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Abstract – A method of solving the 2D acoustic wave equation using Fourier Neural Operator (FNO)
networks is presented. Various scenarios including wave superposition are considered, including the modelling
of multiple simultaneous sound sources, reflections from domain boundaries and diffraction from randomly-
positioned and sized rectangular objects. Training, testing and ground-truth data is produced using the
acoustic Finite-Difference Time-Domain (FDTD) method. FNO is selected as the neural architecture as the
network architecture requires relatively little memory compared to some other operator network designs.
The number of training epochs and the size of training datasets were chosen to be small to test the convergence
properties of FNO in challenging learning conditions. FNO networks are shown to be time-efficient means of
simulating wave propagation in a 2D domain compared to FDTD, operating 25 � faster in some cases. Further-
more, the FNO network is demonstrated as an effective means of data compression, storing a 24.4 GB training
dataset as a 15.5 MB set of network weights.
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1 Introduction

The Finite Difference Time Domain (FDTD) method
[1, 2] is a well established numerical method within the field
of room acoustic simulation, and has been long studied for
its relatively simple implementation and flexibility, ability
to produce broadband simulations in one single pass and
relative ease of computational parallelisation for solving
larger problem domains [3]. However, despite these benefits,
it is still inefficient in terms of computation time and
memory use for very large acoustic spaces, and real-time
implementations are very limited [4, 5].

More recently, neural network approaches have been
used to solve scientific problems expressed by partial differ-
ential equations (PDEs) [6–9]. This has included some
limited application for acoustics problems [10, 11]. One such
approach, using a Fourier Neural Operator (FNO) for scien-
tific deep learning for simple 2D acoustic problems is
adopted in this paper with training data sourced from an
explicit compact FDTD numerical solution to the 2D linear
wave equation. The FNO is capable of modelling wave
propagation for acoustics problems when provided with
several initial steps of FDTD simulation data as an input
function to the network [10]. FNO networks demonstrate
strong generalisation in comparison to other scientific deep

learning approaches such as Physics-Informed Neural
Networks (PINNs) [6, 7]. Problems unseen by the network
during training are predicted at a similar level of error to
solutions in the training dataset.

Once an FNO has been trained, the simulation process
is reduced to a simple, and usually efficient, linear algebraic
process, potentially improving computational efficiency and
lowering simulation times. Furthermore, as the FNO archi-
tecture displays good generalisation, it would implicitly rep-
resent wave behaviour when excited at any point within the
domain it has been trained on, eliminating the need to store
a large amount of simulated data.

The work presented here is an extension of previously
published work by the authors [10]. In this previous paper,
an FNO network was used to model 2D wave propagation
over time for a square free-field domain with an excitation
source that could be positioned arbitrarily within the
domain boundaries. The method was tested by varying
the amount of time domain input data used for training
the network to obtain an output that compared well with
a FDTD baseline solution. It was discovered that FNO
networks could model single-source solutions well with a
maximum observed input-to-output temporal data ratio
of up to 1 input time-step to 16 output time-steps.

This paper develops these techniques further by testing
this FNO approach under different simulation conditions.
Here, up to four arbitrarily placed simultaneous sound*Corresponding author: michael.middleton@york.ac.uk
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sources are now considered in one set of experiments.
Specular reflections and diffraction from a randomly-
positioned block are modelled by FNO networks in a second
set. It is demonstrated that FNO can solve both problem
scenarios well, generalising to any set of 1–4 sound sources
in the multi-source experiments accurately. In experiments
involving scattering, the reflective object is rectangular and
allowed to be one of four sizes. It is further demonstrated
that FNO can distinguish the size of this object well, along
with its position.

The FNO is assessed on data outside of its training set
and the network architecture demonstrates good generalisa-
tion properties. Data obtained from two different FDTD
stencils commonly used in room acoustics literature is used
to train and evaluate the FNOs; the Standard Rectilinear
(SRL) [1] and the Interpolated Wideband (IWB) [12]
stencils. In addition, a 1.25 kHz lowpass filter is used to
band-limit the data prior to training the FNO network.
The resulting 2D acoustic test simulations presented demon-
strate an FNOmodel that can be trained using small FDTD
training datasets, that can generalise across initial condi-
tions and gives efficient and consistent results at run-time
when presented with unseen input data.

2 Background

The 2D linear acoustic wave equation is a hyperbolic
partial differential equation (PDE) defining the acoustic
pressure within a medium as a function of second-order
spatial and temporal partial derivatives (@x2, @y2, @t2). It
is presented in equation (1), in terms of u(x, y, t), where c
is the speed of wave propagation.

@u

@t2
¼ c2

@u

@x2
þ @u

@y2

� �

ð1Þ

Various boundary conditions can be considered and applied
to terminate the medium. Typically, in room acoustics
problems, it is assumed that boundaries are frequency inde-
pendent and locally reacting, such that the vibration of the
boundary itself is not considered, with the general continu-
ous boundary condition defined as:

1
cn

@u

@t
¼ �n � ru ð2Þ

where n is the outward-pointing unit normal vector to the
boundary surface and n represents the specific acoustic
impedance of the boundary surface.

2.1 2D acoustic finite-difference time domain

simulation

The general compact 2D acoustic FDTD scheme is pro-
vided in equation (3) where the d2 operators represent the
second-order central difference scheme for the relevant
dimension [1]. The SRL stencil is retrieved when a = 0
and the IWB stencil is obtained when a ¼ 1

4.

½1þ aðd2x þ d2yÞ þ a2d2xd
2
y �d2t utx;y ¼ k2½ðd2x þ d2yÞ þ bd2xd

2
y �utx;y

ð3Þ

Numerical dispersion error in FDTD simulations appears as
phase distortions in the simulated data, being the conse-
quence of quantising the continuous domain data into a dis-
crete set. Its impact can be mitigated by using finer domain
sampling densities [13]. Different stencil functions within
the FDTD update scheme can be used to manage dispersion
error distribution. Interpolated stencils [12] spread the error
across the domain isotropically, reducing the directional
impact of error in comparison to rectilinear stencils.

It is possible to approximate the value of u(x, y, t) in two
spatial dimensions by solving the wave equation using a
numerical approach such as FDTD. FDTD has received
considerable research interest in acoustic simulation,
making it a well-understood and easily implemented
method of solving the wave equation capable of simulating
a broad-band acoustic response [2, 4, 14, 15]. Hence, FDTD
has been chosen to produce training data for the FNO net-
works used in this paper.

The SRL and IWB FDTD stencil functions, which
define how pressure at a spatio-temporal point is computed
from surrounding pressure values, are used to simulate the
FDTD data. SRL was chosen as it is the simplest stencil
function, sampling 4 spatially adjacent points, whilst the
IWB stencil was selected for its isotropic dispersion error
pattern compared to SRL [2, 12].

2.2 Fourier neural operator networks

The FNO is a type of artificial neural network used in
scientific deep learning [7]. Rather than supplying a variable
(such as a coordinate) to the network and predicting a quan-
tity associated to that value (see PINNs [6, 16, 17]), operator
networks map from one functional space to another [7].
A function, in this case, a limited set of initial time-steps
from the acoustic FDTD method, is passed to the FNO.
Another function, the continued wave propagation after
the input time-steps, is predicted. FNO has been used to
solve problems such as wave equations [18, 19], Navier-
Stokes problems [7] and fluid flows [20]. Unlike PINNs,
FNO exhibits excellent generalisation when trained on a
dataset of similar physical problems with variable initial or
boundary conditions [7, 10].

FNO networks learn local and non-local features by
performing efficient convolution over the whole domain
by multiplying the signal spectrum with a matrix of
weights. Equation (4) describes the signal transformation
that occurs in the Fourier convolution layer as represented
in Figure 1, where s is the input signal from the proceeding
layer, W, B are matrices of adjustable complex-valued
weights representing weight and bias terms respectively,
F , IF are operators for the FFT and inverse FFT trans-
forms respectively and q is the length of the FFT spectrum
in bins divided by 2 rounded up to the nearest integer. r is a
non-linear activation term; the Gaussian-error Linear Unit
(GeLU) function [21] is suggested for FNO learning [7].
A graphical representation of the flow of data through the
FNO network is shown in Figure 1, where z is the data
batch size, L is the length of the temporal dimension and
I is the number of input time-steps to the network.
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g ¼ rðsþ IF ðFðsÞ½1:::q� �WþBÞÞ ð4Þ

Skip connections are used between layers, where the input
s is summed with the layer output g. Skip connections are
used to model non-periodic boundary conditions by allow-
ing weights to be trained without being transformed by
the FFT [7]. Additionally, skip connections avoid singular-
ities forming when incoming or outgoing weights from a
neuron reduce to zero. Singularities cause neural network
training to slow down significantly and are broken by skip
connections as features from previous layers are preserved
[22]. Finally, the signal is transformed by a nonlinear activa-
tion function and passed to subsequent layers.

In the complete FNO network, two additional fully-
connected layers are incorporated into the design. They
are the lifting and projection layers which proceed and
follow the stack of Fourier layers respectively. The lifting
layer increases the dimensionality of the input data to allow
for more spectral information to be learned from the signal.
Similarly, the projection layer lowers the dimensionality of
the output from the Fourier layers to what is required for
the network output. As these layers are parameterised with
trainable weights, this process is not analogous to increasing
the number of FFT bins within the Fourier layers.

2.3 Discussion on operator network designs

The key component of the FNO network is the Fourier
convolution layers which substitute the densely connected
layers found in other formulations of neural networks like
CNNs [7]. As such, Fourier convolution layers have been
introduced in place of densely-connected layers in Gated
Recurrent Unit (GRU) networks to model time-series prob-
lems [8]. These Fourier Gated Recurrent Unit (F-GRU)
networks have been used to model acoustic propagation
and boundary reflections in two spatial dimensions [8],
although F-GRU networks require nearly triple the param-
eter count of an FNO network to solve an equivalent acous-
tic problem. This is because the F-GRU stores the state of
the network in memory allowing subsequent inputs to be
affected by the present state of the system. This feature

protects against instability during training by providing
the system with time-domain awareness [8] but requires
more computational memory to store the additional infor-
mation. For this reason, FNO networks were selected for
the research presented here over F-GRU.

DeepONets are another formulation of operator net-
work that learns from sparsely-sampled data, rather than
the whole domain. They have found application in room
acoustic simulation problems, solving the 3D wave equation
with reflective surface modelling [11]. DeepONets also allow
for non-linear and deformed grids to be sampled directly,
however, whilst FNO must project a non-linear sampling
scheme onto a linearly-spaced grid first [23, 24]. It has been
demonstrated that DeepONets and FNO are equivalent in
prediction accuracy when considering smooth problems
[23]. FNO networks also predict the whole acoustic field
in a single pass whilst that predicted by a DeepONet solu-
tion must be constructed one point at a time [9]. FNO was
selected over DeepONet for this research as the training
data produced by FDTD is regularly sampled and predic-
tions are simpler to obtain from the trained FNO network.

3 Methodology

In this paper, FNO networks are trained to predict the
solution to 2D wave propagation problems when provided
with a sequence of input time-steps obtained from a FDTD
simulation. Accuracy of FNO predictions are quantified by
computing the absolute and Mean-Squared Errors (MSE)
of FNO outputs against ground-truth FDTD simulations
in the time and frequency domains. Prediction times of
FNO networks are also compared to the computation time
of equivalent FDTD simulations.

3.1 FDTD simulation for FNO modelling

FDTD simulation was implemented in Python 3.10
using the Numpy package. The machine used to produce
the FDTD data and train the FNO networks had a 12-core
3.5 GHz processor, 32 GB of RAM and an 8 GB NVidia

Figure 1. A representation of the FNO network architecture. Layer shapes in tensors are shown in parentheses. The transformed
signal is usually truncated with high-frequency FFT bins discarded as a regularisation measure [7].
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2060 Super GPU for parallel computation. The acoustic
FDTD method operating in 2 spatial dimensions plus time
was used to prepare the training and ground-truth data for
the network. Four square domains are defined and consid-
ered, described in Table 1.

Both spatial dimensions for all domains measure
64 samples. One is free-field and waves are allowed to prop-
agate past the boundary without any reflections. It receives
multiple simultaneous excitation sources and is labelled
“Multi”. Waves are also allowed to pass the boundary for
the “Scattering” domain, which also introduces a rectangu-
lar object into the space. This block can measure 8 � 8,
8 � 16, 16 � 8 or 16 � 16 samples in the X and Y dimen-
sions. The object is also assumed to be perfectly smooth,
reflective and stationary. Its position within the domain is
random and the block is entirely contained within the
domain in all examples. A third domain with reflective
boundaries (labelled “Boundary”) is not a free-field space;
each edge of the domain is modelled as a perfectly reflective
surface with a negative reflection coefficient, inverting
the phase of reflected waves with zero energy absorption.
A fourth domain (“B+S”) also uses reflective boundaries
defined in the same manner, plus the reflective block
modelling used in the scattering domain. In discrete
time, reflections from surfaces are modelled by Dirichlet
boundary conditions; utx;y ¼ 0.

For each domain, the number of input time-steps given
to the FNO is defined as I, whilst the number of subsequent
time-steps predicted is given as L (Table 1). Each domain
also receives padding in both spatial dimensions. Where
waves can pass beyond domain boundaries (multi-source
and scattering), the domain is padded symmetrically by
33 samples. Where boundary reflections are modelled
(boundary and B+S), domains are symmetrically padded
by 1 to model the reflective surface. Padding is removed
from the domain after FDTD simulation. FNO predictions
are obtained for the multi-source domain by providing the
FNO with the initial 16 time-steps of FDTD simulation as
input data, with the remaining 64 being predicted by the
network. Predictions for all other domains measure
128 time-steps in length, with 32 provided as input data
to the network. Fewer overall time-steps are considered for
the multi-source domain as there are no opportunities for
the propagating waves to reflect from anything in the space.
This causes waves to escape from the domain in relatively
few time-steps, which would result in the FNO modelling
silence and dispersion error for much of the prediction
period if the time dimension is not reduced. For all
experiments, a ratio of 1 input to 4 output time-steps are

modelled by the FNO, which has previously been established
to be a stable data ratio to train an FNO for acoustic
modelling [10].

The speed of sound in air is assumed as c = 343 m/s
with spatial and temporal sampling defined as �D =
0.043 m and �t = 88.388 lm respectively. The predicted
area of the domains, at 64 � 64 samples, can be calculated
as 7.53 m2. The Courant number k is defined here as
c�t
�D

¼ 0:707 ¼
ffiffiffiffiffiffiffi

0:5
p

. FNO output predictions measure a sig-
nal of length 5.657 ms for the multi-source domain and
11.314 ms for all other domains. For the multi-source
domain, FDTD simulations occupy 2.62 MB in working
computer memory. For all other domains, FDTD simula-
tions occupy 5.24 MB.

ptx;y ¼
1 if t ¼ 1;

0 otherwise:

�

ð5Þ

A Dirac pulse ptx;y (Eq. 5) is used as the excitation signal for
the system initial condition. It is applied at a randomly-
selected (x, y) coordinate within the domain at time-step
t = 1 for as many sound sources that are being simulated.
The grid-point (x, y) is set to a value of 1, whilst the energy
at all other points equals zero.

Excitation points are sampled according to a probability
function, illustrated in Figure 2. The Euclidean distance

Table 1. Simulation domain details.

Domain name Dimension size (X, Y, T)
(samples)

Padded dimension
size (X, Y, T) (samples)

Temporal length of
input data I (samples)

Temporal length of
predictions L (samples)

Multi (64, 64, 80) (130, 130, 80) 16 64
Scattering (64, 64, 160) (130, 130, 160) 32 128
Boundary (64, 64, 160) (66, 66, 160) 32 128
B+S (64, 64, 160) (66, 66, 160) 32 128

Figure 2. Probability density example for sampling excitation
coordinates. 200 coordinates, highlighted in green, are sampled
from a B+S domain which contains a 16 � 16 reflective object.
Lighter areas have a higher probability of sampling.

M. Middleton et al.: Acta Acustica 2025, 9, 204



from reflective surfaces are computed and points are sam-
pled according to the resulting probability distribution.
This step is taken to provide the FNO with more reference
data to model the positions of reflective surfaces in the
domains. Preliminary testing revealed that FNO networks
converge to lower overall minima using this probabilistic
sampling method rather than entirely stochastic sampling.
For the multi-source domain, where no reflective surfaces
exist, stochastic sampling is used instead.

3.2 Data preparation

Eight datasets were produced to conduct the experi-
ments presented in this paper for each of the domains
defined in Table 1. Two datasets were created for each
domain, simulated using SRL and IWB stencils. The details
of SRL and IWB datasets created are given in Table 2. The
same excitation coordinates and object position coordinates
(where appropriate) were used between SRL and IWB
datasets, with the only difference being the stencil function
used to create them. The first I time-steps were split from
each dataset to be used as input functions given to FNO
models, whilst the remaining L time-steps were used as
target data for training.

A lowpass filter was applied at 1.25 kHz to all datasets
to remove the high-frequency effects of dispersion error.
SRL and IWB stencils tolerate numerical phase distortions
differently, with IWB being able to resolve higher frequency
wave propagation more accurately. A uniform cutoff fre-
quency was used despite this as a dataset containing more
frequency-domain data is harder for the FNO to learn from,
which would obscure differences in training on data pro-
duced using alternate stencil configurations from being
uncovered.

The lowpass filter uses a 16th-order Butterworth design.
The filter was applied using the filtfilt method from
the Scipy Python package to avoid phase distortion of the
signal. This is achieved by passing the signal through the
filter forwards, then reversing its direction, passing it
through again then finally reversing its direction back to
its original orientation [25]. One effect of this method is that
filter order was effectively doubled from 16 to 32. Filter arti-
facts were mitigated by symmetrically zero-padding the
time dimension of the FDTD data by its length in samples.
This padding was removed after the filtering process.

3.3 FNO modelling

The network architecture was implemented using
Pytorch 3.10 and the neural-operator package [7]. Table 3

describes the FNO configuration. Similarly to the data
preparation process, FNO architecture and training
methodology is adapted from the work presented in [10].
Gradient clipping has been introduced to prevent extreme
values causing gradient explosions [26]. A value of 100
was selected as lower values (between 1 and 10) clipped
the gradient descent norm to the extent where training
became impossible.

Networks trained on the multi-source domain contained
2,032,592 trainable parameters, whilst networks trained on
other domains contained 2,053,136. These differences in
parameter counts between networks are due to the differ-
ences in temporal dimension lengths between domains
rather than a change in network formulation between
experiments. FNO networks are trained for 75 epochs for
each experiment as the most meaningful part of gradient
descent occurs within this period and longer training times
led to diminishing returns. The H1 function, given in
equation (7), was used as the loss function to perform gradi-
ent descent. The H1 loss is computed from the first-order
derivatives of MSE errors [27] (Eq. 6), where m is the
number of examples considered, v is a 3D matrix of
ground-truth FDTD data and v̂ is a same-size matrix of
predicted FNO data.

MSE ¼ 1
m

X

m

j¼1

ðvj � v̂jÞ2 ð6Þ

H 1 ¼ 1
m

X

m

j¼1

½ðvj � v̂jÞ2 þ
X

m

k¼1

ðv0k � v̂
0
kÞ

2� ð7Þ

Optimisation was undertaken using the ADAM optimizer
with Pytorch default configurations. The learning rate

Table 2. Training dataset composition.

Domain Num. FDTD Sims. in dataset Dataset size (GB)

Multi 800 (200 � 1 sound source, 200 � 2 sources, 200 � 3 sources, 200 � 4 sources) 3.9
Scattering 5000 (50 object positions � 25 simulations per object position � 4 object shapes) 24.4
Boundary 800 � 1 sound source only 3.9
B+S 5000 (50 object positions � 25 simulations per object position � 4 object shapes) 24.4

Table 3. FNO configuration.

Frequency bins preserved 32
Num. Fourier layers 4
Fourier layer width 32
Lifting channel width 256
Projection channel width 256
Batch size (z) 8
Epochs trained 75
Learning rate 0.004
Learning rate scheduler Cosine annealing (T = 25)
Gradient clipping 100
Optimiser ADAM (default Pytorch config)
Loss function H1

Maximum GPU memory used 7.6 GB
Factorisation type Tucker (rank = 0.42)

M. Middleton et al.: Acta Acustica 2025, 9, 20 5



was set to 0.004 based on empirical testing, noting that
larger learning rate values cause the network to converge
quicker but with greater instability and vice versa. A cosine
annealing scheduler without warm restarts cycling every
25 epochs was used to modulate the learning rate as train-
ing progressed [28].

A standard process in FNO known as positional
encoding is used to provide a constant underlying grid of
reference points under the physical wave propagation
domain. Evidence supports that positional encoding
improves the capability of FNO to model physical problems
[7]. It is applied by generating a 2D matrix of linearly-
spaced points GX as in equation (8) where w ¼ 1

64 is the
spacing size. Matrix GX consists of columns of values
increasing from 0 to 1 moving left to right across the 2D
array. Similarly, a second matrixGY =GX

T is defined that
contains rows of values increasing from top to bottom.
These matrices are appended to the end of the lowpassed
input data along the time axis, resulting in data of size
(X, Y, T + 2). The new time-plus-position domain is trea-
ted as channel data by Pytorch and is transformed all
together using the FFT in the Fourier layers.

GX ¼

0 w 2w ::: 63w 1

0 w 2w ::: 63w 1

0 w 2w ::: 63w 1

.

.

.
.
.
.

.

.

.
.
.
.

.
.

.
.
.
.

0 w 2w ::: 63w 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð8Þ

To model reflective objects in the Scattering and B+S
experiments, a domain mask was concatenated to the start
of input data, before time-step 1 of the FDTD simulation.
A domain mask is a 2D boolean array where grid-points
covered by a reflective object equal 1 and all other areas
equal 0. This process sandwiches the input wave simulation
data between the domain mask and the positional encoding
data. It was discovered during initial testing that including
the domain mask in the input data improves FNO conver-
gence by providing the FNO with awareness of the reflec-
tive block position. Input data for these domains was
therefore of size (X, Y, T + 3).

4 Results

Figures 3a–3c shows the ground-truth FDTDdata, FNO
predictions, and absolute error measured, respectively.
FNOs were tasked with obtaining predictions for input data
that was not included in the training dataset. These plots
illustrate that error tends to increase as problem complexity
increases. It can be seen in Figure 3c that the simple wave
superposition problem demonstrated in the multiple-source
experiment is modelled well by the FNO.

With this established, superposition was introduced
from reflective surfaces, rather than multiple sound sources.
Superposition from reflections is modelled more poorly
in comparison. Trivial solutions exist for the free-field
multiple source experiments, whilst the most complex

B+S experiments feature many reflections and diffraction
effects. In all examples however, the wavefront is modelled
well by the FNO models as they appear darkest in all abso-
lute error plots shown. The most error is apparent around
reflective objects, surrounding the opposing faces to where
a wave has contacted it.

The FNO is also able to predict the location of reflective
objects well in the domain. In the scattering and B+S
examples, the silhouettes of the objects can be seen in the
absolute error plots, demonstrating that FNO networks
predict very little noise inside areas where pressure should
equal zero at all times.

Table 4 records the MSE of predictions from all FNO
networks trained. These error values represent the MSE
of all (x, y, t) points for the examples pictured. FNO models
appear to learn more efficiently from FDTD data produced
using the SRL stencil function. However, there is very little
difference between the errors reported for SRL and IWB
configurations, meaning FNO can learn efficiently from
both datasets.

In support of Figure 3c, the amount of error in a predic-
tion scales roughly with problem complexity. This is evident
in the error quantified for the multi-source experiments,
where error increases with the number of sound sources pre-
dicted. Furthermore, all other experiments which introduce
reflections report higher MSE values than the reflection-free
multi-source tests. This suggests that wave superposition
that arises from reflections is harder to model using FNO
networks than superposition from multiple sound sources.
Incorporating reflective boundaries causes error to rise
considerably.

Reflections, and diffraction in the scattering and B+S
examples, are more complex phenomena than wave propa-
gation in a free-field with no absorption losses. This produces
a more intricate spectra when FDTD data is transformed
using the FFT within the FNO hidden layers. In turn, it
becomes increasingly difficult for the FNO to map between
input and target functional spaces without significantly
increasing the volume of training data the model receives.
The shape of the reflective object does not appear to affect
prediction accuracy meaningfully as the range of values
reported is low.

4.1 Frequency-domain analysis

Transfer Functions (TFs) were taken from each domain
for analysis and the results are presented in Figure 4. These
TFs were obtained by measuring an impulse response from
the center point of the grid ((x, y) = (32, 32)). The impulse
responses were then transformed using a 4096-point real-
valued FFT to plot the magnitude spectra. Transfer func-
tions taken from multi-source predictions agree with
ground-truth TFs taken from FDTD simulations well, vis-
ible by the similar line plots and by the low MSE values
reported. To reinforce previous findings, it can be seen that
error in predictions increases with problem complexity.

Both the scattering and B+S experiments involve
modelling diffraction as the wave is scattered by an object.
Diffraction appears to be poorly modelled, as there is often

M. Middleton et al.: Acta Acustica 2025, 9, 206



considerable error in the lowest frequency ranges of the TFs
for these experiments, where diffraction would be most
apparent. This can further be verified by comparing these
results to the multi-source and boundary experiments,
where the true and predicted TFs match more closely.

As an example, reference the 16 � 16 block result shown
in Figures 3a and 3b for the scattering experiment. Strong

diffraction effects, caused by the wave glancing from the
corner of the block, would be captured by a TF taken from
the center of the domain. Consequently, this predicted
transfer function shows the greatest deviation from the
ground-truth of all.

This suggests that overall MSE reported for domains is
skewed by low-valued areas in predictions with fewer sound

Figure 3. Four setups are demonstrated (columns) for each FNO trained (rows). For the multi-source domains this shows time-step
t = 40, and for all others this shows t = 72. Multi-source experiments contain between 1 and 4 simultaneous sound sources. Sound
source positions are marked in cyan. Scattering and B+S experiments contain a reflective object of a different size. Boundary
experiments feature one randomly positioned sound source. Ground-truth and predicted values are converted to decibels with a
reference signal strength of unity. (a) Ground-truth FDTD simulations produced using SRL and IWB stencils. (b) FNO predictions:
each prediction from an FNO was obtained by providing the early time-steps of simulations pictured in (a) as input data. (c) Absolute
difference in decibels between FNO predictions and ground-truth FDTD simulations.

Table 4.MSE values for predictions. Error is quantified over the entire prediction at all grid points. Predictions with the highest error
in a set of experiments are highlighted red and those with the lowest error are highlighted in green.

Experiment MSE (# Sources)

1 2 3 4

MultiSRL 8.782e�07 2.290e�06 3.249e�06 4.467e�06
MultiIWB 9.359e�07 2.342e�06 3.372e�06 4.562e�06

MSE

BoundarySRL 1.073e�06 1.260e�06 1.920e�06 1.433e�06
BoundaryIWB 1.155e�06 1.398e�06 1.956e�06 1.532e�06

MSE (Object Shape)

8 � 8 16 � 8 8 � 16 16 � 16
ScatterSRL 4.538e�07 2.413e�07 5.733e�07 3.145e�07
ScatterIWB 4.643e�07 2.362e�07 6.610e�07 3.445e�07
B+SSRL 1.454e�05 2.051e�05 2.113e�05 2.655e�05
B+SIWB 1.461e�05 1.875e�05 2.064e�05 2.539e�05
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sources, as previously identified in Figure 3c, and areas with
active wave propagation are more strongly affected by FNO
error. However, there is still little variance between MSE
values reported for TFs taken from scattering and B+S
domains, reinforcing the finding that object shape does
not significantly affect FNO prediction accuracy.

4.2 Training dynamics

The validation loss curves during training were recorded
every epoch and are shown in Figure 5. This data was
recorded by evaluating the network at each training epoch
on a set of testing data that was not used to adjust network
weights. The multi-source experiments converged to the
lowest minima and also exhibited the best generalisation
out of all the experiments conducted. This confirms the
FNO models these relatively simple problems well and
can exhibit similar prediction quality whether the input
data existed in the training dataset or not. Generalisation
immediately suffers once any reflective attributes are intro-
duced to the domain. FNO networks modelling boundary
reflections only converged smoothly, demonstrating little
instability. In contrast, scattering and B+S models were
more unstable, showing large spikes, despite receiving
4200 more FDTD simulation examples in their respective
training datasets. This indicates that modelling diffraction
is a cause of FNO instability during training given the com-
plexity of the task.

SRL and IWB FNO networks show highly similar
trajectories during gradient descent for domains of the same
type. This is in agreement with previous observations that
FNO can learn from acoustic simulation datasets prepared
with SRL and IWB stencils with little meaningful difference
between them. FNO networks modelling just boundary
reflections converged to the highest values overall. This is
due to the difficulty in modelling reflections combined with
the low dataset size of 800 FDTD simulations. B+S net-
works converged to a lower overall minima than scattering

networks, despite B+S predictions also reporting higher
error. This effect is likely due to the smaller values involved
in the scattering experiments as the waves escape past the
boundaries in later time-steps, skewing the loss trajectory
towards zero.

Figure 6 describes the time taken to train each network,
to predict a single solution from the network and how long
an equivalent FDTD simulation would take. The time
taken to apply the lowpass filter to FDTD data is included
in these measurements. FNO prediction times outperform
FDTD simulation times by hundreds of milliseconds in all
instances. Multi-source FNO networks were the quickest
to train as they contain slightly fewer parameters than
the others. Multi-source FDTD data was also the fastest
to simulate as there are half the number of time-steps
involved in the simulation. Boundary and B+S networks
were the longest to train as their datasets were �20 GB
larger than the other experiments. Despite the fast predic-
tion times, the requirement to train the FNO network for
between 1–8 hours makes FNO relatively time-inefficient
as a wave-solver when compared to FDTD.

a ¼
X

k

i¼1

ð642 � AÞ!
ð642 � A� iÞ! ð9Þ

Equation (9) describes the number of dataset permutations
where k is the maximum number of sound sources and A is
the area of the reflective object in samples, if present
(otherwise A = 0). A complete dataset of FDTD simula-
tions describes a set where each simulation has a unique
combination of excitation positions. Given the large facto-
rial values involved, the amount of data required to store
a complete dataset in computer memory is unfeasible. As
the FNO models demonstrated here have been trained on
800 to 5000 FDTD examples, it can be claimed that the
unmodified FNO architecture can learn from compact data-
sets containing similar problems and generalise to similar
problems outside of this dataset.

Figure 4. Transfer functions taken from the center of the domain for SRL and IWB FDTD and FNO solutions. The bold black line
marks 1.25 kHz, the cutoff frequency of the lowpass filter that was applied to training data.
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5 Discussion

Although the FNO network approach to predicting
acoustic wave propagation for these relatively simple 2D
acoustic problems offers good results when compared to
ground-truth FDTD simulations in nearly all examples it
is limited in its application as a generally applied efficient
solution due to the training time required. However, FNO
networks could have a more promising application as a
method of data compression for the storage of outputs from
the domain (impulse responses). The 24.4 GB training
dataset for scattering and B+S domains can be substituted
with a 15.5 MB FNO once trained which captures this data-
set and generalises to similar examples outside of it. By
extension, a complete set of FDTD data with a-many
members (Eq. 9) could not be stored on a computer in
practice without running out of memory. The on-disk size
of the FNO is dictated by the number of parameters rather
than the size of the dataset it was trained on. This is useful
in situations where a large number of simulations are
required for recall in a task; rather than loading pre-
simulated FDTD data from computer memory, predictions
can be made from the FNO network.

It has been demonstrated that FNO networks can
model reflections that arise from boundaries and objects
within the domain, further generalising over the shape

and position of the object. However, evidence suggests
diffraction is captured relatively poorly and is difficult to
model using a small dataset. This fact, in conjunction with
the relatively unstable loss descents for scattering and B+S
experiments in Figure 5, suggests the standard FNO archi-
tecture presented here is reaching the limits of its modelling
capabilities. Transfer learning [29] could be used to improve
generalisation over domain geometry including reflecting
objects in the space.

6 Conclusions

This paper has presented FNO networks that are able
to generalise over several physical factors while modelling
2D linear acoustic wave propagation in free-field domains.
Specifically, FNO networks were able to generalise over
arbitrarily positioned excitation sources within the domain,
discern the number of excitation sources present in the
input data, up to a limit of 4, and learn from two FDTD
stencils used in the training data. It was also shown that
FNO could solve non-trivial and increasingly difficult prob-
lems involving wave superposition caused by reflections
from boundaries and rectangular objects, with variable
shapes and positions. Evidence suggests that more training
data is required to produce high-quality predictions and to

Figure 5. FNO network loss values as a function of training epoch. The peak around epoch 50 is caused by the cosine learning rate
scheduling function. All FNO networks trained display good generalisation, as evidenced by the similar loss values when evaluated on
training and validation data.

Figure 6. FNO training and prediction times, with equivalent FDTD simulation times.
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ensure FNO stability during training. FNO networks have
been shown to predict solutions to the 2D wave equation
quickly and consistently, although training the network is
a lengthy process and longer in practice than using an
equivalent FDTD method.

For larger problem domains in FNO contexts, spatial
domain decomposition could be explored using FNO [30].
For typical auralisation use cases where only a single
source-receiver pair is required for any one simulation, the
FNO becomes inefficient as a lot of unnecessary data is
returned when only a single impulse response would suffice.
DeepONet [9, 11, 31] methods allow for predictions to be
made for a single source-receiver pair, but cannot predict
the entire wave-field in one pass. Therefore, it is suggested
that FNO is suited towards scenarios where sound pressure
level as a function of time over many points in a domain
must be evaluated. Future work will conduct auralistion
experiments to discern perceptual differences between
FNO and FDTD implementations as transfer functions
predicted by FNO approximate ground-truth TFs well in
many cases, indicating that the FNO should be suitable
for signal auralisation purposes.
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