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Abstract 

Background For over three decades, the concomitance of cortical neurodegeneration and white matter hyperinten-

sities (WMH) has sparked discussions about their coupled temporal dynamics. Longitudinal studies supporting this 

hypothesis nonetheless remain scarce.

Methods We applied global and regional bivariate latent growth curve modelling to determine the extent to which 

WMH and cortical thickness were interrelated over a four-year period. For this purpose, we leveraged longitudinal 

MRI data from 451 cognitively unimpaired participants (DELCODE; median age 69.71 [IQR 65.51, 75.50] years; 52.32% 

female). Participants underwent MRI sessions annually over a four-year period (1815 sessions in total, with roughly 

four MRI sessions per participant). We adjusted all models for demographics and cardiovascular risk.

Results Our findings were three-fold. First, larger WMH volumes were linked to lower cortical thickness (σ = -0.165, 

SE = 0.047, Z = -3.515, P < 0.001). Second, individuals with higher WMH volumes experienced more rapid cortical thin-

ning (σ = -0.226, SE = 0.093, Z = -2.443, P = 0.007), particularly in temporal, cingulate, and insular regions. Similarly, those 

with lower initial cortical thickness had faster WMH progression (σ = -0.141, SE = 0.060, Z = -2.336, P = 0.009), with this 

effect being most pronounced in temporal, cingulate, and insular cortices. Third, faster WMH progression was associ-

ated with accelerated cortical thinning (σ = -0.239, SE = 0.139, Z = -1.710, P = 0.044), particularly in frontal, occipital, 

and insular cortical regions.
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Conclusions Our study suggests that cortical thinning and WMH progression could be mutually reinforcing rather 

than parallel, unrelated processes, which become entangled before cognitive deficits are detectable.

Trial registration German Clinical Trials Register (DRKS00007966, 04/05/2015).

Keywords White Matter Hyperintensities, Cortical Thickness, Latent Growth Curve Model, Longitudinal Modelling, 

Structural Magnetic Resonance Imaging

Introduction
Cortical thinning and white matter hyperintensities 

(WMH) progression are well-known ageing processes 

that take place throughout middle and late adult-

hood [1–9]. Both processes appear to be influenced by 

genetic and lifestyle factors [2, 10–15] as well as by the 

onset and progression of neurodegenerative and cer-

ebrovascular diseases [1, 2, 9, 16–20]. Although over-

lapping risk factors may offer an initial explanation for 

their concomitance [3, 6, 11, 21, 22], their persistent 

association after controlling for demographics and tra-

ditional cardiovascular risk factors [3, 6, 10, 23–25] has 

sparked more than three decades of research into cou-

pled temporal dynamics [3, 26].

Coupled temporal dynamics between WMH and cor-

tical atrophy are currently discussed from two non-

exclusive perspectives: the cerebrovascular and the 

neurodegenerative hypotheses [17, 26]. The cerebro-

vascular hypothesis posits that ischaemic and hypoxic 

damages—operationalised as WMH [15, 27–29]—may 

initially result in the depletion of oxygen, nutrients, and 

trophic support in perilesional regions [16, 28]. Subse-

quently, these damages may also disrupt the function 

and metabolic demands of compromised white matter 

tracts and associated cortical regions, leading to cortical 

atrophy [6, 9, 17, 27, 30]. On the other hand, the neuro-

degenerative hypothesis proposes that cortical neurode-

generation could contribute to WMH formation [17, 26, 

29, 31–34], especially in conjunction with tau pathologies 

[26, 29, 34]. Excessive tau phosphorylation could pro-

mote microtubule destabilisation, thereby causing axonal 

transport dysfunction, energy depletion, and calcium 

imbalance—a hallmark of Wallerian degeneration [34]. In 

the light of the posterior dominance of WMH in Alzhei-

mer’s disease (AD) [26, 35–38], both hypotheses would 

require effects of cortical neurodegeneration and WMH 

to be particularly pronounced in parietooccipital brain 

regions. Longitudinal evidence and multivariate model-

ling substantiating these two hypotheses remain none-

theless scarce, especially in cognitively unimpaired older 

adults [1].

Here, we leveraged bivariate latent growth curve mod-

elling (BLGCM) to examine the bidirectional relation-

ship between WMH and regional cortical thickness over 

four years in older individuals without objective cognitive 

impairment. We specifically sought to answer four main 

research questions:

Q1. Upon study entry, do individuals with larger total 

WMH volumes have lower cortical thickness? (inter-

cept-intercept covariance)

Q2. Do individuals with larger total WMH volumes 

at study entry experience faster cortical thinning? 

(cerebrovascular hypothesis; intercept-slope covari-

ance)

Q3. Do individuals with thinner cortices at study 

entry exhibit a faster increase in total WMH vol-

umes? (neurodegenerative hypothesis; intercept-slope 

covariance)

Q4. Do individuals exhibiting faster total WMH vol-

ume increases also undergo faster cortical thinning 

over time? (slope-slope covariance)

Methods
Study participants

We used baseline and annual follow-up data for up to 

48  months from participants of the observational lon-

gitudinal multicentre DELCODE (DZNE Longitudinal 

Cognitive Impairment and Dementia) Study [39]. DEL-

CODE is a memory-clinic-based observational multicen-

tre study from the German Centre for Neurodegenerative 

Diseases (DZNE) that uses multimodal assessment of 

preclinical, prodromal, and clinical stages of AD, with a 

particular focus on subjective cognitive decline. Study 

participants were either referred to the university-affil-

iated memory centres, including self-referrals, or were 

recruited through standardised public advertisements 

[39]. In this paper, we focused on cognitively unimpaired 

participants who underwent at least three MRI scanning 

sessions and whose follow-up MRI sessions took place 

within four months prior or after their yearly compre-

hensive examination. We followed the recommendation 

of conducting at least three assessments per subject to 

reliably estimate linear trends [40].

During the baseline visit, participants underwent 

a thorough evaluation at their local study site, which 

included medical history checks, a psychiatric and neu-

rological examination, neuropsychological testing, blood 

and cerebrospinal fluid (CSF) collection, and MRI in 

accordance with local standards. All DELCODE sites 
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used the Consortium to Establish a Registry for AD 

(CERAD-plus) neuropsychological test battery to assess 

cognitive function. Cognitively unimpaired participants 

performed better than -1.5 standard deviations of the 

age-, sex-, and education-adjusted normal performance 

on all subtests of the test battery [39].

The primary inclusion criteria for all groups were being 

aged 60 or older, fluency in German, the ability to pro-

vide informed consent, and having a study partner avail-

able [39]. The main exclusion criteria for all groups were 

conditions that clearly interfered with participation in 

the study or its procedures, including significant sen-

sory impairment. The following medical conditions were 

considered exclusion criteria: current or history of major 

depressive episode and major psychiatric disorders either 

at baseline (e.g., psychotic disorder, bipolar disorder, sub-

stance abuse), neurodegenerative diseases other than AD, 

vascular dementia, history of stroke with residual clini-

cal symptoms, history of disseminated malignant disease, 

severe or unstable medical conditions, and clinically sig-

nificant vitamin B12 deficiency at baseline. Prohibited 

drugs included chronic use of psychoactive compounds 

with sedative or anticholinergic effects, use of anti-

dementia agents, and investigational drugs for the treat-

ment of dementia or cognitive impairment one month 

before study entry and throughout the duration of the 

study [39].

All participants provided their written informed 

consent in accordance with the Declaration of Hel-

sinki at baseline. DELCODE has been registered within 

the German Clinical Trials Register (DRKS00007966, 

04/05/2015). Ethics committees of the medical facul-

ties of all participating sites (i.e., Berlin (Charité—Uni-

versitätsmedizin Berlin), Bonn, Cologne, Göttingen, 

Magdeburg, Munich (Ludwig-Maximilians-University), 

Rostock, and Tübingen) approved the DELCODE study 

protocol before inclusion of the first participants. The 

ethics committee of the medical faculty of the University 

of Bonn led and coordinated the process [39].

Total cardiovascular risk score

We established a total cardiovascular risk score for each 

participant by tallying their dichotomised (y/n) history 

of smoking, presence of obesity, hyperlipidemia, arterial 

hypertension, and diabetes, as reported in their medi-

cal records. We corrected the sum of present risk factors 

by the amount of available information. For example, if 

an individual had a history of arterial hypertension and 

diabetes but we did not have data on smoking, obesity, 

or hyperlipidemia, the final score would be 1.00. The cor-

rected total cardiovascular risk scores ranged from 0.00 

to 1.00, where the lowest and highest values denoted 

the absence or presence of all available risk factors, 

respectively.

MRI

MRI data were acquired at nine DZNE sites or associ-

ated university medical centres equipped with 3  T Sie-

mens MR scanners. In the present study, we leveraged 

the following structural sequences: T1w MPRAGE (full 

head coverage, 3D acquisition, GRAPPA factor 2, 1 

 mm3 isotropic, 256 × 256 px, 192 sagittal slices, TR/TE/

TI 2500/4.33/1100 ms, FA 7°) and T2w FLAIR (full head 

coverage, 3D acquisition, 1  mm3 isotropic, 256 × 256 

px, 192 sagittal slices, TR/TE/TI 5000/394/1800  ms). 

The DZNE imaging network oversaw operating proce-

dures, as well as quality assurance and assessment (iNET, 

Magdeburg) [39].

MRI‑based measurements

Cortical thickness

We used the CAT12 longitudinal pipeline [41] (neuro-

jena.github.io) to reconstruct cortical thickness surfaces 

for each subject and for each time point (ageing work-

flow; default parameters, except for final resolution, 

which we set to 1  mm3). We then estimated mean thick-

ness throughout the whole brain cortex, cerebral lobes, 

and cingulate and insular cortices.

WMH segmentation

We segmented WMH using the AI-augmented version of 

the Lesion Segmentation Toolbox (LST-AI) [42–44] and 

based the segmentation on both T1w MPRAGE and T2w 

FLAIR imaging data. We then calculated total WMH 

volumes.

Statistical analyses

We conducted all data analyses in RStudio (v1.3.1073; R 

v4.0.2) using lavaan (v0.6–16). We created figures using 

ggplot2 (v3.4.3) and the ENIGMA toolbox [45].

We applied LGCM to determine the extent to which 

WMH and cortical thickness were interrelated over time. 

(B)LGCMs [46] are a powerful class of structural equa-

tion models (SEM) to describe sample average trajec-

tories of one or two constructs over time through the 

specification of latent intercepts and latent slopes (i.e., 

initial levels and rates of change). The primary advan-

tage of BLGCM over linear mixed-effect (LME) models 

is its ability to simultaneously and symmetrically model 

changes in two outcome variables. BLGCM allows for the 

simultaneous estimation of growth trajectories for two 

latent constructs, facilitating the examination of their 

interrelationships over time [46–49]. In contrast, LME 

modelling deals with a single construct at a time, requir-

ing separate models for each and post-hoc analyses to 
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establish the association between individual intercepts 

and slopes.

We carried out univariate and bivariate LGCMs. We 

first used univariate LGCMs for contextualisation pur-

poses, to examine which covariates were associated with 

the baseline measurements and potential changes over 

repeated measures. We then focused on BLGCMs to 

assessed interrelationships between WMH and cortical 

thickness over time, by assessing the covariance between 

these four latent growth parameters [49] (Fig. 1).

We conducted global and regional analyses to identify 

associations at two levels of granularity. In the global 

analysis—with no spatial specificity—we focused on 

the interrelationship between mean cortical thickness 

and total WMH volume. In order to elucidate potential 

region-specific and cross-domain relationships, we addi-

tionally examined the relationship between total WMH 

volume and regional cortical thicknesses. Note that our 

approach is similar to a mass-univariate analysis scheme, 

with the difference being that we investigated region-spe-

cific effects through LGCM rather than through GLM. 

To reduce the dimensionality and thereby improve the 

feasibility of our multivariate SEM analysis, we consid-

ered (corresponding) bilateral regions jointly. We present 

the completely standardised solutions and include both 

standardised and unstandardised solutions in the supple-

mentary material (see Additional File 2).

Adjusting for covariates and confounders

We adjusted latent intercepts and slopes for effects of age, 

sex, years of education, total cardiovascular risk factor 

score, and total intracranial volume (TICV) in all models.

Data transformation

We applied a Box-Cox transformation to WMH volumes 

and exponential transformation cortical thickness to 

address skewness [50]. We z-scored all variables (pooled 

across timepoints) prior to model fitting. For the purpose 

of contextualisation and plotting, we back-transformed 

the fitted growth curve parameters afterwards.

Model fitting

We employed the maximum likelihood robust estimator 

to fit the model. We used the full information maximum 

likelihood estimation to handle missing values. To check 

for compliance with the assumption of missingness at 

random, we tested whether missingness in one column 

(1: missing; 0: not missing) could be predicted from the 

remaining ones. In all instances, the resulting p-values 

exceeded 0.05.

Fig. 1 BLGCM to probe the coupling of cortical thickness and WMH over repeated measures. Illustration of the longitudinal structural equation 

modelling (SEM) model. We employed the conventional notation with squared variables indicating observed and measured variables (manifest 

variables) and circular ones referring to latent (unobserved) variables. Single-headed solid arrows illustrate a modelled relationship between two 

variables, with the arrow pointing towards the dependent variable. Single-headed dashed arrows signify a relationship between two variables, 

where the weight is fixed. Double-headed arrows represent the covariance (hyperparameter) between two variables. Grey triangles represent latent 

intercept estimates. We further adjusted latent intercepts and slopes for age, sex, years of education, total cardiovascular risk factors, and TICV. We 

omitted these paths for visualisation purposes
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Prior to model fitting and solely to ensure model fit, 

we used Tukey’s fences to identify and remove outli-

ers in all data points (threshold of 1.5) [51]. The num-

ber of individual data points that were removed can be 

retrieved from Supplementary Table 1 in Additional File 

1. We evaluated the fit of global and regional models by 

analysing their root mean square error of approximation 

(RMSEA; values ≤ 0.05 indicate good fit), comparative fit 

index (CFI; values exceeding 0.95 indicate good fit), and 

standardised root mean residual (SRMR; values < 0.08 

suggest good fit) [52]. For the sake of transparency, when 

discussing the models, we disclosed their convergence 

and compliance with the aforementioned thresholds.

Correction for multiple comparisons

We employed the False Discovery Rate (FDR) correction 

[53] method to account for the issue of multiple compari-

sons on all region-wise analyses.

Results
Study participants

Among the 722 cognitively unimpaired participants 

enrolled in the DELCODE study, 451 attended a mini-

mum of three annual visits (1815 MRI sessions; median 

age 69.71 [IQR 65.51, 74.50] years; 52.32% females; 

median years of education 14 [IQR 13, 17]). The aver-

age number of scans per participant was approximately 

four (4.192 [95%-CI 4.118, 4.264]), with 191, 155, and 105 

participants attending exactly five, four, and three of the 

five annual visits, respectively. Aside from obesity, which 

had missing records for seven cognitively unimpaired 

participants, we had complete information for all other 

cardiovascular risk variables included in the total cardio-

vascular risk score.

Univariate findings

WMH volumes

Model fit The univariate LGCM on WMH volumes 

converged and provided good model fit (RMSEA = 0.000, 

CFI = 1.000, SRMR = 0.009).

Do covariates explain the variability in WMH vol-

umes? WMH volumes were larger in older indi-

viduals (βAge = 0.374, SE = 0.042, Z = 8.932, P < 0.001) 

and in those with higher total cardiovascular risk fac-

tor scores (βVascular Risk = 0.102, SE = 0.044, Z = 2.303, 

P = 0.021). Females had larger WMH volumes than males 

(βFemale = 0.189, SE = 0.060, Z = 3.161, P = 0.002), despite 

females in our sample being on average younger (covari-

ance between female sex and age = -0.165, SE = 0.046, 

Z = -3.607, P < 0.001) and having lower total cardiovascu-

lar risk scores than males (covariance between female sex 

and cardiovascular risk = -0.184, SE = 0.045, Z = -4.128, 

P < 0.001). In addition, females had on average fewer years 

of education than males (covariance between female sex 

and years of education = -0.238, SE = 0.043, Z = -5.569, 

P < 0.001).

Do WMH volumes change over time, and which covari-

ates relate to change rates? WMH volumes gener-

ally increased over the follow-up period of four years 

(Fig.  2A; intercept of WMH slope = 1.117, SE = 0.110, 

Z = 10.177, P < 0.001). On average, individuals expe-

rienced an increase in WMH volumes of about 0.536 

[95%-CI 0.442, 0.630] ml/year. WMH progression rates 

varied substantially among individuals (Fig. 2B; variance 

of WMH slope = 0.987, SE = 0.015, Z = 67.281, P < 0.001) 

and, even though most individuals experienced consist-

ent increases in WMH volumes over time, a few (10%) 

showed decreases during the same period. The most evi-

dent case of WMH volume regression was observed in a 

female participant in her 60 s, with a total cardiovascular 

risk score of 0.0, and 15 years of education (higher educa-

tion). Regression in this participant was most noticeable 

in occipital brain regions and could be attributed to a loss 

of periventricular tissue caused by a substantial enlarge-

ment of the occipital horns of the lateral ventricles over 

time (Supplementary Figure S1 in Additional File 1).

Cortical thickness
Model fit

All univariate LGCM fitted to cortical thickness con-

verged and had good fit indices (RMSEA ≤ 0.05, 

CFI ≥ 0.95, SRMR ≤ 0.05).

Do covariates explain the variability in cortical thickness?

Mean cortical thickness values were generally lower in 

older individuals (βAge = -0.334, SE = 0.048, Z = -6.964, 

P < 0.001). We did not find sex, years of education, or 

cardiovascular risk factors to relate to baseline cortical 

measurements.

Does cortical thickness change over time, and which 

covariates relate to change rates?

The thickness of cerebral cortex generally decreased over 

the course of four years at an average rate of approxi-

mately -0.002 [95%-CI -0.003, -0.001] mm/year (Fig. 2C; 

intercept of mean cortical thickness slope = -0.206, 

SE = 0.096, Z = -2.152, P = 0.031). On average, this reduc-

tion was distributed across the cingulate, temporal, and 

parietal cortices, with average annual thinning rates of 

0.008 [95%-CI 0.007, 0.009] mm/year, 0.003 [95%-CI 

0.002, 0.004] mm/year, and 0.003 [95%-CI 0.002, 0.003] 
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mm/year, respectively (Fig.  2D). Frontal, occipital, and 

insular cortices showed, on average, no significant 

changes over the four-year period ( PFDR > 0.05).

Cortical thinning rates varied substantially across indi-

viduals (variance of mean cortical thickness slope = 0.902, 

SE = 0.051, Z = 17.837, P < 0.000). The age of the patient 

accounted for part of this inter-individual variability, 

with annual cortical thinning rates generally slowing 

with advancing age (βAge = -0.275, SE = 0.082, Z = -3.338, 

P = 0.001). Other covariates, including sex, years of edu-

cation, and cardiovascular risk score, did not show a clear 

relationship with cortical thinning.

Bivariate findings

Model fit All BLGCMs also converged and had a satisfac-

tory model fit (RMSEA ≤ 0.05, CFI ≥ 0.95, SRMR ≤ 0.05).

Q1. Upon study entry, do  individuals with  larger total 

WMH volumes have lower cortical thickness? At base-

line, individuals with larger total WMH volumes had 

lower mean cortical thickness values (Fig. 3A Q1; global 

model, σ = -0.165, SE = 0.047, Z = -3.515, P < 0.001). With 

the exception of the parietal cortex, this association was 

generally present across cortical regions (Fig.  3B Q1; 

regional model).

Q2. Do individuals with  larger total WMH volumes 

at study entry experience faster cortical thinning? Indi-

viduals with larger baseline WMH volumes had faster 

thinning of the cerebral cortex (Fig. 3A Q2; global model, 

σ = -0.226, SE = 0.093, Z = -2.443, P = 0.007), especially 

across temporal, cingulate, and insular cortices (Fig.  3B 

Q2; regional model, temporal σ = -0.180, SE = 0.082, 

Z = -2.197, PFDR = 0.028; cingulate σ = -0.217, SE = 0.074, 

Z = -2.953, PFDR = 0.008; insular σ = -0.280, SE = 0.101, 

Z = -2.773, PFDR = 0.008). The relative loss in cortical thick-

ness in the temporal, cingulate, and insular cortices was, 

on average, 1.46% higher in individuals with the highest 

25% of WMH volumes compared to those in the lowest 

25% (Fig. 4A Q2.1-Q2.3).

Q3. Do individuals with  thinner cortices at  study entry 

exhibit a  faster increase in  total WMH volumes? Indi-

viduals who experienced faster progression of WMH had 

lower mean cortical thickness values at baseline (Fig. 3A 

Q3; global model, σ = -0.141, SE = 0.060, Z = -2.336, 

P = 0.009). Closer examination of this relationship 

revealed that it was particularly evident in those with 

thin temporal, cingulate, and insular cortices (Fig.  3B 

Q3; regional model, temporal σ = -0.135, SE = 0.064, 

Z = -2.122, PFDR = 0.034; cingulate σ = -0.148, SE = 0.063, 

Z = -2.366, PFDR = 0.034; insular σ = -0.154, SE = 0.070, 

Z = -2.202, PFDR = 0.034). To put into perspective, the rela-

tive increase in WMH volumes over a four-year period 

was, on average, at least 11.01% higher in individuals with 

the thinnest temporal, cingulate, or insular cortices com-

pared to those with the thickest cortices (thinnest 25% vs 

thickest 25%) (Fig. 4A Q3.1-Q3.3).

Q4. Do individuals exhibiting faster total WMH vol-

ume increases also  undergo faster cortical thinning 

over time? Over time, individuals who underwent faster 

Fig. 2 Changes in WMH volumes and cortical thickness over four years. We obtained latent intercepts and slopes for each individual 

through the application of univariate LGCM to WMH volumes and cortical thickness (separate models for each neuroimaging feature). We 

used them to compute latent growth curve parameters and predict individual trajectories, corrected for age, sex, years of education, total 

cardiovascular risk scores, and TICV. Prior to plotting and to enhance interpretability, we back-transformed all predicted measurements. A Total 

WMH volume trajectories, as predicted by the model. Light blue lines represent the predicted trajectories and the dark blue one the average 

one. B Back-transformed individual factor scores of latent slopes for WMH, summarised in the density plots, indicate that WMH volumes generally 

increased over time. We adjusted density plots such that the modes attain the highest value, irrespective of the actual frequency. The rate 

of change varied substantially across individuals in both cases. C Mean cortical thickness trajectories, as predicted by the model. Light purple lines 

represent the predicted trajectories and the dark purple one the average one. D Back-transformed individual factor scores of cortical thicknesses 

across the considered brain regions. The variability in change rates indicated significant inter-individual differences in regional cortical thinning
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WMH progression simultaneously experienced faster 

cortical thinning (Fig.  3A Q4; global model, σ = -0.239, 

SE = 0.139, Z = -1.710, P = 0.044). This association was 

evident in frontal, occipital and insular regions (Fig.  3B 

Q4, Fig.  4B; global model, frontal σ = -0.261, SE = 0.132, 

Z = -1.982, PFDR = 0.047, occipital σ = -0.315, SE = 0.140, 

Z = -2.255, PFDR = 0.047, insular σ = -0.274, SE = 0.131, 

Z = -2.097, PFDR = 0.047). Other cortical regions did not 

show significant evidence of this association.

Discussion
We studied the interrelationships between WMH and 

cortical thickness over a four-year period in 451 older 

adults without objective cognitive impairment (1815 

MRI sessions in total) using a longitudinal modelling 

approach. We made both methodological and clinical 

contributions to the ongoing efforts to understand the 

relationship between cerebrovascular dysfunction and 

neurodegeneration. First, our study demonstrates the 

potential of integrating surface-based morphometry and 

BLGCM to investigate interrelationships between neuro-

imaging markers over time. Second, our findings support 

the notion that cortical thinning and WMH progres-

sion might be mutually reinforcing processes, entangled 

over a four-year period in a complex and region-specific 

manner. Our results suggest that this coupling takes place 

even among individuals with a low vascular risk, given 

DELCODE’s inclusion and exclusion criteria.

WMH progression

WMH generally progressed over the course of four years, 

reiterating that ageing is associated with WMH increase 

and constitutes a major risk factor for white matter 

pathology [2, 14, 15, 28, 54]. Significant individual differ-

ences in WMH volume changes suggest, however, that 

there are numerous other factors that were not accounted 

for in our study that might contribute to subject-specific 

progression of WMH in ageing. For example, heteroge-

neity of WMH volumes and progression rates could be 

reflective of the brain’s ability to respond to and heal 

from white matter injuries. By extension, heterogeneity of 

WMH volumes and progression rates could be reflective 

of past and current socioeconomic status and cardiovas-

cular risk factors, as well as the adoption of an unhealthy 

lifestyle [2, 55, 56]. This might explain why greater cardi-

ovascular risk scores was associated with higher baseline 

WMH volumes in our sample.

Interestingly, even though, in our study sample, males 

were generally older than females and had higher cardio-

vascular risk factor scores than females, females showed 

Fig. 3 Relationship between latent growth parameters from global and regional BLGCMs. We employed longitudinal BLGCMs to characterise 

the spatiotemporal interrelation between WMH volumes and cortical thickness over the span of four years. We adjusted latent intercepts and slopes 

for age, sex, years of education, total cardiovascular risk scores, and TICV. (A) Relationship between latent growth curve parameters obtained 

from the global model. At baseline, individuals with larger WMH volumes had lower cortical thickness. Over time, those experiencing rapid cortical 

thinning initially had large total WMH volumes. Similarly, those with rapid WMH progression had thinner cortices at baseline. In general, faster WMH 

progression was linked to more rapid cortical thinning (Q4). (B) Regional analyses suggest cross-domain associations have regional specificities. 

We applied FDR correction to account for multiple comparisons. In regions highlighted in red, we found a statistically significant covariance 

between latent growth curve parameters after FDR correction ( PFDR < 0.05)
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significantly larger WMH volumes at baseline compared 

to males even after accounting for TICV. WMH progres-

sion rates over the course of four years between sexes 

were nonetheless comparable. For these two scenarios to 

be compatible, WMH would clearly need to evolve faster 

in females than in males before the age of 70 years (i.e., 

the median age in this study). Menopause may constitute 

a potential explanation for this sex-specific susceptibil-

ity to WMH. A relatively recent work in the Rhineland 

study, a large population-based German cohort, found 

that while pre-menopausal women and men of similar 

age did not differ in WMH volumes, post-menopausal 

women did have significantly larger WMH volumes com-

pared to men of similar age [57]. This finding suggests 

that indeed menopause and accompanying hormonal and 

physiological changes might be behind this sex-difference 

[57]. Another explanation could be that elderly women 

in this ageing cohort had, on average, lower educational 

attainment, which could also contribute to their vulner-

ability to CSVD. The likely multifactorial nature of this 

finding requires careful consideration during model-

ling and reporting as well as dedicated analysis shedding 

light on the mechanisms potentially mediating such a 

vulnerability.

Albeit less commonly, a small number of participants 

exhibited clear and consistent WMH volume regression 

throughout the study period, as reported in previous lit-

erature [14, 58]. The case with the most regression coin-

cided with the progression of ventricular enlargement. 

While frequently discussed in the context of a radiologi-

cal or technical issue [58], our finding suggests that gen-

uine changes in one neuroimaging marker can directly 

influence another (e.g., enlargement of lateral ventricles). 

This finding strongly highlights the need for multimodal 

longitudinal strategies to gain a more comprehensive 

understanding of the synergistic role of cerebrovascular 

and neurodegenerative processes.

Cortical thinning

The thickness of the cerebral cortex decreased over the 

course of four years, corroborating that ageing also drives 

cortical thinning [7, 59]. The rate at which thinning 

occurred was nonetheless subject- and region-specific. 

The cingulate cortex underwent the fastest thinning over 

Fig. 4 Cross-domain intercept-slope and slope-slope associations.A Predicted four-year changes in cortical thickness and WMH trajectories, 

stratified by baseline WMH volumes and cortical thickness, respectively. We categorised individuals based on whether their latent intercepts were 

below the 25th or above the 75th percentile, respectively. B Relationship between predicted changes in cortical thickness and WMH volumes 

over four years. We back-transformed all predicted measurements to plotting for interpretability purposes. We adjusted latent intercepts and slopes 

for age, sex, years of education, total cardiovascular risk scores, and TICV
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four years, with an average rate of 0.008 [95%-CI 0.007, 

0.009] mm/year. This apparent ageing-related vulnerabil-

ity is consistent with previous research indicating that 

both the caudal anterior and posterior cingulate cortex 

shrink during normal ageing [60]. The behavioural conse-

quences of the rate of thinning in terms of decline in cog-

nitive control and integrating behavioural, affective, and 

cognitive processes [61] remain to be elucidated.

Cortical thinning showed considerable heterogeneity 

across subjects. Somewhat surprisingly, such inter-sub-

ject variability could not be fully explained by age, sex, 

years of education, or cardiovascular risk factors. This 

finding ultimately suggests that other factors, such as 

genetics and lifestyle factors beyond cardiovascular risk 

factors [10–13], might influence cortical thinning dur-

ing late life, possibly to a larger extent than demograph-

ics and established cardiovascular risk factors. Given that 

the rate of thinning might affect cognitive performance 

and activities of daily living, future research should deter-

mine the contribution of brain resilience and (modifiable) 

lifestyle factors to abnormal cortical thinning, as such 

findings could advance the development of novel inter-

ventions [62].

Co‑occurrence beyond common risk factors

Even after adjusting for shared risk factors, we found 

evidence for a negative correlation between the initial 

thickness of the cerebral cortex and the initial volume 

of WMH, in line with previous work [3, 6, 10, 23–25]. 

While other factors may contribute to this relationship—

which we did not include in our analysis (e.g., genet-

ics and lifestyle)—this observation, found in a relatively 

healthy sample, suggests shared underlying pathological 

mechanisms.

WMH and cortical thinning

WMH volumes partially accounted for the rate of cortical 

thinning across the entire brain over the course of four 

years, particularly in the temporal, cingulate, and insular 

cortices. This observation is consistent with the cerebro-

vascular hypothesis [1, 63–65] and supports the notion 

that WMH are the visible tip of the iceberg [1], a sign of 

widespread rather than focal cerebrovascular and meta-

bolic impairment [66, 67].

The apparent region-specific nature of the coupling 

between WMH volume and regional cortical thickness 

raises the possibility that white matter fibres could be 

involved in the downstream effects of WMH. Potential 

secondary effects of WMH along the inferior fronto-

occipital fasciculus may, for instance, explain why indi-

viduals could experience rapid thinning concurrently 

across the temporal, cingulate, and insular cortical 

regions. Mounting data indeed suggests that abnormal 

tissue characteristics can be found in intra- and per-

ilesional white matter regions, but also in white matter 

fibres traversing WMH [1, 27, 67, 68]. Also, cross-sec-

tional investigations conducted in CSVD cohorts have 

demonstrated that cortical regions connected to incident 

lacunes, subcortical lacunar infarcts, and WMH through 

white matter fibres exhibit significantly reduced thick-

ness than those that are not [30, 63–65]. Despite the 

overall compelling evidence for a contribution of WMH 

to cortical thinning, additional research leveraging imag-

ing techniques like white matter tractography as well 

as animal models is needed to shed light on the role of 

white matter fibres in the long-term and remote effects of 

WMH in the brain.

Cortical thickness and WMH progression

The progression of WMH over four years was partly 

explained by the thickness of the cerebral cortex, with 

slower WMH progression occurring in individuals with 

thicker global, temporal, cingulate, and insular corti-

cal thicknesses at baseline. This simultaneous associa-

tion may indicate potentially higher brain maintenance 

as a mechanism of healthy ageing [69] and may be mul-

tifaceted. Neuronal loss in these cortical regions may be 

linked to lifestyle adaptations stemming from ageing that 

contribute to a decline in social interactions, emotional 

responses, and the integration of sensory information 

[70–72]. Considering the involvement of the insular cor-

tex in the regulation of autonomic functions, a decline in 

this region could also result in blood pressure dysregu-

lation [73, 74], a condition which has been extensively 

shown to be associated with increased progression of 

WMH, and with more severe manifestations of CSVD 

[28, 55, 75].

The association between baseline cortical thickness 

and WMH progression has a fundamental ramification: 

it supports the multi-factorial origin of WMH, with neu-

rodegeneration contributing to the progression of WMH. 

Since cortical neurodegeneration accelerates with the 

pathophysiology of AD, this would explain why posterior 

WMH appear in subjects with minimal vascular pathol-

ogy across the AD spectrum and why WMH in deep and 

periventricular posterior regions appear characteristics 

of AD [26, 36, 38, 76]. It is also possible that an early (pre-

clinical) increase in biomarkers indicative for AD may 

cause changes in the insular cortex, which then affects 

the cardiovascular system [73, 74, 77] and ultimately 

speeds up the progression of WMH in the brain—a pos-

sible explanation for Fig.  3B Q3. While promising, fur-

ther research in other cohorts—especially with available 

amyloid- or tau- positron emission tomography [78]—are 

needed to determine how age- and AD-driven cortical 

neurodegeneration influences WMH [76].
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WMH progression and cortical thinning

WMH progression and cortical thinning were associ-

ated with one another, suggesting a rather consistent 

and predictable relationship between the two processes, 

wherein changes in one marker are accompanied by cor-

responding changes in the other and vice versa. In our 

group of cognitively unimpaired participants, this slope-

slope association was particularly evident across frontal, 

occipital, and insular brain regions. This pattern seems 

even more widespread with advanced stages of AD, as 

highlighted in a recent work with autosomal dominant 

AD and late-onset AD [33]. Further application of our 

methodology to cohorts at various stages of AD could, 

for example, provide further information on the mecha-

nisms underlying the simultaneous progression of both 

processes.

Strengths and contextualisation

Longitudinal studies with cognitively unimpaired 

elderly participants exploring cross-domain associations 

between WMH and cortical thickness are scarce [1, 4, 

79]. Whenever this kind of research has been done, the 

evidence supporting any kind of coupling has generally 

been lacking. In septuagenarian community-dwelling 

participants, Dickie et al. [4] could not find enough evi-

dence supporting the relationship between total WMH 

volumes and cortical thickness of cortical grey mat-

ter structures neighbouring the Sylvian fissures over a 

three-year period. In a cohort of cognitively unimpaired 

participants, Hotz et  al. [79] investigated cross-domain 

associations between total WMH volume and thin-

ning of the entorhinal cortex over a duration of seven 

years using BLGCM. The authors found no evidence for 

cross-domain coupling and this absence of association 

was evident both at the study’s baseline and throughout 

its duration. Evidence supporting cross-domain associa-

tions has nonetheless been growing in participants symp-

tomatic or more severe presentations of cerebrovascular 

[63–65, 78, 80] and neurodegenerative pathologies [33, 

78], as well as in those with neuroinflammatory condi-

tions, such as multiple sclerosis [81, 82].

A potential explanation for such contradictory results 

may well lie in the stage of dysfunction at which each 

participant is situated, i.e., coupling only becomes evi-

dent at advanced, symptomatic stages of cerebrovascu-

lar and neurodegenerative disease. On the other hand, 

as emphasised by our study, there are regional nuances 

to these cross-domain relationships that analyses with 

a lower level of granularity might fail to capture. This 

underscores the significance of employing multimodal 

and regional approaches to gain a more comprehensive 

understanding of the local and distant effects of one pro-

cess on the other.

Limitations

Our research has four main limitations. First, even 

though our BLGCM aligns with the data, causality 

remains elusive due to model equivariance. Latent change 

score models might be promising for further study of 

specific interactions over discrete time intervals [83]. 

The mass-univariate application of the BLGCM could 

be streamlined by using extended measurement mod-

els [84]. We can state, however, that our data supports 

a specific and partial spatiotemporal coupling between 

cortical neurodegeneration and cerebrovascular dysfunc-

tion. The specific circumstances that might lead to such 

coupling often remain undetermined and likely require 

the inclusion of more extensive biological parameters 

including complementary imaging modalities, such as 

diffusion tensor imaging [27, 78, 81]. If a Wallerian-like 

degeneration is responsible for the observed coupling—

as also discussed in the literature [3, 5, 9, 17, 26, 34, 85]—

there should be evidence within the white matter fibres 

themselves that mediate the interrelationships between 

cortical thickness and WMH. Second, we considered 

a relatively healthy sample from a study in which cer-

ebrovascular dysfunction is under-represented and took 

into account a relatively short time span (48 months, i.e., 

4  years). This may have prevented a few cross-domain 

associations to become more evident. The dynamics over 

longer time periods, as well as in other cohorts remain 

elusive, but will be a matter of future investigation. 

Third, this work did not consider subcortical structures, 

such as the hippocampus, which may also be affected by 

ischaemic or hypoxic damage indicated by the presence 

of WMH. The BLGCM can be easily expanded to inves-

tigate the relationship between WMH and atrophy in 

subcortical structures, and this will be explored in future 

research. Fourth, we have, thus far, not assessed potential 

cognitive sequelae of WMH progression, cortical thin-

ning, or their coupling in this study. Because these two 

processes appear to be coupled prior to any observable 

objective cognitive deficiencies, it could be that cognitive 

consequences are not detectable at this asymptomatic 

stage or that cognitive reserve is still able to compensate 

for the ongoing pathology or, as a recent study suggests, 

that cortical measurements predict well chronological 

age but not memory performance [86]. A trivariate latent 

change score model with WMH, cortical thickness, and 

cognitive performance could be used in the future to 

address this limitation.

Conclusion
Our work provides longitudinal evidence that cortical 

thinning and WMH progression could be mutually rein-

forcing as opposed to parallel, disassociated processes. 

The coupling between these two neuroradiological 
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features appears to be entangled prior to the onset of any 

detectable cognitive deficits. Our findings support the 

ongoing discussion on perilesional and remote impacts 

of WMH, but, at the same time, provide evidence for 

the effects of cortical neurodegeneration on white mat-

ter integrity. Comprehensive, multimodal approaches, 

such as the one applied in this study, have the potential to 

facilitate the detection of downstream damage associated 

with the synergistic interaction among ageing, CSVD, 

and neurodegeneration in the brain.
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