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ABSTRACT 9 

Dike intrusion and formation of overlying dike-induced normal faults facilitate plate 10 

extension. The kinematics of these dike-induced normal faults can provide an accessible 11 

record of subsurface diking. Here, we use high-resolution LiDAR and InSAR data to explore 12 

how strain was distributed across a pre-existing dike-induced fault array during discrete 13 

diking events in the Dabbahu-Manda Hararo magmatic segment (Afar, Ethiopia) in 2008 and 14 

2010. By analysing throw of the dike-induced normal faults we show that only a small 15 

number of faults were reactivated during each diking event; the distribution of this 16 

reactivation likely depended on dike depth, opening, and inclination, as well as fault 17 

orientation. We also show fault throw favourably accrued towards fault centers, away from 18 

areas of soft- or hard-linkage. Our high-resolution datasets demonstrate the importance of 19 

reactivation to rifting, as it means extension can occur at lower extensional forces, and that 20 

fault slip (and seismic hazard) may not localise at sites of fault linkage. 21 

 22 

INTRODUCTION 23 

When magma is readily available during continental rifting or seafloor spreading, extension 24 

is often accommodated by dike emplacement (e.g. Calais et al., 2008; Chadwick and Embley, 25 



1998; Ebinger and Casey, 2001; Pollard et al., 1983; Rubin and Pollard, 1988; Wright et al., 26 

2006). Most dikes do not reach the surface and instead, above a single dike, extension of the 27 

overlying rock tends to be accommodated by pairs of normal faults that strike parallel to and 28 

dip towards the underlying dike upper tip (e.g. Magee and Jackson, 2020; Mastin and Pollard, 29 

1988; Trippanera et al., 2015a; Trippanera et al., 2015b). Where dikes are closely spaced, 30 

complex arrays of these dike-induced normal faults may develop (e.g. Dumont et al., 2017; 31 

Dumont et al., 2016; Hjartardóttir et al., 2012; Rowland et al., 2007). Such dike-induced 32 

faults also form on and near volcanic edifices (e.g., Bonali et al., 2024; Mastin and Pollard, 33 

1988). Critically, the surface expression of dike-induced faults provides a record of otherwise 34 

inaccessible subsurface magmatic and rifting processes, and helps us: (1) unravel how 35 

continents break apart and oceanic crust forms (e.g., Chadwick and Embley, 1998; Rowland 36 

et al., 2007; Ruch et al., 2016; Wright et al., 2006); (2) track intruding dikes, which aids 37 

eruption forecasting (e.g., Pallister et al., 2010); and (3) assess whether or not fault slip, and 38 

thus seismic hazard, preferentially localises where faults link (e.g. Walker et al., 2009). 39 

However, previous studies typically focus on dike-induced fault pairs above single dikes, 40 

with few exploring how the surface expression of complex dike-induced fault arrays evolves 41 

(e.g., Dumont et al., 2017; Dumont et al., 2016). Here, we use repeat high-resolution, 42 

airborne light detection and ranging (LiDAR) surveys and synthetic aperture radar 43 

interferometry (InSAR) data to establish how strain was distributed across a dike-induced 44 

normal fault array during two diking events (2008 and 2010) within the Dabbahu-Manda 45 

Hararo magmatic segment in Afar, Ethiopia. 46 

 47 

GEOLOGICAL SETTING 48 

Extension in magmatic segments in Afar is facilitated by frequent dike intrusions, which are 49 

expressed at the surface as arrays of dike-induced normal faults, fissure eruptions, and 50 



volcanic centres (e.g. Fig. 1) (e.g. Casey et al., 2006; Ebinger and Casey, 2001; Rowland et 51 

al., 2007); this structure is similar to magmatic segments along mid-ocean ridges (e.g. 52 

Chadwick and Embley, 1998). Between 2005 and 2010, a series of 14 diking events 53 

reactivated portions of a dike-induced normal fault array within the Dabbahu-Manda Hararo 54 

magmatic segment (Figs 1 and 2A-B) (e.g. Dumont et al., 2016; Grandin et al., 2010; 55 

Hamling et al., 2009; Wright et al., 2012). Modelling of geophysical and geodetic data 56 

suggests the 2005 dike intrusion was ~65 km long, opened by up to 8 m at depths of ~2–9 57 

km, and instigated up to ~7 m slip on ≲15 sub-parallel normal faults (Fig. 1) (e.g. Grandin et 58 

al., 2009; Grandin et al., 2010; Hamling et al., 2009; Wright et al., 2006). Ground 59 

deformation related to the 13 later dike events (2006–2010) can be explained by further 60 

diking and fault slip (e.g. Grandin et al., 2010; Hamling, 2010; Hamling et al., 2009). We 61 

focus on two dike intrusion events in: (1) October 2008, which likely involved intrusion of a 62 

~11 km long dike with an opening of up to ~3 m (Fig. 2C) (Hamling, 2010); and (2) May 63 

2010 when a ~15 km long dike intrusion, with an opening of up to ~1 m, fed a small lava 64 

flow (Fig. 2D) (Barnie et al., 2016). 65 

 66 

DATA AND METHODS 67 

We use InSAR and LiDAR data that image the Dabbahu-Manda Hararo magmatic segment. 68 

With the InSAR data, we focus on the October 2008 dike event and use track 499 Advanced 69 

Land Observing Satellite (ALOS) acquisitions, obtained on 14 September and 15 December 70 

2008, to extract line of site (LOS) displacement trends of the surface at 20 m resolution (Fig. 71 

2C) (Hofmann, 2013). The two LiDAR surveys we use were acquired in October 2009 and 72 

November 2012 (Barnie et al., 2016; Hofmann, 2013). Using the original LiDAR point cloud 73 

data, we applied an Iterative Closest Point (ICP) algorithm to isolate the vertical and 74 

horizontal (in E-W and N-S directions) differences between the 2009 and 2012 surveys (Fig. 75 



3A); combining these allow us to calculate the 3D displacement field related to the May 2010 76 

dike event (Fig. 3B) (e.g. Nissen et al., 2012). We develop an algorithm that for both datasets 77 

identify fault hanging wall and footwall cut-offs from changes in LOS displacement or 78 

elevation gradients on across-fault profiles (Figs 2B and C; Supplementary Text). Throw is 79 

calculated from the identified faults cut-offs but heave, and thus displacement, cannot always 80 

be accurately defined where fault monoclines and debris are present (Fig. 2E). To account for 81 

various sources of noise in our datasets, we conservatively consider throw values <20 cm 82 

may be erroneous. Our analysis is limited as profiles may not always be orthogonal to local 83 

fault strike, there is uncertainty regarding fault dip at depth (Magee and Jackson, 2021), and 84 

some faults are missed (e.g. Fig. 2C).  85 

 86 

RESULTS 87 

We map discrete fault traces, although most are physically connected to (hard-linked) and/or 88 

<2 m from (soft-linked) other faults at some point(s), and show their density varies across the 89 

area (Fig. 2A). Throw measured across the faults using the 2009 LiDAR data is up to ~140 m 90 

(mean of all faults ~14 m), and often appears to increase away from lateral fault tips (Fig. 91 

2B). InSAR data reveal only a selection of these faults were reactivated during the October 92 

2008 diking event, broadly divisible into two fault systems bordering a narrow (~2 km), ~8.5 93 

km long zone of subsidence (Fig. 2C). The western fault system is broader and comprises 94 

more, shorter faults than that to the east, where throw is focused onto a few, longer faults 95 

(Fig. 2C). Throw accrued along these fault systems, up to ~1.23 m on individual faults, 96 

appears to primarily occur towards fault centers (Fig. 2C). Faults between the two active fault 97 

systems, within the graben, show little displacement (Fig. 2C). 98 

Our ICP analysis indicates that between acquisition of the October 2009 and 99 

November 2012 LiDAR surveys, a ~2 km wide zone of primarily west-dipping, dike-induced 100 



normal faults were reactivated, accommodating subsidence of up to ~2 m (Figs 2D-4). Slip 101 

vectors reconstructed by combining the ICP derived vertical and horizontal LiDAR 102 

difference maps suggest the reactivated faults have a mean plunge of 62±17°, are 103 

predominantly dip-slip, and that slip increases away from lateral fault tips (Fig. 3). Some of 104 

these vectors, particularly those plunging <30°, may be erroneous due to increased noise 105 

within the ICP horizontal displacement data (Hofmann, 2013). Regardless, most reactivated 106 

faults are located between the two fault systems that were active during the October 2008 107 

dike event, where little displacement occurred (Figs 2C and D). We recognise 18 key faults 108 

that were reactivated, and these can be sub-divided into three fault systems (Fig. 4). Within 109 

fault systems 1 and 2, which itself branches into two sub-systems, accrued throw is typically 110 

greatest near the centres of individual faults and decreases towards their lateral tips; there are 111 

no trends in cumulative throw across each system or no prominent throw increases where 112 

faults overlap or link (Fig. 4). Along Fault system 3, cumulative throw defines an 113 

approximately elliptical pattern with throw greatest in the system center and decreasing 114 

towards its lateral tips (Fig. 4). Across all faults and fault systems clear zones of increased or 115 

decreased throw occur (Fig. 4C). 116 

 117 

DISCUSSION 118 

In the Dabbahu-Manda Hararo magmatic segment, episodic intrusion of closely spaced dikes 119 

has formed a complex array of dike-induced faults and fractures (Fig. 2). InSAR data reveal 120 

two localised fault systems were reactivated during the October 2008 diking event, yet faults 121 

within the intervening zone of subsidence were not (Fig. 2C) (see also Dumont et al., 2016). 122 

This distribution of strain likely occurred because the reactivated faults were favourably 123 

oriented and located where dike-induced tensile stresses concentrated (e.g. Pollard et al., 124 

1983; Rubin, 1992; Rubin and Pollard, 1988). Reactivation of shorter faults in the western 125 



system compared to the east could be due to: (1) the style of pre-existing faults, with fault 126 

density seemingly decreasing towards the Ado’Ale Volcanic Complex (Fig. 2C); and/or (2) 127 

the underlying dike dipping westwards (e.g. Barisin et al., 2009), as areas of concentrated 128 

tensile stress are larger in the hanging wall of inclined sheets (e.g. Bazargan and 129 

Gudmundsson, 2019; Drymoni et al., 2023). In contrast to the October 2008 dike intrusion, 130 

the faults reactivated by the May 2010 dike cannot be separated into two parallel systems, 131 

and instead occur in one narrow, elongated zone comprising several half-graben (Figs 2D, 3, 132 

and 4). This difference in strain distribution between the 2008 and 2010 diking events is 133 

likely because the latter dike reached a shallower depth, thus reducing the distance between 134 

the tensile stress concentrations at the surface (e.g. Trippanera et al., 2015b). Indeed the May 135 

2010 dike fed a small fissure eruption (Fig. 2D) (Barnie et al., 2016). 136 

 137 

Implications 138 

Diking and plate extension 139 

We demonstrate that within complex dike-induced fault arrays, the reactivation of multiple, 140 

pre-existing faults seems preferential to formation of new dike-induced faults (Ruch et al., 141 

2016). Critically, less stress is required to reactivate a favourably oriented fault, compared to 142 

generating a new fault (e.g. Byerlee, 1978). Our findings thus support analytical and 143 

numerical models that suggest diking and associated faulting reduce the extensional forces 144 

needed to extend the lithosphere (e.g. Li et al., 2023).  145 

 146 

Tracking dikes from surface deformation 147 

Inverting ground deformation data (e.g. from InSAR) allows us to estimate dike and fault 148 

locations, geometries, depths, and other properties (e.g., Pallister et al., 2010). In our study 149 

area, previously modelled dike and fault locations for the October 2008 and May 2010 events 150 



capture the broad surface displacement patterns recorded (Figs 2C and D) (e.g. Grandin et al., 151 

2010; Hamling, 2010; Hamling et al., 2009; Rowland et al., 2007). However, from our 152 

observations of surface faulting for the 2008 dike event, we would expect the dike trace to 153 

bisect the graben defined by the two active fault systems (Fig. 2C) (cf. Hamling, 2010), 154 

consistent with models locating the 2006–2009 dikes slightly west of the 2005 dike (Grandin 155 

et al., 2010). For the 2010 event, our data suggests the dike trace should bisect the area of 156 

fault activity and occur below the recognised fissure eruption (Fig. 2D) (Barnie et al., 2016). 157 

Our work suggests that mapping and quantifying fault and fracture patterns in the field, or 158 

from airborne or satellite data, complement and enable ground-truthing of ground 159 

deformation models (e.g. Ruch et al., 2016). 160 

 161 

Slip distribution along faults 162 

Elastic theories of fault growth suggest throw, a proxy for slip, should be greatest towards 163 

fault centres and gradually decay to zero at fault tips (e.g. Rotevatn et al., 2019). Where soft- 164 

or hard-linkage between faults occurs, throw is initially low (e.g. Walker et al., 2009; Walsh 165 

et al., 2003). Continued slip on linked faults may maintain these local throw minima, or 166 

preferentially accrue in these areas, potentially increasing seismic hazard, until the throw 167 

gradient across the entire fault homogenises (e.g. Walker et al., 2009). Our data suggests that 168 

that during discrete faulting events, throw typically accrues towards fault centers, away from 169 

sites of linkage exposed at the surface (Figs 2C, D, and 4); i.e. throw minima at (breached) 170 

relays are maintained, supporting similar inferences from normal faults elsewhere (e.g. 171 

Walker et al., 2009). It may thus be erroneous to suspect seismic hazard may be increased at 172 

sites of fault linkage (e.g. Walker et al., 2009). 173 

 174 

CONCLUSIONS 175 



Magmatic diking is common in extensional settings, such as continental rifts and seafloor 176 

spreading centres, and at active volcanoes. Because many dikes arrest at depth, their 177 

extension often instigates development of overlying normal faults. Where such diking is 178 

intense, complex arrays of overlying dike-induced normal faults form. We examine fault 179 

throw distribution across such a dike-induced fault array, located in the Dabbahu-Manda 180 

Hararo magmatic segment, Afar (Ethiopia), using a combination of LiDAR and InSAR data. 181 

We show that intrusion of a dike in October 2008 reactivated two, dike-parallel fault systems 182 

bordering an area of subsidence and little deformation. Diking in 2010 reactivated west-183 

dipping faults within the graben that subsided in 2008, but not any of the faults active in 184 

2008. Our results suggest reactivation of dike-induced faults can be an important process in 185 

magma-assisted rifting as extension can occur at lower extensional forces. We also show that 186 

fault throw typically accrued, during both dike intrusion events, towards faults centers and 187 

apparently away from zones of soft- or hard-linkage. Such fault throw distributions questions 188 

suggestions that fault slip and seismic hazard are expected to localise where faults link. 189 
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 213 

FIGURE CAPTIONS 214 

Figure 1: Location of the Dabbahu-Manda Hararo magmatic segment showing the October 215 

(Oct.) 2009 and November (Nov.) 2012 LiDAR surveys, local volcanoes, and normal faults 216 

(Vye-Brown et al., 2012). Modelled dike and dike-induced faults are from Wright et al. 217 

(2006) and Hamling et al. (2009) for events between 2005 and 2010. 218 

 219 

Figure 2: Maps showing: (A) the October 2009 LiDAR data and dike-induced faults 220 

(modified from Vye-Brown et al. 2012), with modelled dike and fault traces (e.g. Hamling et 221 

al., 2009; Wright et al., 2006); (B) total fault throw calculated from the 2009 LiDAR data; 222 

(C) fault throw accrued between September 2008 and December 2008, superimposed on  223 

east-west Line-of-Sight (LOS) displacement gradient from an ALOS interferogram; and (D) 224 

fault throw measured from a ICP vertical difference (diff.) map of the October 2009 and 225 

https://data.ceda.ac.uk/neodc/arsf/2008/ET07_04
https://data.ceda.ac.uk/neodc/arsf/2012/ET12_18
https://earth.esa.int/eogateway/catalog/alos-palsar-products
https://www.bgs.ac.uk/geological-data/national-geoscience-data-centre/
https://www.bgs.ac.uk/geological-data/national-geoscience-data-centre/


November 2012 LiDAR datasets. (E) Schematic showing how we identify footwall and 226 

hanging wall cut-off. See Supplementary Figure S1 for uninterpreted version. 227 

 228 

Figure 3: (A) Horizontal (E-W and N-S) and vertical differences between the 2009 and 2012 229 

LiDAR surveys, derived using an ICP algorithm. (B) 3D displacements of the dike-induced 230 

faults reactivated during the May 2010 dike event (modelled dike trace from Hamling et al., 231 

2009; Wright et al., 2006), shown as slip vectors. We calculate these vectors by modifying 232 

our algorithm to extract the vertical and horizontal differences at coincident cut-offs. 233 

 234 

Figure 4: (A) Fault throw accrued during the May 2010 diking event (modelled dike trace 235 

from Hamling et al., 2009; Wright et al., 2006), which primarily occurred on 18 faults 236 

divided into three fault systems. (B) Throw-distance plots for the 18 faults active between the 237 

2009 and 2012 survey acquisitions, when the May 2010 dike intrusion event occurred. (C) 238 

Cumulative throw-distance plot showing the cumulative throw accrued along-strike on each 239 

fault system, and that acquired by all faults. 240 
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Supplementary Text 

 

Throw distribution across the Dabbahu-Manda Hararo dike-induced fault 

array: implications for rifting and faulting 

 

Barbara Hofmann1, Craig Magee2, Tim J Wright2 

 

1HR Wallingford, Howbery Park, Wallingford, UK 

2COMET, School of Earth and Environment, University of Leeds, UK 

 

Data and Methods 

We use InSAR and LiDAR data that image the Dabbahu-Manda Hararo magmatic segment. 

With the InSAR data, we focus on the October 2008 dike event and use track 499 Advanced 

Land Observing Satellite (ALOS) acquisitions, obtained on 14 September and 15 December 

2008, to extract line of site (LOS) displacement trends of the surface at 20 m resolution (Fig. 

2C) (Hofmann, 2013). From an unwrapped interferogram comparing these acquisitions 

(Supplementary Fig. S2), we calculate the LOS displacement gradient for the E-W direction 

in which linear zones of high gradient represent faults. The two LiDAR surveys we use were 

acquired in October 2009 and November 2012 by the UK Natural Environment Research 

Council’s Airborne Research and Survey Facility (Hofmann, 2013). We converted each 

LiDAR survey into digital elevation models (DEM), which have 0.5 m pixel resolutions and 

vertical accuracies of 0.2 m (Barnie et al., 2016; Hofmann, 2013). Using the original LiDAR 

point cloud data, we applied an Iterative Closest Point (ICP) algorithm to isolate the vertical 

and horizontal (in E-W and N-S directions) differences between the 2009 and 2012 surveys; 



combining these allow us to calculate the 3D displacement field related to the May 2010 dike 

event (e.g. Nissen et al., 2012).  

We develop an algorithm that identifies fault hanging wall and footwall cut-offs from 

changes in LOS displacement or elevation gradients on across-fault profiles. These profiles 

are 600 m long across and oriented orthogonal to the average strike of each fault at 20 m 

intervals (Hofmann, 2013). Footwall cut-offs are well defined but true hanging wall cut-offs 

are often obscured by monoclines or debris. Our algorithm considers all gradient changes 

along the hanging wall and assesses differences between their LOS displacements or 

elevations, as well as those of the footwall cut-off. We assume hanging wall cut-offs should 

have gradients >0.5 and show reasonable displacement or elevation changes relative to the 

footwall cut-off or those within monoclines or debris, but not compared to any along the 

graben floor (Hofmann, 2013). Throw is calculated from the identified faults cut-offs but 

heave, and thus displacement, cannot always be accurately defined where monoclines and 

debris are present. For the InSAR data, our throw calculation assumes faults are pure dip-slip, 

dip at 65°, and strike at either 150° if they are west-dipping or -30° if east-dipping (Hofmann, 

2013). To account for various sources of noise in our datasets, we conservatively consider 

throw values <20 cm may be erroneous.  
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Figure S1: Uninterpreted images of the October 2009 LiDAR survey (A), Advanced Land Observing Satellite

(ALOS) interferogram from track 499 (acquired on 14 September and 15 December 2008) estimating the line

of site (LOS) displacement trends of the surface during the 2008 diking event (B), and the vertical difference

between the 2009 and 2012 LiDAR datasets presented in Figure 2. Grey in B indicates areas of no data.



Figure S2: Advanced Land Observing Satellite (ALOS) interferogram from track 499 comparing acquisitions on 14th

September and 15th December 2008). Az is the satellite flight direction and LOS the look direction.

Supplementary Figure 2
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