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A B S T R A C T

Background and objective Using graph theory, Electronic Health Records (EHRs) can be represented
graphically to exploit the relational dependencies of the multiple information formats to improve Machine
Learning (ML) prediction models. In this systematic qualitative review, we explore the question: How are
graphs used on EHRs, to predict diagnosis and health outcomes?
Methodology The search strategy identified studies that used patient-level graph representations of EHRs to
utilise ML to predict health outcomes and diagnoses. We conducted our search on MEDLINE, Web of Science
and Scopus.
Results 832 studies were identified by the search strategy, of which 27 studies were selected for data
extraction. Following data extraction, 18 studies used ML with patient-level graph-based representations of
EHRs to predict health outcomes and diagnoses. Models ranged from traditional ML to neural network-based
models. MIMIC-III was the most used dataset (n = 6, where n is the number of occurrences), followed by
National Health Insurance Research Database (NHIRD) (n = 4) and eICU Collaborative Research Database
(eICU) (n = 4). The most predicted health outcomes were mortality (n = 9; 21%), hospital readmission (n =
9; 21%), and treatment success (n = 4; 9%). Model performances ranged across outcomes, mortality prediction
(Area Under the Receiver Operating Characteristic (AUROC): 72.1 - 91.6; Area Under Precision-Recall Curve
(AUPRC): 34.8 - 81.3) and readmission prediction (AUROC: 63.7 - 85.8; AUPRC 39.86 - 84.7). Only one paper
had a low Risk of Bias (RoB) that applied to our research question (4%).
Conclusion Graph-based representations using EHRs, for individual health outcomes and diagnoses requires
further research before we can see the results applied clinically. The use of graph representations appears to
improve EHR representation and predictive performance compared to baseline ML methods in multiple fields
of medicine.
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1. Introduction

Improvements in medical advances with increasing complexities of
patient treatment pathways and ageing demographics have increased
pressure on healthcare services. Implementing predictive algorithms
into healthcare settings can reduce the cognitive burden for clinicians
whilst reducing patient wait time for care [1].

EHRs are used within clinical practice to document and store patient
data during clinical encounters. EHRs contain a wealth of patient
data, including health events, symptoms, laboratory investigations, and
diagnoses [2]. Most clinical prediction models use summary data, such
as EHR codes, which alone loses the inherent structure and temporality
of the data.

Graph theory utilises network structures and uses mathematics to
observe patterns and structures within data. In discrete mathematics, a
graph 𝐺 = (𝑉 ,𝐸) is defined as a series of nodes 𝑉 connected via edges

to represent relationships between nodes [3,4].
Graphs can be used to model EHR data to maintain structural

eatures, temporality, and comorbidities which can be used to predict
atient outcomes with ML. Earlier predictions of health outcomes may
llow preventive interventions to be carried out (e.g., physiotherapy,
edication), which can reduce the impact of healthcare utilisation,

essen patient suffering, prevent conditions from worsening, and reduce
uture healthcare utilisation.

Graph representations for EHRs are becoming increasingly popular.
ocial network analysis methods can be used to find disease pro-
ression by finding similarities between patients and their outcome
rajectories [5,6]. Patients can be clustered based on graphical EHR
epresentations to make diagnoses [7]. Increasingly Deep Learning (DL)
ethods, such as Convolutional Neural Networks (CNNs) and Graph
eural Networks (GNNs), are being used to find important features and
atterns in an individual patient EHR to predict patient prognoses [8,
].

This systematic literature review follows the PRISMA guidelines
or comprehensive literature search and selection. It also uses the
ROBAST criteria to assess the RoB and quality of papers to investigate
he utilisation of graphs in healthcare for patient-level EHR representa-
ions and health predictions. The research question guiding this review
s:
How are graphs being used on EHRs to predict diagnosis and health

utcomes?
To address this broader question, we answer the following sub-
uestions:

2 
(a) What graph approaches are researchers taking to predict these
health outcomes?

(b) How do these approaches compare to other ML, Artificial Intel-
ligence (AI), and statistical models?

(c) How are nodes and edges being utilised to perform these tasks?
(d) How do these graph approaches compare to each other?

Outcomes from these studies are highly heterogeneous making a
meta-analysis inappropriate. Instead, results are presented as a narra-
tive synthesis, comparison, and discussion of studies. To the best of
our knowledge, this systematic review is one of the first to analyse
studies that have used graph techniques to represent EHR information
for health prediction and diagnosis.

2. Related work

Schrodt et al. review on graph representations of patient data
(extraction date: 20-Mar-2018) is the only systematic literature re-
view paper identified that focuses on graph representations of patient
data [10]. Contrasting our review that examines how graph representa-
tions are used for prediction, Schrodt’s review of 11 articles examines
how graphs were used to represent EHR of individual patients.

There are five systematic reviews that focus on ML based prediction
tasks using EHRs as input data. These do not focus solely on graphical
representations. Two papers explored DL models using EHR, but neither
retrieved any graph-based models [11,12].

Si et al. review on deep representation learning of EHR (extraction
period: 2015–2019) identified 49 papers [13]. They discussed graph-
based patient representation, models such as GNNs, and highlighted
various works (n = 8). Three references in their paper also match
our included Refs. [7,13,14]. Si et al. suggested that future work will
involve harnessing the complex features found in EHRs, improving
reproducibility and transparency.

Liu et al. review concentrated on representation learning of EHRs
and suggested categorising these methods into statistical, knowledge-
based, and graph learning methods [2]. There are four papers in Liu’s
review that appeared in our search [14–17]. Liu suggested that graphs
are a practical way to represent EHRs that maintains the structural,
temporal, and semantic relationships, which is not possible with other
methods.

Hossain et al. review of 36 papers (extraction date: Aug-2018)
explored the use of EHR data for disease prediction [18]. One of their
papers was included in our search [16]. This review found that dif-
ferent MLs methods worked best for different clinical settings. Graph-

based methods appeared to work best for Diabetes mellitus (DM), and
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Hossain suggested that graph representations enable the relationships
between healthcare data to be structured, enabling an understanding
of connections that otherwise might be difficult to observe.

3. Systematic review methods

This systematic review follows the 2015 PRISMA protocols [19].
The completed checklist can be found in Appendix A.8. Our review
is registered on PROSPERO with the protocol registration number
CRD42022315782.

3.1. Search strategy

Our search strategy involves combining synonyms for ‘‘Graphs’’ and
‘‘Electronic Health Records’’. Asterisk wildcards were applied to ‘‘Prog-
nostic’’, ‘‘Diagnostic’’, and ‘‘Prediction’’ to expand the search. Queries
targeted abstracts, titles, and keywords. Studies within this graph/
network domain were evaluated to determine if other terms cover the
same concept. The search, conducted on February 27, 2023, covered
MEDLINE, Scopus, and Web of Science databases. A forward citation
search of review articles identified at the abstract title screening stage
was conducted. The complete search terms are in Appendix A.1.

3.2. Inclusion criteria

In our review, ‘‘graph’’ specifically refers to graph theory, represent-
ing information in a network of nodes and edges. The common meaning
of charts/visualisations was excluded. Included studies constructed
graphs directly from individual patient-level EHR data, excluding those
using aggregated population data. To assess the effectiveness of graph
representation in ML-based predictions, we only considered primary
research studies that described at least one ML prediction task using
EHR graph representation.

Outcomes are defined as diagnostic prediction of a health condi-
tion (e.g. Heart Failure (HF) or cancer) or prognostic prediction of a
health-related outcome (e.g. mortality, readmission risk, or treatment
success). Studies that predicted multi-class outcomes with over ten
possible labels were excluded, as statistical reporting of these models
is insufficient.

Graph-based learning in healthcare gained recent attention [1].
Considering the impact of hardware availability on DL progression, we
focus on papers published between 2002 and 2023 to align with the
release of Torch, a popular ML library framework in 2002.

We excluded grey literature (theses, dissertations, non-peer re-
viewed pre-prints, and online repositories), only including full-text
papers written in English or with an English translation.

3.3. Article selection

ZH and AP independently conducted title/abstract and full-text
screening stages, reaching a consensus on selection at each stage.
Disagreements were resolved by SR, the third reviewer, and Rayyan’s
online software tool was employed in this process [20].

4. Data extraction methods

We employed two assessment frameworks, evaluated RoB, and iden-
tified characteristics to ensure a reproducible study assessment. ZH and
AP independently conducted both assessments for each study.

4.1. Risk of bias (RoB)

We evaluated the RoB using the PROBAST tool, a framework for
assessing the quality of methodologies, including RoB and applicability,
in primary studies developing prediction models for diagnosis and
prognosis [21].
3 
Fig. 1. PRISMA flow diagram illustrating the search strategy. Figure generated with
the tool from [28].

PROBAST, developed through a consensus process with 20 sig-
nalling questions across four domains (participants, predictors, out-
come, and analysis), assigns a RoB score of High, Low, or Unknown
to each domain based on signalling questions. The overall ROB is
determined by the worst domain score (i.e., an overall low RoB requires
every domain to score low) [21]. Reviewers reached a consensus on
RoB at the domain level, and a qualitative analysis was conducted for
overall and domain-specific RoB across all studies. We include papers
with high RoB to highlight ongoing work in the field, focusing on
the primary health outcome when multiple models are developed in
a study.

4.2. Study characteristics

We utilised an adapted CHecklist for critical Appraisal and data extrac-
tion for systematic Reviews of prediction Modelling Studies (CHARMS)
for extracting study characteristics, originally designed for primary
studies on diagnostic or prognostic prediction models [22]. Qualitative
analysis of the data extracted using our modified CHARMS framework
revealed patterns in the identified studies. Appendix A.2 provides a
detailed description of all extracted variables.

5. Results and discussion

5.1. Article selection

The database search yielded 1346 papers (Web of Science (n = 410;
30.5%), Scopus (n = 633; 47.0%), and MEDLINE (n = 303; 22.5%)),
with 832 unique papers. Exclusions during the title/ abstract screening
were mainly due to non-predictive studies (n = 250), lack of EHR
use (n = 205), and techniques not relevant to our review research
questions (n = 162). Title/ abstract screening identified 37 reviews/
background articles, where six papers were identified from forward
citation screening for full-text screening [5,23–27].

Full-text screening identified 27 papers for data extraction. The
PRISMA flowchart in Fig. 1 provides a summary of article selection;
additional details are in Appendix A.3.

5.2. Risk of bias analysis

How do biases manifest within this literature, and what impact do they

have on the reliability of study results?
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Table 1
Risk of bias and applicability table formed from following the PROBAST guidelines.

Risk of Bias (RoB) Applicability Overall

Study Participants Predictors Outcome Analysis Participants Predictors Outcome RoB Applicability

[5] H H H H L H L H H
[6] H L L L L L L H L
[29] H L H H L U L H U
[9] L L L H L L L H L
[8] H L L L L L L H L
[30] L L L L L L L L L
[15] L L H H L L L H L
[16] H H U H L L L H L
[31] H H H L L L L H L
[32] H L H L L L L H L
[14] H L L H L U L H U
[33] L H H H L L L H L
[34] L L L L L H L L H
[35] H H H H L U L H U
[17] U H H H L L L H L
[36] L H H L L L L H L
[37] H H L H L L L H L
[38] L L L L L U L L U
[39] U H H H L L L H L
[40] H U U H L U L H U
[41] L L L U L L L U L
[7] U L H H L L L H L
[42] L L H L L L L H L
[43] L L L H L H L H H
[44] L L H L L U L H U
[45] L U H H L L L H L
[46] U L U H L L L U L

H- High risk, L - Low Risk, U - Unclear risk.
Fig. 2. Risk of bias of the papers included for data extraction.

Table 1 displays the RoB and applicability assessment at the domain
and overall levels, with each row representing one study. Fig. 2 presents
the breakdown of RoB levels.

5.2.1. Participant RoB
High RoB in the participant domain can be categorised into three

groups. The first group have limited information about the target
population, likely introducing bias based on available data [5,6,8,14,
16,31,32,35,40]. This differs from papers with unclear RoB, where no
information is given about data sources or the population [17,39], or
where the control group is unclear [46]. The second group comprises
papers with inclusion/exclusion criteria leading to inclusion bias [14,
16,29,31,37]. These papers select or exclude patients based on specific
characteristics relevant to the predictive context. The final group lacks
control/comparison groups to determine prediction effectiveness [5,7].

5.2.2. Predictor RoB
Diagnostic codes in EHRs signify the presence of diseases and can

serve as features for prediction or be the target labels. The Interna-
tional Classification of Diseases (* denotes version 9 or 10) (ICD*-CM),
established by the World Health Organisation (WHO), is the global
standard for diagnostic codes, facilitating systematic health outcome
comparison across centres/institutions [47]. Its hierarchical structure
provides varying levels of granularity, allowing the grouping of similar
disease processes.
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Incorrectly applying non-reproducible transformations or grouping
medical events, International Classification of Diseases (ICD) codes, and
medication codes poses a risk of misclassifying predictive features [16,
17,31,33]. Utilising tools like OpenSAFELY helps find approved code
lists for appropriate patient grouping [48].

False assumptions about the data context in EHRs can introduce
inconsistencies and RoB. In acute settings, diagnoses are presumed, not
confirmed, and should not be used as predictors [36]. Inappropriate im-
putation of missing data for ML algorithms can create unrealistic data
given the clinical context and should not be used for prediction [37].
Additionally, self-reported lifestyle factors pose a significant risk of
recall bias and should not be used as predictors [35].

The clinical utility of a predictive model depends on considering
the timing of the prediction. Validity requires taking into account the
availability of variables at the time of the prediction. Variables only
available after the event time horizon should be avoided, as they render
retrospective predictions clinically irrelevant [5,33,39].

Two papers lack sufficient information for RoB assessment in this
domain. One lacks information about defined and assessed predic-
tors [40], and the other lacks information about the timing of the index
diagnosis [45].

These oversights indicate a lack of consideration for the clinical
context in the design phase of model construction.

5.2.3. Outcome RoB
Approximately half of the papers showed high RoB in the outcome

domain, falling into four groups: predictors shaping outcome defini-
tions, flawed outcome assumptions, subjective outcome definitions, and
poor methodology.

Consideration of the relationship between outcomes and predictors
is essential. Specific predictors can unintentionally detect an outcome,
such as using investigations or symptoms that are part of the diagnostic
criteria (e.g., exacerbation of Chronic Obstructive–Pulmonary Disease
(COPD) predicting COPD onset [17]), the presence of a treatment regi-
men predicting subsequent diagnosis [29], or tests specific to the cancer
outcome in question [33]. Acknowledging the potential masking of
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certain investigations when predicting disease onset should be explicit
in the paper [16].

Constructing a composite outcome, like treatment failure, requires
careful consideration. Some studies define treatment failure as a pa-
tient having the same diagnostic code within two weeks [15,36,42].
However, this assumes patients will return to the clinician within two
weeks and that the initial diagnosis is correct. Such an approach is not a
formal assessment of prescription effectiveness and should not be used
as an outcome.

Despite ICD coding standardisation, choosing ICD codes or diag-
noses as target variables can be ambiguous, risking observer bias [32].
Some ICD codes encompass a broad range of diagnoses (e.g., N39 –
Other disorders of the urinary system) or lack agreed-upon standards
(e.g., E86 – Volume depletion). Subjectivity also arises in applying
specific diagnostic criteria, such as Alzheimer’s disease and HF [7,44],
or determining the cause of death [35].

Some papers have methodologically poor outcomes lacking predic-
tive value in the clinical setting. Examples include papers with no
prediction time horizon, rendering predictions irrelevant [5,7,31], or
those with multi-outcome models predicting the following diagnosis or
top 𝑘 diagnoses [17,31].

5.2.4. Analysis RoB
Around half of the papers are high RoB in the analysis domain

(n = 15; 56%); this domain had the highest number of high-risk
scores. Reasons for high RoB are divided into papers at risk of being
over-optimistic and those with inappropriate analysis of results.

Many methodologies lacked a specified number of participants in
the outcome group(s) [7,15–17,29,33,37,43]. Without sample size cal-
culations, it is unclear whether ML models have sufficient power to pre-
dict accurately, risking over-fitting and over-optimistic performance.

Data complexities like censoring and competing risks are not ap-
propriately addressed or mentioned in the analysis [5,9,14,16,33,37,
39,40,43,45,46]. Three papers lacked performance metrics or applied
them inappropriately, such as using AUROC for highly unbalanced
data [5,16,43]. One study treated alive patients differently from those
who died at the end of the period [35].

5.2.5. Overall RoB
Only one paper, Golmaei et al. [30], has both an overall low RoB

rating and low-risk applicability. Seven papers exhibit high or unclear
RoB in a single domain, indicating that most literature in this area faces
methodological issues across multiple domains leading to high RoB (n
= 17; 63%).

Our RoB findings align with those of related works in clinical
prediction modelling. Yang et al. conducted a systematic review of
clinical prediction papers from 2009 to 2019, identifying 579 predictive
models [49]. Navarro et al. performed a systematic review of 152
clinical prediction papers (models = 522) between 2018 and 2020,
focusing on trends in methodological conduct reporting [50]. Navarro
found that only a minority of papers performed external validation
(12.5%), hyperparameter optimisation (28.9%), or provided calibration
curves (5.4%).

This highlights a deficiency in the adherence of clinical prediction
models to PROBAST guidelines. This could stem from a lack of aware-
ness of PROBAST guidance or authors prioritising predictive model
performance over applicability in a clinical setting. Addressing this gap
is crucial for the effective use of these models in clinical practice.

5.2.6. Overall applicability
Three papers (11%) in our search are not applicable due to using

population graphs instead of patient-level EHR representations [5,34,
43]. Nineteen papers (70%) clearly use graphs to represent patient-
level EHR data. The remaining six papers have unclear definitions
of graph representations. Among them, four papers (15%) may use
population-based representation [35,38,40,44], one paper represents
graphs as single visits [14], and one paper is unclear about the graph

representation [29].
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5.3. Characteristics of included studies

Tables 11–15 in Appendix A.4 summarise the data extracted from
the 27 papers.

5.3.1. Datasets and data sources
Eighteen datasets are used in the identified papers, broadly cate-

gorised as open source, dedicated research databases, and non-
public/proprietary data. Table 2 provides a summary of the datasets
used.

Three papers (11%) use simulated/synthetic data alongside a pre-
existing dataset [7,14,35]. However, synthetic data inadequately cap-
tures complexities and relationships in EHRs, leading to poor rep-
resentation of cohorts [51]. Consequently, we exclude these results,
emphasising that these papers aim to demonstrate techniques rather
than create clinical predictive models.

Healthcare delivery can broadly be divided into inpatient and out-
patient/community care, each with distinct record structures and con-
tent reflecting the delivered care type. Outpatient records, likely sparse,
offer better time coverage compared to sporadic but detailed inpatient
records. When designing predictive models, these differences are cru-
cial, as the clinical utility of predictions relies on potential levers for
change in these settings. Additionally, accessing different parts of the
EHR (inpatient vs outpatient) must be considered, given that typical
clinical end-users lack universal access.

The distinction between primary and secondary care systems is not
always evident, with many hospitals providing community services.
While all papers in this study seemingly used EHRs from secondary
care, details and prediction targets suggest community care records’
use [6,7,9,15–17,33,35,36,39,42,44]. This raises concern as access to
healthcare records varies, necessitating clarity on data requirements for
model reproducibility.

Medical data, despite anonymisation, carries a risk of re-identifying
subjects [52], countering the need for accessible datasets to verify and
reproduce predictive models. The popularity of Medical Information
Mart for Intensive Care (MIMIC), being freely accessible, reflects its
status as a benchmark for verifying predictive model performance,
despite its limitations of being critical care-focused.

The recent Goldacre Review supports the scale implementation of
Trusted Research Environment (TRE), offering researchers a secure
environment to access medical data for model development or verifi-
cation [53]. This approach provides a secure yet accessible avenue for
working with anonymised EHRs.

5.3.2. Model types
Sub-question (a): What graph approaches are researchers taking to

predict these health outcomes?
For sub-question (a): Table 3 shows and describes the different

ML and DL models used with graph representations of EHRs to make
healthcare outcome and diagnosis predictions. Fig. 3 shows the model
categories and within the extracted studies.

Recurrent Neural Network (RNN)-based models (Long-Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU)), excel with EHR data
for handling sequential/temporal information. CNNs are employed for
capturing spatial correlations. Combining RNNs and CNNs can aid in
learning both temporal and spatial patterns.

DL is recommended for superior performance compared to other ML
methods, given its capacity to capture intricate relationships. However,
this complexity may not always identify uncertainties in data or model
them, posing risks in healthcare settings where future predictions might
suffer if the data distribution changes [11].

It is worth comparing graph and non-graph models to benchmark
models, Fig. 4 shows the different models used for comparison.

Debate surrounds the trade-off between accuracy and computational
cost in ML models. Gómez-Carmona et al. demonstrated an 80% reduc-

tion in computational effort with only a 3% decrease in accuracy [54].
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Table 2
Summary of datasets used in the selected papers.

Papers Dataset Description Source Country

Open Sources

[37] MIMIC-II Clinical data related to patient admission to ICU, diagnoses
ICD-9, and lab test results. Lab tests extracted every hour
from admission.

USA

[8,30,31,38,41,44] MIMIC-III ICU short-term records, inpatient, discharge summaries USA
[46] MIMIC-IV ICU short-term records, inpatient, discharge summaries USA
[14,39,44,46] eICU ICD-9 and CPT procedure codes USA

Research Databases

[9,15,36,42] Taiwanese National Health
Insurance Research Database
(NHIRD)

ICD9-CM Taiwan

[33] Foundation Medicine Inc and
Mayo Clinic EHR

Oncology genetic reports, phenotypical data. Lab tests,
diagnoses, medical and family history

USA

[32] National registry data – UK
[35] Taiwan National Death Registry ICD-9 and ICD-10 Taiwan
[44] NYU Langone Health Long-term inpatient and outpatient EHRs USA

Non-public/Proprietary Datasets

[16,17,29] Medical system from a city in
North China

ICD-10 codes China

[5,40] Australian healthcare system Admission information, diagnoses, procedures (ICD-10, DRG,
AN-SNAP)

Australia

[39] Paediatric EHR data from a
tertiary care hospital in China

Symptoms, medical examination information, medication
codes and diagnosis codes

China

[43] IVF clinic from General Hospital
in Seoul

Treatment records (age, stimulation type, use of Wallace,
number of embryos transferred, symptoms)

South Korea

[6] Private healthcare hospital
admission data

ICD-10 codes and administrative data –

[7,29,34,44] Not provided EHR Read codes –
[45] CardioNet EHR Data from Seoul Asan Medical Center South Korea
Fig. 3. The count of models and the percentage of papers within the selected 27 papers.

Fig. 4. Comparison/baseline model occurrence and their associated references (in
square brackets).

None of the included papers supplied information on the time taken
to train their models or the sample size. The exploration of resource
intensity, model fitting, and prediction time for graph ML models
represents a current gap in the literature. This information could be
valuable in determining the feasibility of clinical implementation and
optimising Pareto efficiency.
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5.3.3. Graph representations
Sub-question (c): How are nodes and edges being utilised to perform

these tasks?
We summarise sub-question (c) in Tables 4 and 5 which display

node and edge types in the graphs, respectively. EHR read codes com-
monly served as node representations. Nodes were either homogeneous
(41%) or heterogeneous (59%). Table 16 in Appendix A.5 details node
and edge assignments in each model.

One of the proposed advantages of graph representation is the
greater potential for explainability/interpretability. Graph representa-
tions allow data organisation in a non-linear path, providing explain-
able visualisation that would otherwise be complicated to infer. While
minimising the ‘black-box’ effect of models is beneficial to provide
explainability, especially in clinical settings, it is vital to consider that
interpretability approaches may lead to artefacts from the learnt model
rather than clinically explainable findings that should be attributed to
the data [12].

There is a broad scope of interpretability, which to our knowledge,
is without an encompassing definition. What is interpretable to an ML
expert may not be to someone from a clinical background. Interpretabil-
ity and transparency of models are essential to ensure that clinicians
understand healthcare model choices to have confidence in decision-
making rather than blind acceptance based on accuracy scores [11,55].
Several papers employed graph representations and ML for model
interpretability. Some utilised graph kernels to enhance interpretability
by calculating the similarity between patient graphs, assigning higher
scores to patients with more matches with others [9,15,36,42]. Other
models provided scores for features (nodes or edges), highlighting the
most influential contributors to prediction decisions [15,31,33,40,44].
Additionally, graph visualisations were generated for clinicians to ob-
serve patient disease progression, aiding investigative direction [9,15,
31,36,40]. Some suggested their graphs could aid in diagnosis and
reveal causal relationships between EHR events [31].

Graph features exhibit various connection types to represent rela-
tionships. While typical Directed Acyclic Graphs (DAGs) have one-to-
one links, more complex graphs, like hypergraphs, support one-to-many
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Table 3
Descriptions of the different models used within the selected papers to make healthcare predictions. DTs, LR, RF, SVM, GCNs, MLPs.

Papers Model Type Description

Traditional ML Methods

[5] Clustering Grouping similar data within a dataset using 2+ variables.
[6] DTs A single tree that makes predictions using previous answers. This

forms a series of questions in a branched shape leading to the
outcome.

[6,33,45,46] LR Linear classifier, which analyses the relationship between variables,
using statistical analysis to predict binary outcomes. Note: the
papers that use this method change the graph embeddings into
vectorial representations.

[33,45] RF Multiple DTs trained via bagging techniques to optimise the
predictive performance.

[5,6,29,32,34,37,40] Similarity Comparing 2+ samples to each other using distance or differences.
[7,9,15,17,33,40,42,46] SVM Used for both classification and regression, SVMs find the best

hyperplane to divide the data into their groups.

Neural Networks

[14,30,31,38,39,44] Attention Enabling attention to be paid to more valuable variables and
reducing inefficiencies. It can also be used to show variables of
importance and provide decision explainability.

[8,16,33] CNN Finds patterns in matrices (e.g., images, signal data) by applying
filters and obtaining higher representations of the input data.

[33] MLP Neural network which is fully connected, the connections have
varying weights which enforce or weakens connections to learn the
patterns from input data.

[31,32,34,38,41,46] RNNs, LSTM, GRU Takes in sequential data and keeps it in memory by taking outputs
from one step to the next. This means it has connections between
time.

Graph Specific Methods

[9,14,33,38,41] GCNs Like CNNs, GCNs learn using filters over data; however, GCNs can
learn directly from nodes and their neighbouring nodes.

[30,35,44] GNN Neural networks can be used on graphs to analyse nodes, edges,
relationships, and layouts to make predictions.

[9,15,36,42] Graph Kernel Convolution kernels on pairs of graphs, where the result from the
convolution results in a new graph kernel.

[33,43] Bayesian Network Representation of conditional dependencies between variables using
DAGs.
and many-to-many links. Analysing networks using methods like cen-
trality or similarity measures reveals relationships between node and
edge components. Modelling temporal EHR data is challenging due
to irregularities, sparsity, heterogeneity, and model opacity [12], but
graphs offer a way to address these challenges.

Another potential application of graph representation is utilising
the temporal relationships of events within individual patient records
that can examine sequences of events or event progression. By incor-
porating elapsed time as edge features or sequentially ordering events
using directed graphs without specific time intervals, you can utilise
the temporal dimension that can reveal valuable insights within the
data, such time intervals between encounters may reveal patterns not
obvious to clinicians [12].

While graph representations offer many advantages, we should
be mindful that they can entail significant memory complexity and
processing time, particularly in DL applications. This will be an impor-
tant consideration when deploying models into a clinical environment,
particularly during inference, where delayed predictions or insufficient
compute resources are likely to lead to poor adoption.

5.3.4. Model performances
Sub-question (d): How do these graph approaches compare to each

ther? Sub-question (b): How do these approaches compare to other ML,
rtificial Intelligence (AI), and statistical models?

Primary ML research methodology should offer sufficient perfor-
ance metrics for independent evaluation. Across the papers, fourteen
ifferent metrics were provided. The most frequent metric was AUROC
70%), assessing model discrimination by comparing true positives to
alse positives. AUPRC followed as the second most used metric (56%),
ffering discriminative evaluation, particularly valuable in the presence
f data imbalance. Accuracy (33%) provides a simple measure of
7 
correct predictions relative to all predictions. F1 score (26%) calculates
the harmonic mean of precision and recall, preferred over accuracy in
imbalanced data scenarios. Recall (26%) measures a model’s ability to
predict a positive outcome when present. Precision (22%) gives the
positive predictive value. Specificity (7%) gauges a model’s ability to
predict a negative outcome when not present.

The following metrics appeared only once across all papers: Neg-
ative Predictive Value (NPV), coverage, true positives, true negatives,
false positives, false negatives, and minimum precision and sensitivity.
None of the papers included calibration curves or reported calibration,
which helps detect overfitting by comparing predicted vs observed risk.
Additionally, these papers lacked confidence intervals, a requirement
for Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) [56].

Of the surveyed articles, some provided binary classification alone
(n = 17; 63%) , some multi-class (n = 2; 7%) and others gave
risk/probability scores (n = 5; 19%). A few papers had multiple
predictive tasks with both binary and multi-class classification (n = 3;
11%). Hospital readmission was the most popular prediction outcome
(n = 9/43; 20.9%), followed by mortality (n = 9/43; 20.9%), and then
treatment success (n = 4/43; 9.3%).

For sub-question (d) Table 6 displays models predicting mortality
with AUROC or AUPRC scores. The highest AUROC score, 91.59%, was
reported by Liu et al. [39]. Sun et al. [31] reported the best AUPRC
score for mortality prediction at 81.34%. Regarding sub-question (d),
Fig. 5 shows the AUROC and AUROC for the models which predict
mortality. AUROC is a suitable metric to use if the dataset is balanced,
however if it is not balanced AUPRC gives a better performance metric.
The baseline score for AUPRC is typically determined by the prevalence
of positive outcomes in the dataset. [31] have an unbalanced dataset,
whilst [41] does not report dataset balance, which might explain the
discrepancies between the AUROC and AUPRC scores.
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Fig. 5. AUROC and AUROC scores for the models predicting mortality.

For sub-question (d) Table 7 presents models predicting readmission
with AUROC or AUPRC scores. The top-performing model for readmis-
sion prediction was reported by Golmaei et al. [30], achieving 85.8%
± 1.2 for AUROC and 84.7 ± 1.5 for AUPRC.

Tables 17–18 in Appendix A.6 display models predicting health
outcomes, excluding mortality or readmission, with AUROC or AUPRC
scores. Treatment success is a frequently predicted clinical outcome.

Due to dataset and validation method variations, we cannot perform
quantified or statistical comparisons between the papers. However,
among the three papers with low RoB predicting hospital readmis-
sion using the MIMIC-III dataset [30,38], GNN with Bi-directional En-
coder Representation from Transformers (BERT) outperformed the GCN
model with attention (AUROC + 3.3%, AUPRC + 21.5%). The higher-
performing model underwent a more rigorous 5-fold Cross Validation
(CV) validation, enhancing confidence in these results.

All included papers had main models outperforming or showing
equivalent results to baseline predictive performance. However, despite
this being relevant to sub-question (b)) this improvement regularly
seen might be due to publication bias favouring papers with posi-
tive improvements. The high RoB suggests likely biased results and
performance metrics, preventing statistical analysis or assessment of
differences between primary and baseline models. A fair comparison
would require identical predictive outcomes between models. As mor-
tality was the most common outcome to be predicted we show the
average AUROC difference between the comparison models and the
main model from each of the 8 papers and 10 models within these in
Figure 2 of Appendix A.6. From these comparisons we found that in
most scenarios SVM and LSTM models alone have the largest difference
in performance to the primary graph models.

Validation is sub-optimal with a single data split; CV or bootstrap-
ping is preferred for calculating standard deviations and accommo-
dating data variations during train/test splitting. External validation
is lacking, representing a gap in implementing predictive models into
clinical practice. Only four papers (15%) offered links to their GitHub
repositories for model availability and reproducibility [31,34,44,46].

6. Limitations

Our search terms required specific search terms to capture the
relevant literature. Due to the limited functionality of Google Scholar,
we were unable to use this literature database and therefore may not
have fully captured potential relevant literature.

While the initial aim was to examine how graph representations of
EHRs are used, we only identified one applicable paper with low RoB,
and so have focused on methodological bias. We highlight how current
methods lead to high RoB with an aim to direct future research in this
area to consider their assumptions to promote bias reduction; a must if
any of these methods are to be clinically implemented.

The PROBAST tool, published in 2019, is the currently accepted
guideline for assessing RoB within prediction model studies [21]. ML is
categorised as predictive modelling and, in theory, falls into the scope
8 
Table 4
Node allocation types in the graphs used in the selected papers. UMLS.

Papers Node Allocation/Use #

[5,7,8,14,16,17,29,33,34,36,39,45] Diagnosis 12
[9,15,16,29,31,32,42,44] EHR codes (e.g. ICD-10), but which

type(s) are unclear e.g. diagnoses,
demographic

8

[9,33–36,41,42] Demographics (e.g. age, BMI, gender) 7
[7,17,29,33,36,45,46] Medication 7
[8,14,17,33,45,46] Laboratory investigations 6
[14,39,43,46] Treatment 4
[8,33,45,46] Patients 4
[35,39,45] Physical examinations 3
[39,43] Symptoms 2
[30,34] Clinical note representation 2
[34,45] Visits 2
[35] Mental tests 1
[35] Habits 1
[33] Genetic data 1
[6] Comorbidity occurrence count 1
[33] Family history 1
[38] Average values of word embeddings

from: unique words from clinical free
text or the linked UMLS

1

[37] Discretised measurements of variables at
a point in time

1

[40] EHR Features 1
[41] Heart rate, blood pressure and oxygen

saturation
1

[41] Eye-opening and verbal response 1
[45] Smoking 1
[45] Echocardiography 1

Table 5
Edge allocation types in the graphs used in the selected papers.

Papers Edge Allocation #

[9,15,17,34,36,42] Time difference/elapsed between each node 6
[7,16,17,35] Temporal proximity weighting 4
[5,6] Number of times two diseases occurred

simultaneously
2

[30,40] The similarity between 2 nodes 2
[15,42] Link to demographics (as the first node) 2
[5,37] Sequential directionality/ ordering 2
[5,6] Number of times two diseases occurred

sequentially (one directly after another)
2

[41,44] Fully connected initially and updated by
attention

2

[14,33] Association weighting between nodes 2
[45] Relationship between patient and medical node

e.g. edge exists between patient and smoke if
the patient smokes

1

[29] Weights higher if two medical events are more
often and closer

1

[32] Risk of disease 1
[34] Different interactions, e.g. code to timestep 1
[38] 1) Intradocument interaction level. 2) Path

lengths between entity nodes. 3) String
similarities based on word overlap. 4) Cosine
similarities

1

[43] The conditional probability of a connection
between 2 nodes

1

[39] Medical relationship between nodes 1
[37] Labelling of change of quantifiable variable

(up, down or no change)
1

[31] Linking of nodes/EHR codes happening on the
same visit

1

[8] Whether testing or diagnosis of a patient was
undertaken

1

[46] Events happening on the same time step are
linked via edge and weighting is value from
laboratory test, or infusion drug. If patient took
a prescription the edge weight is 1 otherwise it
is 0 to the prescription node

1
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Table 6
Mortality prediction (binary) model performance. GCT .

Paper Models used Dataset Classes/ Outcomes AUROC (%) AUPRC (%) Validation
Type

[8] CNN MIMIC-III In-hospital mortality 80.00 ± 1 60.01 ± 1 10-fold CV
[31] Co-occurrence-

aware
self-attention
mechanism,
Time-aware GRU

MIMIC-III Mortality prediction 82.24 81.34 Train/ val/
test
0.75:0.1:0.15
5-fold CV

[14] GCT eICU Mortality prediction 91.20 ± 0.48 59.92 ± 2.23 Train/val/test
8:1:1 split
five times

[34] Gaussian
embedding, RNN

Not specified Mortality prediction
for: Heart failure
Chronic liver
disease

HF 72.05
Chronic liver
disease 74.15

– Train/val/test
80:15:5

[39] Transformer eICU Mortality prediction 91.59 – Train/val/test
8:1:1

[40] L1-SVMs,
Octagonal
Shrinkage and
Clustering
Algorithm for
Regression

Australian hospital 1 year mortality of
cancer patients

72.90 – Randomly
divided into
train and test
sets 100
times

[41] GRUs, attention,
GCNs

MIMIC-III Mortality in the
next 24 h

90.06 34.84 Train/val/test
70:15:15

[44] GNN, attention MIMIC-III Mortality prediction
24 h after admission

– 71.02 Train/val/test
8:1:1

[46] Gated GNN MIMIC-IV Mortality caused by
HF

75.22 ± 1.52 47.00 ± 2.13 5-fold CV

[46] Gated GNN eICU Mortality caused by
HF

89.30 ± 0.20 60.81 ± 0.76 5-fold CV
Table 7
Readmission prediction (binary) models with performance metrics. ICU .

Paper Models used Dataset Classes/ Outcomes AUROC (%) AUPRC (%) Validation
Type

[30] GNN, BERT MIMIC-III 30 day hospital
readmission

85.8 ± 1.2 84.7 ± 1.5 5-fold CV

[31] Co-occurrence-
aware
self-attention
mechanism,
Time aware-GRU

MIMIC-III Readmission 74.03 72.78 Train/val/test
0.75:0.1:0.15

[14] GCT eICU Readmission during
the same hospital
stay

75.02 ± 1.14 52.44 ± 1.42 Train/val/test
8:1:1 split
five times

[37] Non-negative
Matrix
Factorisation

MIMIC-II 30 day ICU
readmission risk

66.1 – 5-fold CV

[38] GCN, attention,
bi-directional
LSTM

MIMIC-III 30 day ICU
readmission risk

82.5 63.2 Train/val/test
8:1:1

[39] Transformer eICU Readmission during
a hospital stay

76.14 – Train/val/test
8:1:1

[40] L1-SVMs,
Octogonal
Shrinkage and
Clustering
Algorithm for
Regression

Australian hospital 30 day hospital
readmission Acute
Myocardial
Infarction

63.7 – Randomly
divided into
train and test
sets 100
times

[7] SVM Not specified Risk of HF-related
hospitalisation/
readmission

73 67 Random
training and
testing sets

[44] GNN, attention eICU Readmission
prediction at
discharge

– 39.86 Train/val/test
8:1:1
of PROBAST. However, their complexity, in particular DL methods,
means that the entire model cannot be fully presented. In contrast,
statistical methods such as regression models can present coefficients.
Different approaches and terminology within the field of ML mean
that current PROBAST reporting may not fully critically appraise ML
9 
techniques, particularly throughout the analysis domain. There is on-
going work to address this potential pitfall, with new TRIPOD-AI
and PROBAST-AI reporting guidelines anticipated, with a focus on
ML methods [57]. Given that our RoB findings show that almost all

papers were deemed high RoB within the analysis domain, it would
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be expected that these papers would still have high RoB under new
reporting guidelines.

7. Future directions

The papers in this review focus on demonstrating the utility of
graph representation in improving predictive performance rather than
clinical application. This is reflected by our RoB assessment which
demonstrates that the literature in this area is making assumptions
that would preclude its use in the clinical environment. Many of these
papers fail to consider the clinical context of their prediction. These
include using predictive variables that form part of the diagnostic
criteria, the poor definition of clinical outcomes or using variables that
occur only in the presence of the predicted outcome. Reporting conduct
will only improve if authors and the bodies accepting these papers
follow TRIPOD and PRISMA reporting guidelines [19,56].

We expect that such false assumptions would be addressed by
having input from medical experts who understand the clinical context.
Only 9 (33.3%) papers had clinical input in the paper, despite the
papers having clinical predictive tasks. All the papers with a clinical
author had a high RoB, suggesting they did not have the expertise
to understand the RoB or did not have sufficient influence during the
study design process. At this intersectional space of the application of
Computer Science techniques within the domain of healthcare, better
integration of medical expertise into predominately computer science
teams may go some way in incorporating the clinical context and
improving RoB.

None of these papers have formally explored how interpretable
their analysis would be from the clinical end-user perspective and how
this might change/affect clinical decision-making. Further research into
formally defining the interpretability of predictive models and their
effect on actionable change would be useful for graph representation
and wider adoption of ML/AI within healthcare.

The ultimate goal of developing AI solutions within healthcare is to
improve clinical outcomes. As with any ML modelling technique, pre-
diction models must demonstrate robustness in other settings through
external validation but must also be understood in the clinical context.
The papers included in this review focus on the predictive aspect, which
allows for earlier intervention and potentially better outcomes in some
contexts. A larger question needs to be answered regarding the effect
of improved predictions on clinical pathways and outcomes.

We have three key takeaways from our review. (1) Researchers
should consider the clinical context carefully to ensure appropriate
timing, code groupings, and a reasonable relationship between the
outcome and predictors for clinical utility. (2) A lot of clinical research
is not currently fit for clinical use due to researchers not following
TRIPOD and PROBAST guidelines. The focus needs to shift from solely
enhancing predictive modelling performance to improving the clinical
utility of these models. (3) Graph representations have only been used
for a limited number of purposes, there is further scope to expand
graph models to other tasks. Graphs infrequently depict individual-level
patient representation, and when employed, predictions are confined
to just six outcomes (mortality, readmission, treatment success, sepsis,
Cardiovascular disease (CVD), Alzheimer’s), but we believe that graph
usage could be extended to a wider range of health outcome prediction
tasks such as utility or cancer recurrence etc.

The findings from reviewing these studies determine that method-
ological quality is poor, and a well-crafted health prediction paper
has the following characteristics. It should be guided by the TRIPOD
guidelines, ensuring transparency and reliability, minimising bias as-
sessed through PROBAST. It begins by defining the research question
and specifying the health outcome. The methodology should outline
the predictors utilised within the model and the inclusion criteria,
emphasising a representative sample. Rigorous internal validation by
employing techniques like cross-fold validation and bootstrapping, is

essential. The use of external validation gauges generalisability, and we k
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acknowledge that this may extend beyond a single paper, necessitating
follow-up studies by external teams. Model development relies on
robust statistical methods, accounting for predictors and their inter-
actions, and addresses missing data and biases. Transparent reporting,
including calibration curves and confidence intervals, enhances result
interpretability. Recent papers discuss and demonstrate some of the
methods that should be used when creating models for healthcare
applications [58–60].

8. Conclusion

Our review found 27 papers which used graph representation of
EHRs for health outcome or prognosis prediction. A PROBAST analysis
determined that only three papers had a low RoB. We present a
narrative review of how EHR data can be represented as graphs by
discussing characteristics of the methodologies, including model types,
outcome prediction types, and model performances.

We found that researchers are mainly using 4 methods (GCNs,
GNNs, Graph Kernels, and Bayesian Networks) to incorporate graphs
into their healthcare prediction models. These graph approaches out-
perform baseline models that use non-graph ML, AI, and statistical
methods. However this may potentially be due to publication bias. Di-
agnosis and EHR codes are most frequently being used for graph nodes,
whilst edges are being used to represent time and simultaneous disease
occurrence. Out of the 3 low RoB models, the GNN with BERT model
had the best performance for hospital readmission prediction [30]. In
the high RoB papers, the TCoN model (GNN with attention) had the
best AUPRC performance.

Graph-based representations using EHRs, for individual health out-
comes and diagnoses is an area ripe for exploration but require further
knowledge building before we can see the results applied clinically.
Graph representations appear to be useful in dealing with the sparsity
of EHRs, by retaining structure and temporality. The simplicity of
these graphs is also well suited for ML models for predicting health
outcomes. Whilst mindful of publication bias, the technique of graph
representation appears to improve predictive performance compared
to baseline ML methods in multiple fields of medicine, suggesting the
potential for universal application.

The high RoB suggests that authors do not use or are unaware
of TRIPOD and PRISMA reporting guidelines. This may change with
the publication of TRIPOD-AI and PROBAST-AI, which are specific
to AI/ML methods [57]. These efforts are not insurmountable with a
proper study design that incorporates clinical context, which will lead
to suitable models within the clinical setting.
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