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A B S T R A C T

Purpose: To review methodological approaches for automated segmentation of subcutaneous adipose tissue, visceral adipose tissue, and skeletal muscle from 
abdominal cross-sectional imaging for body composition analysis.
Method: Four databases were searched for publications describing automated segmentation of subcutaneous adipose tissue, visceral adipose tissue, and/or skeletal 
muscle from abdominal CT or MR imaging between 2019 and 2023. Included reports were evaluated to assess how imaging modality, cohort size, vertebral level, 
model dimensionality, and use of a volume or single slice affected segmentation accuracy and/or clinical utility. Exclusion criteria included reports not in English 
language, manual or semi-automated segmentation methods, reports prior to 2019 or solely of paediatric patients, and those not describing the use of abdominal CT 
or MR.
Results: After exclusions, 172 reports were included in the review. CT imaging was utilised approximately four times as often as MRI, and segmentation accuracy did 
not significantly differ between the two modalities. Cohort size had no significant effect on segmentation accuracy. There was little evidence to refute the current 
practice of extracting body composition metrics from the third lumbar vertebral level. There was no clear benefit of using a 3D model to perform segmentation over a 
2D approach.
Conclusion: Automated segmentation of intra-abdominal soft tissues for body composition analysis is an intense area of research activity. Segmentation accuracy is 
not affected by cross-sectional imaging modality. Extracting metrics from a single slice at the third lumbar vertebral level is a common approach, however, extracting 
metrics from a volumetric slab surrounding this level may increase the resilience of the technique, which is important for clinical translation. A paucity of publicly 
available datasets led to most reports using different data sources, preventing direct comparison of segmentation techniques. Future efforts should prioritise creating 
a standardised dataset to facilitate benchmarking of different algorithms and subsequent clinical adoption.

1. Introduction

Body composition (BC) has been shown to affect both drug efficacy 
and numerous patient outcomes, including overall survival [1–3]. Ac
curate measurement of BC may help provide non-invasive assessment of 
frailty and guide more personalised treatment decisions. Various metrics 
have been used to quantify differences in BC, the vast majority of which 

involve the measurement of subcutaneous adipose tissue (SAT), visceral 
adipose tissue (VAT), and/or skeletal muscle (SM) volumes or areas. 
Although this task can be performed manually, it is extremely time- 
consuming, which has been a barrier to its translation into clinical 
practice. The automation of this process can be accomplished by a 
computer vision process known as semantic segmentation, whereby 
every pixel/voxel of an image is classified. In the case of BC analysis, 
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each voxel of a scan could be classified as SAT, VAT, SM, or background/ 
other tissue, allowing for measurement of the volumes, cross-sectional 
areas, and/or densities of these tissues.

Many decisions must be made when extracting BC metrics, one of 
which is measurement location. Ideally, BC metrics would be extracted 
from the entire body, as this would be the most comprehensive method. 
However, due to the laborious nature of manual segmentation, these 
measures are typically extracted from a single axial slice at the third 
lumbar (L3) vertebral level, as this has been shown to correlate with the 
composition of the entire body [4]. One potential flaw with a single slice 
method is that both varying spinal curvature and observer variation 
mean that the location of any single slice is likely inconsistent between 
subjects. Additionally, the positioning and distension of the bowel are 
likely to vary between subjects and time points. Consequently, two slices 
extracted from the same location but taken from different subjects or 
time points would likely contain differing proportions of bowel. A large 
amount of bowel visible in a slice would reduce the amount of VAT 
present in that slice, but this reduction would not apply to the entire 
body. In reality, subjects are all different and have varied body shapes 
and sizes. It therefore seems intuitive that a multi-slice section (volu
metric slab) would better estimate individual body habitus in compar
ison to any single slice. Measuring a volume effectively increases the 
sample-size of the measurement, and potentially averages over any 
measurement error or anatomical variation. However, this may reduce 
the number of scans that can be segmented, as they would need to cover 
a larger area of the torso.

Another key decision is the dimensionality of the segmentation 
model. Although it seems intuitive to use a 2D model to segment a single 
slice and a 3D model to segment a volume, this is not necessary, as 
multiple 2D segmentations can be stacked to segment a volume. 
Conversely, provided that adjacent slices are available, a 3D model can 
be used to predict the composition of a single slice. In the case of con
volutional neural networks, a commonly used method for semantic 
segmentation, 2D models require far fewer parameters than their 3D 
counterparts. This means that a 2D model is less prone to overfitting 
than its 3D equivalent, while requiring less computational power to 
train. However, 2D models do not allow for any knowledge-gain from 
the 3D structure. For example, if a voxel is surrounded by neighbours 
with attenuation values matching adipose tissue (AT), it is more likely 
that the voxel itself is AT rather than noise. By examining the data in 
three dimensions rather than two, the number of neighbouring voxels 
increases. This, in turn, may increase the confidence in determining 
whether the voxel belongs to any given class.

Previous work has compared the various imaging techniques which 
can be used to analyse BC [1,5,6]. Two reports found that CT and MR 
images provide the most accurate, specific, and comprehensive data. A 
third found that dual-energy X-ray absorptiometry (DXA) was preferred 
for muscle measurement. However, as DXA scans produce 2D images, 
they cannot be used for SAT or VAT segmentation, leaving CT and MRI 
as the only accurate methods for the extraction of SAT, VAT, and SM 
volumes. Additionally, these two modalities are routine in many clinical 
pathways, and as such BC metrics can be extracted without requiring 
additional scans.

This work aims to determine how the above factors affect both seg
mentation accuracy and clinical utility. Specifically, this review will aim 
to answer the following questions:

• Which tissues are most commonly segmented, and are any tissues 
more difficult to segment than others?

• Are BC metrics more commonly extracted from CT imaging or MRI, 
and does the modality affect segmentation accuracy?

• How much data is needed to train an accurate segmentation model?
• Which vertebral level should BC metrics be extracted from?
• Is it beneficial to extract BC metrics from a volume rather than a 

single slice?

• Is it worthwhile to use a 3D model for segmentation despite the 
added complexity compared to a 2D model?

2. Methodology

2.1. Information Source

Four databases were searched: Embase, Ovid Medline, Scopus, and 
Web of Science. These were chosen to include publications from both 
computing and medical fields. All databases were searched from 1st 
January 2018 to 23rd May 2023, providing a near four and a half year 
time window for review. Additionally, the reference lists of any litera
ture reviews returned by the search were scrutinised to identify any 
missed reports, which were subsequently added to the main set.

2.2. Search Strategy and Exclusion Criteria

The list of search terms contained three broad topics: segmentation, 
CT/MRI, and BC. The segmentation topic included synonyms such as 
‘semantic labelling’ and common methods that may be used to perform 
the task, such as ‘neural network’ and ‘u net’. The CT/MRI topic ensured 
that the segmentation was performed on either MR or CT images, con
taining various terms for the two imaging modalities. Finally, the BC 
topic ensures that SAT, VAT, and/or SM within the abdomen are 
segmented. This topic was more complex than the segmentation or CT/ 
MRI topics, and hence required two approaches. Firstly, location- 
ambiguous terms such as ‘adipose tissue’ or ‘body composition’ were 
required to appear along with a location such as ‘abdomen’ or ‘L3’. These 
were then combined with terms denoting fat or muscle that are located 
within the abdomen, such as ‘psoas’. The list of search terms contained 
within each topic and the rules used to combine them are presented in 
Fig. 1.

Additionally, two of the databases, Embase and Ovid Medline, con
tained trees of subject headings. These subject headings were matched to 
the existing search terms and added to the searches of their respective 
databases. Two terms were limited or excluded from the search. The 
term ‘algorithm’ was excluded from the segmentation topic if it appeared 
in the context ‘reconstruction algorithm’ as all CT scans go through this 
process. The term ‘computer assisted diagnosis’ was removed from the 
segmentation topic as its Embase subject heading contained ‘computer 
assisted tomography’ as a narrower term, which duplicates terms from the 
CT/MRI topic, bypassing the necessity of the segmentation topic. When 
searching Embase and Ovid Medline, the keyword search field was used 
which combines multiple fields including title, abstract, and heading 
word. For Scopus, the title, abstract, and keywords were searched. For 
Web of Science, the topic search field was used which searched publi
cations by title, abstract, author keywords, and keywords plus. The exact 
queries used to search each database are included in Appendix A.

To be included in this review, a study needed to automatically 
segment SAT, VAT, and/or SM in the abdomen using CT or MR images. 
The eight exclusion criteria which were utilised are summarised in 
Table 1 and were applied by a single author. However, any uncertainties 
were discussed with multiple authors.

The review process followed the steps outlined in the 2020 Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
flow diagram [7]. Firstly, the results from each database were combined 
and semi-automatically deduplicated. Next, titles and abstracts were 
screened to eliminate irrelevant results and literature reviews. Reports 
were then sought for retrieval, excluding unavailable reports or records 
that were not full reports, such as conference posters. The retrieved 
reports were assessed for eligibility using the previously discussed 
exclusion criteria. This process was repeated for the reference lists of any 
literature reviews identified in the search, with the relevant results 
added to the main set of reports.
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2.3. Data collection process and analysis

Data was extracted from the selected reports by a single author and 
entered into a table for further analysis. The data items collected from 
each report are shown in Table 2. Categorical data items, such as 
segmented tissue types and image modalities, were plotted against the 
number of reports to identify the most frequent values. When applicable, 
the distributions of Dice similarity coefficients (DSCs) were compared 
both visually using box-plots and statistically using Mann–Whitney U 
tests to explore potential relationships with segmentation accuracy. For 
numerical data items, such as cohort size, histograms were used to 
represent their distribution. To evaluate any potential relationships 
between numerical data items and segmentation accuracy, scatter plots 
and Pearson correlation coefficients (PCCs) were analysed.

Additionally, reports were reviewed to identify any findings that 
directly address the specific questions this review aims to answer. Any 
such findings were summarised and included in this review.

3. Results

3.1. Paper selection

The search yielded 2,975 records, of which 30 were immediately 
removed using database filters as they were not written in English. Semi- 
automated duplicate detection eliminated 1,654 records, leaving 1,291 
for title/abstract screening, which excluded a further 855. Of the 
remaining 436 records, 102 were either not available or only the ab
stract was available. In the latter case, it was usually either a poster or 
presentation abstract. Finally, the remaining 334 reports were assessed 
for eligibility. 127 were removed as they used either manual or semi- 
automated segmentation, and the focus of this search was on auto
mated techniques. 26 reports did not segment SAT, VAT, or SM, and one 
used DXA as its imaging modality instead of CT or MRI and was hence 
excluded. 11 reports performed segmentation in areas other than the 
abdomen, resulting in a total of 169 reports. Additionally, the search 
returned ten literature reviews which were assessed, revealing three 
missed reports. This step is expanded upon in Appendix B. These three 
reports were added to the existing search records, yielding a final total of 
172 reports. The PRISMA diagram showing this process is illustrated in 

Fig. 1. Search terms used for this literature review, and the rules used to combine them.
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Fig. 2, and the complete list of reports and extracted data is available in 
the supplementary material.

3.2. DSC Reporting

Of the 172 reports included in this review, 80 (47%) included the 
DSC(s) of their segmentation(s). The remaining 92 (53%) did not include 
any DSCs, with 64 of these utilising pre-trained models.

3.3. Tissues Segmented

The number of reports segmenting each tissue are shown in Fig. 3, 
showing that SAT, VAT, and SM were the most commonly segmented 
tissues by far, utilised in 68%, 66%, and 59% of reports, respectively. 
The additional segmented tissues were the psoas/iliopsoas muscle, 
inter/intramuscular adipose tissue, paraspinal muscles, other muscles, 
and fat.

Fig. 4 shows the distribution of each tissue with five or more reported 
DSCs. The DSC distributions resulting from the segmentation of SAT, 
VAT, and SM have median DSCs of 0.961, 0.943, and 0.949, respec
tively. The Mann–Whitney U tests, comparing the DSC distribution of 
SAT to those of the other tissues, produce significant p values at the 5% 
level. As the distributions share a similar shape, these findings suggest 
that the median DSC of SAT is significantly higher than that of the other 
tissues. The median DSC of VAT and SM did not significantly differ at the 
5% level.

3.4. Image Modality

The vast majority of reports (137, 80%) utilised CT images and 36 
(21%) used MR images. There was a single report which utilised both CT 
and MR images. Fig. 5 illustrates the distribution of the reported DSC by 
modality and tissue. Only a single study utilising MR images reported 
the DSC of SM segmentation, however the reported DSC of 0.83 was 
lower than any DSC resulting from SM segmentation of CT images. The 
median DSC resulting from SAT segmentation of MR images is lower 
than those utilising CT images, but the opposite is true for VAT seg
mentation. The Mann–Whitney U tests show that neither of these dif
ferences are significant at the 5% level.

3.5. Cohort Size

Fig. 6 demonstrates the number of subjects utilised in each report, 
ranging from 10 to 19,766. It shows that 78 reports utilised fewer than 
150 subjects, and 71 included more. The remaining 23 reports did not 
include the number of subjects used, instead usually reporting the 
number of scans. The term ‘scans’ was used differently across reports; 
many used it to refer to a single slice, meaning that multiple scans could 
be taken from a single 3D volume, whereas others used the term without 
definition. Due to this ambiguity, only the number of subjects is ana
lysed, as the term is unambiguous.

Many of the studies utilising large cohorts used pre-trained models, 
with no assessment of segmentation accuracy on their dataset. As one 
aim of this review was to assess the number of subjects needed to train 
an accurate segmentation model, such studies are discarded from this 
analysis. Fig. 7 shows only the number of subjects used to train models, 
showing far smaller populations than those presented in Fig. 6.

Fig. 8 shows the DSC for each tissue segmented against the number of 
subjects used to train the model. The Pearson correlation coefficient for 
each tissue ranges between 0.09 and 0.29, demonstrating no significant 
correlations at the 5% level.

3.6. Segmentation Location

A plot showing the number of reports extracting BC metrics from 
each vertebral level is presented in Fig. 9, showing that the vast majority 
of reports (81%) utilise the L3 vertebral level. The second most common 
was the fourth lumbar (L4) vertebral level used in 39% of reports, with 
the remaining lumbar vertebral levels having approximately equal 
usage.

Additionally, three reports were found comparing differing vertebral 
levels. A study by Hong et al. aimed to compare the correlation between 
volumes of SAT, VAT, and SM extracted at a single slice and those 
measured using the entire body [8]. Their results are shown in Table 3, 
showing that although the best single slice for SM and VAT was 

Table 1 
The exclusion criteria utilised in this review, along with the reason for this 
exclusion and any clarifications.

Exclusion criteria Exclusion reason and clarifications

Reports published prior to 
2019

These were excluded as this review had a broad scope 
and covered many reports. 2019 was chosen as a 
cutoff in order to focus on state-of-the-art techniques.

Manual or semi-automated 
segmentation

As this review is focused on techniques used to extract 
body composition (BC) metrics rather than their 
application, any studies extracting BC metrics with 
manual intervention were excluded. This did not 
include the selection of the slice(s) of the image from 
which to extract BC metrics; there were no limitations 
on how studies perform this step.

No relevant segmentation This review covers the measurement of subcutaneous 
adipose tissue, visceral adipose tissue, and skeletal 
muscle. Therefore, any studies which did not segment 
at least one of these tissues were excluded. Studies 
which segmented a subset of these tissues, such as the 
psoas muscle (a subset of skeletal muscle), were 
included.

Not CT/MRI As discussed previously, CT and MR images are the 
ideal choices for the extraction of BC metrics.

Not abdominal BC metrics may be extracted from areas other than the 
abdomen, however this review excludes any work 
outside this region. Studies which utilised larger areas 
were included if the abdomen was part of this region.

Paediatrics Due to vast physiological variations, conclusions 
drawn from paediatric studies (subjects under 18 
years old) may not apply to an adult population and 
vice versa. As BC analysis of adult populations is far 
more common, any studies utilising a paediatric 
population were excluded.

Literature reviews Any records which were literature reviews were 
excluded. However, any reports included in these 
reviews were assessed for eligibility in this review.

Reports not written in 
English

Out of necessity, any reports not written in the 
English language were removed.

Table 2 
Data items collected from each report along with a description of each item.

Data item Description

Location of 
segmentation

The anatomical location from which BC metrics were 
extracted, recorded as free text.

Vertebral level(s) Whether each of the first to fifth lumbar (L1-L5) 
vertebral levels were included in the segmentation. Each 
vertebra is only flagged if explicitly confirmed, or a 
volume overlapping these vertebrae is segmented.

Imaging modality Whether CT or MR images were utilised.
Method The method used to perform segmentation.
Supervision The type of supervision used to train the model, 

including whether the model was pre-trained.
Cohort size The number of subjects in the study.
Training cohort size The number of subjects used to train the model.
Testing cohort size The number of subjects used to assess the performance of 

the model.
Model dimensionality The dimensionality of the model used to perform 

segmentation.
Tissue(s) Segmented Whether subcutaneous adipose tissue, visceral adipose 

tissue, and/or skeletal muscle were segmented along 
with any other relevant tissues.

Dice Similarity 
Coefficient (DSC)

The DSC of each segmented tissue.
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Fig. 2. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020 flowchart showing the screening process of the literature review.

Fig. 3. Bar chart showing the number of reports segmenting each tissue. The tissues included are subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), 
skeletal muscle (SM), psoas/iliopsoas muscle, intermuscular adipose tissue (IMAT), paraspinal muscle, other muscle, and fat.

Fig. 4. Box plots showing the distribution of the Dice similarity coefficient (DSC) of each tissue segmented. The tissues included are subcutaneous adipose tissue 
(SAT), visceral adipose tissue (VAT), skeletal muscle (SM), psoas/iliopsoas muscle, intermuscular adipose tissue (IMAT), and paraspinal muscle. The median DSC is 
shown by the solid vertical line within each box, and the mean is shown by the dashed vertical line. Only tissues with five or more reported DSCs are shown. 
Additionally, the Mann–Whitney U test statistics (U) and associated p values are shown on the left, comparing the DSC distribution of each tissue to that of SAT. 
Although not shown, an additional Mann–Whitney U test was conducted to compare the DSC distributions of VAT and SM, showing that the two distributions did not 
significantly differ at the 5% level (U = 896.5, p = 0.683).
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extracted somewhere in the level of the second to fourth lumbar verte
brae, they did not differ significantly from those extracted at the L3 
vertebral level. This is not the case for SAT, where metrics extracted 
from the fifth lumbar vertebral level had significantly higher correlation 
with the entire body than those extracted from the L3 vertebral level.

In a study by Liu et al., the predictive value of SAT/VAT volumes 
extracted at the first lumbar (L1) and third lumbar(L3) vertebral levels 
were compared by assessing mortality in 9066 asymptomatic adults [9]. 
They reported that volumes extracted at either level were comparable, 

but the predictive power of the ratio of visceral to subcutaneous AT was 
significantly higher at the L3 vertebral level. In subsequent work by 
some of the same authors, Pickhardt et al. compared the ability of SM 
volume and mean attenuation to predict hip fractures and mortality in 
an asymptomatic population of 9,223 adults, evaluating metrics 
extracted at the L1 and L3 vertebral levels [10]. Their findings indicated 
that metrics from both locations performed similarly for most outcomes. 
However, SM volumes from the L3 vertebral level demonstrated a 
significantly higher area under the receiver operating characteristic 

Fig. 5. Box plots showing the distribution of the Dice similarity coefficient (DSC) of each commonly segmented tissue by imaging modality. The tissues included are 
subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and skeletal muscle (SM). The median DSC is shown by the solid vertical line within each box, and 
the mean is shown by the dashed vertical line. Additionally, the Mann–Whitney U test statistics (U) and associated p values are shown on the left, comparing the 
median DSC resulting from segmentation of both CT and MR images. Please note that only a single DSC for SM segmentation via MR imaging was reported. Hence, 
this is shown as a single point rather than a box plot and the Mann–Whitney U test is not performed.

Fig. 6. Histogram showing the number of subjects in each report. Bins which are 100 subjects wide are shown in light blue, whereas those shown in dark blue are 
5000 subjects wide. The number of reports which did not specify the number of subjects used is shown in red.

Fig. 7. Histogram showing the number of subjects used to train each model. Bins which are 20 subjects wide are shown in light blue, whereas those shown in dark 
blue are 300 subjects wide, including an overflow bin. The number of reports which did not specify the number of subjects used is shown in red.
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curve compared to those from the L1 vertebral level in predicting hip 
fractures within ten years of the scan. Mean SM attenuation out
performed SM volume measured at either location, with mean attenu
ation extracted from both levels being nearly identical.

3.7. Single Slice vs 3D Volume

Of the 172 reviewed reports, approximately one third (58) 
segmented a 3D volume, whereas 112 did not. Additionally, two reports 
did not specify whether they segmented a 3D volume.

Two reports directly compared metrics extracted from a single slice 
with those extracted from a larger volume. The previously discussed 

analysis by Hong et al. shown in Table 3 compares the correlation be
tween metrics extracted from single and multi-slice volumes with the 
composition of the entire body [8]. The multi-slice metrics consistently 
had higher correlation with the composition of the entire body than 
those extracted at the L3 vertebral level. Additionally, they usually 
outperformed the best single slice, only failing to do so in two cases.

Anyene et al. compared BC metrics measured from the L3 slice to 
those extracted from a volume spanning from the twelfth thoracic (T12) 
to the fifth lumbar (L5) vertebral levels [11], finding a high degree of 
correlation for all tissues. However, they found that the two metrics 
differed significantly in 5.5–6.4% of the population, varying by tissue. 
They noted that these outliers had a higher average BMI in comparison 

Fig. 8. Scatter plot showing the Dice similarity coefficient (DSC) against training size by tissue. The tissues included are subcutaneous adipose tissue (SAT), visceral 
adipose tissue (VAT), and skeletal muscle (SM). The Pearson correlation coefficients (r) and associated p values are shown on the bottom right, showing no significant 
correlations. The mean DSC for each tissue is shown by the horizontal lines. Please note that a single outlier has been removed for clarity, a study segmenting VAT 
with a reported DSC of 0.66.

Fig. 9. Bar chart showing the number of reports extracting body composition metrics from each of the first to fifth lumbar (L1-L5) vertebral levels. Please note that 
any given paper may utilise multiple vertebral levels, and hence the total number of reports exceeds the number returned by the search.

Table 3 
Comparison of correlation between subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and skeletal muscle (SM) volumes extracted from single/multiple 
slices versus the entire body. Measurements were taken from the twelfth thoracic (T12) to the first lumbar (L1) vertebral levels. Values in the L3 vertebra column were 
measured at the centre of the vertebra, whereas the best single slice(s) column includes measurements from any location within the vertebra. The highest Pearson 
correlation coefficient (PCC) per tissue/sex is highlighted in bold, along with the associated confidence interval (CI). Results are taken from Hong et al., 2023 [8].

Tissue Sex L3 Vertebra Best Single Slice(s) Multi-Slice (T12-L1)

PCC CI Vertebra(e) PCC CI PCC CI

SAT F 0.84 0.78–0.89 L5 0.91 0.87–0.94 0.91 0.88–0.94
M 0.89 0.84–0.93 L5 0.94 0.90–0.96 0.91 0.85–0.94

VAT F 0.97 0.95–0.98 L2-L3 0.97 0.96–0.98 0.98 0.97–0.99
M 0.97 0.96–0.98 L2 0.98 0.96–0.99 0.97 0.95–0.98

SM F 0.85 0.78–0.90 L3 0.86 0.80–0.91 0.88 0.82–0.92
M 0.86 0.78–0.92 L4 0.87 0.81–0.91 0.91 0.87–0.93

All - 0.90 0.87–0.92 L2-L3 0.90 0.88–0.92 0.92 0.92–0.95
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to non-outliers. They additionally used these metrics to analyse all-cause 
mortality in colorectal cancer patients, finding no significant differences 
between single-slice and multi-slice metrics.

3.8. Model Dimensionality

2D models were over five times more common than 3D models, as 
shown in Fig. 10. Additionally, six reports utilised 2.5D models, i.e., 
models which utilised two or three anatomical planes simultaneously.

Fig. 11 compares the distribution of the reported DSCs of SAT, VAT, 
and SM segmentation using both 2D and 3D models. The Mann–Whitney 
U tests show no significant difference in the segmentation of SAT when 
using the two methods. For VAT and SM this is not the case, with both 
Mann–Whitney U tests producing significant results at the 5% level. 
Combined with the plotted distributions, this suggests that the median 
DSC achieved by 2D models is higher than that achieved by 3D models.

The literature search identified three reports comparing the use of 2D 
and 3D models. In the first paper, Liu. et al. compared 2D and 3D 
implementations of their model for the prediction of SM, SAT, and VAT 
volumes in the entire torso [12]. The second paper, by Lee et al., per
formed the same task but with segmentation of the entire body [13]. The 
third paper, by Wesselink et al., aimed to segment six paraspinal muscles 
[14]. Their results are summarised in Table 4, illustrating that two of the 
three reports found that 3D models outperformed their 2D counterparts.

4. Discussion

4.1. Search coverage

This work presents an extensive scoping review capturing an intense 
area of research at the interface of medical imaging and scientific 
computing. It covers a broad scope and hence evaluated many studies. 
Additionally, the analysis of existing literature reviews revealed only 
three reports which were not identified using the search strategy pre
sented in Fig. 1. This small number suggests that the search was 
comprehensive and likely missed very few relevant reports.

4.2. DSC reporting

DSCs are widely used to compare the agreement between predicted 
segmentations and ground truths, but surprisingly, this measure was 
only reported in approximately 50% of the reports. Although other 
measures of segmentation accuracy such as the Jaccard index were oc
casionally used, this only occurred in a handful of reports as the DSC is 
the most commonly used measure. Most reports which did not include 
the DSC utilised pre-trained models with no quantitative assessment of 
segmentation accuracy. In some cases, the model was either trained on 
or previously evaluated on their exact dataset, but this was rare. The 
remainder assumed that previous results would apply to their data, 

which may be problematic, as minor variations in scanning parameters 
or patient characteristics, not present in the original training data, could 
lead to inaccurate segmentations. Although a qualitative assessment of 
results was likely performed, this may be insufficient, as it can be hard to 
spot minor mistakes when checking numerous scans. When utilising pre- 
trained models, a small subset of the data should be manually labelled to 
quantitatively assess the model’s performance and compare it to existing 
results.

4.3. Tissues segmented

SAT, VAT, and SM were the most commonly segmented tissues by 
far, segmented in over six times as many reports as the psoas, the next 
most common tissue. Comparing the distributions using Mann–Whitney 
U tests showed that the median DSC of SAT segmentation is higher than 
those resulting from VAT and SM, suggesting that it is the easiest tissue 
to segment. This is unsurprising as it is the most geometrically simple 
shape, loosely consisting of a cylinder surrounding the abdomen. By 
comparison, SM and VAT are more complicated. SM is a similar shape to 
SAT, but with the added complexity of the paraspinal musculature. VAT 
is the most geometrically complex, as it contains multiple cavities where 
other tissues such as the bowel may lie. This suggests that extra care 
should be taken when segmenting VAT and SM in comparison to SAT.

4.4. Image modality

This review found that BC metrics were far more commonly extrac
ted from CT imaging in comparison to MRI. This is likely because CT is 
more widely performed than MRI due to a greater number of scanners 
and faster acquisition/throughput. Overall, the choice of imaging mo
dality is likely to be determined by the clinical pathway, as many will 
involve routine diagnostic imaging. Even if there were a preferred mo
dality which could be used to acquire significantly more accurate BC 
metrics, it would be more efficient to use routine scans rather than 
expending extra resources to acquire a second image. Fortunately, there 
appears to be no significant difference in the accuracy of segmentations 
of CT or MR images, and as such there is no reason to expend these extra 
resources. One exception to this is the segmentation of SM, as there was 
only a single study performing this task, which performed poorly in 
comparison to those utilising CT images. Developing a toolkit capable of 
extracting a full suite of accurate BC metrics from MR images would be 
beneficial, as many patients undergo MRI scans.

4.5. Cohort size

When first examining the results presented in Fig. 8, it was surprising 
to see no correlation between cohort size and DSC as it seems intuitive 
that more training data would result in a more accurate model. One 
possible explanation is that smaller cohorts likely contain less variation, 

Fig. 10. Bar chart showing the number of reports extracting body composition metrics using 2D, 3D, or 2.5D models.

C. Winder et al.                                                                                                                                                                                                                                 European Journal of Radiology 181 (2024) 111764 

8 



as larger cohorts likely require data to be collected from multiple cen
tres, patients of differing conditions, and/or longer periods of time. 
These may result in a wider range of scanning parameters to be used, and 
more variety in the subjects being scanned. Conversely, small pop
ulations may be single centre studies of a small homogeneous popula
tion, leading to a simpler segmentation task. Analysis of cohort sizes was 
limited by the varied and often ambiguous ways this figure was re
ported. Future work should ideally report three figures, the number of 
subjects, volumes, and slices, as these terms are unambiguous.

4.6. Segmentation location

As expected, an overwhelming majority of reports utilised the L3 
vertebral level for their segmentation, as this has been the status quo for 
many years. The report by Hong et al. showed that although the L3 
vertebral level was not necessarily the best choice for all tissues, the 
improvement gained by using an alternate vertebral level was usually 
insignificant [8]. They showed that for work segmenting all tissues, 
either the second lumbar (L2) or L3 vertebral level was the optimum 
choice. Two other studies compared the clinical predictive value of BC 
metrics extracted from the L1 and L3 vertebral levels, finding that 
although there were usually no significant differences between the two 
measures, there were some instances where the metrics extracted from 
the L3 vertebral level were better [9,10]. Combining this information, 
there is little evidence to refute the practice of extracting BC metrics 
from the L3 vertebral level.

4.7. Single slice vs 3D volume

This review found that the vast majority of reports did not segment a 
volume, and instead extracted BC metrics from a single axial slice. 

Reports directly comparing the two found minimal differences between 
BC metrics extracted in either manner. However, the point made by 
Anyene et al. regarding outliers is an important one [11]. The similar 
performance of the two measures is generally assessed across a popu
lation, but if a model were to be used for personalised recommendations, 
the number of outliers is likely a more important factor than mean 
segmentation accuracy. We advise that any studies aiming to implement 
BC models in clinical practice should segment a volumetric slab sur
rounding the L3 vertebral level, and that any outliers should be analysed 
and reported. However, for large population studies, a single slice is 
likely sufficient.

4.8. Model dimensionality

As shown in Fig. 11, employing a 3D model appears to either offer no 
benefits or significantly impairs segmentation accuracy in comparison to 
a 2D model. This finding disagrees with two of the three reports which 
directly compared the two methods. These three reports may provide 
more conclusive evidence than those presented in Fig. 11, as they 
directly compare the same model architectures on the same datasets. As 
2D models are easier to train than their 3D counterparts, it is likely that a 
2D model is the first to be used on any segmentation task. Consequently, 
a 3D model might only be used on more difficult datasets where a 2D 
model cannot produce accurate segmentations, biasing the results. 
Hence, any future studies should begin by using a 2D model. If this 
proves to be insufficient, delving into the added complexity of a 3D 
model may be warranted.

4.9. Issues and recommendations

The main difficulty in this review is the fact that these reports are all 

Fig. 11. Box plots showing the distribution of the Dice similarity coefficient (DSC) of each commonly segmented tissue by model dimensionality. The tissues included 
are subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and skeletal muscle (SM). The median DSC is shown by the solid vertical line within each box 
and the mean is shown by the dashed vertical line. Additionally, the Mann–Whitney U test statistics (U) and associated p values are shown on the left, comparing the 
median DSC resulting from segmentation using both 2D and 3D models.

Table 4 
A comparison of three reports extracting body composition metrics in 3D using both 2D and 3D methods. Two reports segmented subcutaneous adipose tissue (SAT), 
visceral adipose tissue (VAT), and skeletal muscle (SM), while the third report segmented six paraspinal muscles. For brevity, the mean Dice similarity coefficient (DSC) 
of these paraspinal muscles is reported and hence no standard deviations (SDs) are shown. Two reports employed U-Net models, whereas the third used a dual-pathway 
deep dilated convolutional neural network (DDD-CNN). The best performing dimensionality for each model is highlighted in bold. Metrics reported for Liu et al. are 
taken from their internal dataset to allow for a fair comparison, as the other two reports did not use external datasets.

Paper Model Dim SAT VAT SM Paraspinal Muscles

DSC SD DSC SD DSC SD DSC SD

Liu 2019 [12] DDD-CNN 2D 0.898 0.147 0.732 0.143 0.824 0.061 - -
3D 0.954 0.039 0.863 0.062 0.893 0.036 - -

Lee 2021 [13] U-Net 2D 0.961 0.031 0.905 0.078 0.972 0.010 - -
3D 0.971 0.031 0.951 0.049 0.981 0.006 - -

Wesselink 2022 [14] U-Net 2D - - - - - - 0.921 -
3D - - - - - - 0.916 -
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utilising different datasets, preventing direct comparison of segmenta
tion techniques except for a few reports. At the time of writing, we are 
aware of no public datasets containing SAT, VAT, and SM. This, along 
with the previously discussed issues with current work and recommen
dations for future work are summarised in Table 5.

4.10. Limitations

This review has several limitations. Firstly, reports published prior to 
2019 were excluded for pragmatic reasons and an aim to highlight more 
recent advancements. Despite this limited time period, the search 
returned a substantial number of reports. Secondly, reports written in 
languages other than English were necessarily excluded, although this 
only accounted for approximately 1% of records. Lastly, a single author 
performed both the filtering of reports and data extraction, whereas it is 
common for two authors to perform this task independently, allowing 
them to discuss potential disagreements and reduce the number of 
erroneously excluded reports. This was a necessity, and to counteract 
this the results were compared to existing literature reviews with any 
missed reports added into the results. Additionally, any uncertainties 
were discussed with multiple authors. Finally, skeletal muscle density 
has recently emerged as a potentially superior predictor of mortality 
compared to muscle area/bulk, and these aspects were not considered as 
part of this scoping review [15].

5. Conclusion

This review identified and analysed recent literature describing 
automated segmentation of SAT, VAT, and/or SM, and used data 
extracted from these reports to quantify the effects of decisions made in 
the automatic acquisition of BC metrics. It has found that SAT, VAT, and 
SM are all equally prevalent in BC analysis, and that VAT and SM are 
harder to segment than SAT. There was little evidence to refute the 
status quo of extracting BC metrics from a single axial slice at the L3 
vertebral level, as the composition of this slice is typically highly 
correlated with overall BC. However, there are edge cases where this 
relationship may not hold. Extracting BC metrics from a 3D volume 
surrounding this level would increase the sample size of the measure
ment and may reduce the frequency of such cases. This is crucial for 

clinical applications, where inaccurate metrics may result in adverse 
outcomes. In contrast, population studies are generally focused on 
average outcomes, and as such metrics extracted from a single slice are 
likely sufficient. There were no significant differences in the accuracy of 
segmentations of both CT and MR images, and hence the choice of 
modality should be based on data availability. Unfortunately, paucity of 
standardised datasets limited the analysis of both model dimensionality 
and the number of subjects required to train a model. Future work 
should prioritise creating a standard dataset to allow for the direct 
comparison of different methods.
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Table 5 
Common issues with present work and recommendations for future work.

Issue Recommendation

Direct comparison of segmentation 
techniques is rare

Creation of a public dataset for 
subcutaneous adipose tissue (SAT), 
visceral adipose tissue (VAT), and skeletal 
muscle (SM) segmentation to allow for the 
direct comparison of techniques.

Dice similarity coefficients (DSCs) are 
rarely reported when utilising pre- 
trained models

A portion of the data should be manually 
labelled to quantitatively assess the 
performance of the pre-trained model 
using DSCs.

Little work automatically extracts VAT 
or SM volumes from MRI

Development of a model to extract a full 
suite of body composition (BC) metrics 
from MRI.

Ambiguous reporting of dataset sizes Any work performing segmentation on 
medical images should report the number 
of subjects, volumes, and slices used for 
training, testing, and validation.

BC metrics are rarely extracted from a 
volume

BC metrics should be extracted from a 
volume if they are to be used in clinical 
practice. For large population studies, a 
single slice is likely sufficient.
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Appendix A. Literature Search Strings

A.1. Embase

((”neural net*” or cnn or fcnn or ”deep learning” or ”machine learning” or segmentation* or ”semantic label*” or radiomic* or ”artificial intel
ligence*” or ai or (algorithm* not ”reconstruction algorithm*”) or ”computer aided detection” or ”computer assisted detection” or ”computer assisted 
image interpretation” or ”computer aided image interpretation” or ”computer vision” or unet or ”u net”).mp. or exp *artificial intelligence/ or exp 
*machine learning/ or *radiomics/ or exp *algorithm/ or *computer vision/ or exp *image segmentation/ or automated biomarker*.mp.) and 
((((”body composition*” or ”geriatric assessment*” or (amyotroph* not ”amyotrophic lateral sclerosis”) or ”musc* atroph*” or myoatrophy or 
myatrophy or myodegeneration or cachexi* or cachectic or sarcopeni* or frail* or myopeni* or muscle* or muscul* or fat or fats or adipos*).mp. or exp 
*body composition/ or *geriatric assessment/ or exp *muscle atrophy/ or *cachexia/ or *frailty/ or exp *muscle/ or exp *adipose tissue/) and 
((abdom* or torso or trunk or truncus or ”peritoneal cavit*” or ”cavum peritone*” or ”intraperitoneal cavity” or ”peritoneum cavity” or ”peritoneal 
sac” or ”supracolic compartment” or ”infracolic compartment” or ”greater sac” or ”greater omentum” or ”lesser sac” or ”lesser omentum” or ”omental 
bursa” or ”abdom* wall” or lumbar or L1 or L2 or L3 or L4 or L5).mp. or *abdomen/ or *abdominal cavity/ or *trunk/)) or ((”transvers* abdom*” or 
”abdom* transvers* ” or ”lower abs” or ”rectus abdom*” or ”abdom* rectus” or ”rectus sheath” or ”abdom* oblique” or ”oblique abdom*” or ”external 
oblique” or ”internal oblique” or pyramidalis or ”quadratus lumborum” or ”ql musc*” or ”back musc*” or psoas or ”paraspinal musc*” or ”para spinal 
musc*” or ”paravertebral musc*” or ”para vertebral musc*” or iliacus or iliopsoas or ”intraperitoneal fat*” or ”intraperitoneal adipos*” or ”intra 
peritoneal fat*” or ”intra peritoneal adipos*” or ”retroperitoneal fat*” or ”retroperitoneal adipos*” or ”retro peritoneal fat*” or ”retro peritoneal 
adipos*”).mp. or exp *abdominal wall musculature/ or *back muscle/ or *paraspinal muscle/ or *iliacus muscle/ or exp *iliopsoas muscle/ or exp 
*abdominal fat/)) and ((”compute* tomograph*” or ”compute* assist* tomograph*” or ct or ”magnetic resonance imag*” or mri* or ”positron 
emission tomograph*” or ”pet* scan*” or ”whole body imag*” or ”full body imag*” or ”abdom* imag*”).mp. or *computer assisted tomography/ or 
exp *X-ray computed tomography/ or *nuclear magnetic resonance imaging/ or *whole body imaging/ or exp *whole body tomography/ or 
*abdominal radiography/) [mp = title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade 
name, keyword heading word, floating subheading word, candidate term word].

limit 1 to (english language and yr=”2019–2023”)

A.2. Ovid Medline

((”neural net*” or cnn or fcnn or ”deep learning” or ”machine learning” or segmentation* or ”semantic label*” or radiomic* or ”artificial intel
ligence*” or ai or (algorithm* not ”reconstruction algorithm*”) or ”computer aided detection” or ”computer assisted detection” or ”computer assisted 
image interpretation” or ”computer aided image interpretation” or ”computer vision” or unet or ”u net”).mp. or exp *neural networks, computer/ or 
*algorithms/ or *artificial intelligence/ or exp *machine learning/) and ((((”body composition*” or ”geriatric assessment*” or (amyotroph* not 
”amyotrophic lateral sclerosis”) or ”musc* atroph*” or myoatrophy or myatrophy or myodegeneration or cachexi* or cachectic or sarcopeni* or frail* 
or myopeni* or muscle* or muscul* or fat or fats or adipos*).mp. or exp *body composition/ or *geriatric assessment/ or *frailty/ or *muscles/ or 
*muscle, skeletal/ or exp *Adipose Tissue/) and ((abdom* or torso or trunk or truncus or ”peritoneal cavit*” or ”cavum peritone*” or ”intraperitoneal 
cavity” or ”peritoneum cavity” or ”peritoneal sac” or ”supracolic compartment” or ”infracolic compartment” or ”greater sac” or ”greater omentum” or 
”lesser sac” or ”lesser omentum” or ”omental bursa” or ”abdom* wall” or lumbar or L1 or L2 or L3 or L4 or L5).mp. or exp *abdomen/ or *trunk/)) or 
((”transvers* abdom*” or ”abdom* transvers* ” or ”lower abs” or ”rectus abdom*” or ”abdom* rectus” or ”rectus sheath” or ”abdom* oblique” or 
”oblique abdom*” or ”external oblique” or ”internal oblique” or pyramidalis or ”quadratus lumborum” or ”ql musc*” or ”back musc*” or psoas or 
”paraspinal musc*” or ”para spinal musc*” or ”paravertebral musc*” or ”para vertebral musc*” or iliacus or iliopsoas or ”intraperitoneal fat*” or 
”intraperitoneal adipos*” or ”intra peritoneal fat*” or ”intra peritoneal adipos*” or ”retroperitoneal fat*” or ”retroperitoneal adipos*” or ”retro 
peritoneal fat*” or ”retro peritoneal adipos*”).mp. or exp *abdominal muscles/ or *paraspinal muscles/ or *psoas muscles/ or exp *abdominal fat/)) 
and ((”compute* tomograph*” or ”compute* assist* tomograph*” or ct or ”magnetic resonance imag*” or mri* or ”positron emission tomograph*” or 
”pet* scan*” or ”whole body imag*” or ”full body imag*” or ”abdom* imag*”).mp. or exp *Tomography, X-ray Computed/ or exp *Magnetic 
Resonance Imaging/ or exp *Whole Body Imaging/) [mp = title, book title, abstract, original title, name of substance word, subject heading word, 
floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease 
supplementary concept word, unique identifier, synonyms, population supplementary concept word, anatomy supplementary concept word].

limit 1 to (english language and yr=”2019–2023”)

A.3. Scopus

TITLE-ABS-KEY ((”neural net*” OR cnn OR fcnn OR ”deep learning” OR ”machine learning” OR segmentation* OR ”semantic label*” OR radiomic* 
OR ”artificial intelligence*” OR ai OR (algorithm* AND not ”reconstruction algorithm*”) OR ”computer aided detection” OR ”computer assisted 
detection” OR ”computer assisted image interpretation” OR ”computer aided image interpretation” OR ”computer vision” OR unet OR ”u net”) AND 
(((”body composition*” OR ”geriatric assessment*” OR (amyotroph* AND not ”amyotrophic lateral sclerosis”) OR ”musc* atroph*” OR myoatrophy 
OR myatrophy OR myodegeneration OR cachexi* OR cachectic OR sarcopeni* OR frail* OR myopeni* OR muscle* OR muscul* OR fat OR fats OR 
adipos*) AND (abdom* OR torso OR trunk OR truncus OR ”peritoneal cavit*” OR ”cavum peritone*” OR ”intraperitoneal cavity” OR ”peritoneum 
cavity” OR ”peritoneal sac” OR ”supracolic compartment” OR ”infracolic compartment” OR ”greater sac” OR ”greater omentum” OR ”lesser sac” OR 
”lesser omentum” OR ”omental bursa” OR ”abdom* wall” OR lumbar OR l1 OR l2 OR l3 OR l4 OR l5)) OR (”transvers* abdom*” OR ”abdom* 
transvers* ” OR ”lower abs” OR ”rectus abdom*” OR ”abdom* rectus” OR ”rectus sheath” OR ”abdom* oblique” OR ”oblique abdom*” OR ”external 
oblique” OR ”internal oblique” OR pyramidalis OR ”quadratus lumborum” OR ”ql musc*” OR ”back musc*” OR psoas OR ”paraspinal musc*” OR ”para 
spinal musc*” OR ”paravertebral musc*” OR ”para vertebral musc*” OR iliacus OR iliopsoas OR ”intraperitoneal fat*” OR ”intraperitoneal adipos*” 
OR ”intra peritoneal fat*” OR ”intra peritoneal adipos*” OR ”retroperitoneal fat*” OR ”retroperitoneal adipos*” OR ”retro peritoneal fat*” OR ”retro 
peritoneal adipos*”)) AND (”compute* tomograph*” OR ”compute* assist* tomograph*” OR ct OR ”magnetic resonance imag*” OR mri* OR ”positron 
emission tomograph*” OR ”pet* scan*” OR ”whole body imag*” OR ”full body imag*” OR ”abdom* imag*”)) AND (LIMIT-TO (PUBYEAR, 2023) OR 
LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019)) AND (LIMIT-TO 
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(LANGUAGE, ”english”)).
A.4. Web of science

(”neural net*” OR cnn OR fcnn OR ”deep learning” OR ”machine learning” OR segmentation* OR ”semantic label*” OR radiomic* OR ”artificial 
intelligence*” OR ai OR (algorithm* NOT ”reconstruction algorithm*”) OR ”computer aided detection” OR ”computer assisted detection” OR 
”computer assisted image interpretation” OR ”computer aided image interpretation” OR ”computer vision” OR unet OR ”u net”) AND (((”body 
composition*” OR ”geriatric assessment*” OR (amyotroph* NOT ”amyotrophic lateral sclerosis”) OR ”musc* atroph*” OR myoatrophy OR myatrophy 
OR myodegeneration OR cachexi* OR cachectic OR sarcopeni* OR frail* OR myopeni* OR muscle* OR muscul* OR fat OR fats OR adipos*) AND 
(abdom* OR torso OR trunk OR truncus OR ”peritoneal cavit*” OR ”cavum peritone*” OR ”intraperitoneal cavity” OR ”peritoneum cavity” OR 
”peritoneal sac” OR ”supracolic compartment” OR ”infracolic compartment” OR ”greater sac” OR ”greater omentum” OR ”lesser sac” OR ”lesser 
omentum” OR ”omental bursa” OR ”abdom* wall” OR lumbar OR L1 OR L2 OR L3 OR L4 OR L5)) OR (”transvers* abdom*” OR ”abdom* transvers* ” 
OR ”lower abs” OR ”rectus abdom*” OR ”abdom* rectus” OR ”rectus sheath” OR ”abdom* oblique” OR ”oblique abdom*” OR ”external oblique” OR 
”internal oblique” OR pyramidalis OR ”quadratus lumborum” OR ”ql musc*” OR ”back musc*” OR psoas OR ”paraspinal musc*” OR ”para spinal 
musc*” OR ”paravertebral musc*” OR ”para vertebral musc*” OR iliacus OR iliopsoas OR ”intraperitoneal fat*” OR ”intraperitoneal adipos*” OR ”intra 
peritoneal fat*” OR ”intra peritoneal adipos*” OR ”retroperitoneal fat*” OR ”retroperitoneal adipos*” OR ”retro peritoneal fat*” OR ”retro peritoneal 
adipos*”)) AND (”compute* tomograph*” OR ”compute* assist* tomograph*” OR ct OR ”magnetic resonance imag*” OR mri* OR ”positron emission 
tomograph*” OR ”pet* scan*” OR ”whole body imag*” OR ”full body imag*” OR ”abdom* imag*”) (Topic) and English (Languages).

Timespan: 2019–01-01 to 2023–12-31 (Publication Date).

Appendix B. Comparison with Existing Literature Reviews

The literature search returned ten literature reviews, summarised in Table B.1, whose results were compared with the previously found 169 reports 
to assess coverage and identify any missed reports. Most of these reviews explored either broader or narrower scopes than the work presented here, 
and hence had minimal overlap. Many of the reports included in these reviews were published prior to 2019, leading to their exclusion from this 
review. Of the 102 reports covering body composition post-2018, 49 were already included in this review and 49 were excluded or not accessed. The 
four remaining reports included a duplicate, meaning that there were three missed reports.

Table B.1 
Existing reviews covering body composition.

Author(s) Year Review Topic Papers

Body composition (post- 
2018)

In this 
search

Excluded or not 
retrieved

Missed by this 
search

Greco, F and Mallio, C A 
[16]

2021 Abdominal adipose tissue analysis 12 11 1 0

D’Antoni, F et al. [17] 2021 Lower back pain 2 1 0 1
Bedrikovetski, S et al. [18] 2022 Body composition 21 18 2 1
Lenchik, L et al. [19] 2019 Tissue segmentation 0 0 0 0
Paris, M [20] 2019 CT body composition 3 3 0 0
Elfanagely, O et al. [21] 2020 CT analysis in abdominal wall reconstruction 4 0 4 0
Meyer, H-J et al. [22] 2023 Fat as a prognostic marker in gastric 

adenocarcinoma
5 0 5 0

Tolonen, A et al. [23] 2021 CT body composition 36 0 35 1
Zhao, Y et al. [24] 2023 Multi-task deep learning 1 0 1 0
Huang, Y-T et al. [25] 2021 Sarcopenia 18 16 1 1

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejrad.2024.111764.
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