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Abstract 9 

Intercity truck transport emerged as a crucial lifeline for maintaining city operations during COVID-19 10 

pandemic. Understanding pandemic-imposed impacts on intercity truck transport can inform policymakers in 11 

crafting more effective strategies for future crises and disruptions. However, to our best knowledge, previous 12 

research predominantly focused on freight movements under normal circumstances. Due to the data limitation, 13 

the pandemic-related studies commonly relied on freight survey and focused on specific industries, which 14 

cannot capture the full spectrum of factors influencing freight trip generation (FTG) during the pandemic. Here, 15 

a novel dataset capturing large-scale individual truck movements during the COVID-19 pandemic is provided. 16 

By leveraging the mobility dataset, pandemic-induced changes in truck transport demand structure are 17 

quantified using spatial statistical methods. Furthermore, an interpretable machine learning framework for 18 

intercity freight demand estimation is developed, revealing the complex interplay of factors that influence and 19 

shape the behavior shifts of intercity truck transport systems due to the pandemic outbreak. The findings suggest 20 

significant changes in various factors influencing intercity truck movements across local and broader regions, 21 

emphasizing city-specific challenges amidst pandemic. The developed FTG model could serve as a tool to 22 

predict freight demand between cities for future crises and to support policymaking in the practice of freight 23 

management. 24 

Keywords: intercity truck transport, COVID-19 pandemic, big data analytics, machine learning 25 

1. Introduction 26 

The outbreak of the COVID-19 pandemic led to a global crisis, prompting nations worldwide to implement 27 

stringent measures aimed at curbing the spread of the virus. Among these measures, city lockdowns and various 28 

control strategies were commonly employed to mitigate the transmission of the virus among populations, 29 

especially in the early stage. While these travel restriction policies limited the movement of residents, intercity 30 

truck transport swiftly emerged as an indispensable artery for normal city operations (Fang et al., 2023). Trucks 31 

played a vital role in transporting essential goods, traversing borders, and connecting regions especially during 32 

the pandemic crisis. They formed the backbone of supply chains, ensuring that critical medical supplies, food, 33 

and necessities continued to reach communities in need(Yang et al., 2024a). The COVID-19 outbreak 34 

significantly influenced the demand structure and intrinsic driving factors of intercity truck transport, leading to 35 

notable shifts in freight movement patterns (Beckers et al., 2022). Understanding impacts of COVID-19 36 

pandemic on intercity truck transport can inform policymakers in crafting effective strategies to support the 37 

resilience of freight transport networks. 38 

Intercity truck movements are commonly driven by a variety of factors, including economic activities, 39 
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population density, industrial distribution and the availability of infrastructure (Yang et al., 2023a). These factors 1 

shape the demand of freight transport, influencing how and where trucks are moved between cities. Due to the 2 

outbreak of the COVID-19 pandemic, the driving factors of truck movements may have undergone changes, as 3 

evidenced by increased e-commerce activity (Soava et al., 2022), altered consumer behavior (Ho et al., 2021), 4 

and shifts in supply chain operations (Fu et al., 2022), which in turn impacted the volume and frequency of 5 

freight trips. Understanding the transformation of these driving factors and accurately predicting the volume of 6 

truck movements are critical aspects of freight planning in the post-pandemic era. 7 

Understanding the impacts of the COVID-19 pandemic on intercity truck transport presents several 8 

challenges. The pandemic has introduced unprecedented variability in freight demand, complicating efforts to 9 

accurately model and predict truck movements. Traditional freight trip generation (FTG) models (Al-Battaineh 10 

et al., 2005; de Oliveira et al., 2022; Holguin-Veras et al., 2011; Jesus et al., 2020; Middela and Ramadurai, 11 

2024; Sorratini and Smith Jr, 2000), which rely on historical data and stable economic patterns, may not fully 12 

capture the new dynamics introduced by the pandemic, such as sudden spikes in e-commerce or shifts in 13 

essential goods transportation. Additionally, the interplay between the pandemic’s effects and pre-existing 14 

factors, such as economic fluctuations, changes in consumer behavior, and infrastructure constraints, adds layers 15 

of complexity to the analysis. To address these challenges and enhance the accuracy of FTG models in the 16 

context of the pandemic, integrating big data analytics and machine learning technologies offers promising 17 

solutions. However, due to the unavailability of high-resolution data on truck movements during the pandemic 18 

outbreak, the intricate factors shaping FTG dynamics amid pandemic especially at national scale remains 19 

underexplored. 20 

To fill in the gaps, a novel GPS dataset of more than 2.7 million trucks was collected before and after the 21 

outbreak of the COVID-19 pandemic in China, along with a wide range of geographic and industrial features. 22 

By leveraging the large-scale GPS data, the spatiotemporal patterns of intercity truck movements were analyzed 23 

to understand the impact of the COVID-19 pandemic on freight transport. Specifically, the pandemic-induced 24 

disruptions were examined to determine their influence on truck flows across different regions, with key shifts 25 

in transportation demand dynamics being identified. Spatial statistical methods were employed to detect changes 26 

in truck movement patterns, providing insights into the varying degrees of impact across different geographic 27 

areas and industrial sectors. Furthermore, an interpretable machine learning framework was developed to model 28 

FTG under the unique conditions imposed by the pandemic. This framework integrates a wide array of 29 

geographic, economic, and industrial features to accurately capture the complex factors driving intercity truck 30 

transport during the pandemic. The findings highlight the need for adaptive strategies that can respond to sudden 31 

disruptions, ensuring the resilience of supply chains during future crises. 32 

The work contributes to literature in four ways. (1) A novel data source of large-scale truck movements 33 

during the COVID-19 pandemic is provided, with a more granular analysis for intercity transport systems. (2) 34 

Changes in the structure of intercity truck transport demand are quantified, providing a comprehensive 35 

understanding of the freight demand dynamics under the COVID-19 outbreak. (3) An interpretable machine 36 

learning framework for intercity freight demand estimation is developed. (4) The complex interplay of factors 37 

that influenced and shaped the behavior of intercity truck transport systems during the COVID-19 crisis is 38 

revealed , along with potential implications for freight transport systems management. 39 

The remainder of this paper is organized as follows: Section 2 gives the literature review. Section 3 40 

provides data sources and the methods of quantifying the changes in structure of intercity truck transport demand, 41 

constructing and explaining FTG model. Section 4 analyzes the research results. Section 5 discusses practical 42 

implications derived from research findings. Section 6 at the end, offers concluding insights. 43 
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2. Literature Review 1 

2.1. Freight trip generation (FTG) modeling 2 

Modern transportation planning relies on the development of demand and supply models to effectively 3 

manage transportation systems and infrastructure. FTG models, as a demand-side component, serve as 4 

fundamental tools for forecasting and analyzing truck movements across regions (Tavasszy and De Jong, 2013). 5 

Previous studies have identified variables that explain FTG, encompassing economic (Cheah et al., 2021; 6 

Holguin-Veras et al., 2011; Madar et al., 2021; Pani et al., 2023; Venkadavarahan and Marisamynathan, 2022), 7 

land use (De Bakshi et al., 2020; Gonzalez-Feliu and Peris-Pla, 2018; Holguín-Veras et al., 2012; Holguin-Veras 8 

et al., 2013; Lawson et al., 2012; Pani et al., 2019), and infrastructure factors (Al-Deek, 2001; Al-Deek and Trb; 9 

Trb, 2001; Alho and de Abreu e Silva, 2014, 2017; Davydenko et al., 2012; Dhonde and Patel, 2021; González-10 

Calderón et al., 2016). For instance, Holguín-Veras et al. (2019) emphasized the direct correlation between 11 

socio-economic descriptors (including population, establishments and employment) and the volume of freight 12 

activities, where economic growth drives up demand for goods, thus increasing the frequency of freight trips. 13 

They estimated the freight rates for selected descriptors to predict truck trips between regions in different cities. 14 

Lawson et al. (2012) found that commercial, industrial, and mixed-use zones generate more freight trips than 15 

residential zones. The spatial distribution of these zones impacts the volume and direction of freight trips. Their 16 

research highlights the importance of considering zoning regulations and land use planning in FTG analysis to 17 

manage urban freight effectively. Similarly, Venkadavarahan and Marisamynathan (2021) showed that efficient 18 

road networks could reduce travel time and cost, encouraging more frequent freight trips. By incorporating these 19 

explanatory variables, FTG models, including trip rate models (Holguin-Veras et al., 2011; Jesus et al., 2020; 20 

Kulpa, 2013), regression models (Alho and de Abreu e Silva, 2014; Bastida and Holguin-Veras, 2009; de 21 

Oliveira et al., 2022; Middela and Ramadurai, 2024) and Input-Output models (Al-Battaineh et al., 2005; 22 

Sorratini and Smith Jr, 2000) have been developed to estimate freight movements across regions and cities. 23 

2.2. The impact of COVID-19 pandemic on FTG modeling 24 

During the period of COVID-19 pandemic, the dynamics of freight movements experienced significant 25 

shifts due to various disruptions and changes in demand patterns (Arellana et al., 2020; Gonzalez et al., 2022). 26 

The pandemic led to increased e-commerce activity (Soava et al., 2022), altered consumer behavior (Ho et al., 27 

2021), and changes in supply chain operations (Fu et al., 2022), which in turn impacted the volume and 28 

frequency of freight trips. These changes necessitated adjustments of FTG modeling to capture the evolving 29 

landscape. Previous studies have conducted explorations into the impacts of the COVID-19 pandemic on freight 30 

transport and logistics. However, these investigations have often been based on survey data focused on specific 31 

industries or regions. For instance, Beckers et al. (2022) utilized household surveys originating from the "E-32 

commerce in Belgium 2016" questionnaire, which was commissioned by the Belgian retail federation Comeos 33 

to identify online shopper behaviors. This research focused on understanding how the rise in online shopping 34 

especially in pandemic period has influenced the frequency and volume of residential freight trips. 35 

Venkadavarahan and Marisamynathan (2023) used data from an Establishment Based Freight Survey (EBFS) 36 

collected from an Indian smart city, comprising 1,793 samples. The research aimed to assess the causal 37 

interrelationship of Supply Chain Characteristics (SCC) and their impact on freight trip activity between 38 

intermediate and pure receiver establishments. de Souza and Mátrai (2022) gathered data from various traffic 39 

collection points in Budapest. They proposed adjustments to an existing four-step transportation model, 40 

involving incorporating contextual explanatory variables and recalibrating model parameters to reflect the 41 

effects of the pandemic on trip generation and distribution patterns. Moreover, Fadhlansyah (2022) investigated 42 
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the factors influencing FTG for online shopping and home deliveries during COVID-19 pandemic. Data for the 1 

study were collected through questionnaires distributed to 273 residents in the Jabodetabek area in Indonesia. 2 

While previous studies have provided valuable insights into the effects of the COVID-19 pandemic on 3 

freight transport, they have focused on specific industries or regions and relied on survey data, which cannot 4 

capture the full spectrum of factors influencing FTG during the pandemic. 5 

2.3. Big data analytics and methods 6 

The advent of big data analytics has introduced new opportunities to enhance the precision and adaptability 7 

of FTG models, particularly through the use of GPS data (Comendador et al., 2011; Yang et al., 2023a). GPS 8 

data provide high-resolution spatial and temporal information on vehicle movements, enabling the detailed 9 

tracking of freight trips. This granularity allows researchers and planners to observe patterns in freight 10 

transportation that were previously obscured by aggregate survey data. 11 

Machine learning and artificial intelligence (AI) are central to leveraging GPS data in FTG modeling. 12 

Techniques such as neural networks (Lafta and Ismael, 2022), decision trees (Alho and de Abreu e Silva, 2017), 13 

random forests (Du and Yin, 2024), and support vector machines (Liu et al., 2006) have been applied to analyze 14 

large datasets, identifying complex relationships between variables that traditional statistical methods might 15 

overlook. Recently, numerous studies (Akter and Hernandez, 2023; Chen and Liu, 2013; El Ouadi et al., 2020; 16 

Javanmard et al., 2024; Ludowieg et al., 2022; Saeed et al., 2023; Salais-Fierro and Martinez, 2022; Uddin et 17 

al., 2023; Xie and Huynh, 2010) have focused on machine learning techniques for estimating freight traffic 18 

volume and the origin-destination (OD) matrix. Furthermore, the progress in hardware and algorithms, coupled 19 

with the demand for accurate trip generation, has led to the development of more advanced techniques, such as 20 

deep learning and reinforcement learning models, as summarized in the review articles (George and Santra, 21 

2020; Jiang and Luo, 2022; Tedjopurnomo et al., 2022; Yin et al., 2022). In addition to improving the accuracy 22 

of FTG models, the use of machine learning can also enhance the interpretability and usability of these models. 23 

Techniques such as feature importance analysis, SHapley Additive exPlanations (SHAP) values (Lundberg and 24 

Lee, 2017), and the Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) can help 25 

identify the key factors driving truck movements. These tools can highlight which variables, such as distance to 26 

distribution centers or road network density, are most influential in determining freight trip patterns (Yang et al., 27 

2023a). 28 

In summary, while substantial progress has been made in FTG modeling through traditional methods and 29 

machine learning techniques, a significant gap in current research is the limited exploration of how the COVID-30 

19 pandemic has influenced the performance and accuracy of machine learning models in FTG analysis. The 31 

pandemic has led to substantial shifts in freight patterns due to increased e-commerce, altered consumer 32 

behaviors, and disrupted supply chains. However, studies that specifically examine how these pandemic-33 

induced changes impact machine learning-based FTG models are scarce. 34 

3. Methodology and data 35 

In the paper, the truck flows between cities are first obtained from a large-scale truck GPS dataset before 36 

and after the COVID-19 outbreak. The changes in the structure of intercity truck transport demand are then 37 

quantified using spatial statistical methods. An XGBoost-based intercity FTG model is constructed, and the tool 38 

of SHapley Additive exPlanations (SHAP) is employed to explain this model. Finally, based on the results, 39 

implications for city resilience, sustainability, and transport planning are provided. The methodology framework 40 

is illustrated in Fig. 1. 41 
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 1 

Fig. 1. Methodology framework. 2 

3.1. Data sources and processing 3 

In this study, three datasets were utilized to analyze intercity truck transport during the COVID-19 4 

pandemic. First, truck GPS data, which include over 2.7 million truck trajectories in China, were used to capture 5 

truck movements before and after the pandemic lockdown. Second, freight POI data, which include points of 6 

interest related to freight activities, were employed to characterize the features and distribution of freight-related 7 

locations. Third, geographic data were provided to offer information on road networks and land uses, offering 8 

the spatial context of truck movements. By integrating these data sources, the aim was to obtain the truck flows 9 

between cities before and after the pandemic outbreak and to construct and explain the intercity FTG model. 10 

3.1.1. Truck GPS data 11 

The first reported instance of the COVID-19 outbreak occurred in Wuhan, China, with the city being 12 

officially placed under lockdown on January 23, 2020. To understand the impact of the COVID-19 outbreak, 13 

GPS trajectory data for 2.7 million trucks in China were collected for one week before and after January 23, 14 

2020, i.e., the data span is from January 16, 2020, to January 29, 2020. The GPS dataset was obtained from the 15 

China Road Freight Supervision and Service Platform (https://www.gghypt.net/).This platform is an integrated 16 

system designed to oversee and enhance the efficiency of road freight operations throughout China (Yang et al., 17 

2024b). It serves as a comprehensive platform that leverages technology, data, and logistics to monitor, manage, 18 

and optimize the transportation of goods via road networks across the country. This platform records the real-19 

time geographic locations of all trucks in China. The collected dataset contains more than 2.7 million activated 20 

trucks, and the number of records is greater than 30 billion. 21 

The GPS dataset is used to obtain truck flows between cities before and after the COVID-19 outbreak. To 22 

achieve this, the raw data is first preprocessed to handle erroneous and redundant information, and a data-driven 23 

intercity truck origin-destination (OD) identification method (Yang et al., 2022b) is employed to extract truck 24 

trips from GPS trajectories. In this method, truck trajectory characteristics are captured under the influence of 25 

GPS drift (i.e., the phenomenon where the GPS signal inaccurately reflects the true position of a GPS-enabled 26 
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device) to identify truck stops from GPS data. Subsequently, the temporal characteristics of truck activities are 1 

analyzed, and valid trip ODs from truck stops are identified using freight-related locations data and highway 2 

network data. Using this method, consecutive trips for each truck are first extracted over the dataset span. The 3 

aggregated directed truck flows (i.e., truck transport demand) between all city pairs are then obtained for each 4 

week before and after the COVID-19 outbreak. 5 

3.1.2. Freight POI data 6 

Freight POI data are used to characterize the features of city freight locations, including freight-related 7 

companies, markets, and facilities. These features are used to construct and explain the intercity FTG model. 8 

The freight POI data were obtained through web crawling from Amap (https://lbs.amap.com/) utilizing the 9 

provided application programming interface (API). Within the Amap application, developers organize POIs in 10 

a hierarchical structure based on industry categories. 11 

Three categories of POIs are chosen. Category one encompasses freight companies involved in metallurgy, 12 

medicine, telecommunication, construction, networking, trade, decoration, machinery, minerals, and factories. 13 

The second category comprises freight markets such as supermarkets, building material markets, home 14 

appliance markets, integrated markets, industrial parks, and agricultural bases. The third category includes 15 

freight facilities like transportation hubs (e.g., train stations, airports, and ports) and logistics nodes (e.g., 16 

warehouses and distribution centers). 17 

3.1.3. Geographic data 18 

Geographic data are used to characterize the features of city road networks and land uses. The data were 19 

derived from OpenStreetMap (https://www.openstreetmap.org/). According to the relevance to city truck 20 

activities (Yang et al., 2022a), three types of roads are selected, i.e., primary, secondary and motorway, and four 21 

classes of land uses, i.e., retail, residential, commercial, and industrial. 22 

3.2. Quantifying the changes in structure of intercity truck transport demand 23 

This section aims to characterize the pandemic-induced shifts in truck transport demand structure for two 24 

primary objectives. The first objective is to elucidate the spatial trends of truck transport demand reduction. The 25 

second objective is to uncover the truck transport demand reduction patterns between cities. 26 

For the first objective, the reduction ratio in total truck transport demand of each city is calculated using 27 

aggregated directed truck flows before and after the COVID-19 outbreak. Spatial autocorrelation analysis 28 

(Bivand and Wong, 2018; Fan and Myint, 2014) is then employed to explore the geographic patterns of these 29 

reductions. The total truck transport demand of each city is defined as the sum of truck inflows and outflows of 30 

a city. The spatial autocorrelation analysis is a statistical method used to examine the degree of similarity or 31 

dissimilarity between nearby geographic locations in a dataset. Global Moran's I (Moran, 1950) and local 32 

indicators of spatial association (LISA) (Anselin, 1995) are employed for spatial autocorrelation analysis. 33 

Global Moran's I is used to assess the overall spatial clustering or dispersion of the reduction in truck transport 34 

demand across cities. This statistical method provides a single index value that indicates whether the reduction 35 

in demand exhibit clustering (values close to +1) or dispersion (values close to -1). A Moran's I value close to 36 

zero indicated a random spatial pattern. LISA analysis provides localized insights by pinpointing areas where 37 

reductions in demand are notably clustered, distinguishing between high-high (cities with high reductions 38 

surrounded by others with high reductions), low-low (cities with low reductions surrounded by others with low 39 

reductions), high-low, and low-high spatial outliers. The results of LISA analysis are commonly presented as 40 

Moran scatterplot (Xiao and Gong, 2022; Zhi et al., 2024), in which a positive correlation implies spatial 41 

https://lbs.amap.com/
https://www.openstreetmap.org/
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clustering, i.e., nearby cities tend to have similar values. Furthermore, the reduction in total truck transport 1 

demand per population of each city is calculated, and the spatial autocorrelation is analyzed to understand the 2 

localized effects and variations related to population size of cities. 3 

For the second objective, the reduction in bidirectional total truck flows 𝑇𝑖𝑗𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 between each city pair, 4 

e.g., city i and j is first calculated. Subsequently, the statistical relationship between 𝑇𝑖𝑗𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛  and the 5 

population of cities i and j (denoted by 𝑃𝑂𝑃𝑖  and 𝑃𝑂𝑃𝑗), the distance between city pair 𝑑𝑖𝑗 is explored. The goal 6 

is to uncover how these two critical factors, i.e., population size and geographical distance, contribute to shaping 7 

the alterations in truck transport demand between cities. Especially, the gravitational relationship between the 8 

truck transport demand reduction and these two critical factors is examined by analyzing the scaling law (Jia et 9 

al., 2023; Lin et al., 2023; Yang et al., 2023b) between 𝑇𝑖𝑗𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 and 𝑃𝑂𝑃𝑖 · 𝑃𝑂𝑃𝑗/𝑑𝑖𝑗, i.e., 10 

𝑇𝑖𝑗𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ~ (𝑃𝑂𝑃𝑖·𝑃𝑂𝑃𝑗𝑑𝑖𝑗 )𝛾,         (1) 11 

where 𝛾  is fitted exponent. The gravitational relationship suggests that truck transport demand reduction 12 

between two cities is positively associated with their populations and inversely related to the distance separating 13 

them. 14 

3.3. Intercity freight trip generation (FTG) model 15 

Next, an XGBoost-based intercity FTG model is built (see Fig. 1), aiming to firstly capture the intricate 16 

relationships between various city features and intercity truck movements before and after COVID-19 outbreak, 17 

and secondly provide a tool to predict freight demand between cities for future crises and disruptions. 18 

The model is based on the XGBoost framework developed by Chen et al. (2016). XGBoost is renowned 19 

for its robustness in handling complex datasets and its capability to discern intricate patterns within them. It 20 

employs an ensemble learning technique, utilizing a collection of decision trees to iteratively refine predictions, 21 

enhancing both accuracy and generalizability. To construct the model, a comprehensive array of city features is 22 

integrated from freight POI data (see Section 3.1.2) and geographic data (see Section 3.1.3), capturing diverse 23 

aspects of city landscapes. These features encompass multifaceted dimensions such as freight company 24 

distributions, market characteristics, infrastructural facilities, road networks, land use compositions, and 25 

demographic attributes, as shown in Table 1. 26 

26 features of each city i are collected and the feature vector 𝑿𝒊 of dimension 26 is constructed. For the 27 

truck flows from city 𝑖  to j, the feature vectors 𝑿𝒊  and 𝑿𝒋 , and Euclidean distance 𝑑𝑖𝑗  between them are 28 

concatenated as an input sample 𝑿(𝑖, 𝑗)  of dimension 53. For each input sample 𝑿(𝑖, 𝑗) , two labels, i.e., 29 

aggregated actual truck flows before and after COVID-19 outbreak from city i to j are created. Input samples 30 

and corresponding two labels are used to train two XGBoost models respectively. The one is used to estimate 31 

the intercity truck transport demands before COVID-19 outbreak, and another one is used to estimate those after 32 

COVID-19 outbreak. To evaluate the performance of two models, the metric of root mean square error (RMSE) 33 

(Hyndman and Koehler, 2006) is used to measure the similarity between observed flows and generated flows 34 

by models. The RMSE metric is given by 35 𝑅𝑀𝑆𝐸 = √∑ (𝑇𝑖𝑗𝑜𝑏𝑠−𝑇𝑖𝑗𝑚𝑜𝑑𝑒𝑙)2𝑖,𝑗≠𝑖 𝑁𝑝𝑎𝑖𝑟 ,        (2) 36 

where 𝑁𝑝𝑎𝑖𝑟 is the number of city pairs, 𝑇𝑖𝑗𝑜𝑏𝑠 is observed truck flows from city i to j, and 𝑇𝑖𝑗𝑚𝑜𝑑𝑒𝑙 is generated 37 

flows by the model. 38 
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Table 1. City features. 1 

Category Feature Description 

Freight companies 

(10 features) 

Metallurgy POIs Number of metallurgical companies in a city. 
Medicine POIs Number of medical or pharmaceutical companies in a city. 
Telecommunication POIs Number of telecommunication companies in a city. 
Construction POIs Number of construction companies in a city. 
Network POIs Number of network service providers in a city. 
Trade POIs Number of trading companies in a city. 
Decoration POIs Number of home decoration businesses in a city. 
Machinery POIs Number of machinery manufacturers in a city. 
Mineral POIs Number of mining-related sites in a city. 
Factory POIs Number of factories in a city. 

Freight markets 

(6 features) 

Industry-park POIs Number of industrial parks or zones in a city. 
Supermarket POIs Number of supermarkets in a city. 
Building-market POIs Number of building materials markets in a city. 
Appliance-market POIs Number of household appliances markets in a city. 
Integrated-market POIs Number of integrated markets offering various products in a city. 
Agriculture-base POIs Number of agricultural or farming bases in a city. 

Freight facilities 

(2 features) 
Logistics-node POIs Number of logistical nodes or distribution centers in a city. 
Transport-hub POIs Number of major transportation hubs in a city. 

Road networks 

(3 features) 

Primary roads Total length of primary roads in a city (km). 
Secondary roads Total length of secondary roads in a city (km). 
Motorway Total length of motorway in a city (km). 

Land uses 

(4 features) 

Retail landuse Total area of retail landuse in a city (km2). 
Residential landuse Total area of residential landuse in a city (km2). 
Commercial landuse Total area of commercial landuse in a city (km2). 
Industrial landuse Total area of industrial landuse in a city (km2). 

Demographic 

(1 feature) Population Total population counts in a city. 

3.4. Model interpretation 2 

Finally, SHapley Additive exPlanations (SHAP) is used to interpret the output of two XGBoost models to 3 

understand how city features contribute to the observed shifts in truck transport demand structures induced by 4 

COVID-19 pandemic. The interpretation results can help craft the responsive strategies for future crises and 5 

disruptions. 6 

The foundational principle of SHAP draws inspiration from the Shapley values within cooperative game 7 

theory (Strumbelj and Kononenko, 2014). These values serve as a fundamental tool for quantifying the relative 8 

significance of individual features in a predictive model, offering insights into their interactions and collective 9 

influence on the model predictions. Specifically, a Shapley value greater than 0 signifies that the corresponding 10 

feature contributes positively to the model predictions. Conversely, a Shapley value less than or equal to 0 11 

suggests that the inclusion of the corresponding feature has a neutral or negative impact on the model predictions. 12 

By calculating Shapley values, two different perspectives of interpretation can be provided. (1) Global feature 13 

importance: This aspect provides a holistic understanding of the contribution of each feature across the entire 14 

dataset. After calculating Shapley values for each feature, they are ranked based on their average impact on 15 

model predictions. This global interpretation helps identify which features consistently play a crucial role in 16 

influencing the model's outcomes, offering insights into the overall behavior of the predictive model. (2) Local 17 

feature importance: This aspect delves into the specific contribution of each feature to individual predictions, 18 

allowing for a nuanced interpretation at the level of individual city pair. By examining the Shapley values 19 

associated with each feature for distinct city pairs, the unique factors influencing the observed variations in truck 20 

transport demands can be pinpointed. 21 
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4. Results and analysis 1 

The aggregated truck flows between all city pairs for each week before and after COVID-19 outbreak are 2 

obtained from large-scale truck GPS data. Next, the pandemic-induced changes in structure of intercity truck 3 

transport demand are quantified, focusing on two aspects, i.e., firstly the spatial trends of truck transport demand 4 

reduction (see Section 4.1) and secondly the patterns of demand reduction between cities (Section 4.2). 5 

Subsequently, the performance of two FTG models is evaluated (Section 4.3), and the shift in driving factors of 6 

intercity truck movements is uncovered (Section 4.4). 7 

4.1. Spatial trends of truck transport demand reduction 8 

The metric reduction ratio in total truck transport demand of each city is calculated by using aggregated 9 

truck flows before and after the COVID-19 outbreak, and the spatial autocorrelation analysis is employed based 10 

on this metric. The geographic distribution of demand reduction ratios of all cities in China is shown in Fig. 2a. 11 

The results of spatial autocorrelation analysis (see Fig. 2c) reveal a distinct spatial clustering pattern in the 12 

reduction of truck transport demand across cities. The results of LISA analysis in Fig. 3a suggest a positive 13 

correlation between the total demand reduction ratio of a city and the average value of this metric for its 14 

neighboring cities (i.e., spatial lag). This implies spatial clustering or autocorrelation, i.e., cities with higher 15 

reductions in transport demand tend to be surrounded by neighboring cities that also exhibit higher reductions 16 

in transport demand. 17 

Specifically, the "high-high" values cluster around the vicinity of Wuhan, indicating that cities near Wuhan 18 

exhibit similarly high reduction ratios in truck transport demand. This suggests that the control measures, public 19 

health responses and economic impacts originating in Wuhan have a cascading effect on neighboring cities 20 

(Milani, 2021). The close correlation may be attributed to shared logistical dependencies, such as supply chain 21 

linkages and transportation networks, which were severely disrupted during the early stages of the pandemic 22 

(Singh et al., 2021). Conversely, the "low-low" values are distributed in the western remote areas, suggesting 23 

that these regions share a pattern of lower freight demand reduction. This spatial pattern suggests a distinct 24 

resilience or lesser vulnerability to the economic disruptions caused by the pandemic. These remote areas are 25 

less densely populated or less economically integrated, potentially leading to a more gradual impact on their 26 

freight transport systems. 27 
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 1 

Fig. 2. Spatial autocorrelation analysis of truck transport demand reduction. a Distribution of total demand reduction 2 
ratio of all cities in China. b Distribution of total demand reduction per population. c-d The results of spatial 3 
autocorrelation analysis for these two metrics. 4 

To understand the localized effects and variations related to city population size, the ratio of total truck 5 

transport demand reduction to population of each city is further calculated (see Fig. 2b), and spatial 6 

autocorrelation analysis is conducted based on this metric (see Fig. 2d). The results of LISA Analysis (see Fig. 7 

3) indicate a significant difference for the distribution of "high-high" values and "low-low" values across the 8 

country. Specifically, the cities with "high-high" values are no longer clustered around the vicinity of Wuhan as 9 

observed previously when the overall reduction in truck transport demand is normalized by city population. In 10 

contrast, some of these cities even exhibit 'low-low' values. Cities vary in their economic structures, with some 11 

being more industrialized, while others are service-oriented or agricultural (Henderson, 2010). Cities near 12 

Wuhan might have diverse economic structures and dependencies (Gao et al., 2020). When normalized by 13 

population, variations in economic activities and dependencies on freight transport may become more apparent. 14 

This new metric captures the impact of COVID-19 on different sectors, leading to varied patterns across cities. 15 

This diversity may result in the dispersion of "high-high" values, reflecting localized economic characteristics 16 

rather than geographic proximity to Wuhan. Conversely, the continued distribution of "low-low" values in the 17 

western remote areas in this updated metric implies that these regions still share a pattern of lower freight 18 

demand reduction relative to their population sizes. This consistency underscores the limited vulnerability of 19 

these remote areas to the economic disruptions caused by the pandemic. 20 
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 1 
Fig. 3. Results of local indicators of spatial association (LISA) Analysis. a Moran scatterplot for total demand 2 
reduction ratio of all cities in China. Each point represents a city, with the horizontal axis representing z-standardized 3 
attribute value and the vertical axis representing z-standardized spatial lag value for this city. The spatial lag values 4 
are calculated by taking a weighted average of the attribute values (i.e., the total demand reduction ratio) of 5 
neighboring cities. The line represents the fitted positive correlation. b Moran scatterplot for total demand reduction 6 
per population of all cities in China. 7 

4.2. Truck transport demand reduction patterns between cities 8 

Next, bidirectional total truck transport demands between all city pairs before and after COVID-19 9 

outbreak are calculated respectively, and demand reduction of each city pair can be derived. Figure 4a-b shows 10 

the distributions of truck transport demands between all city pairs nationwide before and after COVID-19 11 

outbreak. The results suggest that the overall truck transport demands across nation experienced a sharp decline, 12 

underscoring the widespread impact of the COVID-19 pandemic on the logistics and transportation sectors. 13 

Particularly for the freight interactions between Wuhan and other cities (as shown in Fig. 4c-d), following the 14 

onset of the COVID-19 pandemic and the subsequent lockdown in Wuhan, truck transport demands between 15 

this city and its counterparts have undergone significant changes. 16 
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 1 

Fig. 4. Spatial distributions of intercity truck transport demands before and after COVID-19 outbreak. a-b 2 
Distributions of transport demands between all city pairs. Each line represents the interaction between two cities. The 3 
color of the line indicates the number of freight trips, indicated as truck flows, between those two cities.  c-d 4 
Distributions of transport demands between Wuhan and other cities. 5 

To further uncover demand reduction patterns between cities, four typical cities, i.e., Wuhan, Beijing, 6 

Shanghai, and Guangzhou, are selected for case analysis. For each case city, the reduction in transport demands 7 

between it and other interacting cities and their spatial distances are calculated. The top 50 interacting cities 8 

with the most significant demand reduction are shown in Fig. 5. The results suggest a trend where interacting 9 

cities closer in proximity to the case cities tend to exhibit a larger demand reduction. Shorter spatial distances 10 

generally imply more interconnected networks. Cities located closely to each other often share common 11 

transport routes and dependencies (Rodrigue, 2020). The disruptions in one city can quickly propagate to 12 

neighboring cities, impacting the overall transport demands. In addition, geographically proximate cities often 13 

share economic interdependencies. Industries and businesses in nearby cities might be more dependent on each 14 

other for raw materials, goods, and services (Lv et al., 2024; Pinch and Sunley, 2016). Therefore, economic 15 

downturns and disruptions in one city would have a more immediate and profound effect on nearby cities.  16 
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 1 

Fig. 5. Truck flows reduction between four case cities, i.e., Wuhan (panel a), Beijing (panel b), Shanghai (panel c), 2 
and Guangzhou (panel d), and other interaction cities due to COVID-19 outbreak. For each case city, we select the 3 
top 50 interaction cities with the greatest reduction in truck flows between them, as listed on the horizontal axis. The 4 
size of the circle represents the population of an interaction city, and the color of circle indicates the spatial distance 5 
between the case city and an interaction city. 6 

In addition to the observed spatial effects in neighboring cities, numerous distant cities with substantial 7 

populations also encountered noteworthy demand reductions, as illustrated in Fig. 5. To understand this pattern 8 

related to both the distance and city population, this study examines the distribution of demand reduction 9 
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𝑇𝑖𝑗𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛  between each city pair i and j, along with the term 𝑃𝑂𝑃𝑖 · 𝑃𝑂𝑃𝑗/𝑑𝑖𝑗 , in which 𝑃𝑂𝑃𝑖  denotes the 1 

population size of city i, and 𝑑𝑖𝑗  denotes distance between city i and j. The results suggest the scaling 2 

relationship between these two metrics, as shown in Fig. 6. This scaling relationship is also known as 3 

gravitational relationship (Jung et al., 2008; Krings et al., 2009), indicating that transport demand reduction 4 

between two cities is positively associated with their populations and inversely related to the distance separating 5 

them. Larger cities often serve as distribution, manufacturing, or economic hubs with more extensive and diverse 6 

economic activities. Disruptions in these key cities can have a cascading effect on the entire supply chain, 7 

affecting cities across distances (Shughrue et al., 2020). The observed gravitational relationship reflects the 8 

complex interplay of economic, demographic, and geographical factors that influence the dynamics of intercity 9 

transport demands. 10 

 11 

Fig. 6. Distributions of intercity transport demand reduction with respect to spatial distance and city population. The 12 
data are distributed on the double-logarithmic axes. The hollow point represents city pair, and the line represents the 13 
fitted scaling relations between two terms with the fitted exponent 𝛾. 14 

4.3. Performance of intercity FTG model 15 

The above sections quantify the changes in structure of intercity truck transport demand. In this section, 16 

the XGBoost model is constructed and trained based on real data to predict such pandemic-induced shifts. By 17 

using the input samples and two created labels, i.e., total transport demands between all city pairs before (label 18 

1) and after (label 2) COVID-19 outbreak, two XGBoost models are trained respectively. The first one is used 19 

to predict the intercity truck transport demands before COVID-19 outbreak, and the second one is used to predict 20 

those after COVID-19 outbreak. The results of the comparison between real transport demands and the transport 21 

demands generated by two XGBoost models are shown in Fig. 7. The results demonstrate that the model can 22 

effectively capture the intricate relationships between various city features and intercity truck movements both 23 

before and after the COVID-19 outbreak. This underscores the effectiveness of model in predicting the dynamic 24 

shifts in truck transport demands induced by the pandemic. 25 
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 1 

Fig. 7. Model performance evaluation. Distributions of the transport demands generated by the model and the real 2 
transport demands before and after COVID-19 outbreak are shown in panels a and b respectively. The grey points 3 
are scatter plot for city pairs. The blue points represent the predicted average transport demands in different bins. The 4 
boxplots represent the distribution of the predicted demands in different bins of the real demands. A box is marked 5 
in blue if the line y=x lies between 10% and 91% in that bin. 6 

4.4. Shift in driving factors of intercity truck movements 7 

In this section, SHAP technique is used to explain the outputs of two XGBoost models respectively, aiming 8 

to uncover the driving factors of intercity truck movements before and after COVID-19 outbreak. Next, the 9 

pandemic-induced shift in the driving factors is analyzed to understand how the landscape of truck logistics has 10 

evolved in response to the challenges posed by the COVID-19 pandemic. 11 

First, the global Shapley values of each feature across the entire dataset are calculated, and they are ranked 12 

based on their average impact on model predictions. The results of global feature importance analysis for two 13 

models are shown in Fig. 8. The findings indicate a substantial disparity in the driving factors of truck 14 

movements due to the outbreak of COVID-19 pandemic. Before the pandemic, as illustrated in Fig. 8a, the 15 

analysis reveals that features such as machinery POIs, population, and logistics-node POIs in destination cities 16 

had a pronounced influence on intercity truck movements. Specifically, higher values of these features correlated 17 

with higher Shapley values, indicating their importance in predicting truck movement patterns. In addition, 18 

original cities with higher concentrations of factory POIs and larger industrial land use areas typically exhibited 19 

higher Shapley values, indicating that these features also played significant roles in facilitating truck movements. 20 

These findings align with the emphasis on manufacturing and logistical considerations in the pre-COVID-19 21 

era (Ozkanlisoy, 2021). 22 
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 1 

Fig. 8. Analysis of global feature importance for the output of XGBoost model. a Results before the COVID-19 2 
outbreak. b Results after the COVID-19 outbreak. The features are represented on the vertical axis, organized in 3 
descending order of significance from the most impactful at the top to the least impactful at the bottom. The 4 
significance of a feature is characterized by the average absolute Shapley values of this feature for all city pairs. 5 
Features prefixed with "O:" and "D:" correspond to origin and destination city features respectively. Each point 6 
represents a city pair, with the colorbar indicating the feature values associated with each city pair. The horizontal 7 
axis represents the Shapley value of the feature for the given city pair, providing a quantitative measure of its impact. 8 

In contrast, Fig. 8b depicts the altered landscape after the COVID-19 outbreak. Notably, supermarket POIs 9 

in the destination city have gained significant prominence. Higher values of supermarket POIs correlate with 10 

elevated Shapley values, indicating their heightened importance in predicting post-pandemic truck movement 11 

patterns. The surge in demand for essential goods prompted a reconfiguration of logistics strategies to 12 

accommodate the evolving needs of the population (Thilmany et al., 2021). Simultaneously, features such as 13 

construction POIs, medicine POIs, and industrial land use in the origin city have also become more influential 14 

in facilitating truck movements after the COVID-19 outbreak. These shifts suggest adaptations in supply chains 15 

and economic activities, where construction activities, medical supply chains, and industrial production have 16 

gained prominence in driving intercity truck movements. The increased Shapley values associated with these 17 

features underscore their critical roles in the new logistics landscape shaped by the pandemic (Garola et al., 18 

2023). 19 

Second, the local Shapley values associated with each feature for distinct city pairs are calculated, aiming 20 

to pinpoint city-specific driving factors that may not be evident in the global analysis. A short-distance city pair 21 

(i.e., from Xiaogan to Wuhan) and a long-distance city pair (i.e., from Shanghai to Wuhan) are selected. The 22 

results of local feature importance analysis for these two city pairs are shown in Fig. 9. For the short-distance 23 

city pair before COVID-19 outbreak (see Fig. 9a), features like distances, number of factors in destination city 24 

(Wuhan), number of integrated markets in origin city (Xiaogan) significantly promote truck movements. It is 25 

important to note that while distance is typically a negative factor in freight movements, in the context of short-26 

distance city pairs, it can be a positive factor that facilitates more efficient truck mobility compared to other 27 

longer-distance samples in the SHAP method. Conversely, the number of trade points in origin city acted as a 28 

hindrance, possibly due to logistical complexities or congestion associated with trade points, making the 29 

movement less efficient. After the lockdown in Wuhan, a shift in the factors influencing truck movements can 30 

be observed (see Fig. 9b). Specifically, two features of industrial land area and the length of primary roads in 31 

Wuhan exhibit a negative impact on truck mobility, indicating potential challenges or disruptions in the 32 

industrial and transportation infrastructure (Wan et al., 2018). Factors such as reduced workforce, altered traffic 33 

patterns, or regulatory changes might have contributed to this negative influence. Conversely, the quantity of 34 
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integrated markets and supermarkets in Wuhan emerged as positive influencers on truck movements during this 1 

period. The positive impact suggests these retail and distribution centers played a key role in supporting the 2 

resumption of economic activities and the movement of goods within the city. 3 

 4 

Fig. 9. Force plot of local feature importance analysis. a-b Results for short-distance city pair from Xiaogan to Wuhan 5 
before and after COVID-19 outbreak. c-d Results for long-distance city pair from Shanghai to Wuhan before and 6 
after COVID-19 outbreak. Each horizontal bar corresponds to a feature in the model, and its length represents the 7 
local Shapley value of that feature for the specific instance. Longer bars indicate a higher positive or negative impact 8 
on the prediction. Positive Shapley values are depicted in red, while negative Shapley values are in blue. The features 9 
and their values are at the bottom of the figure. 10 

For the long-distance city pair from Shanghai to Wuhan (see Fig.9c-d), the results indicate that the high 11 

number of companies related to medicine and construction in Shanghai exhibit a significant positive impact on 12 

truck mobility after the lockdown of Wuhan. There emerges an increased demand for medical supplies and 13 

pharmaceuticals in Wuhan, prompting a surge in truck movements from Shanghai to fulfill these needs. 14 

Additionally, the positive influence of construction-related companies indicates a demand for materials and 15 

services essential for post-outbreak construction efforts, including the reconstruction of healthcare facilities and 16 

other critical infrastructure projects in Wuhan. The observed truck mobility patterns underscore the 17 

interconnectedness of industries and the adaptability of logistics systems in responding to the complex 18 
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challenges posed by the lockdown (Bandyopadhyay and Bhatnagar, 2023). The collaboration between diverse 1 

industries in Shanghai contributes to the effective restoration of infrastructure and healthcare capabilities in 2 

Wuhan, emphasizing the role of diverse industries in fostering recovery and resilience in the face of 3 

unprecedented events. 4 

5. Discussion 5 

This study contributes insights to the understanding of intercity FTG dynamics during the pandemic by 6 

combining a novel dataset, quantitative analyses and an interpretable machine learning framework. The findings 7 

highlight that the demand for inter-city freight transport was reduced in a gravitational pattern, meaning that the 8 

impact was more pronounced in cities with higher economic activities and population densities. This observation 9 

aligns with the principle of gravitation in transport geography (Hesse and Rodrigue, 2004), where larger and 10 

more economically active cities exert a greater influence on freight movements. However, during the pandemic, 11 

these cities also faced stricter lockdown measures and higher disruption levels, leading to more significant 12 

reductions in freight transport demand. This finding underscores the importance of considering city size and 13 

economic activity levels in intercity freight planning during crises. 14 

Using the SHAP technique to explain the outputs of developed XGBoost-based FTG model, significant 15 

changes in the factors influencing intercity freight movements after the COVID-19 outbreak were identified. 16 

This analysis extends the findings of prior studies (de Oliveira et al., 2022; Holguin-Veras et al., 2011; Jesus et 17 

al., 2020; Middela and Ramadurai, 2024) by providing a more detailed understanding of how specific sectors 18 

influenced freight movements during the pandemic. For instance, one of the most notable changes observed was 19 

the increased prominence of supermarkets in cities. As a city implemented lockdown measures, residents relied 20 

more on local supermarkets for their daily necessities, which were supplied from other cities. Supermarkets 21 

became crucial nodes in the logistics network and attracted a substantial volume of truck movements from other 22 

cities. Moreover, the findings indicated the growing influence of medical and construction locations in cities 23 

after pandemic outbreak. Cities with surplus resources in these sectors would transport excess supplies to other 24 

cities, leading to a significant increase in generated truck trips. 25 

Additionally, prior study (Yang et al., 2023a) has indicated that factors influencing intercity freight 26 

transport can vary significantly between different city pairs. This study contributes to the literature by 27 

demonstrating that pandemic exacerbated this difference. This study found that short-distance city pairs, such 28 

as Xiaogan to Wuhan, saw increased freight movements driven by local demand surges, particularly for essential 29 

goods, while long-distance pairs, such as Shanghai to Wuhan, experienced more substantial disruptions due to 30 

logistical challenges and stricter lockdown measures. The finding highlights the need for differentiated strategies 31 

in managing intercity freight transport based on the specific context and distance between city pairs. 32 

Furthermore, SHAP analysis can offer implications for understanding and modeling intercity freight 33 

transport demand, especially in the context of the COVID-19 pandemic. Traditionally, FTG models have relied 34 

on established patterns of economic activity and population density to estimate freight movements between 35 

regions. However, the pandemic has reshaped these patterns, necessitating a reevaluation of how industries and 36 

sectors contribute to FTG. For instance, before the pandemic, manufacturing industries typically dominated 37 

FTG due to their substantial production volumes and distribution networks (Holguin-Veras et al., 2011). In 38 

contrast, during the pandemic, sectors such as healthcare and construction gained prominence amid evolving 39 

demands. Different industries dominate FTG, but their own FTG rates could be different before and during 40 

pandemic. The SHAP analysis in this study revealed potential variability in FTG rates across industries, which 41 

could be incorporated into FTG models, such as the trip rate model (Jesus et al., 2020), to improve their 42 

responsiveness to crisis situations. 43 
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Finally, compared to traditional trip rate models that rely on simplistic assumptions about sectoral 1 

contributions to freight movements, the developed XGBoost-based FTG model in this study offers greater 2 

flexibility and adaptability. The XGBoost model's capability to handle large datasets allows it to effectively 3 

integrate diverse sources of information, including real-time economic indicators, transportation network 4 

conditions, and sector-specific demands. This approach enables more accurate predictions of freight flows even 5 

under unprecedented circumstances like the COVID-19 pandemic, where conventional assumptions about 6 

economic activities and transport patterns may no longer hold true. This model can be provided as a tool to 7 

predict freight demand between cities for future crises and disruptions. Initially, the model requires the 8 

integration of up-to-date and relevant data, encompassing economic indicators, population statistics, 9 

infrastructure details, and industry-specific variables. Next. robust validation methods (Yadav and Shukla, 2016) 10 

are needed to be implemented to ensure the accuracy and reliability of incoming data. By simulating various 11 

potential crises or disruptions, scenario-based predictions can be generated by the model, providing supports for 12 

freight management practices (Cleophas et al., 2019; Nocera et al., 2021; Tavasszy et al., 2012). 13 

6. Conclusion 14 

This study leveraged a novel dataset to capture large-scale truck movements during the COVID-19 15 

pandemic, offering a detailed analysis of intercity transport systems. The structural changes in intercity truck 16 

transport demand were quantified, providing insights into the freight dynamics under the COVID-19 outbreak. 17 

Additionally, an interpretable machine learning framework was introduced for precise intercity freight demand 18 

estimation. The findings reveal the intricate interplay of factors influencing intercity truck transport systems 19 

during the COVID-19 crisis and offer potential implications to enhance the resilience of freight transport 20 

systems. This research contributes valuable insights for optimizing freight logistics and building a more 21 

adaptable transportation infrastructure in the post-pandemic era. 22 

Despite the comprehensive analysis of the impact of the COVID-19 pandemic on intercity truck 23 

movements, this study has several limitations and provides a promising research agenda for the future. First, 24 

this study utilized truck movement data for one week before and after the pandemic outbreak to capture the 25 

short-term changes brought about by the COVID-19 outbreak. It does not provide insights into the medium and 26 

long-term changes in freight demand after the implementation of various policies. Future research could delve 27 

into the temporal dynamics of intercity truck transport, examining how the patterns observed during the 28 

immediate aftermath of the COVID-19 outbreak evolve over time. Long-term trends may reveal sustained 29 

changes in freight demand, adaptive strategies employed by the industry, and the resilience of supply chains in 30 

the post-pandemic era. Second, the study overlooks the changes in the distribution of freight POIs resulting 31 

from the policies before and after the pandemic. For example, the closure of certain factory facilities following 32 

the occurrence of COVID-19. Future research could explore these critical aspects by integrating geospatial 33 

analysis with real-time data on freight movements. By tracking the shifting patterns of freight POIs in response 34 

to pandemic-related policies, such as factory closures, researchers can gain a nuanced understanding of how 35 

supply chain dynamics evolve under stress. Third, this study selected two short-distance and long-distance city 36 

pairs to capture the diversity and complexity of driving factors influencing freight flows across varying distances. 37 

The two selected samples may not be representative for all distances and regions. Future research could broaden 38 

this scope by including a more diverse range of city pairs. By encompassing cities with varying economic 39 

structures, transportation infrastructures, and regional characteristics, researchers can better generalize findings 40 

across different urban contexts and identify commonalities and disparities in intercity freight dynamics. 41 
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