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Abstract 

Many bacteria kill competitors using short-rangeweapons, such as the Type VI secretion system and contact dependent inhibition (CDI). 
Although theseweapons can deliver powerful toxins, they rely on direct contact between attacker and target cells.We hypothesized that 
movement enables attackers to contactmore targets and thus greatly empower their weapons. To explore this,we developed individual-
based and continuum models of contact-dependent combat which show that motility greatly improves toxin delivery through two 

underlying processes. First, genotypic mixing increases the inter-strain contact probability of attacker and sensitive cells. Second, target 
switching ensures attackers constantly attack new cells, instead of repeatedly hitting the same cell. We test our predictions with the 

pathogen Pseudomonas aeruginosa, using genetically engineered strains to study the interaction between CDI and twitching motility. As 

predicted, we find that motility works synergistically with CDI, in some cases increasing weapon efficacy up to 10,000-fold compared 

with non-motile scenarios. Moreover, we demonstrate that both mixing processes occur using timelapse single-cell microscopy and 

quantify their relative importance by combining experimental data with our model. Our work shows how bacteria can combine cell 
movement with contact-based weapons to launch powerful attacks on their competitors. 

Keywords: bacteria, competition, motility 

Introduction 

Many bacteria employ contact weapons against their competitors. 
These systems include the Type VI secretion system (T6SS) 
that fires a toxin-laden needle into nearby cells, and contact 
dependent inhibition (CDI) systems that deploy surface filaments 

to deliver toxins to adjacent cells after recognition of an outer 
membrane receptor [1]. The strength of these systems is their 
ability to directly deliver a potent toxin into a competing cell, and 

there is growing evidence that contact weapons are often critical 
to whether a given strain succeeds in its preferred niche [2–4]. 
However, they also suffer from a major limitation. Their short 
range means that an attacker can only target cells in its imme-
diate vicinity. If all adjacent cells are clonemates or competing 

cells that have already been killed, the weapons will have no 

effect [5–7]. 
Bacteria actively move through their environments, which can 

be critical for their ability to compete for territory and colonize 

hosts [8, 9]. Using a variety of different molecular appendages, 
they move by sliding, gliding, twitching, and swimming [10]. How-
ever, it is surface-associated motility mechanisms such as gliding 

motility or Type IV pilus-based twitching motility that are most 
commonly used when cells are at the high cell densities where 

contact-based weapons are effective [11, 12]. Consistent with this, 
these conditions are also closely associated with the expression 

of T6SS [13] and CDI genes [14]. Moreover, deleting genes for 

motility systems can reduce the impact of contact weapons 

[15–17] suggesting that motility systems impact close-range 

combat. 
Based on these observations, we hypothesized that motility 

may serve to greatly improve the functioning of contact-based 

weapons by allowing attacker cells to reach more target cells. In 

order to explore this hypothesis, we developed an individual-
based model that combines realistic cell movement in the 

crowded conditions of surface-attached communities [18] with  

contact warfare, and used a complementary continuum model 
to discern the underlying physical mechanisms. These models 

predict that cell movement can greatly improve contact weapons. 
Moreover, they identify two contributory processes: genotypic 

mixing and target switching. We test these predictions exper-
imentally using genetically engineered strains of Pseudomonas 

aeruginosa, and find that, as predicted, twitching motility greatly 

improves the functioning of CDI during bacterial warfare. By 

studying competitions across a range of initial cell densities, we 

are also able to resolve the relative contributions of genotypic 

mixing and target switching during competitions. This analysis 

reveals that both processes help to explain the benefits ofmotility, 
but their relative importance can vary greatly as a function of 
initial conditions. Overall, our work shows how bacteria can 

combine motility with contact weapons as a highly effective 

strategy to overcome competitors.
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Materials and methods 

Individual-based model 
The motion of the individual cells is governed by a pre-existing 

self-propelled rod framework [18, 19]. Cells are modelled as stiff 
chains of Yukawa segments,which repel each other via the poten-
tial U and self-propel with a propulsion force F acting along 

their long axis, representing e.g. type IV pili twitching or glid-
ing motility. Contact intoxification occurs at a constant rate λ 

between attacker cells and contacted sensitives. Contacts are 

defined by drawing an ellipse two cell widths longer and wider 
at the same position and orientation as the attacker; any sen-
sitive cells lying at least partially within this range are marked 

as contacted. Intoxified cells do not lyse, corresponding to the 

non-lytic properties of the tRNAse CDI toxin we focus on in our 
experiments [5], and intoxification is further assumed to have 

no impact on the motility of sensitive cells over the simulation 

window as supported by microscopy of high-density mixtures 

of motile attackers and sensitives (Movie S3). Instead, the sole 

impact of each additional hit is to reduce the long-term fitness 

of an intoxified sensitive by a factor of ξ . Further details on IBM 

specification and initialisation are given in the Supplementary 

Methods and Supplementary Note 4. 

Continuum model 
Our continuum framework consists of two layers, an upper layer 
defining the spatial distribution of the attacker and sensitive 

populations, and a lower level defining the transitions of the 

sensitive population between different states. The upper layer 
is a coarse-grained phase field ϕ (r) representing the attacker 
population fraction at each lattice site r (Fig. 1C). To directly 

compare with the IBM framework, distances are measured in cell 
widths; each 10×10 lattice cell therefore corresponds to a region 

in the IBM containing around 10 individuals. We use the semi-
implicit Crank–Nicholson algorithm to simulate diffusion of this 

phase field with periodic boundary conditions [20] (Fig. 1D), using 

a timestep of �t = 5.0. 
The lower level is temporally finer-grained. After the distribu-

tion of attackers and sensitives has been updated, we simulate 

the evolution of the sensitive population at each lattice site over 
the next time window. To do this, we simulate transitions of the 

sensitive population between states indexed by (i) the number 
of contacts made to attacker cells c and (ii) the number of hits 

h that have been accumulated (Fig. 1E). In summary, popula-
tions can gain or lose contacts with attackers one at a time, 
and can also accumulate individual hits. We derive the explicit 
form of the master equation determining the behaviour of this 

system in Supplementary Note 1 and detail how the continuum 

model parameters re and D were  matched to the IBM data in  

Supplementary Note 2. 
An additional parameter, ξ which represents the efficacy of the 

toxin as a percentage decrease in the growth rate of a cell due 

to a single CDI hit was introduced to account for the cumulative 

effect of multiple hits. This growth rate impact is assumed to 

scale linearly with the number of accumulated hits (for example, 
if ξ = 0.1 and we consider the sub-populations in states {5, c}, the  

total reduction in the final abundance of these sub-populations 

is 50%). At the end of our continuum simulations, we have a 

distribution of sensitive hit/contact bins N{h,c} at each lattice site. 
To convert these to a final estimate of the sensitive population 

size, we calculated the sum
∑

N{h,c}

(

1 − ξh
)

across all states {h, c} 
and lattice sites. The competitive index of the attacker was then 

calculated from this and the attacker population size as for the 

experiments. Comparisons between this continuum representa-
tion and our experiments required careful matching between the 

experimental measurements and the continuum model parame-
ters, a procedure described in detail in Supplementary Note 4. 

Experiments 

Strain construction 

Deletion mutants were constructed using two-step allelic 

exchange using pEXG2 and conjugation with E. coli JKE201 [21–23]. 
Primer sequences are listed in Supplementary Table 1. Mutants  

were confirmed by Sanger sequencing (Source Bioscience, 
Nottingham, UK). Strains were subsequently constitutively 

tagged with eYFP and mScarlet using pUC18-mini-Tn7-GmR 

[24]. Approximately equal numbers of replicates were performed 

with each attacker/susceptible combination carrying opposite 

fluorescent markers. Strains are available upon request. 

Culturing 

Strains were recovered by streaking freezer stocks onto LB 1.5% 

agar overnight at 30◦C. Colony competitions were prepared by 

scraping cells off the overnight plate and resuspending cells to 

an initial OD600 of 1.0. Strains were mixed at defined ratios then 

serially diluted and 1 μl spotted on LB 1.5% agar prepared just 
prior. Initial culture density was determined by serial dilution 

followed by spot plating; inoculum densities of OD600 100, 10−1, 
10−2, and 10−3 were found to correspond to∼ 2×106, 2×105, 2×104, 
and 2×103 cells per 1 μl droplet of inoculum. Data presented are 

from independent colonies (biological replicates). 

Quantification of competition outcomes 

After 48 h of growth at room temperature, colonies were imaged 

using a Zeiss Axio Zoom V16 microscope with a Zeiss MRm cam-
era, 0.5× PlanApo Z air objective and HXP 200C fluorescence light 
source. Colonies of different initial density and attacker:sensitive 

ratios were imaged at the same magnification, but motile and 

non-motile colonies were imaged at different magnifications. To 

make the composite images shown in the figures, the display 

histograms of each channel were normalized to the set of colonies 

sharing the same strains, meaning images can be compared 

within sets (e.g. motile vs non-motile) but not between. After 
imaging, colonies were sampled with a 10 μl pipette tip at both 

the centre and edge of the colony and cells suspended into 

0.9% saline. The centre includes the initial inoculation zone, 
whereas the edge was sampled in an arc shape from the exterior-
most 1–2 mm of the colony. Samples were homogenized, serially 

diluted and 5 μl spotted onto LB or LB+ 50 μg/ml gentamycin and 

incubated at 30◦C overnight. Colonies were counted to determine 

the final ratio of the two strains. 

Calculation of competitive advantage 

Using the initial density counted from the original inoculum 

cultures and the known inoculum ratios, the initial ratio of 
attacker:susceptible strains was determined. The final ratio was 

determined from the CFU counts of the serially diluted centre and 

edge samples, with a detection limit of 10 CFU/mL used to replace 

zeros and so prevent dividing by zero. Competitive advantage was 

defined as the final ratio / initial ratio of attacker:susceptible cells 

and is plotted on log axes. 

Measurement of cell velocities 

Bacterial cultures were prepared as described previously and 1 μl 
of a 1:1 mixture of wild-type and CDI-susceptible pipetted onto 

the centre of a glass bottom petri dish (MatTek, Bratislava, Slovak
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Figure 1. Individual-based and dynamical modelling approaches suggest three separate processes govern contact-dependant attack kinetics. (A) 
We used an individual-based modelling (IBM) framework to allow simulation of contact-dependant hitting between separate attacker and sensitive 

populations under motile (motility +) and non-motile (motility –) conditions, as well as patchy (patch +) and non-patchy (patch –) starting population 

distributions. Increasing numbers of hits accumulated by sensitive cells are represented by their dark orange to light orange colouration. Here, we 

consider a 1:9 Attacker:Sensitive ratio to illustrate the processes that impact intoxification dynamics. (B) Differences between the rates of hit 
accumulation under the different conditions suggest two separate processes determine competitive outcomes: Large-scale diffusive mixing of 
inhomogeneous populations (“genotypic mixing”) and small scale mixing of cell contacts (“target switching”). (C-E) to test our understanding of this 

system, we constructed a continuum spatial model in which only three processes were explicitly invoked: Genotypic mixing, (governed by the 

diffusion constant D given by the average cell velocity v and a proportionality constant αd), target switching, (governed by the average cell velocity v, 
local attacker fraction ϕ, and a proportionality constant αe) and contact-dependant hitting (governed by the firing rate λ). The top level of this model is 

built on a coarse-grained lattice representing the distribution of genotypes (C) on which diffusive genotypic mixing acts to gradually disperse any 

initial population structure (D). At a given lattice site (highlighted square), we denote the fraction of the sensitive population contacting c attackers 

and hit h times as N{h,c}. These are represented in (E) using stacked bar charts; populations transition between different numbers of contacted 

attackers (x-axis) via target switching, and migrate to higher number of hits (y-axis, lighter shades of orange denote larger numbers of hits) via 

contact-dependant hitting. (F) By extracting αe and αd from the statistical properties of our IBM under different self-propulsion forces (Fig. S3, 
Supplementary Note 2), we arrive at a prediction of the behaviour of the IBM dynamics that contains no free parameters. The intoxification dynamics 

of the continuum model match that of the IBM across self-propulsion forces and seeding densities ρ0. 
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Republic) containing 10 ml LB 1.5% agar. As soon as the droplet 
was dry, a lid with a coverslip was attached, sealed with parafilm 

(Amcor, Zurich, Switzerland) and the sample inverted onto the 

microscope (Zeiss Axio Observer, 20× Air objective, Colibri LED 

lightsource). Every 0.5 h, one fluorescent image was taken includ-
ing the brightfield, then a 1 min timelapse of just the brightfield, 
with images taken every 2 s. Before taking the first image at each 

timepoint, the focus was adjusted to account for the vertical drift 
of the sample over time using a combination of definite focus 

(Zeiss Definite Focus 2) and manual correction. 

Observation of contact exchange switching 

To observe individual cells exchanging contacts due to motil-
ity, surface colonies were prepared as above for measuring cell 
velocity, but were only imaged just prior to confluency being 

reached. These colonies were imaged using a 50× air objective 

with the coverslip removed. Fluorescent images were taken every 

30 s, while brightfield images were taken approximately every 

1 s for 5 min. The focus was manually adjusted for the entire 

length of the timelapse to account for drift. To track individual 
cells, the brightfield timelapses were initially segmented using 

Feature-Assisted Segmenter/Tracker [25] and manually corrected. 
Contacts of individual cells were assessed manually. 

Data analysis 

Image pre-processing 

To prepare the 1 min timelapses for particle image velocimetry 

(PIV), they were divided by a Gaussian smoothed (5px) median 

projection of the entire timelapse. Fluorescent images were cor-
rected for uneven illumination based on a computed flat field 

using BaSic [26]. 

Particle image velocimetry 

PIVlab [27, 28] was used to estimate the velocity of motile cells 

over time. Briefly, pre-processed images were loaded into PIVlab, 
and velocity field profiles were calculated for each pair of subse-
quent frames from the 1 min brightfield timelapses. Exact PIVlab 

settings are specified in the scripts linked to in the code availabil-
ity statement. The signal in cell-free regions was excluded based 

on low inter-frame correlation scores. Velocity vectors were aver-
aged over the entire timelapse to isolate the net cell motion from 

the rapid back-and-forth motion of twitching cells, then the mag-
nitudes of these average vectors were determined. Median veloc-
ity magnitude was used as a summary statistic that represents 

the amount of motility occurring in a colony at each timepoint. 

Fluorescent image processing 

Fluorescent images were used to determine cell coverage and 

mixing of attacker and sensitive cells on the agar surface. Using 

adaptively adjusted thresholds to smooth variations arising from 

instabilities in the focal plane, the backgroundwas segmented out 
using a texture-based metric of the brightfield channel yielding 

surface coverage, and the remaining pixels assigned as either 
attacker or sensitive by dividing the histogram of log-transformed 

pixel-wise ratios of eYFP/mScarlet intensity into two populations. 
Mixing was then calculated by overlaying a lattice of boxes and 

calculating the attacker fraction in each box that was at least 
5% occupied using the formula 

1 

N

∑

n 
(ϕ (rn) − 0.5)2 . This variance 

reaches a maximum of 0.25 when the strains are fully segregated 

and a minimum approaching 0 when strains are fully intermixed. 
To intuitively show these data, theywere scaled to 0–1 by subtract-
ing 0.25 then dividing by −0.25, making 0 completely unmixed 

and 1 completely mixed. The intermixing measurements for the 

continuum model were calculated similarly, using the attacker 
fraction ϕ (r) output by the model directly. 

Results 

Individual-based modelling reveals two ways 

that motility empowers contact weapons 

What is the role of motility in contact-dependent bacterial war-
fare? To explore this question, we developed a model that com-
bines surface motility and contact weaponry. The strength of a 

modelling-based approach is that it is general and allows us to 

explore our question for any species of bacteria that displays 

surfacemotility and contactweaponry.Moreover,withmodels one 

can systematically and independently vary key properties, such as 

the level of motility and attack rate, on a scale that is not feasible 

experimentally. In this way,we can identify general principles that 
transcend a given experimental system. However, to demonstrate 

the validity of our model, we also use it to explain experimental 
observations (below). 

We adapted an individual-based model (IBM) based on a pre-
existing framework of cell motility [18, 19] in which each bacterial 
cell is simulated as a rigid rod that moves via a self-generated 

propulsion force F and pushes away neighbours (Methods). Cells 

can be one of two genotypes, either attacker or sensitive, and 

attacker cells deliver intoxification “hits” to adjacent sensitive 

cells at a constant firing rate λ. To facilitate comparison with 

the continuum framework outlined below we assume that cells 

in a given simulation move with the same F, representing an 

intra-specific competition scenario inwhich a sub-population of a 

strain with a given level of motility acquires a novel weapon and 

utilizes it against the ancestral population [20]. This scenario is 

that expected formostwithin-species interactionswhere all geno-
types are either motile or non-motile. However, our framework 

can also be used to simulate asymmetricmotility scenarios,which 

can occur during some competitions between species (Fig. S1). 
Our model is robust to changes in the microscopic intoxifica-

tionmechanism,allowing us to encompass both T6SS-type (firing) 
and CDI-type (receptor-induced translocation) weapons with this 

framework (Methods, Fig. S2). Both attackers and sensitives are 

initially seeded into random locations at a seeding density ρ0, 
which are then expanded into clonal patches, replicating known 

growth patterns of mixed communities on surfaces [29, 30]. The 

seeding density determines the level of initial spatial structure (i.e. 
initial genotypic mixing) with lower seeding densities resulting 

in larger patches of each genotype. This procedure allows us to 

manipulate the initial degree of intermixing of the two strains, 
while maintaining a constant cell density. In our first simulations, 
we assess the efficacy of the weapon by tracking the rate at which 

sensitive cells receive their first hit, essentially modelling a toxin 

with single-hit killing kinetics [7]. However, we will later consider 
toxins with multi-hit kinetics, whereby increasing numbers of 
hits have an increasingly strong impact on the growth of sensitive 

cells [31]. 
We used this model to identify the key processes that deter-

mine the effectiveness of contact weapons, i.e. the extent to which 

attacker cells are able to impact the survival of sensitive com-
petitors. When the two genotypes are initialized in patches, a key 

limitation to non-motile attackers is that they are unable to come 

into contact with the majority of sensitive cells as their clonal 
patches remain separate. As a result, intoxification is limited to 

a one-cell thick region on the outside of the attacker patches 

(Fig. 1A and B, top  row,  Movie S1, top right). Introducing motility 

allows attackers to disperse this initial structure and encounter
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sensitive cells throughout their patches, substantially enhancing 

the efficiency of the attacking population (Fig. 1A and B, second 

row; Movie S1, top  left).  

This effect, which we call “genotypic mixing” here, was 

expected to have a strong effect on the intoxification dynamics as 

the degree of genetic intermixing determines the inter-population 

interaction frequency, making it a key factor in social phenotypes 

[17, 29, 32]. However, even when we begin the model with the 

two genotypes fully intermixed, we find that intoxification is 

substantially more efficient when motility is active compared to 

when it is not (Fig. 1A and B, bottom two rows; Movie S1, bottom 

row). Inspection of the simulations reveal that this benefit arises 

by disrupting a process recently called the “corpse barrier” effect 
[7], whereby stationary attackers are only able to hit a small 
group of sensitive neighbours which then act as shields for unhit 
sensitive cells behind them. Full initial intermixing of strains 

does not necessarily mean that all sensitives initially contact 
an attacker (Fig. 1A, first timepoint), and those sensitives that 
are surrounded by other sensitives end up protected by corpse 

barriers in a non-motile context. As a result, attacker efficiency is 

greater when combined with motility because attacker cells can 

continuously switch out intoxified neighbours for fresh sensitive 

targets thatwere protected by the intoxified cells.We thus identify 

a second process independent of genotypic mixing – “target 
switching” – by which motility empowers contact weapons. 

In summary, our first model reveals two separate, but related, 
processes. First, genotypic mixing disrupts large-scale population 

structure and allows attackers to invade clonal patches of sensi-
tives. Second, target switching disrupts corpse barriers and allows 

attackers to access fresh targets behind intoxified cells. 

Disentangling the two processes: Continuum 

modelling 

The IBM identified two separate mixing mechanisms in our sys-
tem. However, this model is limited in its ability to assess their 
relative importance for intoxication dynamics, or indeed whether 
additional processes are at play as the mixing processes are 

emergent properties of the IBM. To address this, we adopted an 

approach inspired by methods in theoretical physics. In statistical 
mechanics, the unpredictable behaviours of large numbers of 
particles can be shown to average out over large time and length 

scales, giving rise to predictable emergent phenomena such as 

diffusion [33]. Here, we develop a coarse-grained description of 
our IBM in which we assume a similar large-scale averaging out 
of unpredictable behaviours, allowing us to use deterministic 

descriptions of the emergent behaviours. By analogy, we assume 

that the unpredictable motion of the “particles” in this model— 

the individual cells of the IBM—results in predictablemacroscopic 

outcomes such as the winner of the competition between the two 

bacterial strains. 
This approach provides two major advantages compared to 

using the IBM alone: firstly, by appropriately matching the coarse-
grained description of the system to the microscopic dynamics of 
the individual IBM cells, we can test whether genotypic mixing, 
target switching, and contact-dependent firing are sufficient to 

explain the observed patterns in the IBM data. This allows us to 

confirm that we have not neglected amajor, unknown contributor 
to the intoxification dynamics. Secondly, in contrast to the IBM,we 

can manipulate genotypic mixing and target switching indepen-
dently in the continuum framework, allowing us to assess their 
relative importance in a given competition scenario. 

We model the location of our sensitive and attacker popula-
tions on a lattice grid using the 2D phase-field ϕ (r), specifying that 

at locations r fully occupied by the sensitive population ϕ (r) = 0 

and at locations fully occupied by the attacker population ϕ (r) = 

1 (Fig. 1C). Genotypic mixing is then simulated by applying the 

diffusion equation to this phase field, 

dϕ 

dt 
= D∇2 ϕ, (1)

where D is the diffusion constant of the system, driven by cell 
motility, and ∇2 is the 2D Laplace operator, which determines how 

the spatial structure of the system relates to diffusive concen-
tration changes. Over time, the initial heterogeneity is smoothed 

out (Fig. 1D), reflecting the large-scale genotypic mixing of the 

two genotypes. The initial spatial structure of the attacker and 

sensitive populations is determined using a similar algorithm to 

that used in the IBM, allowing the two models to be directly 

compared when initialized with identical seed cell distributions. 
Each lattice site r is treated as a well-mixed compartment, con-

taining sub-populationsN{h,c} of sensitive cells that are labelled by 

the number of intoxification hit events h they have received and 

the number of attacking cells they are in contact with c (Fig. 1E) 
(e.g.N{0,0} zero hits, in contact with zero attackers; N{1,2} one hit, in 

contact with two attackers). The sum of all the sub-populations 

at a lattice site is equal to the total number of sensitive cells 

at that site, i.e.
∑

h

∑

cN{h,c} (r) = 1 − ϕ (r). Sensitive cells thus 

exist in “states” describing the number of hits accumulated and 

number of adjacent attackers, and cells can transition between 

states by increasing or decreasing the number of attackers they 

are in contact with and by increasing the number of hits they have 

accumulated. We model these state transitions as Markovian (i.e. 
transition rates depend solely upon the current system configura-
tion), allowing us to simulate the population dynamics at lattice 

site r using the master equation 

dN{h,c} 

dt =
∑

i

∑

j N{i,j}ω
(

{i, j} → {h, ct}
)

− N{h,c}ω
(

{h, c} → {i, j}
)

. (2) 

Here, the summation occurs over all possible states in the system 

{i, j} and the notation ω ({1} → {2}) denotes the rate at which cells 

in state {1} transition to state {2}. The first term in this summation 

thus represents the rate at which cells in other states “jump 

into” the focal state {h, c}, while the second represents the rate 

at which those cells in state {h, c} jump into other states. For 
example, the population in state {h, c} jumps out to {h + 1, c} 
(i.e. accumulates a single hit) at a rate ω

(

{h, c} → {h + 1, c}
)

= cλ, 
which appears in the second term and reflects the dependence 

of the hit accumulation rate on both the single attacker cell 
firing rate λ and the number of attacker cell contacts c. At  the  

same time, the impossibility of losing hits is represented by a 

rate of zero for the inverse process, which appears in the first 
term as ω

(

{h + 1, c} → {h, c}
)

= 0. An explicit form of this master 
equation was derived (Supplementary Note 1), in which the target 
switching rate re and local attacker fraction ϕ (r) appear in the 

terms determining the rate of change of the number of attacker 
contacts. 

From Eqs. 1 and 2, we can deduce that the dynamics of the 

continuummodel are determined by the rates of genotypicmixing 

(determined by D), contact-weapon firing (λ) and target switching 

(re). We measured the dependence of re and D on the motility 

speed of cells in the IBM using independent simulations run 

without intoxication (Supplementary Note 2, Fig. S3), allowing us 

to use the continuum framework to predict the individual-based 

killing dynamics with zero free parameters (Fig. 1F,Movie S2). The
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extremely close match between the continuum and individual-
based dynamics across three orders of magnitude of seeding den-
sities and a wide range of self-propulsion forces (i.e. cell speeds) 
demonstrates that these three processes are sufficient to explain 

almost all the intoxification dynamics in the IBM. In addition, 
the continuum model is tractable to analytical techniques, which 

allows us to derive several insights into general properties of our 
system, such as saturation of intoxification with increasing cell 
velocity (Fig. S4, Supplementary Note 3). 

With all processes accounted for, we can now use the contin-
uum framework to analyse the relative importance of genotypic 

mixing and target switching for contact warfare (Fig. S5). These 

analyses show that target switching is most important when 

seeding density (i.e. initial genotypic intermixing) is high, while 

genotypic mixing plays a greater role with low seeding density. 
Intuitively, this results from the fact that at low seeding densi-
ties, clonal patches tend to be of a larger spatial scale and so 

genotypic mixing is crucial. In contrast, when the system begins 

in a near well-mixed state at high seeding densities, the main 

limitation to weapon use is the build-up of dead cells around an 

attacker (corpse barriers). Under these conditions, target switch-
ing becomes more important. 

Experiments link cell motility to the effectiveness 

of contact warfare 

We then tested our prediction that cell motility empowers contact 
weapons. The bacterium P. aeruginosa PAO1 engages in surface 

“twitching” motility using Type IV pili [34] and carries multiple 

close-range weapons. These include two independent contact 
dependent inhibition (CDI) systems [14, 35], and three Type VI 
secretion systems (T6SS), where one, HSI-1, is dedicated exclu-
sively to delivering anti-bacterial effectors [36]. From these, CDI 
was selected as a close-range weapon, and a sensitive strain was 

generated by deleting the entire CDI 1 operon (PA0040-PA0041a) 
[14]. We selected CDI over the T6SS as our experimental model as 

the anti-bacterial T6SS HSI-1 of P. aeruginosa only fires in response 

to external attack, which adds considerable complexity [37] and  

prevents its use against weaponless competitors [38]. Attacker 
and sensitive strains with limited motility were constructed by 

deleting the gene for the retractionmotor pilU in thewild-type and
�CDI background [35]. These mutants can retract their pili using 

PilT, but retraction force is much lower such that cells can achieve 

very little movement by twitching motility on 1.5% agar [39]. 
Modifications to the twitching motility system can change the 

expression of other virulence-associated genes through changes 

in intracellular cAMP levels [40, 41], which raised the possibility 

that expression of CDI would be altered in motility mutants. We 

chose to focus on pilU, therefore, because it retains approximately 

wild-type levels of cAMP induction while nevertheless largely 

eliminating cell movement [42]. We reasoned that this approach 

should limit the potential for pleiotropic effects via changes to 

the twitching motility system. In addition, we used RT-qPCR to 

confirm that CDI genes were not differentially expressed in the
�pilU strain (Fig. S6). 

Usingmatched pairs with identicalmotility, attacker and sensi-
tive strains were co-cultured (Fig. 2). Strains were competed using 

the colony biofilm model where strains are mixed together then 

allowed to grow on an agar surface [43, 44]. Images were taken 

after 48 h of competition (Figs 2A and S7A), showing that, as 

expected, non-motile colonies were much smaller than motile 

colonies. Fluorescence intensities also suggested that more sen-
sitive cells survive when motility is inactive than when it is 

active. To quantify competition outcomes, portions of the colonies 

were scraped off and plated. The fold-change in the ratio of 
attackers:sensitives from the start to end (termed “competitive 

advantage”) was then calculated (Figs 2B and S8). At both the 

centre and the edge of colonies, motility often drove a significant 
increase in the advantage for the attacker with large effect sizes; 
we observed up to a 10 000-fold increase in competitive advantage 

associated with motility. Only when the attacker was started at 
a 1:10 disadvantage was there no significant difference between 

motile and non-motile competitions, and then only at the colony 

centre. The improvement in contact killing with motile cells was 

maintained across a wide range of initial inoculum densities 

(Fig. S8). 
The focus of our study is intraspecific competition where the 

use of bacterial weapons is most common [1]. However, some 

bacterial weapons such as the T6SS also function in between-
species contests, which raises the possibility of contests between 

a motile and non-motile strain of different species. We there-
fore performed experiments to study how asymmetric motility 

between strains affected outcomes (see Fig. S1 for related sim-
ulations). A key confounder of the effects of weapons, when one 

strain can move and the other cannot, is improved access to nutri-
ents afforded to motile cells due to their greater capacity to enter 
new, cell-free territory at the colony edge (18, 36). As a control for 
this effect, we competed the non-motile �pilU strain against the 

wild-type to quantify the effect of motility independent of contact 
weaponry. As expected, motility provides a significant advantage 

at the colony edge under almost all inoculation densities and 

ratios (Fig. 2B “CDI, Motility” versus “Just motility”, Fig. S8A). In 

the central region of the colony, differential motility alone had 

little impact on competition. We also find that a motile strain can 

gain an additional benefit from having an effective CDI system 

(Fig. 2B, “CDI,Unequalmotility” vs “JustMotility”), albeit not under 
all conditions.Overall, these results suggests thatmotility can still 
improve weapon functioning when attacking a non-motile strain, 
but that the effect is more modest than when both strains are 

motile. The data also suggest that the central region is the best 
test of our modelling prediction because it effectively isolates the 

interplay between motility and CDI from confounding factors that 
occur during range expansions at the colony edge [45]. For this 

reason, we will focus on the colony centre going forward. 

Mixing and switching change in importance with 

initial conditions 

A key prediction of the models is the existence of two differ-
ent motility-dependent processes that determine the efficacy 

of contact-based weaponry. To assess whether these processes 

were occurring, we quantified cell motility over time in colonies 

inoculated with different initial densities by capturing short time-
lapses at single-cell resolution every 30 minutes (Movie S3). This 

confirmed the occurrence of both genotypic mixing (Fig. 2D) and  

target switching (Fig. 2E) in the experiments, reflecting the results 

of our models. 
Although the general congruence between the model and data 

was encouraging, we sought a more robust test of the fit between 

our model and the data. One unexpected pattern in the data is 

that the relationship between inoculum density and competitive 

outcome in the motile strains is non-monotonic (i.e. shows an 

intermediate peak). Specifically, we observed in 1:1 competitions 

that the advantage provided by CDI initially increased with 

decreasing inoculum density. This pattern was unexpected 

as the initial degree of genotypic mixing scales linearly with 

inoculum density,meaning we observed an increased competitive 

advantage for CDI even as initial genotypic mixing was decreased.



Bacterial motility empowers contact weapons | 7

Figure 2. Experiments show that contact-dependent inhibition (CDI) is dependent on motility and is influenced by initial culture density. (A) 
Colony competitions were performed between different combinations of engineered P. aeruginosa PAO1 strains, marked as focal (F) or competitor (C): 
Motile/CDI+ (blue), motile/CDI- (yellow), non-motile/CDI+ (red) and non-motile/CDI- (purple). Note that expression of CDI includes expression of the 

corresponding immunity protein (shields), rendering CDI+ strains immune to cross-strain intoxification. Colonies were inoculated with different 
initial ratios of focal and competitor cells. Representative microscopy images from motile (top) and non-motile (top-middle) competitions after 48 h of  

growth show differences in the scale and structure of communities. We additionally show the effect of varying inoculation density in Fig. S7. (B)  

Quantification of the outcome of colony competitions from an inoculum density (OD600) of 1.0, picked at either the colony centre (“Center”) or colony 

edge (“Edge”) reveal a consistently large advantage for motile attackers. The centre comprised the initial inoculation zone, whereas the edge was 

sampled in an arc shape of the exterior-most 1–2 mm of the colony. (C, D) microscopy of colony dynamics reveals that both genotypic mixing 

(intermixing of the two strains from initial clonal patches, C) and target switching (exchange of cells touched by an individual attacker, D) occur in this 

system. (E) Quantification of “motility” colony competitions (motile/CDI+ versus motile/CDI-) from the colony centre initiated from a range of 
inoculum densities (OD600 of 1.0, 0.1, 0.01, and 0.001) and equal ratio of attacker:susceptible cells demonstrate a non-monotonic relationship between 

inoculation density and the magnitude of this advantage. In A, strains are false-coloured by strain identity. In C, attacker cells are blue, sensitive are  

orange and unoccupied space is grey. In D, a focal attacker cell is highlighted in cyan. Sensitive cells newly contacted by this focal attacker in each 

frame are highlighted in unique colours. Networks below each timepoint indicate the changing collection of sensitive and attacker cells currently 

contacted by the focal attacker. Scale bars: A 500 μm; C, D 10 μm. Competitive advantage is calculated as the fold-change in ratio of 
attacker:susceptible cells (as counted from sampling, plating, and counting colony forming units) from the beginning to end of the experiment. 
Horizontal lines indicate the mean of replicates (n≥ 6). Top brackets indicate a significant difference between densities (one-sided Welch’s t-test, 
P < 0.05, Benjamini-Hochberg MHT corrected 0.95). See Supplementary Table 2 for exact group size (n) and P values. 

This advantage then dropped back down at the lowest tested 

density ( Fig. 2C). This non-monotonic relationship was not 
significant when the attackers were outnumbered (1:10 ratio) and 

did not decrease at lower densities when attackers were abundant 
(10:1 ratio) (Fig. S8B), possibly because uneven inoculation ratios 

result in clonal patches (e.g. Fig. 1D) that are dispersed more 

rapidly than in the 1:1 case. The effect was also greatly weakened 

and no longer statistically significant in the experiments with the
�pilU motility mutant (Fig. S8C). Previous work with bacteria that 
lack surface motility also did not observe this pattern, instead
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finding that higher inoculum density consistently enhances the 

efficiency of short-range weaponry [5, 17, 46, 47], likely due to the 

associated increase in initial intermixing of the two strains. These 

observations suggested that the non-monotonic relationship 

between inoculum density and CDI efficiency could be caused 

by changing effects of motility across densities. 
To test the hypothesis that differences in cell motility at the 

different initial densities was shaping weapon effectiveness, we 

parameterized our continuum model with cell movement data 

and asked if the model then recapitulates the non-monotonic 

relationship seen in the competition data. Specifically, we used 

the timelapse experiments described in the last section (Movie S4) 
to quantify cell motility in colonies inoculated with different 
initial densities. We focused on data from the colony centres, 
because this most closely resembles the conditions of the sim-
ulations where there is no outward expansion of the population 

as occurs at the colony edge. As cell velocity is a key input to 

our theoretical framework, we quantified the movement of large 

numbers of cells using PIV [27, 28], an image analysis method 

related to optical flow that tracks groups of pixels (Figs 3B and 

S9B). Fluorescent images taken alongside each video (Figs 3A and 

S9A)were thenused to determine the percentage surface coverage 

by cells (Figs 3C and S10A) and the extent of genotypic intermixing 

over time (Figs 3E and S10C,Movie S5). For all densities, cell motil-
ity and genotypic intermixing increased until, through growth and 

division, the cells became confluent and filled the imaging win-
dow.Thereafter, the cells pushed into each other, velocity dropped, 
and 3D structures started to form. Lower cell densities resulted 

in higher cell velocities, with the highest velocities reached at 
the lowest two tested densities (Figs 3D and S10B). The extent of 
intermixing only differed for the lowest initial density, as the three 

highest tested densities all ended up equally mixed (Fig. 3E). 
To integrate our experimental measurements of speed, size, 

and seeding density of cells into our theoretical framework, we 

used the IBM as a stepping-stone between the experimental mea-
surements and the continuum representation of the colony. In 

brief, these measurements were matched to those of equivalent 
cells in the IBM, which were then converted to the continuum 

model parameters via our coarse-graining procedure (Fig. S3, 
Supplementary Note 4). We made several adjustments to the 

continuum model to improve the match between it and the exper-
iments: firstly, as the genotypic mixing diffusion constant D and 

the target switching rate re are both functions of cell velocity in the 

model (Fig. S3), we modified the continuum model to allow these 

two parameters to vary as a function of time, reflecting variations 

in the PIV data (Fig. 4A and B). Secondly, we based the seed cell 
density ρ0 on images of the initial distribution of cells at each 

inoculumdensity used in the experiments (Fig. 4C and D).We also 

adjusted the model by introducing a new toxicity parameter ξ 
that allows us to capture an accumulating growth rate impact 
from each CDI intoxification event as the CDI effector used in 

this study is a predicted tRNAse [48] which may (reversibly [49, 
50]) reduce growth rates rather than killing targets outright [14]. 
The match between the competitive dynamics of the IBM and 

continuum frameworks remains strong under thismodel ofmulti-
hit killing kinetics (Fig. S11). Due to the lack of experimental data, 
both this toxicity ξ and the CDI production/firing rate λ were 

based on biologically feasible estimates. However, our key predic-
tions, including the non-monotonic relationship between inocu-
lum density and competitive advantage, are robust to changes in 

these parameter values (Fig. S12). 
With this framework for integrating experimental measure-

ments and controlling CDI toxicity and firing rate in place, we 

then used the measured velocity profiles and inoculum densi-
ties as inputs into our continuum model (Fig. 4A-D). Using these 

inputs, we ran the continuum model and made predictions of the 

outcome of the competition under each condition. As a first test, 
we compared the experimentally quantified strain intermixing 

to the model’s prediction (Fig. 4E and F). As in the experiments, 
we observe that the lowest inoculum densities are associated 

with partially unmixed states at the confluency point. This result 
shows that our framework accurately reproduces the genotypic 

intermixing extent from the PIV velocity profiles and inoculum 

densities, indicating that our procedure for parameterizing the 

continuum model via the IBM is effective. Next, we calculated 

the predicted competitive advantage of the attacker strain across 

initial cell densities at the end of the experiment. Again, we find 

a good match between theory and data, where the model predicts 

the non-monotonic relationship between inoculum density and 

weapon efficacy (Fig. 4G and H). Our results suggest this non-
monotonic relationship is due to the relative balance between 

motility and initial intermixing, which are affected by inoculum 

density in oppositeways.At high inoculumdensities the two geno-
types begin intermixed but experience little movement, whereas 

at low inoculum densities, clonal patches are large but motility 

is high. At intermediate densities, this trade-off between motility 

and initial spatial structure results in an optimum that gives the 

maximal advantage to the attacker. 
To dissect themechanistic basis of the trade-off betweenmotil-

ity and initial spatial structure, we estimated the relative impor-
tance of the two motility-based mixing processes for each inoc-
ulation density (Fig. 4I). Our approach compares the baseline 

outcome of the continuum model when motility is not active 

(brown) to the outcomes when genotypic mixing (green) and tar-
get switching (red) are activated independently (Methods, Fig. S5). 
We observe that, similar to previous studies [5, 17, 46, 47], in the 

zero motility background there is a monotonic decrease in the 

efficacy of CDI as the inoculation density decreases and the initial 
clonal patches increase in size. At lower inoculum densities, the 

predominant mechanism by which motility improves the com-
petitive advantage of the attacker is therefore genotypic mixing, 
which acts to disperse these patches. The relatively poor perfor-
mance of the attacker at the lowest inoculation density arises 

from the failure of genotypic mixing to fully homogenize the 

system, as reflected in the intermixing measurements (Fig. 4E, F). 
By contrast, the system begins almost fully homogenized at the 

highest inoculation densities. Yet despite this, some sensitive cells 

are not initially contacted by attackers due to the stochastic 

process by which seed cells are deposited. Target switching there-
fore becomes the predominant mechanism by which motility 

increases the competitive advantage of the attacker, which is 

limited by the very low levels of motility under these conditions. 
In sum, our detailed analyses show that genotypic mixing and 

target switching can both dominate the outcome of competitions, 
depending on the competitive context. 

Discussion 

Short-range bacterial weapons, like CDI and the T6SS, can be 

highly effective at killing other bacteria but suffer from severe 

range limitation. Here we have shown that bacteria can overcome 

this limitation via surface motility. When cells can move, an 

attacker can both better reach its targets (genotypic mixing) and 

avoid hitting the same targets multiple times (target switching), 
which solves the problem of “corpse-barriers” formed by dead
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Figure 3. Timelapse and f luorescence microscopy shows differences in dynamics of colonies inoculated at different densities. Colony competitions 

(1:1) between wild-type and CDI-susceptible mutants labelled with mScarlet and YFP respectively were inoculated at different initial densities (OD600) 
and imaged over time. Every 0.5 h after inoculation, a 1 min brightfield video was taken (0.5 frames/s) along with a single fluorescent snapshot. (A) 
Representative snapshots of colonies at the first time point (“start”, 0.5 h), the time when the surface was completely covered by cells (“Confluency”, 
variable times), and halfway between the two timepoints (“1/2 Time to Confluency”, variable times) reveal increasing surface coverage with time, as 

well as the changing spatial distribution of wild-type attacker (blue) and CDI-susceptible (orange) strains. (B) the velocity fields of colonies at 
confluency also suggest an inverse relationship between inoculum density and cell motility. (C-E) to investigate these relationships further, image 

analysis was used to extract then plot timecourses of the percent area covered by cells (C), the median cell velocity magnitude (D), and the extent of 
genotypic mixing between the two strains (E) (for details on the image analysis see main text, methods). These revealed that the peak system velocity 

occurs at the time cells cover the available surface (the confluency time), up to which genotypic mixing gradually increases. To enable consistent 
comparisons between replicates and conditions, we centred the timecourses to this confluency time. We show individual replicates (thin lines, n=3) 
and LOESS-smoothed averages (thick lines) for each tested inoculum density (OD600 of 1.0, 0.1, 0.01, and 0.001). Surface coverage was fixed at 100% 

after reaching a peak near 99% to avoid image analysis problems associated with out-of-focus 3D colonies. We kept the genotypic mixing measurement 
fixed from this point for the same reason (dashed lines in E). Microscopy images have been thresholded to indicate genotypic composition. 

susceptible cells [ 7]. In combination, these motility-driven pro-
cesses greatly empower the use of contact weapons under a broad 

swathe of conditions. 
We have focused here on a limited number of factors that 

dominate the kinetics of our experimental model of intraspecific 

competition: cell seeding density ρ0,motility force F,weapon firing 

rate λ and toxin efficacy ζ . There are other factors that may play 

a role in determining whether a contact weapon is beneficial in 

more general contexts. Motility is only one strategy that cells 

can use to overcome the corpse barrier effect; previous work has 

shown that lytic toxins can effectively overcome corpse barriers 

even in the absence of motility [7], and there is the potential 
for an interaction between motility and lysis rates. Our study 

also focusses upon a case where only one strain in a dyadic 

competition has a weapon but both strains have equal motility, 
which as discussed above we expect to arise when a member of 
an isogenic population acquires a novel contact weapon. There 

are other possible competitive scenarios, such as competition 

between species with mutually effective weapons and different 
levels of motility. In Fig. S1, we explore some of these scenarios 

theoretically. When both strains have symmetric motility (motile 

or non-motile), we see the same patterns as for a single weapon 

carrying strain: motility greatly increases the effectiveness of 
contact weapons where, as expected, the benefit is seen by the 

strain with themost powerful weapon. There is also an interesting 

case for two weapon contests that arises when only one strain 

is motile. In this case, motility still increases the effectiveness of 
contact weapons, but it is the non-motile cells that dispropor-
tionately benefit as they can form clusters that protect cells on 

the interior from the motile attacker. As a result, only a motile 

attacker with a particularly powerful weapon would be able to 

win in such contests (Fig. S1E). Such scenarios are an interesting 

case to investigate in future work. 
Similar to our findings, in Neisseria the expression of pili 

increases contact dependent killing by the T6SS [15]. However, 
unlike P. aeruginosa, pilus expression in Neisseria has been found 

to primarily drive cell–cell aggregation. This aggregation tends to 

cluster pilus-expressing cells together, leading to segregation of 
the two genotypes when only the attacker population expresses 

pili and consequently reduced killing of the sensitive population 

[15, 51]. This process, therefore, is distinct to the motility-
based mechanisms we have described here, where pilus-based 

motility in an attacker results in worse outcomes for a sensitive 

population. Consistent with this distinction, previous work 

suggests that P. aeruginosa pili do not drive significant cell–cell 
adhesion in twitching cells [18]. In Myxococcus xanthus, deletion of 
Type IV pili has little effect on predation efficiency via contact-
dependent mechanisms [16]. However, a different mechanism,
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Figure 4. Continuum simulations matched to experiments disentangle the contributions of genotypic mixing and target switching. (A-D) we made 

use of the imaging data from our co-culture surface colonies to parameterise the continuum framework via the IBM representation. Velocity 

timecourses (A, reproduced from Fig. 3D) and density measurements from images of seed cells initially deposited on the agar surface (C, coloured 

regions represent corresponding Voronoi domains) were converted into the characteristic units used in the IBM, the cell width lc and the speed of an 

isolated cell with self-propulsion force F = 1. Through our coarsegraining procedure (Fig. S3), we could then transform these measurements into the 

continuum model parameters D and re (B), as well as starting conditions reflecting the size of clonal domains established by seed cells (D). By 

simulating the dynamics of these appropriately matched continuum models (Methods), we were able to generate predictions of the level of genotypic 

mixing as a function of time (F), as well as the final competitive advantage of the CDI+ attacker population (H). Comparing to the corresponding 

measurements from our experimental system (E, G, reproduced from Fig. 3D and Fig. 2E, respectively), we observe that the model reproduces both the 

observation that the lowest inoculation density remains partially unmixed and that the relationship between inoculation density and CDI efficiency is  

non-monotonic. Breaking the dynamics of the continuum model into contributions from the starting conditions and the two mixing types (methods, 
Fig. S5), we find that killing is mainly limited by target switching at low inoculation densities and by genotypic mixing at high densities (I). F, H, and I 
show individual datapoints and averages from n =5 simulations initialised with different starting configurations. In G and H horizontal lines indicate 

the mean of replicates (n≥ 6). Top brackets indicate a significant difference between competitive advantages (one-sided Welch’s t-test, P <0.05, 
Benjamini-Hochberg MHT corrected 0.95). See supplementary Table 2 for exact P values. 
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known as gliding motility, does facilitate predation in M. xanthus. 
This finding raises the possibility that the two mixing processes 

we describe here can be generalized across motility systems and 

species, as well as weapon systems. In support of this, recent work 

on P. aeruginosa found that cell motility can improve killing via the 

T6SS [17]. This work also showed that motility can be used escape 

from an immobile attacker in the edge of an expanding colony. 
Although it is not our focus here, we were able to reproduce this 

result in our CDI-based experimental model (Fig. S8). 
Some evolutionary game theory models predict that motility 

can favour the evolution of aggression. However, in these models, 
the process that drives aggression is the ability of motile attack-
ers to avoid counter attacks from their targets [52, 53]. We do 

not include the possibility of counter attacks in our study, and 

still find great benefits to motility, which come solely from the 

improved effectiveness of attacks. Adding in such benefits from 

avoiding counter attacks, therefore,would be likely to only further 
increase the benefits of motility that we have described here. Kin 

selection is the evolutionary process by which traits that benefit 
the fitness of relatives are selected for, and is strongly influenced 

by the genotypic similarity between nearby individuals [54]. A key 

prediction of kin selection theory is that processes which increase 

interactions between individuals of different genotypes will tend 

to reduce cooperation and increase the potential for competition 

[55, 56].Our finding that genotypicmixing can greatly increase the 

benefits of weapon use, therefore, fits well with this prediction. 
Bacteria often face strong competition for space and resources. 

In the face of this competition,motility can confer strong benefits 

by helping strains to colonize new territory [9, 57, 58]. In addition, 
many bacteria have evolved weaponry, which enable carriers to 

directly inhibit and kill their competitors [1]. Here we have shown 

that these two important mechanisms combine to generate a 

powerful competitive strategy that can be decisive in bacterial 
contests. 
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