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ABSTRACT

Understanding mechanisms and predicting natural population responses to climate is a key goal of Ecology. However, studies 

explicitly linking climate to population dynamics remain limited. Antecedent effect models are a set of statistical tools that capi-

talize on the evidence provided by climate and population data to select time windows correlated with a response (e.g., survival, 

reproduction). Thus, these models can serve as both a predictive and exploratory tool. We compare the predictive performance of 

antecedent effect models against simpler models and showcase their exploratory analysis potential by selecting a case study with 

high predictive power. We fit three antecedent effect models: (1) weighted mean models (WMM), which weigh the importance of 

monthly anomalies based on a Gaussian curve, (2) stochastic antecedent models (SAM), which weigh the importance of monthly 

anomalies using a Dirichlet process, and (3) regularized regressions using the Finnish horseshoe model (FHM), which estimate 

a separate effect size for each monthly anomaly. We compare these approaches to a linear model using a yearly climatic predictor 

and a null model with no predictors. We use demographic data from 77 natural populations of 34 plant species ranging between 

seven and 36 years in length. We then fit models to the asymptotic population growth rate (λ) and its underlying vital rates: sur-

vival, development, and reproduction. We find that models including climate do not consistently outperform null models. We 

hypothesize that the effect of yearly climate is too complex, weak, and confounded by other factors to be easily predicted using 

monthly precipitation and temperature data. On the other hand, in our case study, antecedent effect models show biologically 

sensible correlations between two precipitation anomalies and multiple vital rates. We conclude that, in temporal datasets with 

limited sample sizes, antecedent effect models are better suited as exploratory tools for hypothesis generation.

1   |   Introduction

Understanding and predicting population dynamics is a key 

objective of Ecology (Sutherland et  al.  2013). In population 

ecology, the last decades have witnessed the development and 

application of many statistical methods aimed precisely at 

this objective (Caswell  2001; Ellner, Childs, and Rees  2016). 

Increasingly, emphasis is being devoted to understanding how 

climatic drivers such as temperature and precipitation affect 

vital rates like survival, development (i.e., changes in stage 
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along the life cycle), and reproduction (Ehrlén et  al.  2016; 

Teller et  al.  2016). The ultimate goal of this ambitious re-

search agenda is to achieve a mechanistic understanding of 

what makes species vulnerable to climate change worldwide 

(Sutherland et  al.  2013). However, progress in this under-

standing is underpinned by synthetic studies that explicitly 

link vital rates to climatic drivers using standardized methods 

(Ehrlén et al. 2016; Compagnoni et al. 2021).

To understand and predict the effects of climate drivers on 

populations, ecologists need to estimate the predictability of 

different response variables. While ecologists are ultimately 

interested in linking population performance metrics (e.g., 

population growth rate) to climatic drivers, this link often 

has poor predictive ability (Knape and de Valpine  2011; 

Tredennick, Hooten, and Adler  2016). The low predictive 

performance might occur because a priori knowledge of the 

system is often poor, and/or because the number of poten-

tial covariates is orders of magnitude larger than the number 

of data points available in population studies (Tredennick 

et al. 2021). In addition, poor predictive performance might re-

flect how variation in population growth rates might be buff-

ered against environmental stochasticity, in that responses 

of single vital rates might not fully translate into population 

growth rate responses (Hilde et  al.  2020). Thus, we might 

have a better understanding and ability to predict the effects 

of climate on vital rates (e.g., Clark et al. 2016, 2021; Schulze 

et  al.  2019). Alternatively, the low predictive ability of our 

models might simply reflect how the approaches to link popu-

lation dynamics to climate implemented so far are ineffective. 

Currently, we lack a key piece of the puzzle: the relative abil-

ity of existing approaches to predict vital rates and population 

growth rate, and how this predictability varies across species. 

Establishing this predictive ability in synthesis study requires 

addressing the technical hurdles associated with linking cli-

matic drivers to population dynamics.

Studies that explicitly link population responses to cli-

mate drivers typically identify climatic predictors a priori. 

Most population studies are short- term (Salguero- Gómez 

et  al.  2015, 2016; Römer et  al.  2021; Levin et  al.  2022), thus 

preventing investigators from effectively using exploratory 

or model selection approaches. As a result, ecologists have 

historically considered seasonal or, more frequently, annual 

climatic effects (reviewed in Evers et  al.  2021). This choice 

has practical reasons: first, monthly or annual climate data 

are widely available (Daly, Neilson, and Phillips 1994; Karger 

and Zimmermann 2018). Second, annual anomalies are a log-

ical predictor of annual demographic variation, and seasonal 

anomalies can be justified by physiological or behavioral con-

siderations (White, Running, and Thornton  1999; Catchpole 

et al. 2000). However, no consensus on these a priori choices 

exists. For example, expectations based on physiology, such 

as the importance of the growing season in plants, or the im-

portance of exceeding minimum thermal limits in insects 

(Angilletta  2009), are often met with opposing evidence 

(Kreyling  2010; Czachura and Miller  2020), or evidence of 

lagged effects from previous years (Hacket- Pain et  al.  2018; 

Tenhumberg et  al.  2018; Evers et  al.  2021). At worst, mod-

els that link population responses to monthly or annual cli-

matic variables could be an excessive oversimplification of the 

processes that drive plant physiology. The effect of climate on 

plants unfolds via the dynamic, nonlinear interaction of tem-

perature, soil moisture, relative humidity, and radiative fluxes 

at sub- hourly time scales (Lambers and Oliveira  2019). While 

these factors correlate with annual or seasonal temperature 

and precipitation, such correlation might be too weak to make 

annual or seasonal climate effective predictors of population 

dynamics at a yearly resolution.

If the most common a priori choices on the climate predictors 

of population fluctuations are suboptimal, then more complex 

models could increase predictive power. This would be the case 

for models that simultaneously identify the critical time window 

and magnitude of climatic effects that drive their system dy-

namics. Several such models have been proposed that automat-

ically select the timing most relevant to population processes 

(van de Pol and Cockburn 2011; Ogle et al. 2015). Henceforth, 

we refer to these models as “antecedent effect models.” These 

models control for multiple comparisons, and weigh the time 

windows when drivers are most influential for population dy-

namics, dividing the climate (or any other relevant factor) of a 

time window (e.g., a year) into sub- periods of equal lengths—

usually months. Such weighing can occur by estimating the im-

portance of each monthly anomaly using weights constrained 

to follow a specific function (van de Pol and Cockburn  2011; 

Ogle et al. 2015). Alternatively, the weighing can be performed 

by estimating a different effect size for each monthly climate 

anomaly, using regularization or informative priors to minimize 

overfitting (Hoerl and Kennard 1970). In cases where the tim-

ing of climatic predictors is not crucial in explaining population 

responses to climate, antecedent effect models would have low 

predictive power when compared to simpler models. Moreover, 

it has been suggested that, when the climatic effects on popula-

tions are small (e.g., due to their ability to buffer the effects of 

climate; Hilde et al.  2020), antecedent effect models would be 

most useful when 20 or more years of climatic data are available 

(Teller et al. 2016; van de Pol et al. 2016). Still, despite these po-

tential issues, antecedent effect models provide a key advantage 

of being tools for exploratory analysis: the automatic estimation 

of the timing and magnitude of climatic effects can help gener-

ate new hypotheses.

Here, we provide an overview of antecedent effect models, eval-

uate their predictive performance, and then showcase their po-

tential for exploratory data analysis. We systematically evaluate 

our performance to predict the out- of- sample variation of the 

vital rates of survival, development, and reproduction and the 

overall population growth rate (λ) of 77 natural populations of 

34 plant species. We compare and contrast the predictive per-

formance of three types of antecedent effect models to that of 

models based on annual climatic anomalies, and null models. 

Here, we include null models to test the hypothesis that, in rel-

atively small datasets, monthly or annual climatic values are 

inadequate predictors of variation in demographic data. We 

use monthly temperature and precipitation as climatic driv-

ers, and demographic information ranging from 7 to 36 years 

from the COMPADRE Plant Matrix Database (Salguero- Gómez 

et al. 2015). Antecedent effect models were previously employed 

with great success on tree rings datasets (e.g., Peltier, Barber, 

and Ogle 2018). Here, we test these models on plant datasets for 

which the interest in climate effects has been steadily growing 
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(Ehrlén et  al.  2016). Our analysis goes from small, relatively 

common datasets to rare, long- term data that should maximize 

the predictive potential of antecedent effect models. We evaluate 

the predictive performance of these five models to address four 

objectives: (1) evaluate the predictive performance of each statis-

tical model; (2) compare the ability of climate to predict among 

vital rates and population growth rate; (3) determine whether 

the predictive ability of antecedent effect models increase with 

temporal replication; and (4) choose a model as a case study to 

show the potential of antecedent effect models as exploratory 

data analysis tools.

2   |   Methods

2.1   |   Data and Response Variables

To compare the predictive performance of antecedent effect 

models to that of simpler models, we used long- term time se-

ries of vital rate data obtained from matrix population models 

(MPMs, hereafter) contained in the COMPADRE Plant Matrix 

Database (Salguero- Gómez et  al.  2015). In this study, we ig-

nored similar data on animals because it lacks taxonomic, tem-

poral, and spatial replication (Salguero- Gómez et  al.  2016). 

COMPADRE contains MPMs of natural populations where 

individuals have been categorized into discrete stages and 

their vital rates (e.g., survival, development, reproduction) are 

tracked in discrete time steps (Caswell 2001). We selected data-

sets from COMPADRE with at least seven contiguous years (i.e., 

six MPMs) for a single natural population. We chose 7 years as 

the shortest study length that allowed comparing a sufficient 

number of species: only half of plant demographic studies ex-

ceed 4 years in duration (Salguero- Gómez et  al.  2015; Römer 

et  al.  2021). This criterion resulted in 1057 MPMs originating 

from 77 populations across 34 species, with an average length 

of 15 years (median = 10; range = 7–36), and an average number 

of two populations (median = 1, range = 1–6). In our dataset, 

each study corresponded to a separate species or set of species, 

with the exception of Cirsium pitcheri. This species appeared in 

three separate studies, conducted on three geographically sep-

arate populations (Table S1). The characteristics of our species 

pool reflected the well- known bias of plant demographic data 

for temperate environments and herbaceous species (Table S2; 

Salguero- Gómez et  al.  2015; Compagnoni et  al.  2021; Römer 

et al. 2021). Importantly, 86% of our populations are eudicots, 

86% are herbaceous perennials, and 78% of populations are from 

temperate environments. We only had three shrubs, two succu-

lent species, four species found in Mediterranean environments, 

and four found in deserts.

We used these MPMs to calculate the expectation of survival, 

development, reproduction, and the population growth rate 

(λ) associated with each annual MPM. By “development,” we 

refer to changes in the life cycle stage. These four- year- specific 

metrics refer to a population at its stable stage distribution: the 

distribution of discrete stages that would result if each yearly 

MPM's vital rates were kept constant. We did not divide these 

data in vital rates of non- reproductive and reproductive plants 

because their year- to- year fluctuations are strongly correlated 

(Tredennick et al. 2018). Accordingly, our preliminary analyses 

on such split vital rate data showed inconspicuous differences 

between size class results, motivating us to lump data across size 

classes. We calculated survival, development, and reproduction 

using standard methods (Franco and Silvertown 2004), and λ as 

the dominant eigenvalue of each MPM (Caswell 2001) with the 

R package popbio (Stubben and Milligan 2007). Here, λ > (or <) 

1 corresponds to a population that is expected to grow (decline) 

at the stable stage distribution (Caswell 2001). Note that we used 

λ instead of a population growth rate derived from year- to- year 

changes in population size which cannot be derived from matrix 

projection models. We calculated net annual vital rates by tak-

ing a weighted mean of the stage- specific vital rates, where the 

weights were derived from the stable stage distribution.

We used gridded and weather station climatic data to gen-

erate the climatic predictors for our statistical models. The 

climatic predictors in our models include mean monthly air 

temperature and total monthly precipitation at the location of 

each of our 77 populations. We obtained these data primar-

ily from the CHELSA (Karger et  al.  2017), but we also used 

PRISM (Daly, Neilson, and Phillips  1994) and a single Global 

Historical Climatology Network (GHCN) daily weather sta-

tion (Menne et  al.  2012) in the temporal range not covered 

by CHELSA. We used CHELSA data for all populations sam-

pled between 1979 and 2013 (Table  S1). We used PRISM data 

for the two populations of Astragalus scaphoides that extend 

to 2014 (Tenhumberg et al. 2018). We used data from weather 

station number USC00143527 of the GHCN for the 10 popula-

tions collected between 1938 and 1972 in Hays, Kansas, USA 

(Table  S1). We used data from this weather station instead of 

PRISM because the quality of gridded climatic data tends to de-

crease with time since the present. We note that CHELSA and 

PRISM provide gridded climatic data at a 30 arcsec (~1 km2) res-

olution which approximates weather station climate averages 

well (Behnke et  al.  2016). We consider this spatial resolution 

more than sufficient, because climate anomalies are strongly 

correlated spatially. For example, in North America, to observe 

correlations of 0.5 between the annual anomalies of two sites, 

one needs to travel at least 300 km, for precipitation anomalies, 

and 1400 km, for temperature anomalies (Compagnoni, Evers, 

and Knight 2024).

Our climatic predictors consisted of the monthly climatic anom-

alies observed in the 36 months preceding each vital rate obser-

vation (i.e., preceding the end month of a given demographic 

projection interval). Specifically, vital rate observations de-

scribe a transition from year t to year t + 1: our models use the 

36 monthly anomalies preceding year t + 1 as predictors. These 

anomalies were z- scores (mean = 0, SD = 1) with respect to the 

long- term monthly mean. For example, the anomalies for the 

month of December were calculated with respect to the long- 

term mean and standard deviation of December. We calculated 

long- term means and standard deviations exceeding the rec-

ommended minimum of 30 years of data (World Meteorological 

Organization  2017). For CHELSA and PRISM datasets, we 

calculated the long- term monthly mean using a 35- year pe-

riod between 1979 and 2013, and 1980 and 2014, respectively. 

We calculated the long- term monthly mean for the 10 datasets 

collected before 1979 using 50 years of climate data. The differ-

ence between anomalies computed using the 50-  versus 35- year 

mean was negligible, as their correlations were 0.996 and 0.995 

for temperature and precipitation, respectively.
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2.2   |   Modeling Overview

Using vital rates and log(λ) as response variables, we com-

pared and contrasted the predictive performance of five mod-

els (Figure  S1): the (1) null model (NM), with no climatic 

covariates, the (2) climate summary model (CSM, Dalgleish 

et  al.  2011), using yearly climate as a predictor, and three 

types of antecedent effect models: the (3) weighted means 

model (WMM, van de Pol and Cockburn  2011), the (4) sto-

chastic antecedent model (SAM, Ogle et  al.  2015), and the 

(5) Finnish horseshoe model (FHM, Hastie, Tibshirani, and 

Friedman  2009). Models 1–5 are ranked by increasing flexi-

bility, by progressively relaxing key assumptions (Figure S1). 

NMs are a “model of the mean” that does not account for the 

effect of climatic drivers. CSMs assume that the monthly 

anomalies observed within a specific period have equal weight 

and that these anomalies affect population dynamics in the 

same direction. Therefore, this model uses as a predictor the 

mean of 12 monthly anomalies. WMMs weigh the contribu-

tion of the 12 monthly anomalies based on a Gaussian func-

tion. The mean of this function will identify the month with 

the highest contribution, and all other months will have pro-

gressively lower weight (Figure S1). Like in WMMs, SAMs as-

sume that monthly anomalies influence population dynamics 

in the same direction. SAMs estimate the relative weights of 

monthly anomalies by assigning a Dirichlet distribution prior 

to the weights (Figure S1; Ogle et al. 2015). Finally, FHMs fit 

a separate coefficient for each of the 12 monthly anomalies, 

shrinking these toward zero through their prior distribution. 

In regularized horseshoe regressions, monthly anomalies can 

have positive or negative effects. FHMs were not developed 

to model climatic effects (Piironen and Vehtari 2017), though 

regularization approaches have been previously employed 

to estimate climatic effects on vital rate information (e.g., 

Tredennick, Hooten, and Adler 2016).

We chose these three antecedent effect models as they were 

the most useful exploratory models for our dataset. There are 

four types of exploratory models to estimate climate sensitiv-

ity (van de Pol and Bailey 2019): sliding windows (van de Pol 

et  al.  2016), weighted means, regularization, and machine 

learning (Teller et  al.  2016). We discarded sliding windows 

and machine learning because not easily implemented in a 

Bayesian framework, and because they were too complex for 

our small datasets. We also excluded the use of splines (Teller 

et al. 2016), as they are a form of regularization, and we dis-

carded three alternatives to our WMM because of conver-

gence issues. We provide further details on these decisions in 

Appendix S1.

We fit each model type using climate data from 3 years: one from 

the year of the census, one prior to the census, and one two years 

before the census. We used these 3 years of data to account for 

the potential of lagged climatic effects. There is convincing ev-

idence of lagged climatic effects in several case studies, includ-

ing for three populations analyzed in this study: one population 

of Cryptantha flava (Evers et  al.  2021) and two of Astragalus 

scaphoides (Tenhumberg et al. 2018). We re- fit each model using 

climate data from three separate years: each year correspond-

ing to a subset of the 36 monthly anomalies preceding each de-

mographic observation. We subdivided these 36 anomalies as 

belonging to the year (year t), 1 year (t − 1), and 2 years (t−2) pre-

ceding each demographic observation. Hence, we fit five model 

types for each response variable. Because four of these models 

included climatic predictors, we refit these four models on the 

3 years of climate data.

Below, we describe the equations of the models we tested as-

suming the normally distributed response variable, log(λ). To 

facilitate model comparison and model convergence, we used 

weakly informative priors for the intercept and variance terms 

(Lemoine 2019). We chose these priors by running prior predic-

tive checks, which we describe in Appendix S1 on prior predic-

tive checks (Figures S2–S4). Our null is a model of the mean, 

such that

where yti refers to a log(λ) value, t refers to the year of observa-

tion, i to a replicate within years (i exceeds one in datasets that 

are spatially replicated), ŷ is the mean model prediction, σ is the 

standard deviation, and α is a model intercept, the mean. In the 

CSM, we model the response variable as a function of xt , the 

mean of the 12 monthly anomalies (z- scores) over year t, as

where β is the coefficient for the effect of xt and ŷ is the mean 

model prediction referred to year t.

The first antecedent effect model is the WMM, which models 

the response as a function of xtk, the monthly temperature devi-

ations for year t and month k:

(1a)yti ∼ Normal
(

ŷ, �
)

(1b)ŷ = �

(1c)� ∼ Normal(0,0.5)

(1d)� ∼ Gamma(0.01,0.01)

(2a)ŷt = � + �xt

(2b)� ∼ Normal(0, 1)

(3a)ŷt = � + �
∑

k

wkxkt

(3b)wk = gk ∕
∑

k

gk

(3c)gk =
1

�w

√

2�
e
−

1

2

�

k−�

�w

�2

(3d)� ∼ Normal(6.5,12)[0, 12]

(3e)�w ∼ Normal(1, 12)[1, ∞)
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where the 12 xk monthly anomalies prior to the end of the 

relevant demographic year, are each weighted by wk. In turn, 

wk is a normalized vector of Gaussian weights, gk, with mean 

µ and scale σw. These priors on the µ and σw parameters 

 allowed consistent convergence to these models. The prior in 

Equation (3d) provides equal probability to µ values between 

1 and 12. The prior in Equation  (3e) allows values of �w so 

large that the weights tend to be equal. The square brackets 

in Equations (3d) and (3e) show the limits beyond which the 

 potential values of these parameters are truncated. While 

 values of µ do not extend beyond 0 and 12, σw has no upper 

bound.

The SAM (Ogle et al. 2015) adds flexibility to the WMM above,

where vector w contains 12 weights that sum to 1, and wk is 

a single weight that refers to monthly anomaly xkt observed 

in month k and year t. We set the concentration parame-

ter (�) to 1, corresponding to a uniform distribution on the 

12- dimensional simplex of weights. The added flexibility orig-

inates because the values in vector w do not follow a func-

tional form (albeit they are correlated). Henceforth, we refer 

to the term 
∑

kwkxkt, in both Equations  (3a) and (4a), as the 

“antecedent” of year t.

Finally, the FHM is a multiple regression whose coefficients 

are shrunk via the horseshoe prior proposed by Piironen and 

Vehtari (2017). These models estimate a separate slope value, βk, 

for each k month. The Finnish horseshoe prior prevents over-

fitting by shrinking estimates toward zero. This model is fit as 

follows:

Here, 12 βk values depend on a normal distribution whose stan-

dard deviation is controlled by τ, the “global scale,” and 12 �̃k 

“local scales.” The global scale τ tends to shrink every monthly 

estimate βk toward zero. On the other hand, the �̃k values allow 

the βk monthly estimates to become relatively large. In the 

FHM, the combination of τ and �̃k shrinks all βk coefficients 

toward zero, while controlling the magnitude of βk values for 

which there is evidence for a substantial departure from zero. 

We modified these models to fit survival, development, and re-

production data, which are non- normally distributed. We de-

scribe these modifications in the section “Models for data on 

survival, development, and reproduction” of Appendix S1.

2.3   |   Model Fitting

We fit models using a Hamiltonian Monte Carlo sampler via 

the R package rstan (Stan Development Team 2024). We fit 

models running four parallel chains for 16,000 iterations, with 

a burn- in of 6000 iterations, and thinning by saving one out of 

every eight iterations. Because we had 13 alternative models, 

four demographic responses (log(λ) and three vital rates), two 

climatic predictors, and 36 datasets, we fit a total of 3744 mod-

els. Fitting these many models made it unfeasible to check mod-

els one at a time. Therefore, we opted to perform model checks 

across model types, response variables, and dataset length. 

We checked for model convergence using four metrics. First, 

we flagged models with more than nine divergent transitions, 

models with a single parameter whose Gelman and Rubin con-

vergence diagnostic was above 1.1, models where at least one 

parameter had a ratio of the Monte Carlo standard error to the 

standard deviation of the posterior above 0.1, and a single pa-

rameter whose effective sample size was lower than 10% of the 

posterior sample. In Appendix S1, we provide the methods and 

results to assess the convergence of the Hamiltonian Monte 

Carlo samplers and assess model fit (Bayesian model checks).

2.4   |   Model Comparison

We compared model performance for each vital rate, climate 

predictor, and species combination. We performed comparisons 

based on the log pointwise predictive density (LPPD) (Bernardo 

and Smith  2009; Hooten and Hobbs  2015) calculated through 

a leave- one- year- out (LOYO) cross- validation (e.g., Tredennick, 

Hooten, and Adler  2016). A LOYO cross- validation creates a 

training set by leaving out an entire year of data rather than a 

single data point. The model is then fit for as many years as the 

dataset is composed of, each time leaving a different year out of 

the training set. The higher the value of the LPPD of the held- 

out data, the better the predictive performance of the model. 

Because we refit models, each time leaving out a single year of 

data, we fit a total of 54,048 models. Our model selection focused 

on LOYO cross- validation because we aim to predict year- level 

variation in vital rates. We did not perform k- fold, holdout, or 

exhaustive cross- validations because, despite being more con-

servative cross- validations, our datasets were sufficiently small 

(4a)ŷt = � + �
∑

k

wkxkt

(4b)w = Dirichlet

⎛
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⎜
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to generate convergence issues. We performed this procedure 

because the climate is strongly correlated among different sites 

in our spatially replicated datasets. In particular, 16 of our 36 

datasets are spatially replicated, and the mean correlation of 

their monthly climate anomalies is 0.98 (range = 0.74–1).

We compared model performance by plotting the difference 

in ΔLPPD—the difference in LPPD with the best model. The 

ΔLPPDi of model i is calculated as LPPDi—max(LPPD). For 

each species, we plotted heat maps of the ΔLPPDi values for each 

model, flagging the best three models. We then ordered heat 

maps by data length along the y- axis and by the year of climate 

data (t, t−1, and t−2) on the x- axis.

We addressed our three objectives by testing for differences in 

the relative support of our models using Pseudo- Bayesian Model 

Averaging. We calculated model weights using Pseudo- Bayesian 

Model Averaging for each combination of species, response 

variable, and predictor (temperature or precipitation). We cal-

culated model weights following equations (8) and (9) in Yao 

et al. (2018). LPPD relative weights using the same formula used 

for AIC weights, so that

where p is the LPPD relative weight, k refers to each model, SE is 

the standard error, and K is 13, the total number of models tested 

for each combination of species, response variable, and climatic 

predictor. We arcsine transformed these LPPD relative weights 

to make them normally distributed. We then used these arcsine- 

transformed LPPD relative weights as the response variable to 

address our three objectives. We addressed these objectives using 

graphs and average statistics. We plotted boxplots of model weights 

across all datasets, grouping them based on model types. This eval-

uated (1) the predictive performance of each of the five models. We 

plotted model weights of NMs to compare (2) the ability of climate 

to predict vital rates and population growth rate. We also used 

these results to explore the role of plant functional type, ecoregion, 

and generation time in explaining our results. Then, we linked rel-

ative model weights against the temporal replication of each data-

set to (3) verify whether such replication increased the predictive 

ability of antecedent effect models. We expected that replication 

would increase the predictive ability of either the worst or best 

models. Therefore, to test this hypothesis we fit quantile regres-

sions on these plots using the R package quantreg (Koenker 2024), 

from the 10th to the 90th quantile in increments of 10. Finally, we 

used our model selection results to (4) select a model that show-

cases the potential of antecedent effect models as exploratory data 

analysis tools. To select the dataset of our case study, we first visu-

ally selected models with high predictive performance. Finally, we 

plotted these models to choose a particularly striking and biologi-

cally sensible example.

2.5   |   Sensitivity Analysis

We assessed the solidity of our results by running three alterna-

tive analyses: one using only the longest datasets, another fitting 

antecedent effect models on 36 months of climatic data, and an 

analysis- fitting model that included both precipitation and tem-

perature. First, we re- run analyses including only datasets that 

were at least 20 years long. This analysis could have increased 

predictive ability because 20 years of data are considered the mini-

mum sample size to detect a climatic signal (Teller et al. 2016; van 

de Pol et al. 2016). Second, we fit our three antecedent effect mod-

els using all 36 months of climatic data. Third, we re- run all anal-

yses including year models using precipitation only, and models 

including both precipitation and temperature as predictors (using 

both 12 months and 36 months of data).

2.6   |   Case Study and Exploratory Analysis

We present a case study to showcase the potential of antecedent 

effect models as exploratory tools. We selected models with high 

predictive ability because they were the only ones whose model 

weights were unequal (for WMMs and SAMs), or whose effect sizes 

clearly differed from zero (for FHMs). Our case study modeled re-

production in Astragalus tyghensis, an endemic legume plant spe-

cies with an extremely restricted range encompassing arid lands of 

Western North America (Thorpe and Kaye 2008). This dataset has 

only 9 years of data but five sites, which must have substantially 

improved the chance of detecting climatic signals (Compagnoni, 

Evers, and Knight 2024). Using this example, we first show how 

antecedent effect models identify monthly climatic drivers of de-

mographic responses, and we discuss how these inferences can 

inform biological hypotheses. Second, we show how antecedent 

effect models improve model fit. We present models fit on the re-

production of A. tyghensis using precipitation anomalies 1 year 

prior to the last demographic observation (year t−1). This climatic 

predictor had high predictive power in our model comparisons.

We use this case study to show for each model its fit to data and 

the effect sizes of monthly climatic anomalies. To show model 

fit data, we plotted each raw reproduction data point against 

its corresponding prediction according to 200 randomly se-

lected posterior samples. To show model fit to data, we plot-

ted each raw reproduction data point against 200 randomly 

selected posterior sample predictions. To display the monthly 

effect sizes, we produced estimates of effect sizes suitable for a 

graphic comparison among CSMs, WMMs, SAMs, and FHMs. 

For the CSM, we divided the regression slope, β (Equation 2a), 

by 12, the number of months. For the WMMs and SAMs, we 

multiplied the regression slope, β (Equations  3a–4a), by the 

12 monthly weights, wk (Equations 3b–4b). Finally, the FHMs 

directly estimate 12 βk separate regression slopes. We rep-

resented these monthly effect sizes by plotting the median 

and the 95% credible intervals of the posterior on the y- axis, 

against the month number on the x- axis.

3   |   Results

3.1   |   Model Convergence

Few models showed issues with convergence (Figures  S5 

and S6), but those that did were fit to datasets with less than 

20 years of data (Figure S7). Moreover, model predictions were 
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compatible with our data, as indicated by our posterior predic-

tive checks (Figure S8).

3.2   |   Model Comparison

Antecedent effect models were not generally useful in predicting 

the effects of climate but performed well in isolated cases. When 

comparing LPPD weights, NMs were consistently the best- 

performing models (Figure 1). The variance in model weights 

was smaller in NM models, while the models including climatic 

predictors could reach very high or very low model weights 

(Figure  1). This variance in the LPPD weights suggests that 

estimating climate effects is advantageous for a subset of pop-

ulations that are presumably particularly sensitive to climate. 

However, estimating climate effects can substantially decrease 

predictive ability in other populations. There were no clear 

trends in which antecedent effect model had the best predictive 

performance, even if FHMs tended to perform better on log(λ) 

data (Figure 1; Figures S9–S12). Still, these average differences 

were small, potentially reflecting that these three models tend to 

provide similar information.

Models including climate had similar predictive performance 

across response variables, plant functional types, and ecore-

gions. On average, we found little difference in the predictive 

performance of response variables (Figure  2), albeit FHMs 

tended to predict log(λ) better than other climate models 

(Figure  1; Figures  S9 and S10). The predictive performance 

was also similar across plant functional types (Figure  S13), 

Ecoregions (Figure  S14), and plant species generation time 

(Figure S15).

The temporal replication of the studies did not improve average 

model performance, but it decreased the likelihood of fitting 

models with very low LPPD relative weights. The only quantile 

regression that shows a significant trend is linked to the 10th 

quantile, for which temporal replication increases LPPD relative 

weights (Figure S16). This result suggests that sample size only 

limits the negative effects of fitting models with large numbers 

of parameters on predictive ability.

In our sensitivity analysis, the results of our model comparison 

were held independently of the data and model used. First, se-

lecting datasets longer than 20 years did not change the main 

results that null models have the greatest predictive perfor-

mance, and that other climate models are roughly equivalent 

(Figure S17). Moreover, in these long- term datasets, the predic-

tive performance of climate models was lower than that of null 

models across response variables (Figure  S18). These results 

held despite these data including 36- month models. These 36- 

month models did not improve the predictive ability of climatic 

models (Figures S19 and S20). Finally, comparing precipitation- 

only models with models including precipitation plus tempera-

ture indicated that precipitation- only models tended to have 

better predictive ability (Figures S21–S25).

3.3   |   Case Study and Exploratory Analysis

The results of antecedent effect models provided biologically 

interpretable information that can be used to formulate hy-

potheses on the demography of A. tyghensis. All four models 

show that precipitation is negatively associated with reproduc-

tion (Figure 3). According to the WMM, the monthly anom-

alies preceding a demographic census tend to be the most 

important in driving reproduction. The SAM and FHM pro-

vide more precise insights, indicating that the most import-

ant climate windows are located two (May) and six (January) 

months prior to the demographic census. Thus, antecedent 

effect models indicate that the fecundity of this species is 

negatively correlated to the precipitation of the growing and 

dormant seasons. Therefore, in this case, antecedent effect 

models provided information with theoretical and practical 

implications, even if their predictive ability was similar to the 

CSM (Figure 3, Figure S11).

FIGURE 1    |    Null models (NMs) perform better than models using 

climate as a predictor. Box and whisker plots and point clouds showing 

the arcsine- transformed model weights for our 34 species, and across 

two climatic predictors, five model types, and four response variables. 

Panels separate models fit using precipitation or air temperature as 

predictor variables. The middle line of the boxplots shows the median, 

the upper, and lower hinges delimit the first and third quartiles, and 

the whiskers extend 1.5 times beyond the first and third quartiles. Each 

point refers to one of the 3744 model fits, and colors refer to the response 

variable of each model.
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4   |   Discussion

Predicting and understanding how climate affects the vital 

rates (survival, development, reproduction) of natural popu-

lations and their overall performance (e.g., population growth 

rate, λ) is a core ecological question. By comparing the predic-

tive performance of antecedent effect models to simpler lin-

ear models (NMs and CSMs), we found that (1) models using 

climate as a predictor did not reliably increase our ability to 

predict any of the vital rates and population performance, (2) 

dataset length has negligible effects on predictive power, and 

(3) despite having similar predictive ability to CSMs, anteced-

ent effect models provide biologically sensible insights on the 

timing of climatic effects. First, we hypothesize that the weak 

predictive ability of climate models, which is irrespective of 

dataset length, originates from either small climatic signals, 

low signal- to- noise ratio, or both. A potential solution to deal 

with the low signal- to- noise ratio is to use individual- level 

data with abundant covariate information. Second, given the 

generally poor predictive ability of our climate models, we 

conclude that on herbaceous demographic data, antecedent 

effect models are best used as exploratory tools for hypothe-

sis generation. For this exploratory aim, we recommend the 

Finnish horseshoe model (FHM), because the FHM has the 

largest flexibility.

Our initial expectation was that antecedent effect models 

would improve predictions, because they accommodate a 

variety of potential links between demography and climate 

(Kreyling 2010; Evers et al. 2021). This expectation was strong 

at least for our 12 datasets that exceeded 20 years of data, as 

this was the dataset length recommended for simulation stud-

ies focused on antecedent effect models (Teller et al. 2016; van 

de Pol et al. 2016). The predictive success of null models is a 

clear refutation of our initial expectation. We expected dataset 

length would positively affect the predictive ability of climatic 

variables by increasing the total sample size, and by increas-

ing the range of climatic conditions observed during the study 

(Compagnoni, Evers, and Knight  2024). For the fact that cli-

mate had small predictive power even in datasets exceeding 

30 years, we propose three possible explanations. First, the true 

effect of climate could be much smaller than what was used in 

previous simulation studies. For example, Teller et al. (2016) de-

fined the climate signals they simulated as “strong.” However, 

subsequent analysis of the type of data mimicked by their sim-

ulations found weak climatic signals with inconsistent effects 

on predictive power (Tredennick, Hooten, and Adler  2016; 

Tredennick et al. 2021).

Second, the signal- to- noise ratio might be quite low in aggre-

gated data such as what we employed for this study. For exam-

ple, the influential article by van de Pol et al. (2016) simulated 

a signal strength based on R2, choosing 0.2 as their lowest 

R2. Our experience with a large dataset of herbaceous plant 

population growth rates (Compagnoni et al. 2021) indicated a 

mean in- sample R2 of about 0.24. If such low signal- to- noise 

ratios were the norm, then accounting for confounding fac-

tors would be critical to understanding and predicting the 

effects of climate. Accounting for confounding factors could 

be facilitated by demographic individual data, which for ex-

ample allows quantifying competition and spatial location 

(Chu et  al.  2016). Third, the way in which climate affects 

plants might be too complex to capture via phenomenological 

models applied to aggregated population data. In principle, 

temperature and precipitation should correlate with the main 

factors affecting plant processes: solar radiation, leaf tem-

perature, soil moisture, and vapor pressure deficit (Lambers 

and Oliveira  2019). Accordingly, temperature and precipi-

tation are excellent predictors in optimal scenarios, such as 

FIGURE 2    |    Climate has a similar predictive power across response 

variables. Box and whisker plots and point clouds showing the arcsine 

transformed model weights of the null models by climate variable, and 

based on the type of response variable. In this plot, lower values reflect 

a higher predictive ability of the models including a climatic predictor. 

The middle line of the boxplots shows the median, the upper and lower 

hinges delimit the first and third quartiles, and the whiskers extend 1.5 

times beyond the first and third quartiles. Points represent 288 model 

fits: One for each species, response variable, and predictor variable 

(Null models were only one of the 13 models we fit on data).
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tree ring studies (Fritts  2012). In these studies, much larger 

sample sizes belong to individuals selected to be from range 

positions and microsite conditions that maximize climate sen-

sitivity (Klesse et al. 2018). On the other hand, our population 

dynamics data samples entire populations located at any posi-

tion within a species range. Thus, our data comprises individ-

uals and populations of varying climate sensitivity. With these 

types of data, unveiling climatic correlations might require 

sophisticated models; for example, models that approximate 

the microclimatic conditions at each site (e.g., Kearney and 

Leigh 2024).

The case study presented in this article showcases the poten-

tial of antecedent effect models for exploratory analysis and 

hypothesis generation. While antecedent effect models have 

on average similar predictive performance to CSMs, they pro-

vide granular information that is more useful scientifically. In 

our A. tyghensis case study, both the SAM and FHM showed a 

strong negative association between reproduction and the pre-

cipitation anomalies that occurred in the May and January of 

the preceding year. These results raise three hypotheses. First, 

such negative association with precipitation anomalies occur-

ring a year prior to a demographic observation could result from 

FIGURE 3    |    Antecedent effect models yield biologically meaningful insights. Case study showing the fits of the climate summary model (CSM), 

and the three antecedent effect models (WMM, SAM, FHM) to the reproduction of a natural population of the herbaceous perennial A. tyghensis, 

using precipitation anomalies 2 years preceding the demographic census. In each plot, columns represent, respectively, model fit and climate effect 

sizes. The rows refer to model type: Respectively the climate summary model (CSM), weighted mean model (WMM), stochastic antecedent model 

(SAM), and Finnish horseshoe model (FHM). In the first column, we show model fits using bivariate plots where the x- axis represents the observed 

reproductive values, and the y- axis represents, for each observed value, 200 randomly selected predicted values from the Bayesian posterior. In the 

second column, we show the effect sizes of each monthly climatic anomaly. Each monthly effect size is shown as a point range where the black 

circles represent the median, and the lines extend from the 2.5th to the 97.5th quantile of each posterior. In the CSM, these effect sizes correspond 

to the regression slope, β (Equation 2a), divided by 12. In the WMM and SAM, the effect sizes are produced by multiplying the regression slope, β 

(Equations 3a–4a) by the monthly weights, wk (Equations 3b–4b). Finally, the FHM estimates a separate slope, βk, for each monthly anomaly.
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indirect effects mediated through competition (Suttle, Thomsen, 

and Power 2007; Adler, Dalgleish, and Ellner 2012) or physio-

logical tradeoffs (e.g., costs of reproduction, Crone, Miller, and 

Sala 2009; Miller et al. 2012). Second, the correlation with the 

precipitation in January, a month when the mean temperature 

is just above or below 0°C, could reflect the effect of snowfall. 

This effect is often distinct from rain (Dalgleish et  al.  2011; 

Compagnoni and Adler 2014) and could arise in different ways: 

for example, because snow affects pathogens (Smull et al. 2019), 

it protects plants from frost (Inouye 2000), or because snowmelt 

provides a large pulse of resources (Noy- Meir 1973). Third, the 

large effect of May precipitation could reflect a key developmen-

tal phase occurring either in May or June. All three hypotheses 

call for further tests to be performed via analysis of existing data 

or field experiments. For exploratory studies, we recommend to 

exploit the flexibility of FHMs. FHMs usually provide qualita-

tively similar results to the SAMs but with the added benefit of 

simultaneously identifying positive and negative climatic sig-

nals. While it is unlikely for climate signals to go in opposite 

directions, we did observe such cases in some of our model fits. 

It is perhaps because of this flexibility that FHMs outperform 

WMMs and SAMs when predicting log(λ) (Figure 1).

Our experience building and comparing antecedent effect mod-

els informs our suggestions on dataset length, hyperparame-

ter priors, and emphasizes the role of prior predictive checks. 

While most of our models had no problems converging, prob-

lems occasionally arose when datasets had less than about 

20 years of data (Figure  S7). Therefore, in our case, the often 

recommended dataset length of 20 years (Teller et al. 2016; van 

de Pol and Bailey  2019) improved model convergence rather 

than model predictive ability. The choice of hyperparameter 

priors has strong effects on model fitting and performance. In 

weighted mean models (WMMs), truncated hyperparameter 

priors (Equations 3d and 3e) prevented the sampler from explor-

ing unrealistic parameter values, greatly facilitating model con-

vergence. In SAMs, we chose a vector of ones as the Dirichlet 

concentration parameter (Equation  4b) to not favor any par-

ticular monthly anomaly and to ensure that prior weights had 

a uniform distribution. A much lower number than 1 would 

favor models with a single non- zero weight. In FHMs, we sug-

gest using a standard deviation of 0.1 for the prior monthly ef-

fect sizes (Equation  5d). Using a standard deviation of 1 (e.g., 

Piironen and Vehtari 2017) generated unrealistically high varia-

tion in our prior predictive checks (Appendix S1: prior predictive 

checks). More generally, prior predictive checks were essential 

because our initial prior choices produced very different vari-

ances in predictions among model types and response variables. 

Moreover, priors generating unrealistically high variance had 

model convergence issues and lower predictive performance.

These results justify the continued data analysis and conceptual 

efforts to understand and predict the effects of climatic drivers 

on the vital rates of herbaceous plants. These effects of climate 

are complex, and antecedent effect models could contribute to 

understanding this complexity as a hypothesis generation tool. 

However, improvements in predictive ability will rely on data-

sets with larger replication, especially temporal replication. 

Moreover, conceptual breakthroughs such as those regarding 

the importance of indirect effects (Clark et al. 2021; Hacket- Pain 

et al. 2018), might also prove useful.
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