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Quantum measurements are ubiquitous in quantum information processing tasks, but errors can

render their outputs unreliable. Here, we present a scheme that implements a robust projective

measurement through measuring code-inspired observables. Namely, given a projective POVM, a

classical code, and a constraint on the number of measurement outcomes each observable can have,

we construct commuting observables whose measurement is equivalent to the projective

measurement in the noiseless setting. Moreover, we can correct t errors on the classical outcomes of

the observables’ measurement if the classical code corrects t errors. Since our scheme does not

require the encoding of quantum data onto a quantum error correction code, it can help construct

robust measurements for near-term quantum algorithms that do not use quantum error correction.

Moreover, our scheme works for any projective POVM, and hence can allow robust syndrome

extraction procedures in non-stabilizer quantum error correction codes.

Quantum measurements, ubiquitous in quantum information processing
tasks, are basic building blocks used in all quantum algorithms, such as in
quantum sampling1–3, quantum learning4–8, quantumchannel estimation9–12,
quantumparameter estimation13–20, or universal quantumcomputations21–24.
However, errors in quantum measurements prevent these quantum algo-
rithms from unlocking their full potential.

Quantum algorithms use either just the classical outputs of quantum
measurements or both the classical outputs and the measured states. Near-
term quantum algorithms such as quantum sampling, quantum learning,
and quantum parameter estimation algorithms use primarily the classical
outputs of quantum measurements. When errors afflict the classical out-
comes these near-term quantum algorithms’ measurements, the precision
of these quantum algorithms’ outputs suffers. Regarding near-term quan-
tum algorithms, there has been a plethora of recent results on the topic of
quantumerrormitigation25–30, where the goal is to reduce the statistical error
of quantummeasurements. This is achieved through repeated experiments
and classical post-processing of the additional classical data obtained.
However, the question of how to directly correct such measurement errors
in these near-term algorithms without access to quantum error correction
(QEC) is an open problem.

Universal quantum computations can use both quantum and classical
outputs of measurements. Correction of both quantum and classical errors
in measurements using stabilizer codes has been discussed in the context of
data-syndrome codes31–37, single-shot QEC38–40, and fault-tolerant quantum
computing41. However, the pertinent question of how to correct measure-
ment errors for non-stabilizer codes, such as for bosonic codes42–46, remains
unanswered.

Here, we present a scheme that implements a robust projective mea-
surement through measuring code-inspired observables. Namely, given a
projective POVM, a classical code, and a constraint on the number of mea-
surement outcomes each observable can have, we construct commuting
observables whose measurement is equivalent to the noiseless projective
measurement. Moreover, we can correct t errors on the classical outcomes of
the observables’ measurement if the classical code corrects t errors.
The minimum number of commuting observables required depends on
(1) the number of measurement outcomes for each commuting observable,
(2) the number of measurement outcomes for the underlying projective
measurement, and (3) the number of errors on classical outcomes that we
wish to correct. We obtain bounds on the minimum number of commuting
observables required based on bounds on the parameters of classical codes.

We suggest how to implement our scheme using ancillary coherent
states. The requirements are modest. Namely, we need access to a linear
coupling between the observables and ancillas, and the ability to perform
homodyne measurement on the ancillas. Hence, using a modest amount of
quantum control, we can in fact correct measurement errors, without need
for QEC codes.

We explain how our scheme allows the correction of measurement
errors in any QEC code that satisfies the Knill-Laflamme QEC criterion47.
Namely, given any QEC code that corrects a set of errors K, we bound the
minimum number of commuting observables nK;t required to correctly
perform the syndrome extraction stage in the Knill-Laflamme recovery
procedure if there are up to t errors on the syndrome. Based on this, we give
bounds on n

K;t , and elucidate this bound for binary QEC codes and the
binomial code.
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We give two ways to implement our scheme. The first approach
involves adispersive coupling of thequantumsystem to an ancillary bosonic
mode which allows us to measure our constructed observables using geo-
metric phase gates and homodyne detection. The second approach is spe-
cialized to robust stabilizer measurements for qubit stabilizer codes, and we
give a protocol to measure our observables via unitary control on the
extended system and measurement of the first qubit (see Fig. 2). We illus-
trate the potential of our scheme numerically where we compare the per-
formance of our scheme with a (1) baseline scheme that measures a
projective POVM with 16 elements via the measuring of four observables
and (2) a simple repetition scheme (see Figs. 3 and 4).

We envision our scheme to complement existing quantum error
mitigation techniques, and thereby enhance the performance of near-term
quantum algorithms. In the longer term, our scheme can also enhance the
design of fault-tolerant quantum computations on non-stabilizer codes,
such as those reliant on bosonic codes46,48.

Results
Measurements
We can describe a measurement as a POVM49, which is a set of positive
operators that sum to the identity operator. Without loss of generality, we
can always focus on projective POVMs, where the positive operators are
furthermore pairwise orthogonal projectors. This is because Naimark’s
theorem ensures that for any POVM, we can always perform a projective
POVM on an extended Hilbert space50.

From the Born rule, measuring a projective POVM P: = {P1,…,PM}
with pairwise orthogonal projectors on an input state ρ yields the post-
measurement stateρk :¼ PkρPk=tr½ρPj� with probability pk :¼ tr½ρPk�. We
denote the measurement’s output as (ρk, k) where k is the measurement’s
classical outcome that allows us to uniquely identify the post-measurement
state ρk.

Mathematically, an observable is a Hermitian operator. Consider an
observable O = ∑kλkPk, where λk are distinct real numbers for different
values of k. Measurement ofO on ρ gives an output (ρk, λk) comprising of a
post-measurement state and some eigenvalue of O. According to the Born
rule, we obtain (ρk, λk) with probability pk. Since there exists a function that
maps λk back to k, the measurement of O is the same as the measurement
of P.

Errors affect ameasurement’s output in twodifferentways. First, errors
can corrupt the classical outcome k. Such errors can lead us to mistakenly
conclude that the post-measurement state is ρv for v ≠ kwhen the true post-
measurement state is in fact ρk. Second, errors can corrupt the post-
measurement state ρk. Here, we propose ameasurement scheme that allows
correction of errors on classical outcomes.

Now, let q be an integer where q ≥ 2, and let us define a Hermitian
operator with q distinct eigenvalues as a q-observable. Operationally, the
integer q counts the number of possible measurement outcomes of each
observable.

Commuting observables from classical codes
In the observable O, the integers 1,…,M label M distinct measurement
outcomes. Consider a classical codeC comprising ofM distinct codewords.
When C is a q-ary code of length n, each codeword is a vector in {0, 1,…,q
−1}n. We denote

xðkÞ ¼ ðxðkÞ1 ; . . . ; xðkÞn Þ

as the kth codeword of C, and we can write C = {x(k): k = 1,…,M}.
Each integer 1,…,M labels exactly one codeword inC. The encoder EC

ofC is a bijectivemap from the classical labels in {1,…,M} to codewords inC.
Namely, EC(k) = x(k).Without errors on the components of x(k), a decoder of
C performs the inverse map of EC, and maps the codeword x(k) back to the
label k.

In the measurement of P, errors could afflict its classical outcome. To
address this, we propose the measurement of n commuting q-observables

Q1,…,Qn that encode redundant information about P. We denote the
classical outcome of Qj’s measurement as yj and denote the output of the
measurements ofQ1,…,Qn as (τ, y) where τ denotes the post-measurement
state and y = (y1,…, yn).We want the q-observables to be consistentwith P,
in the sense that measurement of the q-observables performs the same
measurement as P in the noiseless setting. Hence we give the following
definition.

Definition 1. Let P be a projective POVM and Q1,…,Qn be commuting
observables. The observablesQ1,…,Qn are consistent with P if there exists a
function f such that for any output (τ, y) of themeasurement ofQ1,…,Qn on
ρ, we have τ = ρf(y).

We propose to construct q-observables using information about a
projective POVM P and a classical q-ary code C. Namely, for j = 1,…, nwe
define the q-observables as

QjðC; PÞ :¼
X

M

k¼1

x
ðkÞ
j Pk: ð1Þ

When the context is clear, we use Qj to denote Qj(C, P). From the ortho-
gonality of the projectors Pk, the observables Q1,…,Qn are pairwise com-
muting, which allows us to measure Q1,…,Qn in any order.

In our construction, the correctibility of errors on the measurement
outcomes of our q-observables depends on the minimum distance of C,
given by

dðCÞ :¼ min
y≠z2C

dHðy; zÞ;

where dH(y, z): = ∣{i: yi ≠ zi}∣ is the Hamming distance between tuples y and
z. Namely, we can correct any t(C): = ⌊(d(C)− 1)/2⌋ errors on the classical
outcomes of Q1,…,Qn.

A decoder of a classical code can correct up to t(C)measurement errors
on y. This is because a noiseless ymust be a codeword inC. Here, a decoder
D of a codeC is a functionD : f0; . . . ; q� 1gn ! f1; . . . ;Mgwhichmaps
an n-tuple to an index that labels the codewords. Given some non-negative
integer a, we say thatD is an a-decoder ofC, if for all k = 1,…,M, and for all
y such that d(y, x(k)) ≤ a, we have

DðyÞ ¼ k: ð2Þ

An a-decoder corrects a errors.When d(C) = d, then there is a t(C)-decoder
for C. Our main result is the following.

Theorem 1. Let C be a q-ary code of length n, and letD be a t(C)-decoder
for C. We measureQ1(C, P),…,Qn(C, P) on a quantum state ρ, and obtain
the classical outcome y = (y1,…, yn) along with the post-measurement state
τ. Suppose that at most t(C) components of y have been corrupted.
Then τ ¼ ρ

DðyÞ.
In our proof of Theorem 1, we show that in the noiseless setting, the n-

tuple of classical outcomes is a codeword of C. When there are at most t(C)
errors on the classical outcomes, the decoderD corrects these errors.Hence,
the observables Q1(C, P),…,Qn(C, P) are consistent with P, even in the
presence of some errors on the classical outcomes.

As an example, consider a scheme that uses the shortened Hamming
code C6 and a projective POVM P = {P1,…,P8} to define the six binary
observables to measure both in the noiseless setting. In this example, the
parameters of the code are q = 2, n = 6, d(C6) = 3, andM = 8. Now the code
C6 is a linear code generated by binary vectors a1 = 100011, a2 = 010101,
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and a3 = 001110, and has eight codewords given by

xð1Þ ¼ 000000;

xð2Þ ¼ 100011 ¼ a1;

xð3Þ ¼ 010101 ¼ a2;

xð4Þ ¼ 001110 ¼ a3;

xð5Þ ¼ 110110 ¼ a1 þ a2;

xð6Þ ¼ 101101 ¼ a1 þ a3;

xð7Þ ¼ 011011 ¼ a2 þ a3;

xð8Þ ¼ 111000 ¼ a1 þ a2 þ a3:

ð3Þ

Applying the definition (1) along with the form for the codewords in
(3), the corresponding binary observables are

Q1ðC6; PÞ ¼ P2 þ P5 þ P6 þ P8

Q2ðC6; PÞ ¼ P3 þ P5 þ P7 þ P8

Q3ðC6; PÞ ¼ P4 þ P6 þ P7 þ P8

Q4ðC6; PÞ ¼ P3 þ P4 þ P5 þ P6

Q5ðC6; PÞ ¼ P2 þ P4 þ P5 þ P7

Q6ðC6; PÞ ¼ P2 þ P3 þ P6 þ P7:

We illustrate these binary observables in Fig. 1. Now consider no errors on
classical outcomes. When we measure Q1(C6, P) and obtain the classical
outcome 0, the state must be on the support of I−Q1(C6,
P) = P1+ P3+ P4+ P7, where Idenotes the identity operator. If wemeasure
Q2(C6,P) and obtain the classical outcome 1, then the state is on the support
of P1+ P3+ P4+ P7 and P3+ P5+ P7+ P8. Hence the state is on the
support ofP3+ P7. IfwemeasureQ3(C6,P) andobtain the classical outcome
1, then the state is on the support of P3+ P7 and P4+ P6+ P7+ P8. Hence
the state is on the support of P7. Further measurements of the observables
Q4(C6, P),Q5(C6, P),Q6(C6, P) give redundant information about where the
state is projected on, and we obtain the codeword x(7) as the classical
outcome.

InFig. 1we illustrate themeasurement of the binary observablesQ1(C6,
P),…,Qn(C6, P) when an error afflicts the classical outcome of Q5(C6, P).

Implications
Combinatorics.What is the minimum number of q-observables required
to correct t errors on the classical outcome of a projective POVM with M
projectors? We answer this question in the following.

Corollary 2. LetPbe a projective POVMwithMprojectors. Letnq(M,d) to
be the shortest n such that there exists a code of length n andwith at leastM
codewords and distance at least d. Let nq,t,M be the smallest integer such that
there exist observables Q1,…,Qn consistent with P, even after any t errors
occur on the classical outcomes of Q1,…,Qn. Then nq,t,M = nq(M, 2t+ 1).

Proof. From Theorem 1, we know that the condition for Q1,…,Qn to be
consistent with P after t errors occur on the classical outcomes is equivalent
to the condition that a q-ary classical code C has length n, distance at least
2t+ 1, and hasM codewords.

The combinatorics of nq(M, d) directly relates to the combinatorics of
Aq(n, d), where Aq(n, d) is the maximum number of codewords in a q-ary
code with Hamming distance d and with codewords having n components.
Note that nq,t,q = 2t+ 1 through the use of a q-ary repetition code. Using
results on the combinatorics of Aq(n, d) and nq(M, d)51, we illustrate the
values of nq,t,M, in Table 1 for q = 2, t = 1, 2, 3 and 2 ≤M ≤ 40.

When thenumberMof projectors inP is very large,we canboundM in
terms of the volumeof a q-aryHamming ball of radius t, whichwe denote as

Vq;nðtÞ :¼
Pt

j¼0
n
j

� �

ðq ‘ 1Þj. Namely,

qn=Vq;nð2tÞ≤M ≤ qn=Vq;nðtÞ; ð4Þ

where the upper and lower bounds are the Hamming bound and Gilbert-
Varshamov bound respectively52. Bounds such as Johnson’s bound53 or
linear programming bounds for classical codes54,55 can tighten the upper
bound in (4).

Application (quantum error correction). We can describe the recovery
channel of any QEC code as a two-stage process47. In the first stage, we
measure a carefully chosen projective measurement with POVM Π

0.
Upon measuring Π0, we get a classical outcome and a quantum output.
The classical output labels the subspace that the quantum output resides
in. In the second stage, a unitary operation dependent on the classical
outcome brings the quantum output back to the codespace.

The projectors inΠ0 depend on the QEC code and the set of operators
K to be corrected. Since the number of correctible spaces of the code is at
most jKj, and at most one projector corresponds to an uncorrectible space,
we have jΠ0j≤ jKj þ 1. For a distance p-ary QEC code on m qudits that
corrects k errors, we can choose K so that jKj ¼ Vp2 ;mðkÞ. From47,
jΠ0j≤ jKj. Hence, for anm qubit QEC code that corrects a single error (has
distance 3), we have jΠ0j≤ 2þ 3m.

As an example, consider the optimal non-additive nine-qubit binary
QEC code that has codespace of dimension 12, and with distance 356. In this
case jΠ0j≤ 29.FromTable1,deployingourschemewith10binaryobservables
allows the correction of up to one error on the classical outcome of Π0. In
contrast, the noiseless decoding of this non-additive nine-qubit code in ref. 56
requires five binary observables, and repeating these measurements thrice to
allow the correction of one error necessitates the use of 15 binary observables,
which is greater than the 10 binary observables our scheme requires.

As another example, we consider the binomial code44, which is a
bosonic codeona singlemode that corrects gain errors, loss errors andphase
errors. Here, loss errors, gain errors and phase errors aremonomials of a, a†

and a†a respectivelywhereadenotes themode’s lowering operator.Namely,
a binomial code that corrects g1 gain errors, g0 loss errors, and k phase errors
has as its set of correctible errors K ¼ faj : j ¼ 0; . . . ; g0g∪ fðayÞj : j ¼
0; . . . ; g1g∪ fðayaÞj : j ¼ 0; . . . ; kg: Clearly, jKj ¼ g0 þ g1 þ kþ 1. Such
a binomial code has two parameters, the gap g = g0+ g1+ 1, and N ¼
maxfg0; g1; 2kg and encodes one logical qubit, and is defined by the logical
codewords in [ref. 44, Eq. (7)]. For such a binomial code where g0 = g1 = k,
we have jΠ0j≤ 3kþ 2. In Table 2, we present the minimum number of
binary observables that are consistent withΠ0 after the occurrence of up to a
single error on the classical outcome of their measurement.

Implementation (dispersive couplingwith abosonicmode). Similarly
to refs. 57,58, we can couple our quantum state to n bosonic modes
initialized as coherent states ∣α1

�

; . . . ; ∣αn
�

and measure the modes to
implement our scheme. Let n̂j be the number operator on the jth mode,
and suppose that 2π∣αj∣

2 ≫ q. The interaction Hamiltonians

W j ¼ γQj � n̂j ð5Þ

model a dispersive coupling between the quantum system and the ancillary
bosonic modes.

Now let ∣ϕ
�

be a state for whichQj∣ϕ
�

¼ zj∣ϕ
�

for all j = 1,…,n. Then
W j∣ϕi∣αji ¼ ∣ϕiðγzjn̂j∣αjiÞ. Hence e�iWθ∣ϕi∣αji ¼ ∣ϕie�iθγzj n̂j ∣αji ¼ ∣ϕi
∣e�iθγzjαji. With θ = 2π/(qγ), the initial phase space distribution of the jth
mode with radius ∣αj∣

2 and standard deviation 1=
ffiffiffi

2
p

maps to up to q dif-
ferent equiangular rotations in the complex plane. Using balanced homo-
dyne detection59 we can measure the quadratures of the output bosonic
fields. Because we chose 2π∣αj∣

2≫ q, the distributions for different zjwill be
distinguishable. Hence we project onto the eigenspaces of Qj in a non-
destructive way. Repeating the procedure for j = 1,…,n allows us to obtain
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the classical outcome (z1,…,zn) in the noiseless setting. FromTheorem1, we
can correct up to t errors on (z1,…,zn) using a classical decoder.

Implementation (robust stabilizer codemeasurements). We consider
measuring the stabilizers for an [[m, k, d]] qubit stabilizer code. Measuring
m − k stabilizer generators corresponds to performing a projective mea-
surement with 2m−k possible measurement outcomes. Implementing our
robust measurement scheme for these measurement outcomes corresponds
to the implementation of stabilizer measurements for data syndrome
codes31–37. For example, the correction of a t measurement errors requires
the use of a classical [n, m− k, 2t+ 1] code. Consider a 17-qubit distance
3 surface code that encodes a single logical qubit60,61, and where we want to
correct a single measurement error (t = 1). In this case, the shortest length
linear code we use in our protocol is a classical [21, 16, 3] code51,62. Hence,
performing robust stabilizer code measurements according to the idea of
data-syndrome codes involves measuring 21 binary observables.

We can reduce the number of binary observables to measure by per-
formingQEC according to theKnill-Laflamme recovery procedure47. Given

an [[m, k, d]] qubit stabilizer code, this procedure involves a projective
measurement onto V4;mðtÞ ¼

Pt
l¼0

m
l

� �

3l correctible spaces and one
uncorrectible space with POVM Π

0 where jΠ0j ¼ V4;mðtÞ þ 1. For a 17-
qubit distance 3 surface code, we would have jΠ0j ¼ V4;17ð1Þ þ 1 ¼ 53.
Selecting codewordswithin a [12,8,3] binary linear code62 allowsus to obtain
a (12, 53, ≥3) binary code. When used in our protocol, this code gives 12
binary observables. The measurement of these observables allows us to
perform a projection according to Π0 and the correction of a single mea-
surement error. This example shows that the number of binary observables
required for a robust measurement in a QEC scheme can be significantly
fewer than those obtained from a data syndrome codes scheme.

We may measure the observables Q1,…,Qn according to the scheme
depicted in Fig. 2. By construction, the observable Qj is an operator on m
qubits, with 2m/2+ aj zero eigenvalues and 2

m/2− aj one eigenvalues where
∣aj∣ ≤ 2m/2. We can write the spectral decomposition of Qj as

Qj ¼
X

2m=2�aj

k¼1

λ0∣ψj;kihψj;k∣þ
X

2m

l¼2m=2�ajþ1

λ1∣ψj;lihψj;l∣ ð6Þ

where λ0 = 0, λ1 = 1 and f∣ψj;ki : k ¼ 1; . . . ; 2mg is an orthonormal basis for
the m-qubit Hilbert space. Extending the dimension of the last qubit to a
four-level system and considering an orthonormal basis f∣ψj;ki : k ¼
1; . . . ; 2mþ1g for this extended space, we construct an observable Q0

j which
has 2m+1 eigenvalues with the following spectral decomposition

Q0
j ¼

P

2m=2�aj

k¼1

λ0∣ψj;k

E

ψj;k

D

∣þ
P

2m

l¼2m=2�ajþ1

λ1∣ψj;l

E

ψj;l

D

∣

þ
P

2mþ2m=2þaj

k¼2mþ1

λ0∣ψj;k

E

ψj;k

D

∣þ
P

2mþ1

l¼2mþ2m=2þajþ1

λ1∣ψj;l

E

ψj;l

D

∣:

ð7Þ

By construction, Q0
j has (1) the same number of zero and one eigenvalues,

and (2) we have Q0
jQj ¼ Qj. Let d(k) be a bijective function that maps a

decimal integer k∈ {1,…,2m} to a length m− 1 vector in Z�m�2
2 �Z4,

and let (y, d(k)) denote the length m vector d(k) in Z�m�1
2 �Z4 with the

y∈ {0, 1} as itsfirst component.Consideraunitaryoperator on the extended
system given by

U j ¼
P

2m=2�aj

k¼1

∣ð0; dðkÞÞihψj;k∣

þ
P

2m=2þaj

k¼1

∣ð0; dð2m � kÞÞihψj;2mþk∣

þ
P

2m=2þaj

k¼1

∣ð1; dð2m þ kÞÞihψj;2m�k∣

þ
P

2m=2�aj

k¼1

∣ð1; dð2mþ1 � kÞÞihψj;2mþk∣:

ð8Þ

Code  C
1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

8.

3.

Q. Q. Q. Q. Q. Q.
1 2 3 4 5 6

measure

decode

Fig. 1 | Our scheme. Suppose that a projective measurement P projects a quantum

state into one of 8 orthogonal subspaces. We label each subspace with a codeword of

a classical code C. We depict a shortened Hamming code with 8 codewords. Each

codeword is a 6-bit string, and the code corrects one error. Then, we illustrate the

commuting q-observables Q1,…,Q6 as columns on the right side of the diagram.

Each q-observable is an appropriate linear combination of projectors in P. Here,

q = 2, corresponding to binary outcome observables. A spider illustrates an error that

occurs on the measurement outcome of Q5. We can correct this error using the

decoder of C, recovering the correct measurement outcome. We conclude that the

quantum state has been projected to the third subspace.

Table 1 | Some values of n2,t,M

t\M 2 4 6 8 12 16 20 38–40

1 3 6 7 7 8 8 9 10

2 5 9 10 11 11 12 12 14

3 7 12 14 14 15 15 16 18

Table 2 | Some values of the minimum number of binary
observables consistent with Π0 needed to correct up to one
error on the classical outcomes of their measurement n, and
furthermore correct k gain, loss and phase errors

k 1 2 3 4 5 6 7 8

jΠ0j 5 8 11 14 17 20 23 26

n 7 7 8 8 9 9 10 10

U U U U1 n1 n

1st qubit

4-level sys

Fig. 2 | Scheme to robustly measure n binary observables on anm-qubit system.

For this, we extend the last qubit to a four-level system, apply appropriate unitaries

Uj and Uy
j , and measure the first qubit in the computational basis.
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Measuring the binary observableQ0
j involves (1) applying the unitaryUj, (2)

measuring the first qubit in the computational basis f∣0i; ∣1ig, and (3)
applying the unitary Uy

j . When the initial state has no leakage into the
extended space, a measurement outcome of ∣j

�

on the first qubit corre-
sponds to obtaining an eigenvalue of j for both the observables Q0

j and Qj.
Figure 2 illustrates these steps in the measurements of Q1,…,Qn for robust
stabilizer code measurements in the limit where measurement errors
dominate over gate errors.

Comparison of our protocol with a baseline scheme. Consider the
measurement of a POVM with 16 measurement outcomes via the mea-
surement of four binary observables. Here, each measurement’s classical
outcome has an error with probability p. The overall error probability of
four repeated binary observable measurements for this baseline scheme
is 1− (1− p)4.

We may also consider a simple repetition scheme. For each binary
observable, we can repeat itsmeasurement thrice and use amajority vote on
the classical measurement outcomes. Using this method, the error prob-
ability of each binary observable measurement becomes
p1 = 3p2(1− p)+ p3. Then the overall error probability of four repeated
binary observable measurements by measuring a total of 12 binary obser-
vables is 1� ð1� p1Þ

4.
We construct binary observablesQ1,…,Qn according to our protocol

for the correction of t errors on the 16 classicalmeasurement outcomes. In
particular, for t = 1, 2 we have n = 8, 12 according to Table 1. We can
measure these observables according to our scheme in Fig. 2, and model
the error probability of the classical measurement outcome of Qj as
p+ (j− 1)r, where r > 0 quantifies the degradation in measurement
accuracy with each consecutive measurement. Under this model, the
probability of no errors in the classical measurement outcomes of
Q1,…,Qn is q0 = (1− p)(1− p− r)…(1− p− (n− 1)r). The probability
of one error in the classical measurement outcomes of Q1,…,Qn is
q1 = q0(p/(1− p)+ (p+ r)/(1− p− r) +⋯ +(p+ (n− 1)r)/(1− p−
(n− 1)r)). We similarly calculate q2, the probability of two errors in the
classical measurement outcomes of Q1,…,Qn. Then the error probability
of our protocol that corrects 1 and 2 errors is 1− q0− q1 and
1− q0− q1− q2 respectively. We numerically evaluate the performance
of the baseline protocol, the repetition protocol and our protocol for
different values of r and t in Figs. 3 and 4. Figure 3 which considers t = 1
shows that the repetition scheme that uses 12 binary observables slightly
outperforms our protocol which uses 8 binary observables. Figure 4 shows

that our protocol which uses 12 binary observables can outperform the
repetition protocol that uses 12 binary observables when the degradation
in consecutive measurements r is sufficiently small and when the per
binary observable error rate p is not too small.

Discussions
We proposed a set of commuting q-observables whose measurement is
consistent with a given projective measurement, even after some errors
corrupt the classical outcomes of the measurement of the observables.
Hence, measuring these commuting observables effectively implements a
robust projective measurement.

There is potential to study hownear-term quantum algorithms that do
not rely on QEC can be improved using our scheme in realistic settings.
Moreover, it would be interesting to explore the implementation of our
scheme with other non-stabilizer codes, such as concatenated cat codes42,63,
rotation-invariant codes46, permutation-invariant codes45,64–69, codeword-
stabilized codes70, error-avoiding codes71–73, and certain codes that lie within
the ground space of local Hamiltonians74.

Methods

Proof. Proof of Theorem1. Let z = (z1,…,zn) denote the classical outcome if
no errors occurred. Then, z− y has a Hamming weight of at most t. Fur-
thermore, we have

DðzÞ ¼ DðyÞ: ð9Þ

Case 1: No errors onmeasurement outcomes. When wemeasure the
observable Qj(C, P) and obtain the classical outcome zj, the resultant state
must be on the support of the projector

Pj;zj
¼

X

k:zj¼x
ðkÞ
j

Pk: ð10Þ

After measuring the observables Q1(C, P),…,Qn(C, P), we obtain the clas-
sical outcomes z1,…,zn. Then the state τ is on the support of

Y

n

j¼1

Pj;zj
¼

X

k:zj¼x
ðkÞ
j ;j¼1;...;n

Pk ¼
X

k:z¼xðkÞ

Pk: ð11Þ

Fig. 3 | We consider a baseline scheme, which is the measurement of four binary

observables, each with error probability p. Next we consider a repetition scheme,

wherewemeasure each of the four binary observables thrice and take amajority vote.

Last, we consider our protocol that measures 8 consecutive binary observables and

corrects t = 1 measurement errors for different values of degradation in measure-

ment accuracy r with each measurement of a binary observable in our protocol.

Fig. 4 | Our scheme versus repetition schemes and a baseline scheme.We plot the

error probabilities (vertical axis) of schemes considered in Fig. 3 and of our protocol

that measures 12 consecutive biinary observables and corrects t = 2 measurement

errors for different values of degradation in measurement accuracy r with each

measurement of a binary observable in our protocol. The probability of measure-

ment error per binary observable here is p (horizontal axis).
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From (11), zmust belong to C. Since there are no repeated codewords
in C, there is a unique k for which z = x(k). Together with the fact that
t(C) ≥ 0, it follows that

Y

n

j¼1

Pj;zj
¼ P

DðzÞ: ð12Þ

The state τmust be on the support of P
DðzÞ, which means that τ ¼ ρ

DðzÞ.
Case 2: At most t(C) errors on classical outcomes. From case 1, we

know that τ ¼ ρ
DðzÞ. Since DðyÞ ¼ DðzÞ, we have τ ¼ ρ

DðyÞ.

Data availability
Data is available upon request.

Code availability
Codes are available upon request.
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