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PERSPECTIVE SPECIAL ISSUE
IMAGING CELL ARCHITECTURE AND DYNAMICS

The crucial role of bioimage analysts in scientific research

and publication
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ABSTRACT

Bioimage analysis (BIA), a crucial discipline in biological research,

overcomes the limitations of subjective analysis in microscopy

through the creation and application of quantitative and reproducible

methods. The establishment of dedicated BIA support within academic

institutions is vital to improving research quality and efficiency and

can significantly advance scientific discovery. However, a lack of

training resources, limited career paths and insufficient recognition

of the contributions made by bioimage analysts prevent the full

realization of this potential. This Perspective – the result of the recent

The Company of Biologists Workshop ‘Effectively Communicating

Bioimage Analysis’, which aimed to summarize the global BIA

landscape, categorize obstacles and offer possible solutions –

proposes strategies to bring about a cultural shift towards recognizing

the value of BIA by standardizing tools, improving training and

encouraging formal credit for contributions. We also advocate for

increased funding, standardized practices and enhanced collaboration,

and we concludewith a call to action for all stakeholders to join efforts in

advancing BIA.

KEY WORDS: Bioimage analysis, Bioimage analysts, Bioimaging,
Training

Introduction

Bioimage analysis as an emerging discipline
Computational analysis of image data generated with techniques such

as light and electron microscopy, pre-clinical imaging, and clinical

imaging is a comparatively recent development in the centuries-long

history of light microscopy for biological discovery. To interpret

biological images, scientists have long relied on the human visual

system, which is not suited for reproducible quantification (Jambor,

2023). The subjective nature of visual analysis has famously been

demonstrated in neuroscience, where Golgi and Cajal used the

same method to reach widely different conclusions regarding

neuroanatomy, and is perhaps best seen in pathology, where despite

a long history and comprehensive training of researchers in discerning

phenotypes from images, the interpretation of many phenotypes

results in poor diagnostic agreement between individual observers

(Elmore et al., 2017; Hamilton et al., 2015; Polley et al., 2013; Varga

et al., 2012). Such disagreement, alongside the limitations of human

perception in detecting subtle phenotypes (Gibson et al., 2015),

underlies the serious need for quantitative, reproducible methods in

bioimage analysis (BIA) that align with the FAIR (findable,

accessible, interoperable and reusable) principles for scientific data

1Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
2Edinburgh Pathology, Centre for Genomic & Experimental Medicine and CRUK
Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh,
Edinburgh EH4 2XU, UK. 3Crick Advanced Light Microscopy STP, The Francis Crick
Institute, London NW1 1AT, UK. 4Department of Biomedical Engineering, School of
Biological Sciences, University of Reading, Reading RG6 6AY, UK. 5Biomedicum
ImagingUnit, FacultyofMedicine andHiLIFE, Universityof Helsinki, FI-00014Helsinki,
Finland. 6Centre for Cellular Imaging, Sahlgrenska Academy, University of
Gothenburg, SE-405 30 Gothenburg, Sweden. 7Bioengineering Department,
Universidad Carlos III de Madrid, 28911 Madrid, Spain. 8Center for Scalable Data
Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Universität Leipzig,
04105 Leipzig, Germany. 9DAViS, University of Applied Sciences of the Grisons, 7000
Chur, Switzerland. 10Electron Microscopy STP, The Francis Crick Institute, London
NW11AT,UK. 11FondazioneHumanTechnopole, 20157Milan, Italy. 12Science for Life
Laboratory BioImage Informatics Facility and Department of Information Technology,
Uppsala University, SE-75105 Uppsala, Sweden. 13Cell Biology and Biophysics,
European Molecular Biology Laboratory, 69115 Heidelberg, Germany. 14Randall
Centre for Cell and Molecular Biophysics and Research Management & Innovation
Directorate, King’s College London, London SE1 1UL, UK. 15GIMM - Gulbenkian
Institute for Molecular Medicine, R. Quinta Grande 6, 2780-156 Oeiras, Portugal. 16La
Jolla Institute for Immunology, Microscopy Core Facility, San Diego, CA 92037, USA.
17Bioimage Analysis & Research, BIO-Plaza 1062, Nishi-Furumatsu 2-26-22 Kita-ku,
Okayama, 700-0927, Japan. 18Institute of Genetics and Cancer, The University of
Edinburgh, Edinburgh EH4 2XU, UK. 19University of Wisconsin-Madison, Biomedical
Engineering, Madison, WI 53706, USA. 20Image Analysis Collaboratory, Harvard
Medical School, Boston, MA 02115, USA. 21Nantes Université, CHU Nantes, CNRS,
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management and stewardship (Barker et al., 2022; Kemmer et al.,

2023; Wilkinson et al., 2016).

Further complicating this landscape is the sheer number of

advanced microscopy techniques. Microscopes are both ubiquitous

and extraordinarily heterogeneous. This combination means that,

although microscopy has a low barrier to entry, standardization of

methods poses a significant challenge, leading to the emergence of

an entire career track for microscopy experts: the imaging scientist

(Wright et al., 2024). The heterogeneity of microscopes and

microscopy applications is naturally reflected in the imaging data

itself; therefore, extensive time and expertise are required to design

and implement robust BIA methods. The 2010s saw the rise of

network organizations, such as the Network of European BioImage

Analysts (NEUBIAS), aiming to connect experts in the creation and

application of BIA tools (Martins et al., 2021). Although artificial

intelligence (AI) and machine learning (ML) will continue to

dramatically improve the throughput of BIA and create newer,

easier-to-use analytical options, the human expertise of imaging

scientists and bioimage analysts is still needed to provide the

detailed understanding necessary to both generate viable training

datasets and implement these techniques correctly.

We stand at a critical juncture where the establishment of

dedicated BIA support within academic and research institutions –

in the form of expert groups, facilities and dedicated staff in

individual laboratories – presents a huge opportunity to enhance the

quality and efficacy of research output. Since the conclusions of an

experiment ultimately rest on its design, the inclusion of BIA

experts during the experimental design phase can make the

difference between a successful or an unsuccessful outcome – as

Ronald Fisher said, “To consult the statistician after an experiment is

finished is often merely to ask him to conduct a post-mortem

examination. He can perhaps say what the experiment died of.”

Direct contributions from BIA experts lead to better data utilization,

more principled and conclusive results, stronger publications, and a

highly productive environment that is conducive to fewer revision

cycles and improved project setups, thus directly impacting

scientific endeavors (Fig. 1) (Jambor et al., 2021; Jonkman et al.,

2020; Lee et al., 2024; Senft et al., 2023; Soltwedel and Haase,

2024). They can also help guard against research misconduct (Bik

et al., 2016; Pulverer, 2015; Rossner and Yamada, 2004), the

majority of which is thought to be inadvertent and due to

insufficient understanding of best practices (Pulverer, 2015).

Bioimage analysts thus play a pivotal role in elevating the

scientific reputation of an institution, attracting superior talents

and nurturing a vibrant community that pushes scientific frontiers.

Nevertheless, we estimate that most biological researchers do not

actively consult BIA experts. Although to our knowledge no study

has determined why this is, in our experience, low computational

comfort (resulting in discomfort when approaching computational

experts), lack of awareness about manual analysis biases (Lee et al.,

2024), lack of awareness of available methods, lack of knowledge

about how to find BIA experts and lack of resources to hire BIA

experts all contribute to the relatively low rate of collaboration.

The BIA field is technologically poised for a paradigm shift. As

ML approaches increasingly allow automation of routine tasks such

as segmentation, future BIA specialists will be free to focus on

experimental design and advanced method development and

application. Culturally, however, this evolution will require a shift

towards a more inclusive, collaborative approach, where bioimage

analysts participate in the experimental design process from the

outset. A concerted effort to foster a culture that recognizes the

intrinsic value of quantitative BIA and the indispensable role of

analysts in advancing scientific discovery will allow many positive

returns, including deeper scientific insights and more efficient

research methodologies. In this Perspective, we describe the results

of a recent meeting of bioimage analysts at The Company of

Biologists ‘Effectively Communicating Bioimage Analysis’

Workshop, held in February 2024. This Workshop hosted BIA

practitioners, tool developers and method developers, and served as

a platform for discussions in which we categorized the current

obstacles and possible solutions to the creation of such a new BIA

culture, as detailed below.

Educating biological researchers about BIA

Advancing BIA as a discipline will require the broader biology

community to become more engaged in using BIA in their work. In

addition to the cultural barriers described above, several other

factors currently limit the ability of many researchers to perform

high-quality and FAIR BIA in biology. Biologists who lack

education or support in BIA might not be sure which tools to invest

their limited analysis time into, and a lack of documentation and

proper training materials available for BIA tools might discourage

them from delving deeper. Researchers engaged in BIA also often

encounter technological obstacles, such as insufficient computing

power, storage space or funding for commercial licenses (Fig. 2).

The help of a BIA expert and access to more powerful hardware

and/or software is therefore often critical to a researcher’s success,

but these barriers also highlight the need to provide biologists with

expanded training opportunities in programming, empowering them

with necessary skills.

Effective BIA requires a comprehensive understanding of several

diverse fields, including image processing, complex workflow

creation (Cimini, 2024; Miura and Nørrelykke, 2021) and,

increasingly, familiarity with data management, IT infrastructure

and deep learning (Fig. 1). At each step, algorithm selection and/or

defining large, complex parameter sets may be required. This

technical understanding must be paired with thorough

understanding of experimental design, including which artifacts

are likely under various sample preparations and/or imaging

conditions and how best to ameliorate them (Culley et al., 2024;

Senft et al., 2023). Statistical considerations, such as measurement

errors associated with image analysis, what data should be used to

train or validate an algorithm, selection of appropriate metrics,

whether and how to aggregate data (including how variability and

uncertainty should be assessed), and how to report the results so that

they are reproducible and interpretable, are also necessary. Only

with all of this knowledge can bioimage data be accurately

analyzed, underlining the importance of consultation throughout

the experimental design process (Fig. 3).

Bioimage analysts are typically also on the front line of creating

FAIR training materials that facilitate learning but also promote the

sharing and standardization of best practices within the community

(Haase et al., 2024a preprint; Imreh et al., 2024). The creation of

standardized, quality-controlled, modularized educational materials

would improve the ability of all bioimage analysts to effectively

train diverse audiences, from novices to advanced practitioners,

with tailored curricula both in formal educational settings and in

more informal workshops. Community efforts (including funding

acquisition) should also be undertaken to develop training schools

and curricula in which one can ‘train the trainers’. Importantly, BIA

training materials must be made accessible to a diverse audience and

ideally be understandable for researchers with various backgrounds.

This will require adjustments for individuals with disabilities,

translations into multiple languages to reach a global audience, and
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inclusion of a variety of formats ranging from informal blog posts

and instructional videos to full academic courses. In addition, a

collection of case studies that illustrate the practical application of

BIA skills in various research contexts could be compiled to serve as

a valuable resource for both learners and trainers.

To facilitate this, existing material should be reviewed (for

example, surveys and meta analyses of Jamali et al., 2022; Miura,

2021; Schmidt et al., 2022; Sivagurunathan et al., 2023; Waithe,

2021) and cataloged, allowing greater focus to be placed on missing

elements important for FAIR training. These could include, but not

be limited to: application of ML techniques in BIA for more

efficient and accurate image processing and analysis; ethical

considerations, data privacy and the responsible use of bioimage

data, especially in contexts where sensitive or personal information

may be involved; how to perform correct validation and accurately

report and interpret results; proper use of statistics, including how to

report P-values and prevent ‘P-hacking’; training on the use of IT

infrastructure, such as high-performance computing and cloud

computing; and research data management and reporting guidelines

(Sarkans et al., 2021; Schmidt et al., 2022, 2024), with BIA-specific

data management plans containing sections about who is

responsible for processing the data, from where they get their

resources (including human resources, storage resources and

computing resources) and how to ‘FAIR-ify’ the project (such as

by sharing data and code sustainably).

In tandem, the BIA community can lead a concerted effort to

develop better standards and harmonized approaches with the goal

of simplifying the learning process, making it easier to train future

analysts and researchers. This will require engagement from those

across the BIA community, including researchers, developers,

funders and policy makers. Fostering interoperability through the

use of common file formats (Hiner et al., 2016; Moore et al., 2021),

A  Image analysis

• Theoretical knowledge

(e.g. filtering, segmentation

feature extraction, ML, AI)

• Technical knowledge

(e.g. image analysis software,

microscopy, statistics, ML, AI)

• Context

(e.g. biology, biophysics)

B  Implementation

• Building workflows

 (knowledge of existing tools 

 and how to combine them)

• Deploying workflows

) (on adequate computational infrastructure)

• Software development

• Coding

D  Education

• Teaching and training

• Curriculum design

 (from early career to senior researchers)

• Producing FAIR materials for teaching

 (preparation and sharing)

Bioimage

analyst

C  Project management

• Effective communication

• Image analysis support

(from image acquisition to

project completion)

• Data management plans

Fig. 1. Overview of the key skills and capabilities of a BIA specialist. Four categories of skills and capabilities have been identified: (A) image analysis,

including theoretical and technical knowledge as well as a good understanding of the context of scientific questions; (B) implementation, covering building

and deploying computational workflows, developing pipelines, and coding; (C) project management, including communicating effectively, providing support

and devising data management plans; (D) education, focusing on teaching and training, designing curricula, and producing materials.
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the creation and adoption of metadata formats that include aspects of

experimental design, and promoting best practices in software

engineering for greater modularity and documentation (Afiaz et al.,

2024; Sharma et al., 2024; Sivagurunathan et al., 2023; Wiesmann

et al., 2015) will ensure that image data can be used and re-used with

many tools. The establishment of standardized datasets and metrics

for tool evaluation (Maier-Hein et al., 2024; Rubens et al., 2020)

as well as the benchmarking initiatives these enable – such as

setting up algorithm challenges for solutions to BIA problems like

segmentation and object tracking (Caicedo et al., 2019; Haase et al.,

2024b preprint; Ma et al., 2024; Maška et al., 2023; Ulman et al.,

2017) – can enhance visibility and comparability among tools and

reduce duplicated efforts. By adopting these strategies, the BIA

community can foster a more integrated, efficient and collaborative

research environment.

Enabling sustainable career paths in BIA

The broad technical knowledge required to successfully become a

BIA expert typically takes many years to develop, especially in the

absence of formalized training pathways. As such, bioimage

analysts are sometimes employed in academic core facilities, like

other technical specialists such as bioinformaticians and imaging

scientists. Because they are often exposed to a range of biological

problems, broad subsets of the BIA tool ecosystem and user

difficulties with said tools, such ‘BIA application experts’ can

highlight the unmet needs of the biological community when

communicating with (or even serving as) research software

engineers (Deschamps et al., 2023). To succeed in such roles,

bioimage analysts must possess not only the technical skills

described above but also the ability to understand and communicate

analysis techniques in order to be able to advise and train researchers

on the requirements and resources for data sharing (Fig. 1). As

detailed above, the benefits to institutions employing such

individuals are vast, as they can raise the quality of research for

whole departments through consultations on analyses and statistical

presentation of image data, as well as facilitate more efficient use of

computational resources through consultation on data management

and cluster utilization, reducing institutional costs.

In our collective experience, few people currently have all the

skills needed to succeed in this career, and those who do might find

the academic core facilities career path to be challenging and

unstable. Although in some regions, such as parts of Europe, it is

common to find regional or national funding for core facilities staff

(O’Toole and Marrison, 2024; Pfander et al., 2022), in other

regions, such as the United States, this type of funding is difficult if

not impossible to acquire, leaving the funding of core facility staff

up to individual institutions. In a recent Global BioImage Analysts’

Society (GloBIAS) survey of the field (GloBIAS Survey Working

Group, personal communication), fewer than 20% of bioimage

analysts working in core facilities reported that their facility is more

than 75% internally funded, suggesting that most institutions do not

have sufficient funding dedicated to covering salary and expenses

for bioimage analysts. Most analysts rely on a combination of

collaborators’ grants and microscope usage fees to make up the

remainder of the budget, with a smaller fraction of money coming

from their own grants, external consulting or fees from analysis

projects. Only one of 166 respondents reported being able to fund

more than 75% of their position through image analysis fees alone,

which likely reflects similar cost recovery challenges in other kinds

of computational core facilities due to higher salaries of

computational experts and lower willingness of researchers to pay

for computational work (Dragon et al., 2020). Without reliable

institutional or agency funding, academic core facility bioimage

analysts typically have little job security, low pay and the same

difficulties in career progression found in other core facility career

paths (Adami et al., 2021; Dragon et al., 2020; Lippens et al., 2022;

Rahmoon et al., 2024; Soltwedel and Haase, 2024; Tranfield and

Lippens, 2024; Waithe, 2021; Wright et al., 2024).

Unfortunately, the historical reliance on qualitative assessment in

biology research has led to relative underdevelopment and

Getting started

Lack of awareness of the benefits of

quantitative image analysis

Pressure to publish

Lack of software documentation

Career

Lack of career progression

opportunities for bioimage

analysts

Lack of well-defined roles

Personal

Publishing

Publishing tools is difficult due to 

lack of interest from journal editors.

Publication metrics do not reflect the 

usefulness of the tool. 

Effectively addressing a wide range 

of problems can mean that results 

are less impressive on specific 

established benchmarks.

Non-open-source algorithms can 

claim novelty without responsiblity, 

making it harder to publish truly 

open, user-friendly alternatives.

Original software publications do not 

represent the contributions of people 

who join the project later.

There is a lack of rules and

guidelines for publishing software 

dependencies.

Funding

Lack of dedicated funding

for software

Lack of funding for

software maintenance

and documentation

Structural

Barriers to bioimage analysis

Peer pressure

Not feeling legitimate enough to

contribute, scrutiny from the community

Governance principles

Choosing a model: e.g. community led or a

small team of developers?

Moral incentive

Researchers who have

benefited from open-source

tools should contribute to

the open-source ecosystem.

Scientific community

Fig. 2. Major barriers to effective uptake of BIA. We

have identified three categories of barriers: personal

barriers, including the difficulties related to getting started

in BIA and to finding suitable career options; structural

barriers, including barriers in publishing and obtaining

funding; and barriers related to the culture of the scientific

community, such as peer pressure, a lack of incentives

and a lack of clear governance principles.
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underappreciation of the difficulty of BIA, combined with other

cultural biases against facility technical specialists (Knudtson et al.,

2019; Kos-Braun et al., 2020) (Fig. 3). Researchers often approach

bioimage analysts with predetermined mindsets about what an

analysis should look like and what the results ought to be, rather

than engaging in a collaborative dialogue to explore the full

spectrum of analytical tools available. This disconnect not only

suppresses innovation in novel methods and approaches but also

prevents the optimal application of BIA in addressing complex

scientific questions. In many scientific environments, bioimage

analysts find their contributions condensed to brief mentions in the

methods section or relegated to supplementary materials despite

their pivotal role in shaping the research outcome from the outset.

This oversight not only diminishes the value of their expertise but

also risks diminishing the integrity and reproducibility of scientific

findings. The combination of low pay and under-acknowledgement

can lead to burnout in such analysts, who often find themselves both

more respected and better compensated in industry roles. This leads

to a ‘brain drain’ in which highly talented experts who serve as a

critical resource for both researchers and BIA tool creators are often

lost from the academic community.

It will therefore be vital to establish a stable career path for BIA

specialists. BIA experts (alongside their imaging scientist

colleagues) represent a crucial, stable source of knowledge and

expertise within their local community. Increasing the number of

BIA experts, both by expanding existing training efforts (Cimini

et al., 2024; Martins et al., 2021) and by promoting better career

paths and acknowledgement structures for analysts, will be essential

to generating the expertise needed to push imaging science forward.

Other types of core facilities can serve as a template for ways to

promote career advancement as well as adoption of training standards

and programs (Adami et al., 2021;Waters, 2020;Wright et al., 2024).

Internal funding for such facilities typically requires convincing

stakeholders of the value of such a facility; therefore, quantifying the

benefits and contributions of BIA in measurable terms for funders

poses a challenge, as each institution or granting agency will

differently value key performance indicators such as impact factor,

publication timelines or production of open data. Within universities,

academic stakeholders must recognize the value of on-site BIA

experts who can train users and propose tailored solutions over

purchasing proprietary software with limited scope and user training

resources. Here, we provide a draft template (Table S1) to help

bioimage analysts (or those wishing to employ them) translate their

many roles into monetary value. Although this template must be

personalized for every situation, it can be used in discussions on key

performance indicators with decision makers to help explain the

value of a dedicated BIA facility (Soltwedel and Haase, 2024).While

our template covers many possible activities, the number and priority

of aspects that any given facility can cover should be tailored to the

staffing size, as the requirement to cover too broad an area of expertise

is a known issue affecting staff retention and well-being in other

bioinformatics facilities (Dragon et al., 2020).

The creation of dedicated BIA core facilities and/or the

embedding of bioimage analysts in bioimaging core facilities can

1. Wait until the end to reach out
 Do not underestimate the complexity of
 bioimage analysis and wait until the end of a
 project to contact the analysts. Early
 collaboration ensures smoother analysis and
 understanding of experimental setups.

2. Assume analysts know your
 experimental details
 Do not assume that analysts know all the
 experimental details. Clearly communicate
 the specifics of your setup for accurate 
 analysis.

3. Overlook interdisciplinary connections
 Analysts can connect to experts across
 various fields. Utilize their network for
 diverse insights.

4. Dismiss the role of specialists
 Do not overlook the importance of specialists
 in bioimage analysis, especially as AI becomes
 more prevalent. Their expertise becomes even
 more critical when in navigating the
 complexities introduced by AI.

DON’Ts

1. Reach out early and often
 Initiate discussions with your bioimage
 analyst at the onset of your project to 
 determine appropriate methods and metrics.

 Regularly update and consult them as your
 project progresses.

2. Plan ahead
 Recognize the significance of decisions to
 avoid wasting time and energy for all
 parties involved.

 Keep in mind what you want to quantify
 when you optimize your acquisition.

3. Verify data quality
 Double check acquisition settings with a
 microscope expert to ensure quality.

 Record complete and appropriate metadata
 and document experimental setup.

4. Stay up to date
 Regularly revisit your analyst, as technology
 and software evolve very quickly.

5. Respect expertise
 Understand the complexities of bioimage analysis.

 Recognize the analyst's expertise, gained
 through years of experience and dedicated
 learning.

DOs

Working with your friendly local bioimage analyst

Fig. 3. A concise etiquette guide for interacting with BIA specialists. We recommend contacting your local bioimage analyst from the start of the project

and providing them with regular updates instead of waiting for a complete acquired dataset before reaching out. Moreover, during the data acquisition phase,

we suggest that experimentalists prepare a detailed plan for better time management and to aid effective communication with BIA specialists. Additionally,

we ask for the bioimage analyst’s expertise to be respected and for their scientific contributions to be recognized.
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help institutions centralize and share costs for these services, which

are increasingly integral for the functioning of departments or even

whole universities. In accordance with common funding models

used in both imaging core facilities and bioinformatics facilities

(Dragon et al., 2020; O’Toole and Marrison, 2024; Soltwedel and

Haase, 2024; Tranfield and Lippens, 2024;Waithe, 2021), bioimage

analysts can of course generate revenue but also should not be

required to recover all of the associated costs through user fees.

Costing model choices are absolutely critical. Charging per project

can limit access to only higher-funded labs, whereas a centrally

funded BIA facility with set hours per group can provide a more

equitable service (Soltwedel and Haase, 2024). Since BIA needs

are often unexpected, this model also protects groups who find

themselves suddenly needing BIA services but who had not

previously budgeted for them and might not realize the costs

required for computational collaboration. For projects requiring

significant research from BIA experts, the intellectual contributions

of such experts should be recognized by including them as

co-principal investigators on grants. To prevent the unfortunate

but not uncommon practice of including computational

collaborators on initial grants only to make massive cuts to their

budget once a grant is awarded (Way et al., 2021; https://www.

timeshighereducation.com/opinion/scientific-collaborators-are-not-

disposable), BIA co-principal investigators should be provided

with official subcontracts that cannot be reduced without mutual

agreement.

The increasing inclusion of datasets, methods and software sections

in peer-reviewed papers by journals is a welcome development that

allows BIA experts more opportunities to publish their work;

however, we emphasize that academic citations should only be

viewed as one metric of value, as we will detail below. Alternative

mechanisms of recognition – such as the increased use of narrative

CVs emphasizing the value of collaboration and support work, and

the creation of field recognition structures –will also allow hiring and

promotion committees to recognize excellence and community value

in BIA. The BIA community could work to create such awards to

foster recognition of innovation, collaboration and excellence and to

acknowledge the diverse contributions of its members, from

enthusiastic students to seasoned principal investigators. Creation of

awards that highlight impactful work in BIA across all levels of

scientific engagement could be administered by reputable entities

within the community, including societies like GloBIAS, funders

like the Chan Zuckerberg Initiative, or individual institutes and

universities.

Encouraging a culture shift around the importance of BIA

BIA experts who develop new software tools, much like those who

work with researchers on BIA applications, are also undervalued in

many academic structures and need better working conditions that

will inspire them to develop, maintain and update those tools,

including a ‘critical mass’ of local experts to interact with (Way et al.,

2021). Unfortunately, the current incentive structure in academic

research makes it harder than necessary to build and support the

practical BIA tools that the wider community needs (Fig. 2).

One of the main quantified outputs of academic research is peer-

reviewed publications (Derrick et al., 2024; Way et al., 2021). The

‘publish or perish’ paradigm encourages researchers to narrowly focus

on their own area of expertise rather than target their tools broadly.

BIA tool developers are thus expected to continually publish novel

methods that demonstrably improve on the state of the art according to

some benchmark – even though novelty and benchmark performance

are not reliable surrogate measures of real-world usefulness (Maier-

Hein et al., 2018). Additionally, although a ‘proof-of-concept’

algorithm that works on a restricted dataset might be publishable,

there is often no requirement for authors to provide any code that

would enable scrutiny or reproducibility of the method (Sharma et al.,

2024). Compounding this, academic research labs are typically

primarily staffed by trainees, who are unlikely to continuemaintaining

software that they generated in previous positions.

Making an algorithm accessible to researchers can also be a

double-edged sword: a BIA specialist that takes the considerable

time and effort needed to create well-documented, user-friendly,

Provide dedicated funding
• BIA specialists
• Existing platforms and repositories
• Software engineers
• Software development and maintainance
 (focus on tool usability)

Support publications
• BIA tools
• BIA workflows

Recognize non-standard scientific
contributions
• New metrics for evaluation of impact
• Career pathways

Policy makers and funders

Bioimage analysis community

What can we do? What do we need?

Define standards
• Communication, usability and visibility of BIA tools
• File formats and metadata 
• New metrics for evaluation of impact
• Training and curriculum

Catalog resources
• BIA tools and workflows
• Training materials
• Events (conferences, courses, hackathons)

Adopt best practices
• Software engineering and FAIR standards
• Didactics
• Licensing

Disseminate standards
• Publications with guidelines
• Policies
• Training materials

How-to guides
• Challenges for specific biological applications
• Example workflows
• Computational environments for testing

Training
• Events (conferences, courses, hackathons)
• Train-the-trainer courses
• Undergraduate courses

S
h
o
rt

-t
e
rm
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a
ls
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g
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Fig. 4. A vision for the future of the

BIA community. We have set short-

term and long-term goals for our

community to address. In the short

term, we would like to direct our efforts

into defining standards, cataloging

resources and routinely adopting best

practices. In the long term, the defined

standards should be disseminated

through publications, policies and

training. These objectives need the

support of policy makers and funders

for success. A particular focus should

be placed on tailored funding

opportunities, publication support and

recognition of non-standard scientific

contributions.
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open-source software will end up with fewer publications, may be

falsely perceived as less productive and might have their work

dismissed as ‘software, not research’. If they attempt to incorporate

an algorithm into a larger tool within the BIA ecosystem rather than

make a new tool, it might be falsely perceived as a trivial advance

even when its functionality is novel. The payoff from such efforts is

also unclear: even when software is broadly used by non-

computational users, a commensurate level of citation is not

guaranteed (Giving software its due, 2019). The amount of overlap

and redundancy in these tools not only dilutes resources but

can also have a considerable environmental impact due to the

computational resources required to retrain deep learning models

for slight advancements. Current incentives therefore create a

‘graveyard’ of unmaintained, standalone ‘usable enough’ and ‘good

enough’ tools developed for particular projects rather than reusable

workflows or plugins for existing BIA tools that would promote

FAIR principles. (Deschamps et al., 2023; Moses and Pachter,

2022).

The BIA field would thus strongly benefit from funding dedicated

to encouraging software maintenance and documentation, which are

essential to users, rather than novelty alone. Some philanthropic

funders have introduced such programs (such as Chan Zuckerberg

Initiative Imaging Software Fellows), but far more of this type of

funding is needed globally to promote the long-termmaintenance and

support of existing solutions rather than the recurrent cycle of

development and abandonment. Such a shift in funding models

should be accompanied by community effort to define criteria for

quality software and good practices for software development and

maintenance. Taken as a whole, these measures could help direct

efforts towards a smaller number of BIA tools, with the benefits of

greatly improved quality, accessibility and usability.

Conclusions and outlook

Although significant steps have been taken in creation and adoption

of BIA as an expert discipline, many challenges remain. Given the

complexity and diversity of biological data, coupled with the rapid

evolution of imaging technologies, a concerted effort to use BIA to

advance scientific knowledge is necessary. This requires the

collaborative engagement of all stakeholders involved in the

bioimaging ecosystem, including but not limited to researchers,

bioinformaticians, software developers, policy makers and funding

agencies. A synergistic approach, combining top-down strategies

from organizational and policy perspectives and bottom-up

initiatives driven by community-based innovations, is paramount

for fostering an environment conducive to solving the problems at

hand. A central aspect of our strategy is cultivating a culture that

values and understands the importance of BIA, ensuring buy-in

from all the various stakeholders (Fig. 4). We emphasize the

following six key actions. (1) Enhancing visibility: active

participation of bioimage analysts in scientific conferences and

forums not only boosts the visibility of BIA but also facilitates

collaboration and the exchange of ideas. (2) Building empathy and

collaboration: willingness to learn from one another, letting BIA

novices learn from experts and developing a common language are

key. Engaging in activities such as pair programming (where

researchers write code together) or ‘rescue sessions’ for problematic

datasets (where novices attempt to analyze very difficult data,

discuss computational methods to improve analysis, and brainstorm

changes in sample preparation and/or imaging) can bridge the gap

between bioimage analysts and researchers. (3) Highlighting unique

contributions: by presenting case studies and research outcomes that

were made possible exclusively through advanced BIA, we can

underscore the unique value it brings to scientific discovery. These

success stories can serve as powerful testimonials to the crucial role

of quantitative analysis. (4) Advocating for standards in publishing:

lobbying for journals to mandate not just the inclusion of

quantitative image analysis but also a thorough description of BIA

methodologies. Journals should adopt BIA-inclusive publication

checklists (Schmied et al., 2024) to ensure that all image

quantification is performed according to field standards, similar to

existing checklists for statistical analysis. Journals or journal sections

dedicated to methods and resources should accept BIA tools and

workflows. (5) Securing support from funders: pushing for funding

bodies to recognize and support the infrastructure of the BIA

community, including the development of communal resources and

spaces for collaboration. (6) Emphasizing the importance of user

support: advocating for consideration of user support as fundamental

to software development and providing funding for tool maintenance

ensures that tools are not only technically robust, but also user friendly

and suitable for widespread adoption.

Despite these challenges, the BIA community is motivated by a

shared sense of organization and purpose and has high enthusiasm

and readiness to contribute to the collective mission of enhancing

the rigor, reproducibility and impact of scientific research. The

recent founding of GloBIAS, a global society for bioimage analysts,

is likely to be as globally catalytic in the future as NEUBIAS has

been for Europe. The GloBIAS website (www.globias.org) lists

training materials, events and pages where biologists can find local

BIA experts available for collaboration. Many groups primarily

focused on bioimaging [such as BioImaging North America

(BINA), the Royal Microscopical Society (RMS), the African

Bioimaging Consortium (ABIC), Euro-Bioimaging and Global

BioImaging] also now host BIA subgroups and run workshops on

BIA training for beginners. The Scientific Community Image

Forum (forum.image.sc) also serves as a global community

gathering location for image analysis events and education that is

free and open to all (Rueden et al., 2019).

Meetings such as The Company of Biologists ‘Effectively

Communicating Bioimage Analysis’Workshop, which inspired this

Perspective, play a crucial role in stimulating this community and

equipping participants with the knowledge, skills and networks

necessary to advocate for and implement best practices in BIA. As

we look to the future, it is imperative that we continue to nurture this

collaborative spirit by fostering open dialogue, knowledge exchange

and innovation. By doing so, we can collectively surmount the

challenges that lie ahead, paving the way for groundbreaking

discoveries that will propel the field of biomedical research

forward. In this spirit of unity and determination, we extend an

open invitation to all stakeholders to join us in this endeavor.

Together, we are poised to make a substantial impact on the

advancement of science, underpinned by the power of effective BIA.

In conclusion, the journey ahead is undeniably challenging yet

filled with immense potential. Armed with a clear vision, a robust

framework for collaboration and a relentless drive for excellence,

the BIA community is well-equipped to embrace the complexities

of the future. Let us proceed with confidence and collective

resolve, committed to the pursuit of scientific innovation and the

advancement of human health.
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