξr and PT with
respect to the strength of the background plasma flow. It is
likely that, throughout the solar atmosphere, there are plasma
dynamics generating waves with varying amplitudes with
respect to the strength of background flows. Therefore, it would
be instructive to study the properties and observability of MHD
modes with varying amplitude ratios. In other words, to
understand the change in behavior of the modes as the
amplitude of the flow and/or the amplitude of the perturbation
changes with respect to each other.
To investigate this, let us focus on one of the most frequently

observed modes in the lower solar atmosphere in waveguides
such as sunspots and pores: slow body modes. Their spatial
behavior is more strongly affected by the presence of a
rotational flow inside the flux tube, when compared to surface
waves whose strongest perturbation exists on the tube
boundary. Let us fix the amplitude of the rotational flow to
be 0.1 at the flux tube boundary, as is consistent throughout this
work. However, we now scale the amplitude of the perturbation
such that, at r= a, the magnitude of the perturbation ranges
from 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, and 1. In other words,
we are investigating the regime where the amplitude of the flow

is 100 times greater than the wave (e.g., ˆ=jv f1000, , where f̂
denotes the strength of the perturbation) to the regime whereby
the amplitude of the wave is 10 times greater than the flow

(e.g., ˆ=jv f0.10, ), which is approaching the limit where the
flow can almost be neglected, as the perturbation is much
stronger than the background flow speed. It should be noted
here that the wave amplitude is normalized to its value at the
boundary of the flux tube; however, inside the flux tube, the
amplitude of the wave may be larger than the normalized value,
as we are studying body modes, which are oscillatory in nature,
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inside the waveguide. An example of the eigenfunctions for the

slow body mode (m= 1) with k= 1.76 and ω= 1.69, is

displayed in Figure 2 for the scaling of 0.01, which corresponds

to 10% of the flow velocity. The spatial structures of the modes

are exactly the same for different amplitude ratios considered in

this work for each mode, respectively. In the solar atmosphere,

rotational flows from observations have reported amplitudes of

roughly 1−4 km s−1 for photospheric bright points (J. A. Bonet

et al. 2008), 5−13 km s−1 for chromospheric swirls (S. H. Park

et al. 2016), and 0.23–0.48 km s−1 in convectively driven

photospheric sinks (S. Vargas Domínguez et al. 2011;

I. S. Requerey et al. 2017). Therefore, the amplitude ratios

studied in this work would correspond to perturbation

amplitudes on the order of 0.01–0.2 km s−1 (for the strongest

background rotational flows). These perturbation amplitudes

are consistent with a range of possible phenomena in the

lower solar atmosphere, such as acoustic oscillations (p-modes)

and granular/supergranular motions (A. B. Hart 1956;

E. Priest 2014; R. L. McClure et al. 2019). For a

comprehensive review into the rotational flow amplitudes of

vortex motions in the lower solar atmosphere, see Table 5 from

K. Tziotziou et al. (2023).
First, the spatial structure of the m= 0 sausage mode is

displayed in Figure 3 for two different amplitude ratios, one

corresponding to the amplitude ratio ˆ=jv f200, and the other

for the case where ˆ=jv f20, . The presence of a background

rotational flow does not significantly affect the spatial structure

of Sz when compared to the case of a flux tube with no

background rotational flow. The amplitude of Sz increases as
the strength of the perturbation is increased; however, this is to
be expected. For the regime when the strength of the
background flow is much stronger than the amplitude of the
wave perturbation, there is a rotational behavior of the velocity
vector as a result of the background flow; however, as the
strength of the flow is decreased (or alternatively, as the
amplitude of the perturbation is increased), the resulting
velocity field resembles that of a classic sausage mode.
The spatial structure of the kink mode (m= 1) in a rotating

magnetic flux tube is displayed in Figure 4 for varying
amplitude ratios of the wave strength with respect to the
background flow. Figure 4(a) corresponds to the regime where
the amplitude of the background rotational flow is much greater
than the amplitude of the perturbation, and the perturbation
amplitude is increased until Figure 4(f), which displays the case
where the amplitude of the background flow and that of the
perturbation are of equal strength at the boundary. The result of
decreasing the strength of the background flow (or alterna-
tively, increasing the strength of the perturbation) is not only
visible in the velocity streamlines, however; it can also be seen
to affect the value of Sz. As expected, when the wave amplitude
is weak and the flow is dominant, the Sz value is very small (as
the background magnetic flux tube has no associated Sz).
However, when the amplitude of the wave is increased, the
resulting Poynting flux also increases and the spatial pattern of
the slow body kink mode becomes more obvious throughout
the volume of the flux tube. Interestingly, for values of the
amplitude ratio when the flow is a factor of 5−20 times greater
than the strength of the wave perturbation, there is a clear
asymmetry in the azimuthal direction of the vertical Poynting
flux. In some spatial locations, there are even “null” points
where the vertical Poynting flux becomes zero.
Similarly, the spatial structure of Sz for the kink mode

(m=−1) is highlighted in Figure 5 for the same values of
amplitude ratio. As expected, the magnitude of the vertical
Poynting flux increases as the strength of the wave perturbation
with respect to the background flow is increased. Moreover,
there is also a notable difference in the spatial pattern of the Sz
signal as the wave amplitude is increased, similar to the case
when m= 1. It is interesting to note that, even when the
strength of the background rotational flow is much greater than
the strength of the perturbation, there is still an asymmetry of
the velocity vectors for the non-axisymmetric modes (m= 1
and m=−1), whereas the asymmetry in the Sz signal only
becomes visible when the flow amplitude is greater than
roughly 20 times the amplitude of the wave perturbation,
highlighted in Figure 5, panel (b). This asymmetry in the Sz
signal reduces when the amplitude of the wave perturbation
becomes comparable to the strength of the background
rotational flow shown in Figure 5, panel (f).
The superpositions of the signals from both the m= 1 and

m=−1 modes are displayed in Figure 6 for varying amplitude
ratios. The sum of the two modes in this figure assumes that
both the m= 1 and m=−1 modes have the same normal-
ization. In other words, we assume that the strengths of the two
modes are equal. However, it is likely in reality that both the
positive and negative modes are generated with unequal
amplitudes, which will change the superposition of the signal.
Nonetheless, making the assumption that the kink mode is
generated with equal amplitude for both the positive and
negative azimuthal wavenumbers is instructive when analyzing

Figure 2. Spatial structure of the eigenfunctions (PT, vr, Br, vj, and Bj) for the
slow body kink mode (m = 1) normalized to 0.01 at r = a with k = 1.76 and
ω = 1.69. The boundary of the magnetic flux tube with a background rotational
flow is denoted by the dashed red line at r = 1.
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wave modes in vortices in the solar atmosphere. As discussed
in S. J. Skirvin et al. (2023), the presence of a background
rotational flow does not permit a standing kink mode in the

azimuthal direction. This is highlighted in Figure 6, as the
movement of the boundary of the flux tube is no longer
transverse in one plane—instead, the superposition of the two

Figure 3. The vertical component of the Poynting flux Sz for the slow body sausage mode in the presence of background rotational flow at a specific snapshot in time

(t = 177 in arbitrary units). Panel (a) shows the case with amplitude ratio ˆ=jv f200, , where f̂ denotes the strength of the perturbation, whereas panel (b) highlights

the case with amplitude ratio ˆ=jv f20, . The arrows denote the total velocity vector (background plus perturbation) and are scaled with the background flow

amplitude, respectively. The boundary of the flux tube is represented by the solid blue line, whereas the equilibrium location of the boundary is shown with the dashed
red line.

Figure 4. Spatial profiles of the vertical component of the Poynting flux Sz for the kink mode with m = 1 in a rotating magnetic flux tube at the same snapshot in time
(t = 177 in arbitrary units). The background rotational flow profile is given by v0,j = 0.1r such that the maximum amplitude of the rotational flow is 0.1. We display Sz
for varying amplitude ratios in the following range: (a) ˆ=jv f1000, , (b) ˆ=jv f200, , (c) ˆ=jv f100, , (d) ˆ=jv f50, , (e) ˆ=jv f20, , and (f) ˆ=jv f0, , where f̂ denotes the

strength of the perturbation. The velocity vectors (background flow plus the perturbation) are scaled respectively for visualization purposes. The boundary of the flux
tube is represented by the solid blue line, whereas the equilibrium location of the boundary is shown with the dashed red line.
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Figure 5. Same as Figure 4 but for the m = −1 kink mode.

Figure 6. Same as Figure 4 but for the linear superposition of the kink modes m = 1 and m = −1. Here, we assume that both modes have equal strength as one
another.
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Figure 7. Same as Figure 4, but for the m = 2 fluting mode.

Figure 8. Same as Figure 4, but for the m = −2 fluting mode.

10

The Astrophysical Journal, 975:176 (13pp), 2024 November 10 Skirvin et al.



modes produces a transverse displacement, which itself rotates

around the central axis over time, resulting in a circularly

polarized kink mode.
The spatial distributions of Sz for the m= 2 and m=−2

fluting mode are displayed in Figures 7 and 8, respectively.

Similar to the kink mode, the pattern of Sz becomes more

detailed with a greater range of substructuring as the amplitude

of the flow is decreased (increased perturbation). The effect of

the background rotational flow appears to decrease the

complexity of the Sz signal, with a small apparent swirling

nature visible for both modes in the case of strong flow.

Moreover, there is a visible rotational pattern in the velocity

streamlines for cases when the amplitude of the flow is stronger

than 10 times the perturbation, shown in Figures 7 and 8,

panels (a) and (b), which would be measurable in simulations

and detectable in observations.
The spatial pattern of Sz for the combined superposition of

the m= 2 and m=−2 modes is shown in Figure 9. The effect

of the background rotational flow is much more evident for

higher-order modes, and a strong swirling nature of the Sz
signal can be seen for the case when the flow is greater than

five times stronger than the perturbation, as seen in Figure 9,

panels (a)–(d). The asymmetry in the azimuthal direction,

caused by the presence of the rotational flow, results in the

positive and negative modes propagating with different phase

speeds, no longer forming a standing mode pattern in the

azimuthal direction. With increasing azimuthal wavenumber,

the substructuring becomes more complex, and as a result, the

presence of the background rotational flow distorts the

observed signal heavily. Only when the amplitude of the flow

is weak compared to the strength of the perturbation do we see

a spatial pattern that is reminiscent of the fluting mode of
azimuthal wavenumber m= 2, in Figure 9, panels (e)–(f).
Figure 10 displays the computed maximum values of Sz for

different MHD modes with and without the inclusion of a
background rotational plasma flow in the model for the same
pair of eigenvalues for each mode. Figure 10(a) demonstrates
that there is no significant effect on the magnitude of Sz for the
sausage mode (m= 0), except for the regime where the strength
of the background flow is much greater than the strength of the
perturbation where the Poynting flux associated with the wave
increases by one order of magnitude. However, it can be seen
in Figures 10(b) and (c) that the presence of a background
rotational flow appears to increase the magnitude of the
magnetic energy transported by non-axisymmetric MHD
modes for varying amplitude ratios. For all modes, it is clear
that the Poynting flux is increased by larger amounts in the
regime where the strength of the flow is much greater than the
strength of the perturbation. This is more evident in Figure 11,
which shows the percentage difference between the maximum
Sz value for each mode when the background rotational flow is
included, opposed to the static case of the Poynting flux
associated with each mode without the background flow. Note
that, because Sz associated with MHD modes is increased when
background rotational flow is included, the percentage
difference displayed in Figure 11 represents a percentage
increase from the case of a magnetic flux tube with no
rotational flow. When the strength of the background flow is
much greater than the perturbation, the Sz associated with the
MHD modes can be increased by more than 1000% for the
non-axisymmetric modes, albeit this is a large increase of a
small number. However, the cumulative effect of the MHD
waves in a sufficient number of solar vortex tubes present on

Figure 9. Same as Figure 4, but for the linear superposition of the modes m = 2 and m = −2. Here, we assume that both modes have equal strength as one another.
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the Sun at any given moment, originating from the inter-
granular lanes, may transport a significant amount of Sz to the
upper solar atmosphere.

4. Discussion and Conclusions

In this paper, we have explored how the vertical component
of the Poynting flux, Sz, associated with MHD modes, is
affected when in the presence of a background rotational flow.
This is instructive when analyzing both numerical and
observational data of the dynamics of MHD waves in, for
example, solar tornadoes. We have derived an analytical
expression, given in Equation (42), for Sz transported by MHD
modes for any azimuthal wavenumber m, which depends solely
on the plasma and wave quantities. This expression reduces to
previously obtained analytical formulas for the Poynting flux
associated with MHD modes in magnetic flux tubes without
background rotational flows. Furthermore, we have presented a
fundamental result that, for any untwisted magnetic flux tube,
there is zero vertical Poynting flux associated with the
background rotating equilibrium. In order for vortex tubes to
self-generate vertical Poynting flux in the solar atmosphere,
they must posses magnetic twist in addition to background
flows. Therefore, for magnetic flux tubes with weak pitch

angles, whereby the axial component of the magnetic field
dominates over the azimuthal component, any vertical Poynt-
ing flux can be associated with perturbations only—for
example, the propagation of MHD waves. This result has
important consequences for interpreting the wealth of observa-
tional and numerical data of rotating structures in the solar
atmosphere, suggesting that solar vortex tubes, solar tornadoes,
and magnetic swirls, among others (see, e.g., K. Tziotziou et al.
2023), can act as conduits for MHD waves in the solar
atmosphere.
Exploiting the derived expression for Sz, we produced 2D

visualizations of Sz for different MHD modes under varying
regimes of amplitude ratios. This was achieved through varying
the amplitude of the obtained wave eigenfunctions with respect
to the strength of the background plasma flow. We found that
the presence of a background flow had little effect on the
spatial distribution of Sz for the axisymmetric sausage mode
m= 0. On the other hand, the presence of a background
rotational flow has an effect on the non-axisymmetric modes
(|m|> 0), whereby increased substructuring in the Sz signal is
apparent for higher-order modes, and a notable swirling pattern
appears for the superposition of the modes. It may be possible
to calculate Sz from observations of the lower solar atmosphere
as both the velocity and magnetic fields are readily measurable,
and it has been shown that MHD is a good approximation for Sz
in the solar photosphere (D. Tilipman et al. 2023). Techniques
such as Local Correlation Tracking (L. J. November &
G. W. Simon 1988), Fourier Local Correlation Tracking
(G. H. Fisher & B. T. Welsch 2008), and machine learning
techniques such as Deepvel (A. Asensio Ramos et al. 2017),
provide information regarding the velocity field, whereas the
magnetic field may be measured using spectroscopic techni-
ques and Stokes inversions. The difficulty will then be
separating the measured Sz into the background and perturbed
components in order to determine the contribution from MHD
waves to the measured Sz signal. However, the contribution
from these different MHD modes to the total Sz signal in
rotating solar magnetic flux tubes may be retrievable using
wave analysis techniques such as Proper Orthogonal Decom-
position and Dynamic Mode Decomposition (A. B. Albidah
et al. 2021, 2023; S. Jafarzadeh et al. 2024).
Finally, we computed the maximum value of Sz determined

using Equation (42) for each MHD mode in the presence of a
background rotational flow and compared this against the case
of a static magnetic flux tube. We find that the presence of a
background rotational flow increases the maximum value of Sz

Figure 10. Maximum value of Sz computed using Equation (42) for (a) the sausage mode m = 0, (b) the kink mode m = 1, and (c) fluting mode m = 2 both with
(black crosses) and without (blue crosses) the presence of a background rotational flow.

Figure 11. The percentage difference of the maximum value of Sz for different
modes in the presence of a background rotational flow when compared to the
static case. Red, black, blue, green, and yellow crosses correspond to modes
m = 0, 1, −1, 2, −2, respectively.
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for all modes, and that the increase is greater for higher
azimuthal wavenumbers and for stronger background flows. To
convert the results presented in this work into physical units,
we can take numerical simulations of magnetic tornadoes as an
example. H. Kuniyoshi et al. (2023) found that the Poynting
flux at the transition region in a 3D radiative MHD simulation
was 420% greater in the presence of a magnetic tornado when
compared to a region where the magnetic tornado was absent,
and that this increase is roughly 3× 105 erg cm2 s−1. That

increase would correspond to an amplitude ratio – ˆ=jv f10 200, ;
however, it is unclear the contribution from MHD waves to
this increase. Going forward, it will be crucial to separate
the Poynting fluxes associated with background flows (the
rotating structures themselves) and any wave perturbations, in
order to get a better understanding of the energy transport of
MHD waves in solar vortices and their physical contribution
to the energy budget of the solar atmosphere. The results of
this study may be useful for interpreting the ratio between the
amplitudes of background flows and MHD wave perturba-
tions in numerical and observational data. In this work, we
have focused solely on the magnetic energy associated with
MHD waves in rotating flux tubes; however, when modeling
a plasma with nonzero plasma pressure, it is possible that the
thermal energy associated with these waves is significant.
An investigation into the thermal energy associated with
MHD waves in solar vortex tubes should be the focus of
future work.
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